Data Areas Data Areas

Data Areas

This chapter covers the following topics:
® Use of Data Areas
® |ocal Data Area
® Global Data Area

® Parameter Data Area

Use of Data Areas

As explained irDefining Fields, all fields that are to be used in a program have to be defined in a
DEFINE DATA statement.

The fields can be defined within tBEFINE DATA statement itself; or they can be defined outside the
program in a separate data area, withDBE&INE DATA statement referencing that data area.

A separate data area is a Natural object that can be used by multiple Natural programs, subprograms,
subroutines, helproutines, dialogs or classes. A data area contains data element definitions, such as
user-defined variables, constants and database fields from a data definition module (DDM).

All data areas are created and edited with the data area editor.
Natural supports three types of data area:

® |ocal Data Area

® Global Data Area

® Parameter Data Area

L ocal Data Area

Variables defined as local are used only within a single Natural programming object. There are two
options for defining local data:

e Define local data within a program.

e Define local data outside a program in a separate Natural programming object, a local data area
(LDA).

Such a local data area is initialized when a program, subprogram or external subroutine that uses this
local data area starts to execute.

For a clear application structure and for easier maintainability, it is usually better to define fields in data
areas outside the programs.

Data Areas Global Data Area

Example 1 - Fields Defined Directly within a DEFINE DATA Statement:

In the following example, the fields adefined directlywithin theDEFINE DATA statement of the
program.

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 PERSONNEL-ID
1 #VARI-A (A20)
1 #VARI-B (N3.2)
1 #VARI-C (14)
END-DEFINE

Example 2 - Fields Defined in a Separate Data Area:

In the following example, the same fields are not defined IDEEINE DATA statement of the program,
but in an LDA, nhamedlDA39, and theDEFINE DATA statement in the program contains only a
reference to that data area

Program:
DEFINE DATA LOCAL

USI NG LDA39
END-DEFINE

Local Data Ared.DA39:

ITL Name F Length Miscellaneous
All -- - >
V 1 VIEWEMP EMPLOYEES

2 PERSONNEL-ID A 8

2 FIRST-NAME A 20

2 NAME A 20

1 #VARI-A A 20

1 #VARI-B N 3.2

1 #VARI-C | 4

Global Data Area

The following topics are covered below:
e Creating and Referencing a GDA
e Creating and Deleting GDA Instances

o Data Blocks

Creating and Referencing a GDA

GDAs are created and modified with the Natural data area editor. For further information, Defer to
Area Editor in theEditors documentation.

Creating and Deleting GDA Instances Data Areas

A GDA that is referenced by a Natural programming object must be stored in the same Natural library (or
a steplib defined for this library) where the object that references this GDA is stored.

Note:

Using a GDA name@€OMMOfdr startup:

If a GDA namedCOMMO&Kkists in a library, the program nam@@OMMOIN invoked automatically
when youLOGONo that library.

Important:

When you build an application where multiple Natural programming objects reference a GDA, remember
that modifications to the data element definitions in the GDA affect all Natural programming objects that
reference that data area. Therefore these objects must be recompiled by USRGALO Gr STOW

command after the GDA has been modified.

To use a GDA, a Natural programming object must reference it witBltEBALclause of th®EFINE
DATAstatement. Each Natural programming object can reference only one GDA; tH2E SINE
DATAstatement must not contain more than Gh®BALclause.

Creating and Deleting GDA Instances

The first instance of a GDA is created and initialized at runtime when the first Natural programming
object that references it starts to execute.

Once a GDA instance has been created, the data values it contains can be shared by all Natural
programming objects that reference this GIFINE DATA GLOBAL statement) and that are invoked
by aPERFORMNPUT or FETCHstatement. All objects that share a GDA instance are operating on the
same data elements.

A new GDA instance is created if the following applies:
® A subprogram that references a GDaly GDA) is invoked with &£ALLNATstatement.

® A subprogram that doemt reference a GDA invokes a programming object that references a GDA
(any GDA).

If a new instance of a GDA is created, the current GDA instance is suspended and the data values it
contains are stacked. The subprogram then references the data values in the newly created GDA instance.
The data values in the suspended GDA instance or instances is inaccessible. A programming object only
refers to one GDA instance and cannot access any previous GDA instances. A GDA data element can only
be passed to a subprogram by defining the element as a parameteC Al LA Tstatement.

When the subprogram returns to the invoking programming object, the GDA instance it references is
deleted and the GDA instance suspended previously is resumed with its data values.

A GDA instance and its contents is deleted if any of the following applies:
® The nextLOGONSs performed.
® Another GDA is referenced on the same level (levels are described later in this section).

o A RELEASE VARIABLESstatement is executed. In this case, the data values in a GDA instance are
reset either when a program at the level 1 finishes executing, or if the program invokes another
program via &ETCHor RUNstatement.

Data Areas Creating and Deleting GDA Instances

The following graphics illustrate how programming objects reference GDAs and share data elements
in GDA instances.

Sharing GDA Instances

The graphic below illustrates that a subprogram referencing a GDA cannot share the data values in a GDA
instance referenced by the invoking program. A subprogram that references the same GDA as the
invoking program creates a new instance of this GDA. The data elements defined in a GDA that is
referenced by a subprogram can, however, be shared by a subroutine or a helproutine invoked by the
subprogram.

The graphic below shows three GDA instance&DAland the final values each GDA instance is

1 7

assigned by the data elemé&@LOB1 The number - to indicate the hierarchical levels of the

programming objects.

Creating and Deleting GDA Instances Data Areas

1 Program PROG1
Global Data Area GDA1
DEFIMNE DATA ... GLOBAL USING GO&1 ... ENO-DEFINE |
#GLOBT1 =11 C— e 1 #GLOE! M5
PERFORM SUBR1 .. |
!
Y
b Subroutine SUBR1
DEFIMNE DATA ... GLOBAL USING GO&1 ... ENO-DEFINE |
#GL0B1 =12 ——
PERFORM SLUBRZ . |
I
Y
3 Subroutine SUBR2
DEFINE DATA ... GLOBAL USING GO&1 ... END-DEFINE | Instance 1 of GDA1
#GL0B1 =13 —— ’
CALLMAT 'SUBPZ' .. | Contents of #5L0EB1: 12
|
Y
4 Subprogram SUBP2
g Global Data Area GDA1
DEFINE D&TA .. GLOBAL USING GDA1 ... END-DEFINE |
#GL0B81 =21 p— - = 1 #GLOBE1 N5
PERFORM SUBR3 |
b
5 Subroutineg SUBR3
DEFINE DATA .. GLOBAL USING GDA1 ... END-DEFINE | Instance 2 of GOA1
#GL0B1 =22 —_—
CALLMAT 'SUBP3 .. | Contents of #3L081: 22
k4
& Subprogram SUBP3
DEFIMNE DATA ... END-DEFINE Slgialia Ares QLA
* Mo GOMA s used ; = 1 #GLOB1 M5

PERFORM SUBR4 ...

v

7 Subroutine SUBR4

DEFINE DATA ... GLOBAL USING GDA1 ... END-DEFINE | Instance 3 of GDA1
#GLOB1 =31 : 1 -

| Contents of #GL0B1: 34

Using FETCH or FETCH RETURN

The graphic below illustrates that programs referencing the same GDA and invoking one another with the
FETCHor FETCH RETURNMtatement share the data elements defined in this GDA. If any of these
programs does not reference a GDA, the instance of the GDA referenced previously remains active and
the values of the data elements are retained.

The number: ' and £ indicate the hierarchical levels of the programming objects.

Data Areas Creating and Deleting GDA Instances

1 Program PROG1
Global Data Area GDA1
DEFIME DATA ... GLOBAL USING GDA1 ... END-DEFIME
¥GLOBT =11 = . P 1 #GLOB1 M5
FETCH PROGZ
1
¥
1 Program PROG2
DEFIME DATA ... GLOBAL USING GDA1 ... END-DEFIME
#EL0B1 =12 -
FETCH RETURN 'PROGY
1
¥
> Program PROG3
DEFIME DATA ... END-DEFINE
M Mo GOA used
FETCH PROG4"
1
L J
1 Program PROGA
DEFIME DATA ... GLOBAL USING GDA1 ... END-DEFIME

#ELOBET =132 -

Using FETCH with different GDAs

The graphic below illustrates that if a program use$HECHstatement to invoke another program that
references a different GDA, the current instance of the GDA (&B®8&) referenced by the invoking

program is deleted. If this GDA is then referenced again by another program, a new instance of this GDA
is created where all data elements have their initial values.

You cannot use theETCH RETURNstatement to invoke another program that references a different
GDA.

The numbe ' indicates the hierarchical level of the programming objects.
The invoking programBROG3aNndPROG4ffect the GDA instances as follows:

® The statemenBLOBAL USING GDAZ2in PROGZXreates an instance BDA2and deletes the
current instance d6DA1

® The statemenELOBAL USING GDA1lin PROG4eletes the current instance@DA2and creates a
new instance oEDA1 As a result, th®VRITEstatement displays the value zero (0).

Data Blocks Data Areas

1 Program PROG1

DEFINE DATA ... GLOBAL USING GDA1 ... END-DEFINE Global Data Area GDA1
#GLOB1 =11 h——— P 1 2GLOB1 M5
FETCH PROGZ

1 Program PROG2

DEFINE DATA ... GLOBAL USING GDAT ... END-DEFINE
#:L0B1 =12 ——
FETCH "PROG3"

1 Frogram PROG3
DEFINE DATA ... GLOBAL USING GDAZ ... END-DEFINE
#GL082 =12 =
FETCH PROGS
|
v
1 Program PROG4
Global Data Area GDA1
DEFINE DATA ... GLOBAL USING GDAT ... END-DEFINE
WRITE #GLOE1 1 B 1 #GLOB1 M3

Data Blocks
To save data storage space, you can create a GDA with data blocks.
The following topics are covered below:

e Example of Data Block Usage
® Defining Data Blocks
® Block Hierarchies

Example of Data Block Usage
Data blocks can overlay each other during program execution, thereby saving storage space.

For example, given the following hierarchy, Blocks B and C would be assigned the same storage area.
Thus it would not be possible for Blocks B and C to be in use at the same time. Modifying Block B would
result in destroying the contents of Block C.

Data Areas Data Blocks

Sub-Block B Sub-Block C

Sub-Block D

Defining Data Blocks

You define data blocks in tldata area editoiYou establish the block hierarchy by specifying which
block is subordinate to which: you do this by entering the name of the "parent” block in the comment field
of the block definition.

In the following exampleSUB-BLOCKBandSUB-BLOCKGCare subordinate tdASTER-BLOCKA
SUB-BLOCKUDs subordinate t§UB-BLOCKB

The maximum number of block levels is 8 (including the master block).
Example:

Global Data Are&-BLOCK

I TL Name F Leng Index/InityEM/Name/Comment

B MASTER-BLOCKA

1 MB-DATAO1 A 10

B SUB-BLOCKB MASTER-BLOCKA
1 SBB-DATAO1 A 20

B SUB-BLOCKC MASTER-BLOCKA
1 SBC-DATAO1 A 40

B SUB-BLOCKD SUB-BLOCKB
1 SBD-DATAO1 A 40

To make the specific blocks available to a program, you use the following syntaxDERRNEE DATA
statement:

Data Blocks Data Areas

Program 1:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA
END-DEFINE

Program 2:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE

Program 3:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKC
END-DEFINE

Program 4:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKB.SUB-BLOCKD
END-DEFINE

With this structure, Program 1 can share the datéASTER-BLOCKAvith Program 2, Program 3 or

Program 4. However, Programs 2 and 3 cannot share the data é8-Bt. OCKBandSUB-BLOCKC

because these data blocks are defined at the same level of the structure and thus occupy the same storage
area.

Block Hierarchies

Care needs to be taken when using data block hierarchies. Let us assume the following scenario with three
programs using a data block hierarchy:

Program 1.

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE
*
MOVE 1234 TO SBB-DATAO1
FETCH 'PROGRAM2’
END

Program 2:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA
END-DEFINE
*

FETCH 'PROGRAM3
END

Data Areas Parameter Data Area

Program 3:

DEFINE DATA GLOBAL

USING G-BLOCK

WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE

*

WRITE SBB-DATA01
END

Explanation:

® Program 1 uses the global data a8eBLOCKwith MASTER-BLOCKANdSUB-BLOCKB The
program modifies a field iSUB-BLOCKBand fetches Program 2 which specifies only
MASTER-BLOCKA/n its data definition.

® Program 2 resets (deletes the contentSb3-BLOCKB The reason is that a program on Level 1
(for example, a program called witHF&TCHstatement) resets any data blocks that are subordinate
to the blocks it defines in its own data definition.

® Program 2 now fetches Program 3 which is to display the field modified in Program 1, but it returns
an empty screen.

For details on program levels, ddeltiple Levels of Invoked Objects.

Parameter Data Area

A subprogram is invoked with@ALLNATstatement. With thEALLNATstatement, parameters can be
passed from the invoking object to the subprogram.

These parameters must be defined wibE&xINE DATA PARAMETERstatement in the subprogram:
® they can be defined in tiARAMETERIause of th®©EFINE DATA statement itself; or

e they can be defined in a separate parameter data area, WitBFNE DATA PARAMETER
statement referencing that PDA.

The following topics are covered below:
o Parameters Defined within DEFINE DATA PARAMETER Statement

® Parameters Defined in Parameter Data Area

Parameter s Defined within DEFINE DATA PARAMETER Statement

10

Parameters Defined in Parameter Data Area

Local Data Area LDA1

1 #PARM1 A20
1 #PARMZ Mz

Inwoking Chject P Subprogram SLIBPA
DEFINE DATA

LOCAL USING LDA1
END-DEFINE

CALLNAT 'SUBP1' #PARM1 #PARMZ

END

Parameters Defined in Parameter Data Area

Data Areas

11

Data Areas Parameters Defined in Parameter Data Area

Local Data Area LDAY Farameter Data Area PDA1

1 #PARMY A20
1 #PARMZ M2

Invoking Chbject P Subprogram SUBP1

DEFINE DATA
LOCAL USING LDA
EMD-DEFINE

EALLNAT 'SUBP 1 #PARM1 #PARMZ

END

In the same way, parameters that are passed to an external subroutiREREBGRMtatement must be
defined with EDEFINE DATA PARAMETERstatement in the external subroutine.

In the invoking object, the parameter variables passed to the subprogram/subroutine need not be defined in
a PDA; in the illustrations above, they are defined in the LDA used by the invoking object (but they could
also be defined in a GDA).

The sequence, format and length of the parameters specified WEALHNATPERFORMtatement in

the invoking object must exactly match the sequefacmatand length of the fields specified in the

DEFINE DATA PARAMETERstatement of the invoked subprogram/subroutine. However, the names of
the variables in the invoking object and the invoked subprogram/subroutine need not be the same (as the
parameter data are transferred by address, not by hame).

To guarantee that the data element definitions used in the invoking program are identical to the data
element definitions used in the subprogram or external subroutine, you can specify a HDEFINE

DATA LOCAL USING statement. By using a PDA as an LDA you can avoid the extra effort of creating
an LDA that has the same structure as the PDA.

12

	Data Areas
	Use of Data Areas
	Local Data Area
	
	Example 1 - Fields Defined Directly within a DEFINE DATA Statement:
	Example 2 - Fields Defined in a Separate Data Area:

	Global Data Area
	Creating and Referencing a GDA
	Creating and Deleting GDA Instances
	Sharing GDA Instances
	Using FETCH or FETCH RETURN
	Using FETCH with different GDAs

	Data Blocks
	Example of Data Block Usage
	Defining Data Blocks
	Example:
	Block Hierarchies

	Parameter Data Area
	Parameters Defined within DEFINE DATA PARAMETER Statement
	Parameters Defined in Parameter Data Area

