
Data Areas
This chapter covers the following topics:

Use of Data Areas

Local Data Area

Global Data Area

Parameter Data Area

Use of Data Areas
As explained in Defining Fields, all fields that are to be used in a program have to be defined in a
DEFINE DATA statement.

The fields can be defined within the DEFINE DATA statement itself; or they can be defined outside the
program in a separate data area, with the DEFINE DATA statement referencing that data area.

A separate data area is a Natural object that can be used by multiple Natural programs, subprograms,
subroutines, helproutines, dialogs or classes. A data area contains data element definitions, such as
user-defined variables, constants and database fields from a data definition module (DDM).

All data areas are created and edited with the data area editor.

Natural supports three types of data area:

Local Data Area

Global Data Area

Parameter Data Area

Local Data Area
Variables defined as local are used only within a single Natural programming object. There are two
options for defining local data:

Define local data within a program.

Define local data outside a program in a separate Natural programming object, a local data area
(LDA).

Such a local data area is initialized when a program, subprogram or external subroutine that uses this
local data area starts to execute.

For a clear application structure and for easier maintainability, it is usually better to define fields in data
areas outside the programs.

1

Data AreasData Areas

Example 1 - Fields Defined Directly within a DEFINE DATA Statement:

In the following example, the fields are defined directly within the DEFINE DATA statement of the
program.

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 PERSONNEL-ID
1 #VARI-A (A20)
1 #VARI-B (N3.2)
1 #VARI-C (I4)
END-DEFINE
...

Example 2 - Fields Defined in a Separate Data Area:

In the following example, the same fields are not defined in the DEFINE DATA statement of the program,
but in an LDA, named LDA39, and the DEFINE DATA statement in the program contains only a
reference to that data area.

Program:

DEFINE DATA LOCAL
 USING LDA39
END-DEFINE
 ...

Local Data Area LDA39:

I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->
 V 1 VIEWEMP EMPLOYEES
 2 PERSONNEL-ID A 8
 2 FIRST-NAME A 20
 2 NAME A 20
 1 #VARI-A A 20
 1 #VARI-B N 3.2
 1 #VARI-C I 4

Global Data Area
The following topics are covered below:

Creating and Referencing a GDA

Creating and Deleting GDA Instances

Data Blocks

Creating and Referencing a GDA

GDAs are created and modified with the Natural data area editor. For further information, refer to Data
Area Editor in the Editors documentation.

2

Global Data Area Data Areas

A GDA that is referenced by a Natural programming object must be stored in the same Natural library (or
a steplib defined for this library) where the object that references this GDA is stored.

Note:
Using a GDA named COMMON for startup:
If a GDA named COMMON exists in a library, the program named ACOMMON is invoked automatically
when you LOGON to that library.

Important:
When you build an application where multiple Natural programming objects reference a GDA, remember
that modifications to the data element definitions in the GDA affect all Natural programming objects that
reference that data area. Therefore these objects must be recompiled by using the CATALOG or STOW
command after the GDA has been modified.

To use a GDA, a Natural programming object must reference it with the GLOBAL clause of the DEFINE
DATA statement. Each Natural programming object can reference only one GDA; that is, a DEFINE
DATA statement must not contain more than one GLOBAL clause.

Creating and Deleting GDA Instances

The first instance of a GDA is created and initialized at runtime when the first Natural programming
object that references it starts to execute.

Once a GDA instance has been created, the data values it contains can be shared by all Natural
programming objects that reference this GDA (DEFINE DATA GLOBAL statement) and that are invoked
by a PERFORM, INPUT or FETCH statement. All objects that share a GDA instance are operating on the
same data elements.

A new GDA instance is created if the following applies:

A subprogram that references a GDA (any GDA) is invoked with a CALLNAT statement.

A subprogram that does not reference a GDA invokes a programming object that references a GDA
(any GDA).

If a new instance of a GDA is created, the current GDA instance is suspended and the data values it
contains are stacked. The subprogram then references the data values in the newly created GDA instance.
The data values in the suspended GDA instance or instances is inaccessible. A programming object only
refers to one GDA instance and cannot access any previous GDA instances. A GDA data element can only
be passed to a subprogram by defining the element as a parameter in the CALLNAT statement.

When the subprogram returns to the invoking programming object, the GDA instance it references is
deleted and the GDA instance suspended previously is resumed with its data values.

A GDA instance and its contents is deleted if any of the following applies:

The next LOGON is performed.

Another GDA is referenced on the same level (levels are described later in this section).

A RELEASE VARIABLES statement is executed. In this case, the data values in a GDA instance are
reset either when a program at the level 1 finishes executing, or if the program invokes another
program via a FETCH or RUN statement.

3

Data AreasCreating and Deleting GDA Instances

The following graphics illustrate how programming objects reference GDAs and share data elements
in GDA instances.

Sharing GDA Instances

The graphic below illustrates that a subprogram referencing a GDA cannot share the data values in a GDA
instance referenced by the invoking program. A subprogram that references the same GDA as the
invoking program creates a new instance of this GDA. The data elements defined in a GDA that is
referenced by a subprogram can, however, be shared by a subroutine or a helproutine invoked by the
subprogram.

The graphic below shows three GDA instances of GDA1 and the final values each GDA instance is

assigned by the data element #GLOB1. The numbers to indicate the hierarchical levels of the
programming objects.

4

Creating and Deleting GDA InstancesData Areas

Using FETCH or FETCH RETURN

The graphic below illustrates that programs referencing the same GDA and invoking one another with the
FETCH or FETCH RETURN statement share the data elements defined in this GDA. If any of these
programs does not reference a GDA, the instance of the GDA referenced previously remains active and
the values of the data elements are retained.

The numbers and indicate the hierarchical levels of the programming objects.

5

Data AreasCreating and Deleting GDA Instances

Using FETCH with different GDAs

The graphic below illustrates that if a program uses the FETCH statement to invoke another program that
references a different GDA, the current instance of the GDA (here: GDA1) referenced by the invoking
program is deleted. If this GDA is then referenced again by another program, a new instance of this GDA
is created where all data elements have their initial values.

You cannot use the FETCH RETURN statement to invoke another program that references a different
GDA.

The number indicates the hierarchical level of the programming objects.

The invoking programs PROG3 and PROG4 affect the GDA instances as follows:

The statement GLOBAL USING GDA2 in PROG3 creates an instance of GDA2 and deletes the
current instance of GDA1.

The statement GLOBAL USING GDA1 in PROG4 deletes the current instance of GDA2 and creates a
new instance of GDA1. As a result, the WRITE statement displays the value zero (0).

6

Creating and Deleting GDA InstancesData Areas

Data Blocks

To save data storage space, you can create a GDA with data blocks.

The following topics are covered below:

Example of Data Block Usage
Defining Data Blocks
Block Hierarchies

Example of Data Block Usage

Data blocks can overlay each other during program execution, thereby saving storage space.

For example, given the following hierarchy, Blocks B and C would be assigned the same storage area.
Thus it would not be possible for Blocks B and C to be in use at the same time. Modifying Block B would
result in destroying the contents of Block C.

7

Data AreasData Blocks

Defining Data Blocks

You define data blocks in the data area editor. You establish the block hierarchy by specifying which
block is subordinate to which: you do this by entering the name of the "parent" block in the comment field
of the block definition.

In the following example, SUB-BLOCKB and SUB-BLOCKC are subordinate to MASTER-BLOCKA;
SUB-BLOCKD is subordinate to SUB-BLOCKB.

The maximum number of block levels is 8 (including the master block).

Example:

Global Data Area G-BLOCK:

 I T L Name F Leng Index/Init/EM/Name/Comment
 - - - -------------------------------- - ---- ---------------------------------
 B MASTER-BLOCKA
 1 MB-DATA01 A 10
 B SUB-BLOCKB MASTER-BLOCKA
 1 SBB-DATA01 A 20
 B SUB-BLOCKC MASTER-BLOCKA
 1 SBC-DATA01 A 40
 B SUB-BLOCKD SUB-BLOCKB
 1 SBD-DATA01 A 40

To make the specific blocks available to a program, you use the following syntax in the DEFINE DATA
statement:

8

Data Blocks Data Areas

Program 1:

DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA
END-DEFINE

Program 2:

DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE

Program 3:

DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKC
END-DEFINE

Program 4:

DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB.SUB-BLOCKD
END-DEFINE

With this structure, Program 1 can share the data in MASTER-BLOCKA with Program 2, Program 3 or
Program 4. However, Programs 2 and 3 cannot share the data areas of SUB-BLOCKB and SUB-BLOCKC
because these data blocks are defined at the same level of the structure and thus occupy the same storage
area.

Block Hierarchies

Care needs to be taken when using data block hierarchies. Let us assume the following scenario with three
programs using a data block hierarchy:

Program 1:

DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE
*
MOVE 1234 TO SBB-DATA01
FETCH ’PROGRAM2’
END

Program 2:

DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA
END-DEFINE
*
FETCH ’PROGRAM3’
END

9

Data AreasData Blocks

Program 3:

DEFINE DATA GLOBAL
 USING G-BLOCK
 WITH MASTER-BLOCKA.SUB-BLOCKB
END-DEFINE
*
WRITE SBB-DATA01
END

Explanation:

Program 1 uses the global data area G-BLOCK with MASTER-BLOCKA and SUB-BLOCKB. The
program modifies a field in SUB-BLOCKB and fetches Program 2 which specifies only
MASTER-BLOCKA in its data definition.

Program 2 resets (deletes the contents of) SUB-BLOCKB. The reason is that a program on Level 1
(for example, a program called with a FETCH statement) resets any data blocks that are subordinate
to the blocks it defines in its own data definition.

Program 2 now fetches Program 3 which is to display the field modified in Program 1, but it returns
an empty screen.

For details on program levels, see Multiple Levels of Invoked Objects.

Parameter Data Area
A subprogram is invoked with a CALLNAT statement. With the CALLNAT statement, parameters can be
passed from the invoking object to the subprogram.

These parameters must be defined with a DEFINE DATA PARAMETER statement in the subprogram:

they can be defined in the PARAMETER clause of the DEFINE DATA statement itself; or

they can be defined in a separate parameter data area, with the DEFINE DATA PARAMETER
statement referencing that PDA.

The following topics are covered below:

Parameters Defined within DEFINE DATA PARAMETER Statement

Parameters Defined in Parameter Data Area

Parameters Defined within DEFINE DATA PARAMETER Statement

10

Parameter Data Area Data Areas

Parameters Defined in Parameter Data Area

11

Data AreasParameters Defined in Parameter Data Area

In the same way, parameters that are passed to an external subroutine via a PERFORM statement must be
defined with a DEFINE DATA PARAMETER statement in the external subroutine.

In the invoking object, the parameter variables passed to the subprogram/subroutine need not be defined in
a PDA; in the illustrations above, they are defined in the LDA used by the invoking object (but they could
also be defined in a GDA).

The sequence, format and length of the parameters specified with the CALLNAT/PERFORM statement in
the invoking object must exactly match the sequence, format and length of the fields specified in the
DEFINE DATA PARAMETER statement of the invoked subprogram/subroutine. However, the names of
the variables in the invoking object and the invoked subprogram/subroutine need not be the same (as the
parameter data are transferred by address, not by name).

To guarantee that the data element definitions used in the invoking program are identical to the data
element definitions used in the subprogram or external subroutine, you can specify a PDA in a DEFINE
DATA LOCAL USING statement. By using a PDA as an LDA you can avoid the extra effort of creating
an LDA that has the same structure as the PDA.

12

Parameters Defined in Parameter Data AreaData Areas

	Data Areas
	Use of Data Areas
	Local Data Area
	
	Example 1 - Fields Defined Directly within a DEFINE DATA Statement:
	Example 2 - Fields Defined in a Separate Data Area:

	Global Data Area
	Creating and Referencing a GDA
	Creating and Deleting GDA Instances
	Sharing GDA Instances
	Using FETCH or FETCH RETURN
	Using FETCH with different GDAs

	Data Blocks
	Example of Data Block Usage
	Defining Data Blocks
	Example:
	Block Hierarchies

	Parameter Data Area
	Parameters Defined within DEFINE DATA PARAMETER Statement
	Parameters Defined in Parameter Data Area

