
Introduction to NaturalX
This chapter contains a short introduction to component-based programming involving the use of the
NaturalX interface and a dedicated set of Natural statements. 

The following topics are covered:

Why NaturalX?

Programming Techniques

Why NaturalX? 
Software applications that are based on component architecture offer many advantages over traditional
designs. These include the following: 

Faster development. Programmers can build applications faster by assembling software from prebuilt
components. 

Reduced development costs. Having a common set of interfaces for programs means less work
integrating the components into complete solutions. 

Improved flexibility. It is easier to customize software for different departments within a company by
just changing some of the components that constitute the application. 

Reduced maintenance costs. In the case of an upgrade, it is often sufficient to change some of the
components instead of having to modify the entire application. 

Easier distribution. Components encapsulate data structures and functionality in distributable units. 

Using NaturalX you can create component-based applications.

You can use NaturalX in conjunction with DCOM. This enables you to: 

allow your components to be accessed by other components,

execute these components on local and/or remote servers,

access components written in a variety of programming languages across process and machine
boundaries from within Natural programs, 

provide your existing Natural applications with (quasi) standardized interfaces. 

The following scenario illustrates how a company could exploit these advantages. A company introduces
a new sales management system that is based on an application design using components. There are
numerous data entry components in the application, one for each sales point. But all of these sales points
use a common tax calculation component that runs on a server. If the tax legislation is changed, then only
the tax component has to be updated instead of changing the data entry components at each site. In
addition, the life of the programmers is made easier because they do not have to worry about network
programming and the integration of components that are written in different languages. 

1

Introduction to NaturalXIntroduction to NaturalX



Programming Techniques
This section covers the following topics:

Object-Based Programming

Defining Classes

Defining Interfaces

Interface Inheritance

Object-Based Programming 

NaturalX follows an object-based programming approach. Characteristic for this approach is the
encapsulation of data structures with the corresponding functionality into classes. Encapsulation is a good
basis for easy distribution. Because there are (quasi) standards for the interoperation of software
components on the basis of object models, an object-based approach is also a good basis for making
software components interoperable across program, machine and programming language boundaries. 

Defining Classes 

In an object-based application, each function is considered to be a service that is provided by an object.
Each object belongs to a class. Clients use the services either to perform a business task or to build even
more complex services and to provide these to other clients. Hence the basic step in creating an
application with NaturalX is to define the classes that form the application. In many cases, the classes
simply correspond to the real things that the application in question deals with, for example, bank
accounts, aircraft, shipments etc. There is a wide range of good literature about object-oriented design,
and a number of well-proven methods can be used to identify the classes in a given business. 

The process of defining a class can be broadly broken down into the following steps: 

Create a Natural module of type class.

Specify the name of the class using the DEFINE CLASS statement. This name will be used by the
clients to create objects of that class. 

Use the OBJECT clause of the DEFINE DATA statement to define how an object of the class will
look internally. Create a local data area that describes the layout of the object with the data area
editor, and assign this data area in the OBJECT clause. 

These steps are described in more detail in the section Developing Object-Based Natural Applications. 

Defining Interfaces 

In order to be useful to clients, a class must provide services, which it does through interfaces. An
interface is a collection of methods and properties. A method is a function that an object of the class can
perform when requested by a client. A property is an attribute of an object that a client can retrieve or
change. A client accesses the services by creating an object of the class and using the methods and
properties of its interfaces. 

2

Programming TechniquesIntroduction to NaturalX



The process of defining an interface can be broadly broken down into the following steps: 

Use the INTERFACE clause to specify an interface name. 

Define the properties of the interface with PROPERTY definitions. 

Define the methods of the interface with METHOD definitions. 

These steps are described in more detail in the section Developing Object-Based Natural Applications. 

Simple classes only have one interface, but a class may have more than one interface. This possibility can
be used to group methods and properties into one interface that belong to the same functional aspect of the
class and to define different interfaces to handle other functional aspects. For example, an Employee
class could have an interface Administration that contains all of the methods and properties of the
administrative aspects of an employee. This interface could contain the properties Salary and 
Department and the method TransferToDepartment. Another interface Qualifications
could contain the qualification aspects of an employee. 

Interface Inheritance 

Defining several interfaces for a class is the first step towards using interface inheritance, which is a more
advanced method of designing classes and interfaces. This makes it possible to reuse the same interface
definition in different classes. Assume that there is a class Manager, which is to be treated in the same
way as the class Employee with respect to qualification, but which is to be handled differently as far as
administration is concerned. This can be achieved by having the Qualification interface in both
classes. This has the advantage that a client that uses the Qualification interface on a given object
does not have to check explicitly whether the object represents an Employee or a Manager. It can
simply use the same methods and properties without having to know of what class the object is. The
properties or methods can even be implemented in a different way in both classes provided they are
presented through the same interface definition. 

The process of using interface inheritance can be broadly broken down into the following steps: 

Use the INTERFACE statements to define one or more interfaces in a copycode instead of defining
them directly in the class. 

The METHOD and PROPERTY definitions in the INTERFACE statement do not need to contain the 
IS clause. At this point, you just define the external appearance of the interface without assigning
implementations to the methods and properties. 

Use the INTERFACE clause to include the copycode with its interface definition in each class that
will implement the interface. 

Use the METHOD and PROPERTY statements to assign implementations to the methods and
properties of the interface in each class that will implement the interface. 

3

Introduction to NaturalX Interface Inheritance


	Introduction to NaturalX
	Why NaturalX?
	Programming Techniques
	Object-Based Programming
	 Defining Classes
	 Defining Interfaces
	 Interface Inheritance



