Developing NaturalX Applications Developing NaturalX Applications

Developing NaturalX Applications

This chapter describes how to develop an application by defining and using classes.
The following topics are covered:

® Development Environments

® Defining Classes

® Using Classes and Objects

Development Environments

® Developing Classes on Windows Platforms
On Windows platforms, Natural provides the Class Builder as the tool to develop Natural classes.
The Class Builder shows a Natural class in a structured hierarchical order and allows the user to
manage the class and its components efficiently. If you use the Class Builder, no knowledge or only a
basic knowledge of the syntax elements described below is required.

® Developing Classes Using SPoD
In a Natural Single Point of Development (SPoD) environment that includes a Mainframe, UNIX
and/or OpenVMS remote development server, you can use the Class Builder available with the
Natural Studio front-end to develop classes on Mainframe, UNIX and/or OpenVMS platforms. In
this case, no knowledge or only a basic knowledge of the syntax elements described below is
required.

® Developing Classes on Mainframe, UNIX or OpenVM S Platforms
If you do not use SPoD, you develop classes on these platforms using the Natural program editor. In
this case, you should know the syntax of class definition described below.

Defining Classes

When you define a class, you must create a Natural class module, within which you DiegtblB
CLASSstatement. Using thHBEFINE CLASS statement, you assign the class an externally usable name
and define its interfaces, methods and properties. You can also assign an object data area to the class,
which describes the layout of an instance of the classDEMNE CLASS statement is also used to

supply a global unique identifier to those classes that are to be registered as COM classes.

This section covers the following topics:
e (Creating a Natural Class Module
e Specifying a Class
® Defining an Interface

® Assigning an Object Data Variable to a Property

Developing NaturalX Applications Creating a Natural Class Module

® Assigning a Subprogram to a Method

® Implementing Methods

Creating a Natural ClassModule

TocreateaNatural class module

® Use theCREATE OBJECTstatement to create a Natural object of type Class.
Specifying a Class

The DEFINE CLASS statement defines the name of the class, the interfaces the class supports and the
structure of its objects. For classes that are to be registered as COM classes, it specifies also the globally
unique ID of the class and its activation policy.

» To specify aclass

® Use theDEFINE CLASS statement as described in iatements documentation.

Defining an Interface

Each interface of a class is specified witHMWERFACEstatement inside the class definition. An
INTERFACESstatement specifies the name of the interface and a number of properties and methods. For
classes that are to be registered as COM classes, it specifies also the globally inique ID of the interface.

A class can have one or several interfaces. For each interfad®&lT&ERRFACESstatement is coded in the
class definition. EaciNTERFACEstatement contains one or sevéefRIOPERTANdMETHORIauses.
Usually the properties and methods contained in one interface are related from either a technical or a
business point of view.

The PROPERTYlause defines the name of a property and assigns a variable from the object data area to
the property. This variable is used to store the value of the property.

The METHOIRIlause defines the name of a method and assigns a subprogram to the method. This
subprogram is used to implement the method.

» Todefinean interface

® Use thedNTERFACEstatement as described in iatements documentation.

Assigning an Object Data Variableto a Property

The PROPERT$tatement is used only when several classes are to implement the same interface in
different ways. In this case, the classes share the same interface definition and include it from a Natural
copycode ThePROPERT$tatement is then used to assign a variable from the object data area to a
property,outside the interface definition. Like theROPERT tlause of théNTERFACEstatement, the
PROPERTgtatement defines the name of a property and assigns a variable from the object data area to
the property. This variable is used to store the value of the property.

Assigning a Subprogram to a Method Developing NaturalX Applications

» Toassign an object data variableto a property

® Use thePROPERTtatement as described in iatements documentation.

Assigning a Subprogram to a Method

The METHODRBtatemenis used only when several classes are to implement the same interface in different
ways. In this case, the classes share the same interface definition and include it from adysicode

The METHODRBtatement is then used to assign a subprogram to the mautside the interface definition.

Like theMETHORIause of théNTERFACEstatement, thMETHORtatement defines the name of a

method and assigns a subprogram to the method. This subprogram is used to implement the method.

¥ To assign a subprogram to a method

o Use theMETHOIBtatement as described in thatements documentation.

| mplementing M ethods

A method is implemented as a Natural subprogram in the following general form:
DEFI NE DATA statement

*

* Implementation code of the method

*

END

For information on th®EFINE DATA statement see tf&atements documentation.

All clauses of thdDEFINE DATA statement are optional.

It is recommended that you use data areas instead of inline data definitions to ensure data consistency.
If a PARAMETERIauseis specified, the method can have parameters and/or a return value.

Parameters that are mark®¥d VALUE in the parameter data area are input parameters of the method.

Parameters that are not marl&d VALUE are passed "by reference” and are input/output parameters.
This is the default.

The first parameter that is markBY VALUE RESULT is returned as the return value for the method. If
more than one parameter is marked in this way, the others will be treated as input/output parameters.

Parameters that are marke®TIONALneed not be specified when the method is called. They can be left
unspecified by using theX notationin theSEND METHOBtatement.

To make sure that the method subprogram accepts exactly the same parameters as specified in the
correspondindMETHOBtatement in the class definition, use a parameter data area instead of inline data
definitions. Use the same parameter data area as in the correspdadikio Btatement.

To give the method subprogram access to the object data struct®XaE Tclause can be specified.

To make sure that the method subprogram can access the object data correctly, use a local data area
instead of inline data definitions. Use the same local data area as specifie@BUEETclause of the
DEFINE CLASS statement.

Developing NaturalX Applications Using Classes and Objects

The GLOBAL.LOCALandINDEPENDENTclauses can be used as in any other Natural program.

While technically possible, it is usually not meaningful to uS®NTEXTclause in a method
subprogram.

The following example retrieves data about a given person from a table. The search key is pa&3¥ed as a
VALUEparameter. The resulting data is returned through "by reference" parameters ("by reference" is the
default definition). The return value of the method is defined by the specifi&tiaALUE RESULT.

Class: tab
define olass- tab
object using tab-o

"

interface iface
.
method stab is stab=n
parameter using stab-a
end=-method

&

end=-interface

&

end-clasa

end
|
h v
Object Data Area: tab-o Parameter Data Area: stab-a
5 1 P=-TABLE [LeE00) Vv 1 A-HAME A 32
2 P=HAME A 32 1 A=CITY A 32
2 P=-CITY A 32 1 B-AGE N3
Z P=-AGE M 3 E 1 A-FOUND L
R A : —x
hJ
Method Subprogram: stab-n
dafine data
parameter using atab=-a
object using tab-o
local
1.4 {123
end-define
N
g=-found = false
for 1 =1 to 100 E
1f p=nams{i) = a-name
a=oity = p=ocitwyi{i)
a=-ages = p~age i)

a=found 1= true
eacape bottom

end=1f
end=-foxr
N
end

Using Classes and Objects

Objects created in a local Natural session can be accessed by other modules in the same Natural session.

Defining Object Handles Developing NaturalX Applications

Objects created in other processes or on remote machines can be accessed via DCOM.
In both cases the rules for accessing and using classes and their objects are the same.
The statemenCREATE OBJECTis used to create an object (also known as an instance) of a given class.

To reference objects in Natural programs, object handles have to be defineDEFMNE DATA
statement. Methods of an object are invoked with the staté®ihid METHODObjects can have
properties, which can be accessed using the normal assignment syntax.

Note:
In order to use a NaturalX class via DCOM, the class must first be registered.

These steps are described below:
e Defining Object Handles
® Creating an Instance of a Class
® Invoking a Particular Method of an Object
® Accessing Properties

e Sample Application

Defining Object Handles

To reference objects in Natural programs, object handles have to be defined as follovidERItE
DATAstatement:

DEFI NE DATA
level-handle-name [(array-definition)] HANDLE OF OBJECT

END- DEFI NE

Example:
DEFINE DATA LOCAL
1 #MYOBJ1 HANDLE OF OBJECT

1 #MYOBJ2 (1:5) HANDLE OF OBJECT
END-DEFINE

Creating an Instance of a Class

P Tocreatean instance of a class

o Use theCREATE OBJECTstatement as described in ®iatements documentation.

Developing NaturalX Applications Invoking a Particular Method of an Object

Invoking a Particular Method of an Object
¥ Toinvokea particular method of an object

® Use theSEND METHOBtatement as described in tatements documentation.
Accessing Properties

Properties can be accessed usingd88IGN (or COMPUT [statement as follows:

ASSI GN operandl.property-name = operand2
ASSI GN operand2 = operandl.property-name

Object Handle - operandl

operandl must be defined as an object handle and identifies the object whose property is to be accessed.
The object must already exist.

operand2

As operand2, you specify an operand whose format must be data transfer-compatible to the format of the
property. Please refer to tdata transfer compatibility rulder further information.

If the object is to be accessed via DCOM, you must also take into account the rules for data type
conversion which are outlined in the sectiggsing Type Information in the Operations documentation.

property-name
The name of a property of the object.

If the property name conforms to Natural identifier syntax, it can be specified as follows

create object #01 of class "Employee"
#age : = #01. Age

If the property name does not conform to Natural identifier syntax, it must be enclosed in angle brackets:

create object #01 of class "Employee"
#sal ary : = #0l.<<%Bal ary>>

The property name can also be qualified with an interface name. This is necessary if the object has more
than one interface containing a property with the same name. In this case, the qualified property name
must be enclosed in angle brackets:

create object #01 of class "Employee"
#age : = #0l. <<Personal Dat a. Age>>

Example:

define data
local
1#i (i2)
1+#o0 handle of object
1#p (5) handle of object

Accessing Properties Developing NaturalX Applications

1#q (5) handle of object
1 #salary (p7.2)

1 #history (p7.2/1:10)
end-define

*

* Code omitted for brevity.

*

* Set/Read the Salary property of the object #o.
#0.Salary := #salary

#salary := #o0.Salary

* Set/Read the Salary property of

* the second object of the array #p.
#p.Salary(2) := #salary

#salary := #p.Salary(2)

* Set/Read the SalaryHistory property of the object #o.
#0.SalaryHistory := #history(1:10)

#history(1:10) := #0.SalaryHistory

* Set/Read the SalaryHistory property of

* the second object of the array #p.
#p.SalaryHistory(2) := #history(1:10)

#history(1:10) := #p.SalaryHistory(2)

* Set the Salary property of each object in #p to the same value.
#p.Salary(*) := #salary

* Set the SalaryHistory property of each object in #p

* to the same value.

#p.SalaryHistory(*) := #history(1:10)

* Set the Salary property of each object in #p to the value

* of the Salary property of the corresponding object in #q.
#p.Salary(*) := #q.Salary(*)

* Set the SalaryHistory property of each object in #p to the value
* of the SalaryHistory property of the corresponding object in #q.
#p.SalaryHistory(*) := #q.SalaryHistory(*)

end

In order to use arrays of object handles and properties that have arrays as values correctly, it is important
to know the following:

A property of an occurrence of an array of object handles is addressed with the following index notation:
#p.Salary(2) := #salary

A property that has an array as value is always accessed as a whole. Therefore no index notation is
necessary with the property name:

#0.SalaryHistory := #history(1:10)

A property of an occurrence of an array of object handles which has an array as value is therefore
addressed as follows:

#p.SalaryHistory(2) := #history(1:10)

Developing NaturalX Applications Sample Application

Sample Application

An example application is provided in the libraries SYSEXCOM and SYSEXCOC. See the A-README
members in these libraries for information about how to run the example.

	 Developing NaturalX Applications
	Development Environments
	 Defining Classes
	Creating a Natural Class Module
	Specifying a Class
	Defining an Interface
	 Assigning an Object Data Variable to a Property
	 Assigning a Subprogram to a Method
	 Implementing Methods

	Using Classes and Objects
	 Defining Object Handles
	 Creating an Instance of a Class
	 Invoking a Particular Method of an Object
	 Accessing Properties
	Object Handle - operand1
	operand2
	 property-name

	Sample Application

