Natural Programming Modes Natural Programming Modes

Natural Programming Modes

This chapter describes the two programming modes offered by Natural. The following topics are covered:
® Purpose of Programming Modes
® Setting/Changing the Programming Mode

® Functional Differences

Purpose of Programming Modes
Natural offers two ways of programming:

® Reporting Mode

e Structured Mode

Note:
Generally, it is recommended to use structured mode exclusively, because it provides for more clearly
structured applications.

Reporting Mode

Reporting mode is only useful for the creation of adhoc reports and small programs which do not involve
complex data and/or programming constructs. (If you decide to write a program in reporting mode, be
aware that small programs may easily become larger and more complex.)

Please note that certain Natural statements are available only in reporting mode, whereas others have a
specific structure when used in reporting mode. For an overview of the statements that can be used in
reporting mode, selReporting Mode Satements in the Satements documentation.

Structured Mode

Structured mode is intended for the implementation of complex applications with a clear and well-defined
program structure. The major benefits of structured mode are:

® The programs have to be written in a more structured way and are therefore easier to read and
consequently easier to maintain.

e As all fields to be used in a program have to be defined in one central location (instead of being
scattered all over the program, as is possible in reporting mode), overall control of the data used is
much easier.

With structured mode, you also have to make more detail planning before the actual programs can be
coded, thereby avoiding many programming errors and inefficiencies.

For an overview of the statements that can be used in structured mo8tatesaents Grouped by
Functions in the Statements documentation.

Natural Programming Modes Setting/Changing the Programming Mode

Setting/Changing the Programming Mode

The default programming mode is set by the Natural administrator with the profile par@veteu can
change the mode by using the Natural system com@a@BALSand the session paramegv

Structured GLOBALS SM=0ON
M ode:

Reporting GLOBALS SM=0OFF
M ode;

For further information on the Natural profile and session parar8&eseeSM - Programming in
Structured Mode in theParameter Reference.

For information on how to change the programming modeSgeeProgramming in Sructured Mode in
the Parameter Reference.
Functional Differences
The following major functional differences exist between reporting mode and structured mode:
e Syntax Related to Closing Loops and Functional Blocks
® Closing a Processing Loop in Reporting Mode
® Closing a Processing Loop in Structured Mode
® [ocation of Data Elements in a Program
e Database Reference

Note:

For detailed information on functional differences that exist between the two modes, Satethents
documentation. It provides separate syntax diagrams and syntax element descriptions for each
mode-sensitive statement. For a functional overview of the statements that can be used in reporting mode,
seeReporting Mode Statements in the Satements documentation.

Syntax Related to Closing L oops and Functional Blocks

Reporting (CLOSE) LOOP andDO ... DOEND statements are used for this purpose.

Mode:
END-... statements (exceND-DEFINE, END-DECIDEand

END-SUBROUTINEcannot be used.

Structured Every loop or logical construct must be explicitly closed with a corresponding
Mode: END-... statement. Thus, it becomes immediately clear, which loop/logical
constructs ends where.

LOOPandDO/DOENDstatements cannot be used.

Closing a Processing Loop in Reporting Mode Natural Programming Modes

The two examples below illustrate the differences between the two modes in constructing processing
loops and logical conditions.

Reporting M ode Example:

The reporting mode example uses the stateniz@esndDOENDRo mark the beginning and end of the
statement block that is based on £leEND OF DATA condition. TheENDstatement closes all active
processing loops.

READ EMPLOYEES BY PERSONNEL-ID
DISPLAY NAME BIRTH
AT END OF DATA
DO
SKIP 2
WRITE / 'LAST SELECTED:” OLD(NAME)
DOEND
END

Structured Mode Example:

The structured mode example use&£aD-ENDDAT Atatement to close telT END OF DATA
condition, and aEND-READstatement to close tiREADIoop. The result is a more clearly structured
program in which you can see immediately where each construct begins and ends:

DEFINE DATA LOCAL

1 MYVIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 BIRTH

END-DEFINE
READ MYVIEW BY PERSONNEL-ID
DISPLAY NAME BIRTH
AT END OF DATA
SKIP 2
WRITE / 'LAST SELECTED:’ OLD(NAME)
END-ENDDATA
END-READ
END

Closing a Processing L oop in Reporting Mode
The statementSND LOOP(or CLOSE LOOR or SORTmay be used to close a processing loop.

TheLOOPstatement can be used to close more than one loop, aBN ffeatement can be used to close
all active loops. These possibilities of closing several loops with a single statement constitute a basic
difference to structured mode.

A SORTstatement closes all processing loops and initiates another processing loop.

Example 1 - LOOP:

FIND ...
FIND ...

Natural Programming Modes Closing a Processing Loop in Structured Mode

LOOP /* closes inner FIND loop
LOOP /* closes outer FIND loop

Example2 - END:

FIND ...
FIND ...

END [* closes all loops and ends processing

Example 3 - SORT:

FIND ...
FIND ...
SORT ... /* closes all loops, initiates loop
END [* closes SORT loop and ends processing

Closing a Processing Loop in Structured Mode

Structured mode uses a specific loop-closing statement for each processing loop. Aii)dtaement
does not close any processing loop. B@RTstatement must be preceded byEAND-ALL statement,
and theSORTIoop must be closed with &ND-SORTstatement.

Example 1 - FIND:

FIND ...
FIND ...

END-FIND /* closes inner FIND loop
END-FIND /* closes outer FIND loop

Example 2 - READ:

READ ...
AT END OF DATA

END-ENDDATA

ENb-READ /* closes READ loop
END
Example 3- SORT:

READ ...
FIND ...

END-ALL /* closes all loops
SORT /* opens loop

Location of Data Elements in a Program Natural Programming Modes

END-SORT /* closes SORT loop
END

L ocation of Data Elementsin a Program

In reporting mode, you can use database fields without having to define thé»EFINME DATA
statement; also, you can define user-defined variables anywhere in a program, which means that they can
be scattered all over the program.

In structured modegll data elements to be used have to be defined in one central location (either in the
DEFINE DATA statement at the beginning of the program, or in a data area outside the program).

Database Reference
Reporting Mode:

In reporting mode, database fields and data definition modD@&I§) may be referenced without having
been defined in data area

DM Frogram
DDM "STAFF" FIND STAFF WITH NAME = __
Dy DISPLAY ID NAME CITY STREET
MNAME
AGE
STREET
CITY ™
END

Structured Mode:

In structured mode, each database field to be used must be specifiHHINE DATA statement as
described irDefining Fields andAccessing Data in an Adabas Database.

Natural Programming Modes

DD

DDM "STAFF"
D
NAME
AGE
STREET
CITY

Program

DEFINE DATA LOCAL
1 VIEWXYZ VIEW OF STAFF
210
2 NAME
2AGE
2 STREET
2CITY
END-DEFINE

FIND VIEWXYZ WITH NAME =
DISPLAY ID NAME CITY STREET
END-FIND

END

Database Reference

	Natural Programming Modes
	Purpose of Programming Modes
	Reporting Mode
	Structured Mode

	Setting/Changing the Programming Mode
	Functional Differences
	 Syntax Related to Closing Loops and Functional Blocks
	Reporting Mode Example:
	Structured Mode Example:

	Closing a Processing Loop in Reporting Mode
	Example 1 - LOOP:
	Example 2 - END:
	Example 3 - SORT:

	Closing a Processing Loop in Structured Mode
	Example 1 - FIND:
	Example 2 - READ:
	Example 3 - SORT:

	Location of Data Elements in a Program
	Database Reference
	Reporting Mode:
	Structured Mode:

