Stack Stack

Stack

The Natural stack is a kind of "intermediate storage" in which you can store Natural commands,
user-defined commands, and input data to be used bMRIIT statement.

This chapter covers the following topics:
® Use of Natural Stack
® Stack Processing
e Placing Data on the Stack

e (Clearing the Stack

Use of Natural Stack

In the stack you can store a series of functions which are frequently executed one after the other, such as a
series of logon commands.

The data/commands stored in the stack are "stacked" on top of one another. You can decide whether to put
them on top or at the bottom of the stack. The data/command in the stack can only be processed in the
order in which they are stacked, beginning from the top of the stack.

In a program, you may reference the system variabkel'A to determine the content of the stack (see the
System Variables documentation for further information).

Stack Processing

The processing of the commands/data stored in the stack differs depending on the function being
performed.

If a command is expected, that is, MEXT prompt is about to be displayed, Natural first checks if a
command is on the top of the stack. If there isNBXT prompt is suppressed and the command is read

and deleted from the stack; the command is then executed as if it had been entered manually in response
to theNEXT prompt.

If an| NPUT statement containing input fields is being executed, Natural first checks if there are any input
data on the top of the stack. If there are, these data are passedNBlfiestatement (ielimiter modg

the data read from the stack must be format-compatible with the variabled MRUE& statement; the

data are then deleted from the stack. SeeRxlstessing Data from the Natural Sack in thel NPUT

statement description.

If an| NPUT statement was executed using data from the stack, and\IPILE statement is re-executed

via aREl NPUT statement, theNPUT statement screen will be re-executed displaying the same data from
the stack as when it was executed originally. WithRBENPUT statement, no further data are read from
the stack.

Stack Placing Data on the Stack

When a Natural program terminates normally, the stack is flushed beginning from the top until either a
command is on the top of the stack or the stack is cleared. When a Natural program is terminated via the
terminal comman@@abor with an error, the stack is cleared entirely.

Placing Data on the Stack

The following methods can be used to place data/commands on the stack:
® STACK Parameter
® STACK Statement

® FETCH and RUN Statements

STACK Parameter

The Natural profile paramet&TACK may be used to place data/commands on the staclSTHEK
parameter (described in tRarameter Reference) can be specified by the Natural administrator in the
Natural parameter module at the installation of Natural; or you can specify it as a dynamic parameter
when you invoke Natural.

When data/commands are to be placed on the stack V& &@&K parameter, multiple commands must
be separated from one another by a semicolon (;). If a command is to be passed within a sequence of data
or command elements, it must be preceded by a semicolon.

Data for multiplel NPUT statements must be separated from one another by a colon (:). Data that are to be
read by a separaldNPUT statement must be preceded by a colon. If a command is to be stacked which
requires parameters, no colon is to be placed between the command and the parameters.

Semicolon and colon must not be used within the input data themselves as they will be interpreted as
separation characters.

STACK Statement

The STACK statement can be used within a program to place data/commands in the stack. The data
elements specified in or&T ACK statement will be used for oh&lPUT statement, which means that if
data for multipld NPUT statements are to be placed on the stack, muBipiCK statements must be
used.

Data may be placed on the stack either unformatted or formatted:

e |f unformatted data are read from the stack, the data string is interpreted in delimiter mode and the
characters specified with the session paramet&i$nput Assignment character) ah® (Input
Delimiter character) are processed as control charactekreyaordassignment and data separation.

e |[f formatted data are placed on the stack, each content of a field will be separated and passed to one
input field in the correspondingNPUT statement. If the data to be placed on the stack contains
delimiter, control or DBCS characters, it should be placed formatted on the stack to avoid
unintentional interpretation of these characters.

Clearing the Stack Stack

See thesatements documentation for further information on t8€ACK statement.

FETCH and RUN Statements

The execution of &ETCH or RUN statement that contains parameters to be passed to the invoked program
will result in these parameters being placed on top of the stack.

Clearing the Stack

The contents of the stack can be deleted withREIEEASE statement. See tlgatements documentation
for details on th&REL EASE statement.

Note:
When a Natural program is terminated via the terminal com®#@gut with an error, the stack is cleared
entirely.

	 Stack
	Use of Natural Stack
	Stack Processing
	 Placing Data on the Stack
	STACK Parameter
	STACK Statement
	FETCH and RUN Statements

	Clearing the Stack

