
Logical Condition Criteria
This chapter describes purpose and use of logical condition criteria that can be used in the statements
FIND, READ, HISTOGRAM, ACCEPT/REJECT, IF , DECIDE FOR, REPEAT.

The following topics are covered:

Introduction

Relational Expression

Extended Relational Expression

Evaluation of a Logical Variable

Fields Used within Logical Condition Criteria

Logical Operators in Complex Logical Expressions

BREAK Option - Compare Current Value with Value of Previous Loop Pass

IS Option - Check whether Content of Alphanumeric or Unicode Field can be Converted

MASK Option - Check Selected Positions of a Field for Specific Content

MASK Option Compared with IS Option

MODIFIED Option - Check whether Field Content has been Modified

SCAN Option - Scan for a Value within a Field

SPECIFIED Option - Check whether a Value is Passed for an Optional Parameter

Introduction
The basic criterion is a relational expression. Multiple relational expressions may be combined with
logical operators (AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

Logical condition criteria can be used in the following statements:

1

Logical Condition Criteria Logical Condition Criteria

Statement Usage

FIND A WHERE clause containing logical condition criteria may be used to indicate
criteria in addition to the basic selection criteria as specified in the WITH clause.
The logical condition criteria specified with the WHERE clause are evaluated after
the record has been selected and read.

In a WITH clause, "basic search criteria" (as described with the FIND statement)
are used, but not logical condition criteria.

READ A WHERE clause containing logical condition criteria may be used to specify
whether a record that has just been read is to be processed. The logical condition
criteria are evaluated after the record has been read.

HISTOGRAM A WHERE clause containing logical condition criteria may be used to specify
whether the value that has just been read is to be processed. The logical condition
criteria are evaluated after the value has been read.

ACCEPT/REJECT An IF clause may be used with an ACCEPT or REJECT statement to specify
logical condition criteria in addition to that specified when the record was
selected/read with a FIND, READ, or HISTOGRAM statement. The logical
condition criteria are evaluated after the record has been read and after record
processing has started.

IF Logical condition criteria are used to control statement execution.

DECIDE FOR Logical condition criteria are used to control statement execution.

REPEAT The UNTIL or WHILE clause of a REPEAT statement contain logical condition
criteria which determine when a processing loop is to be terminated.

Relational Expression
Syntax:

2

 Relational ExpressionLogical Condition Criteria

operand1 EQ
=
EQUAL
EQUAL TO
NE
^=
<>
NOT =
NOT EQ
NOTEQUAL
NOT EQUAL
NOT EQUAL TO
LT
LESS THAN
<
GE
GREATER EQUAL
>=
NOT <
NOT LT
GT
GREATER THAN
>
LE
LESS EQUAL
<=
NOT >
NOT GT

operand2

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A N E A U N P I F B D T L G O yes yes

operand2 C S A N E A U N P I F B D T L G O yes no

For an explanation of the Operand Definition Table shown above, see Syntax Symbols and Operand
Definition Tables in the Statements documentation.

In the "Possible Structure" column of the table above, "E" stands for arithmetic expressions; that is, any
arithmetic expression may be specified as an operand within the relational expression. For further
information on arithmetic expressions, see arithmetic-expression in the COMPUTE statement
description.

Explanation of the comparison operators:

3

Logical Condition Criteria Relational Expression

Comparison Operator Explanation

EQ
=
EQUAL
EQUAL TO

equal to

NE
^=
<>
NOT =
NOT EQ
NOTEQUAL
NOT EQUAL
NOT EQUAL TO

not equal to

LT
LESS THAN
<

less than

GE
GREATER EQUAL
>=

greater than or equal to

NOT <
NOT LT

not less than

GT
GREATER THAN
>

greater than

LE
LESS EQUAL
<=

less than or equal to

NOT >
NOT GT

not greater than

Examples of Relational Expressions:

IF NAME = ’SMITH’
IF LEAVE-DUE GT 40
IF NAME = #NAME

For information on comparing arrays in a relational expression, see Processing of Arrays.

Note:
If a floating-point operand is used, comparison is performed in floating point. Floating-point numbers as
such have only a limited precision; therefore, rounding/truncation errors cannot be precluded when
numbers are converted to/from floating-point representation.

4

 Relational ExpressionLogical Condition Criteria

Arithmetic Expressions in Logical Conditions

The following example shows how arithmetic expressions can be used in logical conditions:

IF #A + 3 GT #B - 5 AND #C * 3 LE #A + #B

Handles in Logical Conditions

If the operands in a relation expression are handles, only EQUAL and NOT EQUAL operators may be used.

SUBSTRING Option in Relational Expression

Syntax:

SUBSTRING
(operand1,operand3,operand4)
operand1

=
EQ
EQUAL [TO]
<>
NE
NOT =
NOT EQ
NOT EQUAL
NOT EQUAL TO
<
LT
LESS THAN
<=
LE
LESS EQUAL
>
GT
GREATER THAN
>=
GE
GREATER EQUAL

operand2
SUBSTRING
(operand2,operand5,operand6)

Operand Definition Table:

5

Logical Condition Criteria Relational Expression

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A N A U B yes yes

operand2 C S A N A U B yes no

operand3 C S N P I B yes no

operand4 C S N P I yes no

operand5 C S N P I yes no

operand6 C S N P I yes no

With the SUBSTRING option, you can compare a part of an alphanumeric, a binary or a Unicode field.
After the field name (operand1) you specify first the starting position (operand3) and then the length
(operand4) of the field portion to be compared.

Also, you can compare a field value with part of another field value. After the field name (operand2)
you specify first the starting position (operand5) and then the length (operand6) of the field portion
operand1 is to be compared with.

You can also combine both forms, that is, you can specify a SUBSTRING for both operand1 and
operand2.

Examples:

The following expression compares the 5th to 12th position inclusive of the value in field #A with the
value of field #B:

SUBSTRING(#A,5,8) = #B

- where 5 is the starting position and 8 is the length.

The following expression compares the value of field #A with the 3rd to 6th position inclusive of the
value in field #B:

#A = SUBSTRING(#B,3,4)

Note:
If you omit operand3/ operand5, the starting position is assumed to be 1. If you omit
operand4/ operand6, the length is assumed to be from the starting position to the end of the field.

Extended Relational Expression
Syntax:

6

Extended Relational ExpressionLogical Condition Criteria

operand1 =
EQ
EQUAL [TO]

operand2

 OR =
EQ
EQUAL [TO]

operand3

THRU operand4 [BUT NOT operand5 [THRU operand6]]

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A N* E A U N P I F B D T G O yes no

operand2 C S A N* E A U N P I F B D T G O yes no

operand3 C S A N* E A U N P I F B D T G O yes no

operand4 C S A N* E A U N P I F B D T G O yes no

operand5 C S A N* E A U N P I F B D T G O yes no

operand6 C S A N* E A U N P I F B D T G O yes no

* Mathematical functions and system variables are permitted. Break functions are not permitted.

operand3 can also be specified using a MASK or SCAN option; that is, it can be specified as:

MASK (mask-definition) [operand]

MASK operand

SCAN operand

For details on these options, see the sections MASK Option and SCAN Option.

Examples:

IF #A = 2 OR = 4 OR = 7
IF #A = 5 THRU 11 BUT NOT 7 THRU 8

Evaluation of a Logical Variable
Syntax:

operand1

7

Logical Condition Criteria Evaluation of a Logical Variable

This option is used in conjunction with a logical variable (format L). A logical variable may take the value
TRUE or FALSE. As operand1 you specify the name of the logical variable to be used.

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A L no no

Example of Logical Variable:

** Example ’LOGICX05’: Logical variable in logical condition
**
DEFINE DATA LOCAL
1 #SWITCH (L) INIT <true>
1 #INDEX (I1)
END-DEFINE
*
FOR #INDEX 1 5
 WRITE NOTITLE #SWITCH (EM=FALSE/TRUE) 5X ’INDEX =’ #INDEX
 WRITE NOTITLE #SWITCH (EM=OFF/ON) 7X ’INDEX =’ #INDEX
 IF #SWITCH
 MOVE FALSE TO #SWITCH
 ELSE
 MOVE TRUE TO #SWITCH
 END-IF
 /*
 SKIP 1
END-FOR
END

Output of Program LOGICX05:

TRUE INDEX = 1
ON INDEX = 1

FALSE INDEX = 2
OFF INDEX = 2

TRUE INDEX = 3
ON INDEX = 3

FALSE INDEX = 4
OFF INDEX = 4

TRUE INDEX = 5
ON INDEX = 5

Fields Used within Logical Condition Criteria
Database fields and user-defined variables may be used to construct logical condition criteria. A database
field which is a multiple-value field or is contained in a periodic group can also be used. If a range of
values for a multiple-value field or a range of occurrences for a periodic group is specified, the condition
is true if the search value is found in any value/occurrence within the specified range.

8

Fields Used within Logical Condition CriteriaLogical Condition Criteria

Each value used must be compatible with the field used on the opposite side of the expression. Decimal
notation may be specified only for values used with numeric fields, and the number of decimal positions
of the value must agree with the number of decimal positions defined for the field.

If the operands are not of the same format, the second operand is converted to the format of the first
operand.

Note:
A numeric constant without decimal point notation is stored with format I for the values -2147483648
to +2147483647 , see Numeric Constants. Consequently the comparison with such an integer constant
as operand1 is performed by converting operand2 to a integer value. This means that the digits after
the decimal point of operand2 are not considered due to truncation.

Example:

 IF 0 = 0.5 /* is true because 0.5 (operand2) is converted to 0 (format I of operand1)
 IF 0.0 = 0.5 /* is false
 IF 0.5 = 0 /* is false
 IF 0.5 = 0.0 /* is false

The following table shows which operand formats can be used together in a logical condition:

operand1 operand2

A U Bn (n=<4) Bn (n>=5) D T I F L N P GH OH

A Y Y Y Y

U Y Y [2] [2]

Bn (n=<4) Y Y Y Y Y Y Y Y Y Y

Bn (n>=5) Y Y Y Y

D Y Y Y Y Y Y Y

T Y Y Y Y Y Y Y

I Y Y Y Y Y Y Y

F Y Y Y Y Y Y Y

L

N Y Y Y Y Y Y Y

P Y Y Y Y Y Y Y

GH [1] Y

OH [1] Y

Notes:

1. [1] where GH = GUI handle, OH = object handle.
2. [2] The binary value will be assumed to contain Unicode code points, and the comparison is

performed as for a comparison of two Unicode values. The length of the binary field must be even.

9

Logical Condition CriteriaFields Used within Logical Condition Criteria

If two values are compared as alphanumeric values, the shorter value is assumed to be extended with
trailing blanks in order to get the same length as the longer value.

If two values are compared as binary values, the shorter value is assumed to be extended with leading
binary zeroes in order to get the same length as the longer value.

If two values are compared as Unicode values, trailing blanks are removed from both values before the
ICU collation algorithm is used to compare the two resulting values. See also Logical Condition Criteria
in the Unicode and Code Page Support documentation.

Comparison Examples:

A1(A1) := ’A’
A5(A5) := ’A ’
B1(B1) := H’FF’
B5(B5) := H’00000000FF’
U1(U1) := UH’00E4’
U2(U2) := UH’00610308’
IF A1 = A5 THEN ... /* TRUE
IF B1 = B5 THEN ... /* TRUE
IF U1 = U2 THEN ... /* TRUE

If an array is compared with a scalar value, each element of the array will be compared with the scalar
value. The condition will be true if at least one of the array elements meets the condition (OR operation).

If an array is compared with an array, each element in the array is compared with the corresponding
element of the other array. The result is true only if all element comparisons meet the condition (AND
operation).

See also Processing of Arrays.

Note:
An Adabas phonetic descriptor cannot be used within a logical condition.

Examples of Logical Condition Criteria:

FIND EMPLOYEES-VIEW WITH CITY = ’BOSTON’ WHERE SEX = ’M’
READ EMPLOYEES-VIEW BY NAME WHERE SEX = ’M’
ACCEPT IF LEAVE-DUE GT 45
IF #A GT #B THEN COMPUTE #C = #A + #B
REPEAT UNTIL #X = 500

Logical Operators in Complex Logical Expressions
Logical condition criteria may be combined using the Boolean operators AND, OR, and NOT. Parentheses
may also be used to indicate logical grouping.

The operators are evaluated in the following order:

10

Logical Operators in Complex Logical ExpressionsLogical Condition Criteria

Priority Operator Meaning

1 () Parentheses

2 NOT Negation

3 AND AND operation

4 OR OR operation

The following logical-condition-criteria may be combined by logical operators to form a
complex logical-expression:

Relational expressions

Extended relational expressions

MASK option

SCAN option

BREAK option

The syntax for a logical-expression is as follows:

[NOT] logical-condition-criterion
(logical-expression)

OR logical-expression

AND

Examples of Logical Expressions:

FIND STAFF-VIEW WITH CITY = ’TOKYO’
 WHERE BIRTH GT 19610101 AND SEX = ’F’
IF NOT (#CITY = ’A’ THRU ’E’)

For information on comparing arrays in a logical expression, see Processing of Arrays.

Note:
If multiple logical-condition-criteria are connected with AND, the evaluation terminates as soon as the first
of these criteria is not true.

BREAK Option - Compare Current Value with Value of
Previous Loop Pass
The BREAK option allows the current value or a portion of a value of a field to be compared with the
value contained in the same field in the previous pass through the processing loop.

Syntax:

BREAK [OF] operand1 [/n/]

11

Logical Condition Criteria BREAK Option - Compare Current Value with Value of Previous Loop Pass

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 S A U N P I F B D T L yes no

Syntax Element Description:

operand1 Specifies the control field which is to be checked. A specific occurrence of an array can
also be used as a control field.

/ n/ The notation / n/ may be used to indicate that only the first n positions (counting from
left to right) of the control field are to be checked for a change in value. This notation
can only be used with operands of format A, B, N, or P.

The result of the BREAK operation is true when a change in the specified positions of the
field occurs. The result of the BREAK operation is not true if an AT END OF DATA
condition occurs.

Example:

In this example, a check is made for a different value in the first position of the field
FIRST-NAME.

BREAK FIRST-NAME /1/

Natural system functions (which are available with the AT BREAK statement) are not
available with this option.

Example of BREAK Option:

** Example ’LOGICX03’: BREAK option in logical condition
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
 2 FIRST-NAME
 2 BIRTH
*
1 #BIRTH (A8)
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY BIRTH
 MOVE EDITED BIRTH (EM=YYYYMMDD) TO #BIRTH
 /*
 IF BREAK OF #BIRTH /6/
 NEWPAGE IF LESS THAN 5 LINES LEFT
 WRITE / ’-’ (50) /
 END-IF
 /*
 DISPLAY NOTITLE BIRTH (EM=YYYY-MM-DD) NAME FIRST-NAME
END-READ
END

12

 BREAK Option - Compare Current Value with Value of Previous Loop PassLogical Condition Criteria

Output of Program LOGICX03:

 DATE NAME FIRST-NAME
 OF
 BIRTH
---------- -------------------- --------------------

1940-01-01 GARRET WILLIAM
1940-01-09 TAILOR ROBERT
1940-01-09 PIETSCH VENUS
1940-01-31 LYTTLETON BETTY

--

1940-02-02 WINTRICH MARIA
1940-02-13 KUNEY MARY
1940-02-14 KOLENCE MARSHA
1940-02-24 DILWORTH TOM

--

1940-03-03 DEKKER SYLVIA
1940-03-06 STEFFERUD BILL

IS Option - Check whether Content of Alphanumeric or
Unicode Field can be Converted
Syntax:

operand1 IS (format)

This option is used to check whether the content of an alphanumeric or Unicode field (operand1) can be
converted to a specific other format.

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A N A U yes no

The format for which the check is performed can be:

13

Logical Condition Criteria IS Option - Check whether Content of Alphanumeric or Unicode Field can be Converted

Nll.ll Numeric with length ll.ll.

Fll Floating point with length ll.

D Date. The following date formats are possible: dd-mm-yy, dd-mm-yyyy, ddmmyyyy
(dd = day, mm = month, yy or yyyy = year). The sequence of the day, month and year
components as well as the characters between the components are determined by the
profile parameter DTFORM (which is described in the Parameter Reference).

T Time (according to the default time display format).

Pll.ll Packed numeric with length ll.ll.

Ill Integer with length ll.

When the check is performed, leading and trailing blanks in operand1 will be ignored.

The IS option may, for example, be used to check the content of a field before the mathematical function
VAL (extract numeric value from an alphanumeric field) is used to ensure that it will not result in a
runtime error.

Note:
The IS option cannot be used to check if the value of an alphanumeric field is in the specified "format",
but if it can be converted to that "format". To check if a value is in a specific format, you can use the
MASK option. For further information, see MASK Option Compared with IS Option and Checking Packed
or Unpacked Numeric Data.

Example of IS Option:

** Example ’LOGICX04’: IS option as format/length check
**
DEFINE DATA LOCAL
1 #FIELDA (A10) /* INPUT FIELD TO BE CHECKED
1 #FIELDB (N5) /* RECEIVING FIELD OF VAL FUNCTION
1 #DATE (A10) /* INPUT FIELD FOR DATE
END-DEFINE
*
INPUT #DATE #FIELDA
IF #DATE IS(D)
 IF #FIELDA IS (N5)
 COMPUTE #FIELDB = VAL(#FIELDA)
 WRITE NOTITLE ’VAL FUNCTION OK’ // ’=’ #FIELDA ’=’ #FIELDB
 ELSE
 REINPUT ’FIELD DOES NOT FIT INTO N5 FORMAT’
 MARK *#FIELDA
 END-IF
ELSE
 REINPUT ’INPUT IS NOT IN DATE FORMAT (YY-MM-DD) ’
 MARK *#DATE
END-IF
*
END

Output of Program LOGICX04:

14

 IS Option - Check whether Content of Alphanumeric or Unicode Field can be ConvertedLogical Condition Criteria

#DATE 150487 #FIELDA

INPUT IS NOT IN DATE FORMAT (YY-MM-DD)

MASK Option - Check Selected Positions of a Field for
Specific Content
With the MASK option, you can check selected positions of a field for specific content.

The following topics are covered below:

Constant Mask

Variable Mask

Characters in a Mask

Mask Length

Checking Dates

Checking Against the Content of Constants or Variables

Range Checks

Checking Packed or Unpacked Numeric Data

Constant Mask

Syntax:

operand1 =
EQ
EQUAL TO
NE
NOT EQUAL

MASK (mask-definition) [operand2]

Operand Definition Table:

15

Logical Condition Criteria MASK Option - Check Selected Positions of a Field for Specific Content

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A N A U N P yes no

operand2 C S A U N P B yes no

operand2 can only be used if the mask-definition contains at least one X. operand1 and
operand2 must be format-compatible:

If operand1 is of format A, operand2 must be of format A, B, N or U.

If operand1 is of format U, operand2 must be of format A, B, N or U.

If operand1 is of format N or P, operand2 must be of format N or P.

An X in the mask-definition selects the corresponding positions of the content of operand1 and
operand2 for comparison.

Variable Mask

Apart from a constant mask-definition (see above), you may also specify a variable mask definition.

Syntax:

operand1 =
EQ
EQUAL TO
NE
NOT EQUAL

MASK operand2

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A N A U N P yes no

operand2 S A U yes no

The content of operand2 will be taken as the mask definition. Trailing blanks in operand2 will be
ignored.

If operand1 is of format A, N or P, operand2 must be of format A.

If operand1 is of format U, operand2 must be of format U.

16

 Variable MaskLogical Condition Criteria

Characters in a Mask

The following characters may be used within a mask definition (the mask definition is contained in
mask-definition for a constant mask and operand2 for a variable mask):

Character Meaning

. or ? or _ A period, question mark or underscore indicates a single position that is not to be
checked.

* or % An asterisk or percent mark is used to indicate any number of positions not to be
checked.

/ A slash (/) is used to check if a value ends with a specific character (or string of
characters).

For example, the following condition will be true if there is either an E in the last
position of the field, or the last E in the field is followed by nothing but blanks:

IF #FIELD = MASK (*’E’/)

A The position is to be checked for an alphabetical character (upper or lower case).

’ c’ One or more positions are to be checked for the characters bounded by
apostrophes (a double apostrophe indicates that a single apostrophe is the character
to be checked for). If operand1 is in Unicode format, ’ c’ must contain
Unicode characters.

C The position is to be checked for an alphabetical character (upper or lower case), a
numeric character, or a blank.

DD The two positions are to be checked for a valid day notation (01 - 31; dependent
on the values of MM and YY/YYYY, if specified; see also Checking Dates).

H The position is to be checked for hexadecimal content (A - F, 0 - 9).

JJJ The positions are to be checked for a valid Julian Day; that is, the day number in
the year (001-366, dependent on the value of YY/YYYY, if specified. See also
Checking Dates.)

L The position is to be checked for a lower-case alphabetical character (a - z).

MM The positions are to be checked for a valid month (01 - 12); see also Checking
Dates.

N The position is to be checked for a numeric digit.

n... One (or more) positions are to be checked for a numeric value in the range 0 -
n.

n1- n2 or
n1: n2

The positions are checked for a numeric value in the range n1-n2.

n1 and n2 must be of the same length.

P The position is to be checked for a displayable character (U, L, N or S).

S The position is to be checked for special characters. See also Support of Different
Character Sets with NATCONV.INI in the Operations documentation.

U The position is to be checked for an upper-case alphabetical character (A - Z).

17

Logical Condition CriteriaCharacters in a Mask

Character Meaning

X The position is to be checked against the equivalent position in the value
(operand2) following the mask-definition.

X is not allowed in a variable mask definition, as it makes no sense.

YY The two positions are to be checked for a valid year (00 - 99). See also Checking
Dates.

YYYY The four positions are checked for a valid year (0000 - 2699).

Z The position is to be checked for a character whose left half-byte is hexadecimally
3 or 7, and whose right half-byte is hexadecimally 0 - 9.

This may be used to correctly check for numeric digits in negative numbers. With
N (which indicates a position to be checked for a numeric digit), a check for
numeric digits in negative numbers leads to incorrect results, because the sign of
the number is stored in the last digit of the number, causing that digit to be
hexadecimally represented as non-numeric.

Within a mask, use only one Z for each sequence of numeric digits that is checked.

Mask Length

The length of the mask determines how many positions are to be checked.

Example:

DEFINE DATA LOCAL
1 #CODE (A15)
END-DEFINE
...
IF #CODE = MASK (NN’ABC’....NN)
...

In the above example, the first two positions of #CODE are to be checked for numeric content. The three
following positions are checked for the contents ABC. The next four positions are not to be checked.
Positions ten and eleven are to be checked for numeric content. Positions twelve to fifteen are not to be
checked.

Checking Dates

Only one date may be checked within a given mask. When the same date component (JJJ , DD, MM, YY or
YYYY) is specified more than once in the mask, only the value of the last occurrence is checked for
consistency with other date components.

When dates are checked for a day (DD) and no month (MM) is specified in the mask, the current month will
be assumed.

When dates are checked for a day (DD) or a Julian day (JJJ) and no year (YY or YYYY) is specified in the
mask, the current year will be assumed.

18

Mask LengthLogical Condition Criteria

When dates are checked for a 2-digit year (YY), the current century will be assumed if no Sliding or Fixed
Window is set. For more details about Sliding or Fixed Windows, refer to profile parameter YSLW in the
Parameter Reference.

Example 1:

MOVE 1131 TO #DATE (N4)
IF #DATE = MASK (MMDD)

In this example, month and day are checked for validity. The value for month (11) will be considered
valid, whereas the value for day (31) will be invalid since the 11th month has only 30 days.

Example 2:

IF #DATE(A8) = MASK (MM’/’DD’/’YY)

In this example, the content of the field #DATE is be checked for a valid date with the format MM/DD/YY
(month/day/year).

Example 3:

IF #DATE (A8) = MASK (1950-2020MMDD)

In this example, the content of field #DATE is checked for a four-digit number in the range 1950 to 2020
followed by a valid month and day in the current year.

Note:
Although apparent, the above mask does not allow to check for a valid date in the years 1950 through
2020, because the numeric value range 1950-2020 is checked independent of the validation of month and
day. The check will deliver the intended results except for February, 29, where the result depends on
whether the current year is a leap year or not. To check for a specific year range in addition to the date
validation, code one check for the date validation and another for the range validation:

IF #DATE (A8) = MASK (YYYYMMDD) AND #DATE = MASK (1950-2020)

Example 4:

IF #DATE (A4) = MASK (19-20YY)

In this example, the content of field #DATE is checked for a two-digit number in the range 19 to 20
followed by a valid two-digit year (00 through 99). The century is supplied by Natural as described above.

Note:
Although apparent, the above mask does not allow to check for a valid year in the range 1900 through
2099, because the numeric value range 19-20 is checked independent of the year validation. To check for
year ranges, code one check for the date validation and another for the range validation:

IF #DATE (A10) = MASK (YYYY’-’MM’-’DD) AND #DATE = MASK (19-20)

Checking Against the Content of Constants or Variables

If the value for the mask check is to be taken from either a constant or a variable, this value (operand2)
must be specified immediately following the mask-definition.

19

Logical Condition CriteriaChecking Against the Content of Constants or Variables

operand2 must be at least as long as the mask.

In the mask, you indicate each position to be checked with an X, and each position not to be checked with
a period (.) or a question mark (?) or an underscore (_).

Example:

DEFINE DATA LOCAL
1 #NAME (A15)
END-DEFINE
...
IF #NAME = MASK (..XX) ’ABCD’
...

In the above example, it is checked whether the field #NAME contains CD in the third and fourth positions.
Positions one and two are not checked.

The length of the mask determines how many positions are to be checked. The mask is left-justified
against any field or constant used in the mask operation. The format of the field (or constant) on the right
side of the expression must be the same as the format of the field on the left side of the expression.

If the field to be checked (operand1) is of format A, any constant used (operand2) must be enclosed
in apostrophes. If the field is numeric, the value used must be a numeric constant or the content of a
numeric database field or user-defined variable.

In either case, any characters/digits within the value specified whose positions do not match the X
indicator within the mask are ignored.

The result of the MASK operation is true when the indicated positions in both values are identical.

Example:

** Example ’LOGICX01’: MASK option in logical condition
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 CITY
END-DEFINE
*
HISTOGRAM EMPLOY-VIEW CITY
 IF CITY =
MASK (....XX) ’....NN’

 DISPLAY NOTITLE CITY *NUMBER
 END-IF
END-HISTOGRAM
*
END

In the above example, the record will be accepted if the fifth and sixth positions of the field CITY each
contain the character N.

20

Checking Against the Content of Constants or VariablesLogical Condition Criteria

Range Checks

When performing range checks, the number of positions verified in the supplied variable is defined by the
precision of the value supplied in the mask specification. For example, a mask of (...193...) will
verify positions 4 to 6 for a three-digit number in the range 000 to 193.

Additional Examples of Mask Definitions:

In this example, each character of #NAME is checked for an alphabetical character:

IF #NAME (A10) = MASK (AAAAAAAAAA)

In this example, positions 4 to 6 of #NUMBER are checked for a numeric value:

IF #NUMBER (A6) = MASK (...NNN)

In this example, positions 4 to 6 of #VALUE are to be checked for the value 123 :

IF #VALUE(A10) = MASK (...’123’)

This example will check if #LICENSE contains a license number which begins with NY- and whose
last five characters are identical to the last five positions of #VALUE:

DEFINE DATA LOCAL
1 #VALUE(A8)
1 #LICENSE(A8)
END-DEFINE
INPUT ’ENTER KNOWN POSITIONS OF LICENSE PLATE:’ #VALUE
IF #LICENSE = MASK (’NY-’XXXXX) #VALUE

The following condition would be met by any value which contains NAT and AL no matter which and
how many other characters are between NAT and AL (this would include the values NATURAL and
NATIONALITY as well as NATAL):

MASK(’NAT’*’AL’)

Checking Packed or Unpacked Numeric Data

Legacy applications often have packed or unpacked numeric variables redefined with alphanumeric or
binary fields. Such redefinitions are not recommended, because using the packed or unpacked variable in
an assignment or computation may lead to errors or unpredictable results. To validate the contents of such
a redefined variable before the variable is used, use the N option (see Characters in a Mask) as many as
number of digits - 1 times followed by a single Z option.

Examples :

IF #P1 (P1) = MASK (Z)
IF #N4 (N4) = MASK (NNNZ)
IF #P5 (P5) = MASK (NNNNZ)

For further information about checking field contents, see MASK Option Compared with IS Option.

21

Logical Condition CriteriaRange Checks

MASK Option Compared with IS Option
This section points out the difference between MASK option and IS option and contains a sample program
to illustrate the difference.

The IS option can be used to check whether the content of an alphanumeric or Unicode field can be
converted to a specific other format, but it cannot be used to check if the value of an alphanumeric field is
in the specified format.

The MASK option can be used to validate the contents of a redefined packed or unpacked numeric variable.

Example Illustrating the Difference:

** Example ’LOGICX09’: MASK versus IS option in logical condition
**
DEFINE DATA LOCAL
1 #A2 (A2)
1 REDEFINE #A2
 2 #N2 (N2)
1 REDEFINE #A2
 2 #P3 (P3)
1 #CONV-N2 (N2)
1 #CONV-P3 (P3)
END-DEFINE
*
#A2 := ’12’
WRITE NOTITLE ’Assignment #A2 := "12" results in:’
PERFORM SUBTEST
#A2 := ’-1’
WRITE NOTITLE / ’Assignment #A2 := "-1" results in:’
PERFORM SUBTEST
#N2 := 12
WRITE NOTITLE / ’Assignment #N2 := 12 results in:’
PERFORM SUBTEST
#N2 := -1
WRITE NOTITLE / ’Assignment #N2 := -1 results in:’
PERFORM SUBTEST
#P3 := 12
WRITE NOTITLE / ’Assignment #P3 := 12 results in:’
PERFORM SUBTEST
#P3 := -1
WRITE NOTITLE / ’Assignment #P3 := -1 results in:’
PERFORM SUBTEST
*
DEFINE SUBROUTINE SUBTEST
IF #A2 IS (N2) THEN
 #CONV-N2 := VAL(#A2)
 WRITE NOTITLE 12T ’#A2 can be converted to’ #CONV-N2 ’(N2)’
END-IF
IF #A2 IS (P3) THEN
 #CONV-P3 := VAL(#A2)
 WRITE NOTITLE 12T ’#A2 can be converted to’ #CONV-P3 ’(P3)’
END-IF
IF #N2 = MASK(NZ) THEN
 WRITE NOTITLE 12T ’#N2 contains the valid unpacked number’ #N2
END-IF
IF #P3 = MASK(NNZ) THEN
 WRITE NOTITLE 12T ’#P3 contains the valid packed number’ #P3

22

MASK Option Compared with IS OptionLogical Condition Criteria

END-IF
END-SUBROUTINE
*
END

Output of Program LOGICX09:

Assignment #A2 := ’12’ results in:
 #A2 can be converted to 12 (N2)
 #A2 can be converted to 12 (P3)
 #N2 contains the valid unpacked number 12

Assignment #A2 := ’-1’ results in:
 #A2 can be converted to -1 (N2)
 #A2 can be converted to -1 (P3)

Assignment #N2 := 12 results in:
 #A2 can be converted to 12 (N2)
 #A2 can be converted to 12 (P3)
 #N2 contains the valid unpacked number 12

Assignment #N2 := -1 results in:
 #N2 contains the valid unpacked number -1

Assignment #P3 := 12 results in:
 #P3 contains the valid packed number 12

Assignment #P3 := -1 results in:
 #P3 contains the valid packed number -1

MODIFIED Option - Check whether Field Content has been
Modified
Syntax:

operand1 [NOT] MODIFIED

This option is used to determine whether the content of a field has been modified during the execution of
an INPUT or PROCESS PAGE statement. As a precondition, a control variable must have been assigned
using the parameter CV.

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 S A C no no

Attribute control variables referenced in an INPUT or PROCESS PAGE statement are always assigned
the status "not modified" when the map is transmitted to the terminal.

Whenever the content of a field referencing an attribute control variable is modified, the attribute control
variable has been assigned the status "modified". When multiple fields reference the same attribute control
variable, the variable is marked "modified" if any of these fields is modified.

23

Logical Condition Criteria MODIFIED Option - Check whether Field Content has been Modified

If operand1 is an array, the result will be true if at least one of the array elements has been assigned the
status "modified" (OR operation).

Example of MODIFIED Option:

** Example ’LOGICX06’: MODIFIED option in logical condition
**
DEFINE DATA LOCAL
1 #ATTR (C)
1 #A (A1)
1 #B (A1)
END-DEFINE
*
MOVE (AD=I) TO #ATTR
*
INPUT (CV=#ATTR) #A #B
IF #ATTR NOT MODIFIED
 WRITE NOTITLE ’FIELD #A OR #B HAS NOT BEEN MODIFIED’
END-IF
*
IF #ATTR MODIFIED
 WRITE NOTITLE ’FIELD #A OR #B HAS BEEN MODIFIED’
END-IF
*
END

Output of Program LOGICX06:

#A #B

After entering any value and pressing ENTER, the following output is displayed:

FIELD #A OR #B HAS BEEN MODIFIED

SCAN Option - Scan for a Value within a Field
Syntax:

 operand1 =
EQ
EQUAL TO
NE
NOT EQUAL

SCAN operand2
(operand2)

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A N A U N P yes no

operand2 C S A U B* yes no

24

 SCAN Option - Scan for a Value within a FieldLogical Condition Criteria

* operand2 may only be binary if operand1 is of format A or U. If operand1 is of format U and
operand2 is of format B, then the length of operand2 must be even.

The SCAN option is used to scan for a specific value within a field.

The characters used in the SCAN option (operand2) may be specified as an alphanumeric or Unicode
constant (a character string bounded by apostrophes) or the contents of an alphanumeric or Unicode
database field or user-defined variable.

Caution:
Trailing blanks are automatically eliminated from operand1 and operand2. Therefore, the SCAN
option cannot be used to scan for values containing trailing blanks. operand1 and operand2 may
contain leading or embedded blanks. If operand2 consists of blanks only, scanning will be assumed to
be successful, regardless of the value of operand1; confer EXAMINE FULL statement if trailing blanks
are not to be ignored in the scan operation.

The field to be scanned (operand1) may be of format A, N, P or U. The SCAN operation may be
specified with the equal (EQ) or not equal (NE) operators.

The length of the character string for the SCAN operation should be less than the length of the field to be
scanned. If the length of the character string specified is identical to the length of the field to be scanned,
then an EQUAL operator should be used instead of SCAN.

Example of SCAN Option:

** Example ’LOGICX02’: SCAN option in logical condition
**
DEFINE DATA
LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
 2 NAME
*
1 #VALUE (A4)
1 #COMMENT (A10)
END-DEFINE
*
INPUT ’ENTER SCAN VALUE:’ #VALUE
LIMIT 15
*
HISTOGRAM EMPLOY-VIEW FOR NAME
 RESET #COMMENT
 IF NAME = SCAN #VALUE
 MOVE ’MATCH’ TO #COMMENT
 END-IF
 DISPLAY NOTITLE NAME *NUMBER #COMMENT
END-HISTOGRAM
*
END

Output of Program LOGICX02:

ENTER SCAN VALUE:

A scan for example for LL delivers three matches in 15 names:

25

Logical Condition Criteria SCAN Option - Scan for a Value within a Field

 NAME NMBR #COMMENT
-------------------- --------- ----------

ABELLAN 1 MATCH
ACHIESON 1
ADAM 1
ADKINSON 8
AECKERLE 1
AFANASSIEV 2
AHL 1
AKROYD 1
ALEMAN 1
ALESTIA 1
ALEXANDER 5
ALLEGRE 1 MATCH
ALLSOP 1 MATCH
ALTINOK 1
ALVAREZ 1

SPECIFIED Option - Check whether a Value is Passed for
an Optional Parameter
Syntax:

parameter-name [NOT] SPECIFIED

This option is used to check whether an optional parameter in an invoked object (subprogram, external
subroutine, dialog or ActiveX control) has received a value from the invoking object or not.

An optional parameter is a field defined with the keyword OPTIONAL in the DEFINE DATA
PARAMETER statement of the invoked object. If a field is defined as OPTIONAL, a value can - but need
not - be passed from an invoking object to this field.

In the invoking statement, the notation nX is used to indicate parameters for which no values are passed.

If you process an optional parameter which has not received a value, this will cause a runtime error. To
avoid such an error, you use the SPECIFIED option in the invoked object to check whether an optional
parameter has received a value or not, and then only process it if it has.

parameter-name is the name of the parameter as specified in the DEFINE DATA PARAMETER
statement of the invoked object.

For a field not defined as OPTIONAL, the SPECIFIED condition is always TRUE.

Example of SPECIFIED Option:

Calling Programming:

** Example ’LOGICX07’: SPECIFIED option in logical condition
**
DEFINE DATA LOCAL
1 #PARM1 (A3)
1 #PARM3 (N2)
END-DEFINE
*

26

 SPECIFIED Option - Check whether a Value is Passed for an Optional ParameterLogical Condition Criteria

#PARM1 := ’ABC’
#PARM3 := 20
*
CALLNAT ’LOGICX08’ #PARM1 1X #PARM3
*
END

Subprogram Called:

** Example ’LOGICX08’: SPECIFIED option in logical condition
**
DEFINE DATA PARAMETER
1 #PARM1 (A3)
1 #PARM2 (N2) OPTIONAL
1 #PARM3 (N2) OPTIONAL
END-DEFINE
*
WRITE ’=’ #PARM1
*
IF #PARM2 SPECIFIED
 WRITE ’#PARM2 is specified’
 WRITE ’=’ #PARM2
ELSE
 WRITE ’#PARM2 is not specified’
* WRITE ’=’ #PARM2 /* would cause runtime error NAT1322
END-IF
*
IF #PARM3 NOT SPECIFIED
 WRITE ’#PARM3 is not specified’
ELSE
 WRITE ’#PARM3 is specified’
 WRITE ’=’ #PARM3
END-IF
END

Output of Program LOGICX07:

Page 1 04-12-15 11:25:41

#PARM1: ABC
#PARM2 is not specified
#PARM3 is specified
#PARM3: 20

27

Logical Condition Criteria SPECIFIED Option - Check whether a Value is Passed for an Optional Parameter

	 Logical Condition Criteria
	Introduction
	 Relational Expression
	
	Examples of Relational Expressions:
	Arithmetic Expressions in Logical Conditions
	Handles in Logical Conditions
	SUBSTRING Option in Relational Expression
	Examples:

	Extended Relational Expression
	
	Examples:

	 Evaluation of a Logical Variable
	
	Example of Logical Variable:

	Fields Used within Logical Condition Criteria
	
	Comparison Examples:
	Examples of Logical Condition Criteria:

	Logical Operators in Complex Logical Expressions
	
	Examples of Logical Expressions:

	 BREAK Option - Compare Current Value with Value of Previous Loop Pass
	
	Example of BREAK Option:

	 IS Option - Check whether Content of Alphanumeric or Unicode Field can be Converted
	
	Example of IS Option:

	 MASK Option - Check Selected Positions of a Field for Specific Content
	 Constant Mask
	 Variable Mask
	Characters in a Mask
	Mask Length
	Example:

	Checking Dates
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	Checking Against the Content of Constants or Variables
	Example:
	Example:

	Range Checks
	Checking Packed or Unpacked Numeric Data
	Examples :

	MASK Option Compared with IS Option
	
	Example Illustrating the Difference:

	 MODIFIED Option - Check whether Field Content has been Modified
	
	Example of MODIFIED Option:

	 SCAN Option - Scan for a Value within a Field
	
	Example of SCAN Option:

	 SPECIFIED Option - Check whether a Value is Passed for an Optional Parameter
	
	Example of SPECIFIED Option:

