
Screen Design
This chapter provides options to define a general screen layout:

Control of the Message Line - Terminal Command %M

Assigning Colors to Fields - Terminal Command %=

Infoline - Terminal Command %X

Windows

Standard/Dynamic Layout Maps

Multilingual User Interfaces

Skill-Sensitive User Interfaces

Control of the Message Line - Terminal Command %M
Various options of the terminal command %M are available for defining how and where the Natural
message line is to be displayed.

Below is information on:

Positioning the Message Line

Message Line Color

Positioning the Message Line

%MB

The message line is displayed at the bottom of the screen.

%MT

The message line is displayed at the top of the screen.

Other options for the positioning of the message line are described in %M - Control of Message Line in
the Terminal Commands documentation.

Message Line Color

%M=color-code

The message line is displayed in the specified color (for an explanation of color codes, see the
session parameter CD as described in the Parameter Reference).

1

Screen DesignScreen Design

Assigning Colors to Fields - Terminal Command %=
You can use the terminal command %= to assign colors to field attributes for programs that were originally
not written for color support. The command causes all fields/text defined with the specified attributes to
be displayed in the specified color.

If predefined color assignments are not suitable for your terminal type, you can use this command to
override the original assignments with new ones.

You can also use the %= terminal command within Natural editors, for example to define color
assignments dynamically during map creation.

Codes Description

blank Clear color translate table.

F Newly defined colors are to override colors assigned by the program.

N Color attributes assigned by program are not to be modified.

O Output field.

M Modifiable field (output and input).

T Text constant.

B Blinking

C Italic

D Default

I Intensified

U Underlined

V Reverse video

BG Background

BL Blue

GR Green

NE Neutral

PI Pink

RE Red

TU Turquoise

YE Yellow

Example:

%=TI=RE,OB=YE

This example assigns the color red to all intensified text fields and yellow to all blinking output fields.

2

 Assigning Colors to Fields - Terminal Command %=Screen Design

Infoline - Terminal Command %X
The terminal command %X controls the display of the Natural infoline.

For further information, see the description of the terminal command %X in the Terminal Commands
documentation.

Windows
Below is information on:

What is a Window?

DEFINE WINDOW Statement

INPUT WINDOW Statement

What is a Window?

A window is that segment of a logical page, built by a program, which is displayed on the terminal screen.

A logical page is the output area for Natural; in other words the logical page contains the current
report/map produced by the Natural program for display. This logical page may be larger than the physical
screen.

There is always a window present, although you may not be aware of its existence. Unless specified
differently (by a DEFINE WINDOW statement), the size of the window is identical to the physical size of
your terminal screen.

You can manipulate a window in two ways:

You can control the size and position of the window on the physical screen.

You can control the position of the window on the logical page.

Positioning on the Physical Screen

The figure below illustrates the positioning of a window on the physical screen. Note that the same section
of the logical page is displayed in both cases, only the position of the window on the screen has changed.

3

Screen Design Infoline - Terminal Command %X

Positioning on the Logical Page

The figure below illustrates the positioning of a window on the logical page.

When you change the position of the window on the logical page, the size and position of the window on
the physical screen will remain unchanged. In other words, the window is not moved over the page, but
the page is moved "underneath" the window.

4

What is a Window?Screen Design

DEFINE WINDOW Statement

You use the DEFINE WINDOW statement to specify the size, position and attributes of a window on the
physical screen.

A DEFINE WINDOW statement does not activate a window; this is done with a SET WINDOW statement
or with the WINDOW clause of an INPUT statement.

Various options are available with the DEFINE WINDOW statement. These are described below in the
context of the following example.

The following program defines a window on the physical screen.

** Example ’WINDX01’: DEFINE WINDOW
**
DEFINE DATA LOCAL
1 COMMAND (A10)
END-DEFINE
*
DEFINE WINDOW TEST
 SIZE 5*25
 BASE 5/40
 TITLE ’Sample Window’
 CONTROL WINDOW
 FRAMED POSITION SYMBOL BOTTOM LEFT
*
INPUT WINDOW=’TEST’ WITH TEXT ’message line’
 COMMAND (AD=I’_’) /
 ’dataline 1’ /
 ’dataline 2’ /
 ’dataline 3’ ’long data line’
*
IF COMMAND = ’TEST2’
 FETCH ’WINDX02’
ELSE
 IF COMMAND = ’.’
 STOP
 ELSE
 REINPUT ’invalid command’
 END-IF
END-IF
END

The window-name identifies the window. The name may be up to 32 characters long. For a window name,
the same naming conventions apply as for user-defined variables. Here the name is TEST.

The window size is set with the SIZE option. Here the window is 5 lines high and 25 columns (positions)
wide.

The position of the window is set by the BASE option. Here the top left-hand corner of the window is
positioned on line 5, column 40.

With the TITLE option, you can define a title that is to be displayed in the window frame (of course, only
if you have defined a frame for the window).

5

Screen DesignDEFINE WINDOW Statement

With the CONTROL clause, you determine whether the PF-key lines, the message line and the statistics
line are displayed in the window or on the full physical screen. Here CONTROL WINDOW causes the
message line to be displayed inside the window. CONTROL SCREEN would cause the lines to be
displayed on the full physical screen outside the window. If you omit the CONTROL clause, CONTROL
WINDOW applies by default.

With the FRAMED option, you define that the window is to be framed. This frame is then cursor-sensitive.
Where applicable, you can page forward, backward, left or right within the window by simply placing the
cursor over the appropriate symbol (<, -, +, or >; see POSITION clause) and then pressing Enter. In other
words, you are moving the logical page underneath the window on the physical screen. If no symbols are
displayed, you can page backward and forward within the window by placing the cursor in the top frame
line (for backward positioning) or bottom frame line (for forward positioning) and then pressing Enter.

With the POSITION clause of the FRAMED option, you define that information on the position of the
window on the logical page is to be displayed in the frame of the window. This applies only if the logical
page is larger than the window; if it is not, the POSITION clause will be ignored. The position
information indicates in which directions the logical page extends above, below, to the left and to the right
of the current window.

If the POSITION clause is omitted, POSITION SYMBOL TOP RIGHT applies by default.

POSITION SYMBOL causes the position information to be displayed in form of symbols: "More: < - +
>". The information is displayed in the top and/or bottom frame line.

TOP/BOTTOM determines whether the position information is displayed in the top or bottom frame line.

LEFT/RIGHT determines whether the position information is displayed in the left or right part of the
frame line.

INPUT WINDOW Statement

The INPUT WINDOW statement activates the window defined in the DEFINE WINDOW statement. In the
example, the window TEST is activated. Note that if you wish to output data in a window (for example,
with a WRITE statement), you use the SET WINDOW statement.

When the above program is run, the window is displayed with one input field COMMAND. The session
parameter AD is used to define that the value of the field is displayed intensified and an underscore is used
as filler character.

Output of Program WINDX01:

6

INPUT WINDOW StatementScreen Design

Multiple Windows

You can, of course, open multiple windows. However, only one Natural window is active at any one time,
that is, the most recent window. Any previous windows may still be visible on the screen, but are no
longer active and are ignored by Natural. You may enter input only in the most recent window. If there is
not enough space to enter input, the window size must be adjusted first.

When TEST2 is entered in the COMMAND field, the program WINDX02 is executed.

** Example ’WINDX02’: DEFINE WINDOW
**
DEFINE DATA LOCAL
1 COMMAND (A10)
END-DEFINE
*
DEFINE WINDOW TEST2
 SIZE 5*30
 BASE 15/40
 TITLE ’Another Window’
 CONTROL SCREEN
 FRAMED POSITION SYMBOL BOTTOM LEFT
*
INPUT WINDOW=’TEST2’ WITH TEXT ’message line’
 COMMAND (AD=I’_’) /
 ’dataline 1’ /
 ’dataline 2’ /
 ’dataline 3’ ’long data line’
*
IF COMMAND = ’TEST’
 FETCH ’WINDX01’
ELSE
 IF COMMAND = ’.’
 STOP
 ELSE
 REINPUT ’invalid command’
 END-IF
END-IF
END

A second window is opened. The other window is still visible, but it is inactive.

7

Screen DesignINPUT WINDOW Statement

Note that for the new window the message line is now displayed at the bottom of the output window and
not in the window. This was defined by the CONTROL SCREEN clause in the WINDX02 program.

For further details on the statements DEFINE WINDOW, INPUT WINDOW and SET WINDOW, see the
corresponding descriptions in the Statements documentation.

Standard/Dynamic Layout Maps

Standard Layout Maps

A standard layout can be defined in the map editor. This layout guarantees a uniform appearance for all
maps that reference it throughout the application.

When a map that references a standard layout is initialized, the standard layout becomes a fixed part of the
map. This means that if this standard layout is modified, all affected maps must be re-cataloged before the
changes take effect.

Dynamic Layout Maps

In contrast to a standard layout, a dynamic layout does not become a fixed part of a map that references it,
rather it is executed at runtime.

This means that if you define the layout map as "dynamic" on the Define Map Settings For MAP screen in
the map editor, any modifications to the layout map are also carried out on all maps that reference it. The
maps need not be re-cataloged.

For further details on layout maps, see Map Editor in the Editors documentation.

Multilingual User Interfaces
Using Natural, you can create multilingual applications for international use.

8

Standard/Dynamic Layout MapsScreen Design

Maps, helproutines, error messages, programs, functions, subprograms and copycodes can be defined in
up to 60 different languages (including languages with double-byte character sets).

Below is information on:

Language Codes

Defining the Language of a Natural Object

Defining the User Language

Referencing Multilingual Objects

Programs

Error Messages

Edit Masks for Date and Time Fields

Language Codes

In Natural, each language has a language code (from 1 to 60). The table below is an extract from the full
table of language codes. For a complete overview, refer to the description of the system variable
*LANGUAGE in the System Varibales documentation.

Language Code Language Map Code in Object Names

1 English 1

2 German 2

3 French 3

4 Spanish 4

5 Italian 5

6 Dutch 6

7 Turkish 7

8 Danish 8

9 Norwegian 9

10 Albanian A

11 Portuguese B

The language code (left column) is the code that is contained in the system variable *LANGUAGE. This
code is used by Natural internally. It is the code you use to define the user language (see Defining the
User Language below). The code you use to identify the language of a Natural object is the map code in
the right-hand column of the table.

Example:

9

Screen DesignLanguage Codes

The language code for Portuguese is "11". The code you use when cataloging a Portuguese Natural object
is "B".

For the full table of language codes, see the system variable *LANGUAGE as described in the System
Variables documentation.

Defining the Language of a Natural Object

To define the language of a Natural object (map, helproutine, program, function, subprogram or
copycode), you add the corresponding map code to the object name. Apart from the map code, the name
of the object must be identical for all languages.

In the example below, a map has been created in English and in German. To identify the languages of the
maps, the map code that corresponds to the respective language has been included in the map name.

Example of Map Names for a Multilingual Application

DEMO1 = English map (map code 1)

DEMO2 = German map (map code 2)

Defining Languages with Alphabetical Map Codes

Map codes are in the range 1-9, A-Z or a-y. The alphabetical map codes require special handling.

Normally, it is not possible to catalog an object with a lower-case letter in the name - all characters are
automatically converted into capitals.

This is however necessary, if for example you wish to define an object for Kanji (Japanese) which has the
language code 59 and the map code x .

To catalog such an object, you first set the correct language code (here 59) using the terminal command
%L=nn, where nn is the language code.

You then catalog the object using the ampersand (&) character instead of the actual map code in the object
name. So to have a Japanese version of the map DEMO, you stow the map under the name DEMO&.

If you now look at the list of Natural objects, you will see that the map is correctly listed as DEMOx.

Objects with language codes 1-9 and upper case A-Z can be cataloged directly without the use of the
ampersand (&) notation.

In the example list below, you can see the three maps DEMO1, DEMO2 and DEMOx. To delete the map
DEMOx, you use the same method as when creating it, that is, you set the correct language with the
terminal command %L=59 and then confirm the deletion with the ampersand (&) notation (DEMO&).

Defining the User Language

You define the language to be used per user - as defined in the system variable *LANGUAGE - with the
profile parameter ULANG (which is described in the Parameter Reference) or with the terminal command
%L=nn (where nn is the language code).

10

 Defining the Language of a Natural ObjectScreen Design

Referencing Multilingual Objects

To reference multilingual objects in a program, you use the ampersand (&) character in the name of the
object.

The program below uses the maps DEMO1 and DEMO2. The ampersand (&) character at the end of the
map name stands for the map code and indicates that the map with the current language as defined in the
*LANGUAGE system variable is to be used.

DEFINE DATA LOCAL
1 PERSONNEL VIEW OF EMPLOYEES
 2 NAME (A20)
 2 PERSONNEL-ID (A8)
1 CAR VIEW OF VEHICLES
 2 REG-NUM (A15)
1 #CODE (N1)
END-DEFINE
*
INPUT USING MAP ’DEMO&’ /* <--- INVOKE MAP WITH CURRENT LANGUAGE CODE
...

When this program is run, the English map (DEMO1) is displayed. This is because the current value of
*LANGUAGE is 1 = English.

 MAP DEMO1

 SAMPLE MAP

 Please select a function!

 1.) Employee information

 2.) Vehicle information

 Enter code here: _

In the example below, the language code has been switched to 2 = German with the terminal command
%L=2.

When the program is now run, the German map (DEMO2) is displayed.

11

Screen Design Referencing Multilingual Objects

 BEISPIEL-MAP

 Bitte wählen Sie eine Funktion!

 1.) Mitarbeiterdaten

 2.) Fahrzeugdaten

 Code hier eingeben: _

Programs

For some applications it may be useful to define multilingual programs. For example, a standard invoicing
program, might use different subprograms to handle various tax aspects, depending on the country where
the invoice is to be written.

Multilingual programs are defined with the same technique as described above for maps.

Error Messages

Using the Natural utility SYSERR, you can translate Natural error messages into up to 60 languages, and
also define your own error messages.

Which message language a user sees, depends on the *LANGUAGE system variable.

For further information on error messages, see SYSERR Utility in the Utilities documentation.

Edit Masks for Date and Time Fields

The language used for date and time fields defined with edit masks also depends on the system variable
*LANGUAGE.

For details on edit masks, see the session parameter EM as described in the Parameter Reference.

Skill-Sensitive User Interfaces
Users with varying levels of skill may wish to have different maps (of varying detail) while using the
same application.

If your application is not for international use by users speaking different languages, you can use the
techniques for multilingual maps to define maps of varying detail.

For example, you could define language code 1 as corresponding to the skill of the beginner, and language
code 2 as corresponding to the skill of the advanced user. This simple but effective technique is illustrated
below.

12

 Skill-Sensitive User InterfacesScreen Design

The following map (PERS1) includes instructions for the end user on how to select a function from the
menu. The information is very detailed. The name of the map contains the map code 1:

 MAP PERS1

 SAMPLE MAP

 Please select a function

 1.) Employee information _

 2.) Vehicle information _

 Enter code: _

 To select a function, do one of the following:

 - place the cursor on the input field next to desired function and press Enter
 - mark the input field next to desired function with an X and press Enter
 - enter the desired function code (1 or 2) in the ’Enter code’ field and press
Enter

The same map, but without the detailed instructions is saved under the same name, but with map code 2.

 MAP PERS2

 SAMPLE MAP

 Please select a function

 1.) Employee information _

 2.) Vehicle information _

 Enter code: _

In the example above, the map with the detailed instructions is output, if the ULANG profile parameter has
the value 1, the map without the instructions if the value is 2. See also the description of the profile
parameter ULANG (in the Parameter Reference).

13

Screen Design Skill-Sensitive User Interfaces

	Screen Design
	 Control of the Message Line - Terminal Command %M
	Positioning the Message Line
	Message Line Color

	 Assigning Colors to Fields - Terminal Command %=
	 Infoline - Terminal Command %X
	Windows
	What is a Window?
	Positioning on the Physical Screen
	Positioning on the Logical Page

	DEFINE WINDOW Statement
	INPUT WINDOW Statement
	Multiple Windows

	Standard/Dynamic Layout Maps
	Standard Layout Maps
	Dynamic Layout Maps

	 Multilingual User Interfaces
	Language Codes
	 Defining the Language of a Natural Object
	Example of Map Names for a Multilingual Application
	Defining Languages with Alphabetical Map Codes

	Defining the User Language
	 Referencing Multilingual Objects
	Programs
	Error Messages
	Edit Masks for Date and Time Fields

	 Skill-Sensitive User Interfaces

