X-Arrays X-Arrays

X-Arrays

When an ordinary array field is defined, you have to specify the index bounds exactly, hence the number
of occurrences for each dimension. At runtime, the complete array field is existent by default; each of its
defined occurrences can be accessed without performing additional allocation operations. The size layout
cannot be changed anymore; you may neither add nor remove field occurrences.

However, if the number of occurrences needed is unknown at development time, but you want to flexibly
increase or decrease the number of the array fields at runtime, you should use what is called an X-array
(eXtensible array).

An X-array can be resized at runtime and can help you manage memory more efficiently. For example,
you can use a large number of array occurrences for a short time and then reduce memory when the
application is no longer using the array.

This chapter covers the following topics:
® Definition
e Storage Management of X-Arrays
e Storage Management of X-Group Arrays
® Referencing an X-Array
® Parameter Transfer with X-Arrays
® Parameter Transfer with X-Group Arrays
e X-Array of Dynamic Variables

e |ower and Upper Bound of an Array

Definition

An X-array is an array of which the number of occurrences is undefined at compile time. It is defined in a
DEFINE DATA statement by specifying an asterisk (*) for at least one index bound of at least one array
dimension. An asterisk (*) character in the index definition represents a variable index bound which can

be assigned to a definite value during program execution. Only one bound - either upper or lower - may be
defined as variable, but not both.

An X-array can be defined whenever a (fixed) array can be defined, i.e. at any level or even as an indexed
group. It cannot be used to access MU-/PE-fields of a database view. A multidimensional array may have
a mixture of constant and variable bounds.

Example:

DEFINE DATA LOCAL

1 #X-ARR1 (A5/1:*) /* lower bound is fixed at 1, upper bound is variable
1 #X-ARR2 (A5/*) [* shortcut for (A5/1:*)

1 #X-ARR3 (A5/*:100) /* lower bound is variable, upper bound is fixed at 100
1 #X-ARR4 (A5/1:10,1:*) /* 1st dimension has a fixed index range with (1:10)
END-DEFINE /* 2nd dimension has fixed lower bound 1 and variable upper bound

X-Arrays Storage Management of X-Arrays

Storage M anagement of X-Arrays

Occurrences of an X-array must be allocated explicitly before they can be accessed. To increase or
decrease the number of occurrences of a dimension, the stat&XEP#SIDRESIZE andREDUCHnay
be used.

However, the number of dimensions of the X-array (1, 2 or 3 dimensions) cannot be changed.

Example:

DEFINE DATA LOCAL

1 #X-ARR(14/10:*)

END-DEFINE

EXPAND ARRAY #X-ARR TO (10:10000)

/* #X-ARR(10) to #X-ARR(10000) are accessible

WRITE *LBOUND(#X-ARR) /*is 10
UBOUND#X-ARR) [is 10000
*OCCURRENCE(#X-ARR) /*is 9991

#X-ARR(*) := 4711 [* same as #X-ARR(10:10000) := 4711

/* resize array from current lower bound=10 to upper bound =1000
RESIZE ARRAY #X-ARR TO (*:1000)

/* #X-ARR(10) to #X-ARR(1000) are accessible

/* #X-ARR(1001) to #X-ARR(10000) are released

WRITE *LBOUND(#X-ARR) /*is 10
UBOUND#X-ARR) / is 1000
*OCCURRENCE(#X-ARR) /*is 991

/* release all occurrences
REDUCE ARRAY #X-ARR TO 0
WRITE *OCCURRENCE#X-ARR) /*is 0

Storage Management of X-Group Arrays

If you want to increase or decrease occurrences of X-group arrays, you must distinguish between
independent and dependent dimensions.

A dimension which is specified directly (not inherited) for an X-(group) arrayd&pendent.
A dimension which isot specified directly, but inherited for an arraydependent.

Only independent dimensions of an X-array can be changed in the statExXEANDRESIZE and
REDUCEdependent dimensions must be changed using the name of the corresponding X-group array
which owns this dimension as independent dimension.

Example - Independent/Dependent Dimensions.

DEFINE DATA LOCAL

1 #X-GROUP-ARR1(1:*) 1% (1)
2 #X-ARR1 (14) 1% (1)
2 #X-ARR2 (14/2:%) [% (1:%,2:%)
2 #X-GROUP-ARR2 1% (1:%)
3 #X-ARR3 (14) 1% (1)
3 #X-ARR4 (14/3:%) [% (1:%,3:%)
3 #X-ARR5 (l4/4:*, 5:%) [* (1:*,4:% 5:%)
END-DEFINE

Referencing an X-Array X-Arrays

The following table shows whether the dimensions in the above program are independent or dependent.

Name Dependent Dimension Independent Dimension
#X-GROUP-ARR1 (1:%)

#X-ARR1 (1:%)

#X-ARR2 (1:%) (2:%)
#X-GROUP-ARR2 (1:%)

#X-ARR3 (1:%)

#X-ARR4 (1:%) (3:%)

#X-ARR5 (1:%) (4:*,5:%)

The only index notation permitted for a dependent dimension is either a single asterisk (*), a range defined
with asterisks (*:*) or the index bounds defined.

This is to indicate that the bounds of the dependent dimension must be kept as they are and cannot be
changed.

The occurrences of the dependent dimensions can only be changed by manipulating the corresponding
array groups.

EXPAND ARRAY #X-GROUP-ARR1 TO (1:11) /* #X-ARR1(1:11) are allocated

/* #X-ARR3(1:11) are allocated
EXPAND ARRAY #X-ARR2 TO (*:*, 2:12) /* #X-ARR2(1:11, 2:12) are allocated
EXPAND ARRAY #X-ARR2 TO (1:*, 2:12) [* same as before
EXPAND ARRAY #X-ARR2 TO (* , 2:12) /* same as before
EXPAND ARRAY #X-ARR4 TO (*:*, 3:13) /* #X-ARR4(1:11, 3:13) are allocated
EXPAND ARRAY #X-ARR5 TO (*:*, 4:14, 5:15) /* #X-ARR5(1:11, 4:14, 5:15) are allocated

The EXPANDstatements may be coded in an arbitrary order.

The following use of th&XPANDstatement is not allowed, since the arrays only have dependent
dimensions.

EXPAND ARRAY #X-ARR1 TO ...
EXPAND ARRAY #X-GROUP-ARR2 TO ...
EXPAND ARRAY #X-ARR3 TO ...

Referencing an X-Array

The occurrences of an X-array must be allocated B>XdPANDor RESIZE statement before they can be
accessed. The statemeRISAD FIND andGETallocate occurrences implicitly if values are obtained
from Tamino.

As a general rule, an attempt to address a non existent X-array occurrence leads to a runtime error. In
some statements, however, the access to a non materialized X-array field does not cause an error situation
if all occurrences of an X-array are referenced using the complete range notation, for example:

#X-ARR(*) . This applies to

X-Arrays Parameter Transfer with X-Arrays

® parameters used inGALL statement,

® parameters used in the statem&@¥d. LNAT PERFORMSEND EVENTor OPEN DIALOG if
defined as optional parameters,

® source fields used in@QOMPRESStatement,
e output fields supplied in BRINT statement,
o fields referenced in RESETstatement.

If individual occurrences of a non materialized X-array are referenced in one of these statements, a
corresponding error message is issued.

Example:

DEFINE DATA LOCAL

1 #X-ARR (A10/1:*) /* X-array only defined, but not allocated

END-DEFINE

RESET #X-ARR(*) /* no error, because complete field referenced with (*)

RESET #X-ARR(1:3) /* runtime error, because individual occurrences (1:3) are referenced
END

The asterisk (*) notation in an array reference stands for the complete range of a dimension. If the array is
an X-array, the asterisk is the index range of the currently allocated lower and upper bound values, which
are determined by the system varialleBOUNDand*UBOUND

Parameter Transfer with X-Arrays

X-arrays that are used as parameters are treated in the same way as constant arrays with regard to the
verification of the following:

o format,

length,

dimension or

number of occurrences.

In addition, X-array parameters can also change the number of occurrences using the f&8Sid&nt
REDUCEr EXPANDThe question if a resize of an X-array parameter is permitted depends on three
factors:

® the type of parameter transfer used, that is by reference or by value,
e the definition of the caller or parameter X-array, and
e the type of X-array range being passed on (complete range or subrange).

The following tables demonstrate whenEXPANDRESIZE or REDUCEtatement can be applied to an
X-array parameter.

Parameter Transfer with X-Group Arrays

Examplewith Call By Value

X-Arrays

Caller Parameter

Static | Variable (1:V) X-Array
Static no no yes
X-array subrange, for example: no no yes
CALLNAT.. #XA(1:5)
X-array complete range, for example: no no yes
CALLNAT.. #XA(¥)

Call By Reference/Call By Value Result

bound, complete range, fc
example:

DEFINE DATA LOCAL
1 #XA(A10/%:1)

CALLNAT.. #XA(*)

Caller Parameter
Static| Variable | X-Array with a fixed X-Array with a fixed
a:v) lower bound, e.g. upper bound, e.g.

DEFINE DATA PARAMETER | DEFINE DATA PARAMETER
1 #PX (A10/1:¥) 1 #PX (A10/*:1)

Static no |no no no

X-array subrange, for no |no no no

example:

CALLNAT.. #XA(1:5)

X-Array with a fixed lower|no | no yes no

bound, complete range, f¢

example:

DEFINE DATA LOCAL

1 #XA(A10/1:*)

CALLNAT.. #XA(*)

X-Array with a fixed upperno | no no yes

Parameter Transfer with X-Group Arrays

The declaration of an X-group array implies that each element of the group will have the same values for
upper boundary and lower boundary. Therefore, the number of occurrences of dependent dimensions of
fields of an X-group array can only be changed when the group name of the X-group array is given with a

RESIZE, REDUCHEr EXPANDstatement (segorage Management of X-Group Arrays above).

X-Arrays X-Array of Dynamic Variables

Members of X-group arrays may be transferred as parameters to X-group arrays defined in a parameter
data area. The group structures of the caller and the callee need not necessarily be idREBEEA
REDUCEr EXPANDdone by the callee is only possible as far as the X-group array of the caller stays
consistent.

Example - Elements of X-Group Array Passed as Parameters:

Program:
DEFINE DATA LOCAL
1 #X-GROUP-ARR1(1:*) * (1:%)
2 #X-ARR1 (14) * (1)
2 #X-ARR2 (14) * (1)
1 #X-GROUP-ARR2(1:*) * (1)
2 #X-ARR3 (14) * (1)
2 #X-ARR4 (14) * (1)
END-DEFINE

CALLNAT ... #X-ARR1(*) #X-ARR4(*)
END
Subprogram:

DEFINE DATA PARAMETER
1 #X-GROUP-ARR(1:*) 1% (1%
2 #X-PAR1 (14) 1% (1)
2 #X-PAR2 (14) 1% (1)
END-DEFINE

RESIZE ARRAY #X-GROUP-ARR to (1:5)

END

The RESIZE statement in the subprogram is not possible. It would result in an inconsistent number of
occurrences of the fields defined in the X-group arrays of the program.

X-Array of Dynamic Variables

An X-array of dynamic variables may be allocated by first specifying the number of occurrences using the
EXPANDstatement and then assigning a value to the previously allocated array occurrences.

Example:

DEFINE DATA LOCAL
1 #X-ARRAY(A/1:*) DYNAMIC
END-DEFINE
EXPAND ARRAY #X-ARRAY TO (1:10)
/* allocate #X-ARRAY (1) to #X-ARRAY(10) with zero length.
* *LENGTH(#X-ARRAY(1:10)) is zero
#X-ARRAY (*) := 'abc’
[* #X-ARRAY (1:10) contains 'abc’,
1* *LENGTH(#X-ARRAY(1:10)) is 3
EXPAND ARRAY #X-ARRAY TO (1:20)
/* allocate #X-ARRAY(11) to #X-ARRAY(20) with zero length

Lower and Upper Bound of an Array X-Arrays

* *LENGTH(#X-ARRAY(11:20)) is zero
#X-ARRAY (11:20) := 'def

[* #X-ARRAY(11:20) contains 'def’

* *LENGTH(#X-ARRAY(11:20)) is 3

Lower and Upper Bound of an Array

The system variablet BOUNDand*UBOUNDcontain the current lower and upper bound of an array for
the specified dimension(s): (1,2 or 3).

If no occurrences of an X-array have been allocated, the acc&sQt/NDor *UBOUNDSs undefined

for the variable index bounds, that is, for the boundaries that are represented by an asterisk (*) character in
the index definition, and leads to a runtime error. In order to avoid a runtime error, the system variable
*OCCURRENCHay be used to check against zero occurrences BeéB@UINDor *UBOUNDOSs

evaluated:

Example:

IF *OCCURRENCE (#A) NE O AND *UBOUND(#A) < 100 THEN ...

	X-Arrays
	Definition
	Storage Management of X-Arrays
	Storage Management of X-Group Arrays
	
	Example - Independent/Dependent Dimensions:

	Referencing an X-Array
	Parameter Transfer with X-Arrays
	Example with Call By Value
	Call By Reference/Call By Value Result

	Parameter Transfer with X-Group Arrays
	
	Example - Elements of X-Group Array Passed as Parameters:

	X-Array of Dynamic Variables
	
	Example:

	Lower and Upper Bound of an Array

