Function Call Function Call

Function Call

call-name (< ([prototype-cast] [intermediate-result-definition]) [parameter] [, [parameter 1] ... >
)

This chapter covers the following topics:
® Calling User-Defined Functions
® Restrictions
® Syntax Description

Related TopicsDEFI NE FUNCTI ON | DEFI NE PROTOTYPE

Calling User-Defined Functions

Function calls can be used to aader-defined functionahich are defined inside special objects of type
function

There are different ways to call a function:
e Symbolic Function Call

® Function Call Using a Variable

Symbolic Function Call

When using the symbolic function call, the user specifies exactly the name of the function to be executed
at runtime.

If only a symbolic function call is specified in the Natural source, the corresponding Natural function
definition is retrieved automatically, unless a suitable prototype definition has been specified before. The
corresponding name of the object, which contains the Natural function definition, is retrieved according to
the symbolic logical function name. This is done using the link records Bl DI R.SAG file. In this

case, the corresponding function definition must have been stowed before the link record can be generated
for the first time.

This feature causes that all parameter definitions of a Natural function call are always checked for valid
format/length definitions.

Function Call Using a Variable

In a function call using a variable, the name of the desired function definition is stored inside an
alphanumeric variable. At runtime, Natural jumps into the corresponding function definition, the name of
which has been stored inside the variable.

Function Call Restrictions

In order to identify these two kinds of function calls, a corresponding prototype definition must be
specified. Additionally, the prototype may contain the whole signature of the function definition. If no
signature has been given, the function call must cont@ih@ause in order to specify the missing parts
of the signature. Therefore, th&RI ABLE keyword of such a prototype specified insideRiieclause

has no effect. For variable function calls, there must be a valid prototype with the same name as the
alphanumeric variable containing the function name.

If no prototype can be assigned to the function call, a sgec@l ot ype- cast is necessary in order to
define the return format/length at compilation time. Phet ot ype- cast and the parameter list must
be enclosed in pointy brackets and parentheses, as displayed in the syntax diagram.

If you want to use the variable method, you must define a prototype with the same name as the
vari abl e- name using the keywor®&/ARI ABLE.

Example:

DEFI NE PROTOTYPE VARI ABLE vari abl e- nane

Note:
You can only use a function call when the operand involved cannot be modified. However, if a function
call is used in ah NPUT statement, the return value will be displayed as an "output only" ABklQ).

Restrictions

Function calls areot allowed in the following situations:

o in aDEFI NE DATA statement;

in a database access or update stater®RE#LY, FI ND, SELECT, UPDATE, STORE, etc.);
® in anAT BREAK orl F BREAK statement;

® as an argument of the system functiélW&ER, COUNT, MAX, M N, NAVER, NCOUNT, NM N, OLD,
SUM TOTAL;

® as index notation.

Syntax Description
A function call may consist of the following syntax elements:

call-name

prototype-cast

intermediate-result-definition

Parameter(s)

call-name

call-name

{ function-name }

prototype-variable-name

Operand Definition Table:

Function Call

Operand Possible Possible Formats | Referencing| Dynamic
Structure Permitted | Definition
pr ot ot ype-vari abl e-nane| |S|A U yes no

Syntax Element Description:

functi on- nane

Thef unct i on- nane clause is the symbolic function name. T

corresponding function definition is defined in a certain functic
object file.

he
n

pr ot ot ype- vari abl e- nane | Thepr ot ot ype- vari abl e- nane is the name of the variabl

containing the real name of the function which is to be called.

alphanumeric or Unicode variable with the same name must |

already been defined.

AN
ave

prototype-cast

PT= { prototype-name

prototype-variable-name

}

Thepr ot ot ype- cast must be used for function calls where no signature is specified in the

corresponding function prototype (for exampliginature clausef prototype definition is defined as

UNKNOWN).

intermediate-result-definiti

on

(| A [/array-definitio
U
B

n]

IR= | format-length [/array-definition]
) DYNAMIC

This clause enables you to specify thoe mat - | engt h/ arr ay- defi ni ti on of the return value for
a function call without using an explicit or implicit prototype definition, that is, it enables the explicit
specification of an intermediate result.

Function Call Parameter(s)

If, in addition, a prototype is valid for the function call, it is checked that the
format -1 engt h/ array-definition of the return value of the function definition is
move-compatible to the intermediate result. If this is not the case, an error will be raised. The intermediate

result is taken for the return value.

Alternatively, arrays are possible as return values, that is, array definitions may be specified as
intermediate results. With ar r ay- def i ni t i on, you define the lower and upper bound of a
dimension in an array definition. SAeray Dimension Definition in the Statements documentation.

format-| ength The format and length of the field.

For information on format/length definition of user-defined variables, see
Format and Length of User-Defined Variables.

A BorU Data format: Alphanumeric, binary or Unicode for dynamic variables.

array-definition|With anarray-definition, you define the lower and upper bounds of the
dimensions in an array definition.

SeeArray Dimension Definition in the Satements documentation.

DYNAM C A field may be defined aBYNAM C.

For further information on processing dynamic variables|rgeeduction to
Dynamic Variables and Fields.

Parameter(s)

Each parameter may be an operand when calling the function. If a parameter is defined with the keyword
OPTI ONAL in the subprogram’BEFI NE DATA PARAMETER statement, the corresponding operand
values may be omitted in the function call. In this case, useXmotation (where is a whole integer

greater than or equal to 1) or just omit this argument.

You can specify the session paraméterfor each argument.

nx

M
1 O ¢
operand | (AD=% A)

Operand Definition Table:

Operand Possible Possible Formats Referencing Dynamic
Structure Permitted Definition
operand|C |S |A |G A/N/P/I|FIB/D|T|ILIC|G|O yes yes

Parameter(s)

Function Call

For an example of the proper usage of this function call, sesx#maplein the description of thBEFI NE
PROTOTYPE statement.

nX

Parameters to be Skipped:

With the notatiomX you can specify that the nexparameters are to be skipped (for exam
1Xto skip the next parameter, ®X to skip the next three parameters); this means that for
nextn parameters no values are passed to the subprogram.

A parameter that is to be skipped must be defined with the key@RIrdONAL in the
subprogram’®EFI NE DATA PARANMETER statementOPTI ONAL means that a value can -
but need not - be passed from the invoking object to such a parameter.

Dle,
the

AD=

Attribute Definition:

If operand is a variable, you can mark it in one of the following ways:

AD=0 | Non-modifiable, see session paraméte=QO.

Note:
Internally, AD=0is processed in the same wayB¥s VALUE (see the section
parameter-data-definition in the description of thBEFI NE DATA statement).

AD=M | Modifiable, see session parameA&=M

This is the default setting.

AD=A | Input only, see session paramei&rA.

If operand is a constantD cannot be explicitly specified. For constaits=0 always applies

	 Function Call
	 Calling User-Defined Functions
	 Symbolic Function Call
	Function Call Using a Variable

	Restrictions
	Syntax Description
	 call-name
	 prototype-cast
	intermediate-result-definition
	Parameter(s)

