
Type Information
This chapter covers the following topics:

Overview

NaturalX and Type Information

Using Type Information

Overview
Type information is a means to completely describe a class along with all of its interfaces, down to the
names and types of the methods. It contains the necessary information about classes and their interfaces,
for example, which interfaces exist on which classes, which member functions exist in those interfaces,
and which argument those functions require.

This information is used by clients to find out details about a class and its methods, for example, by
type-information browsers to present available objects, interfaces, methods and properties to an end user.

Another important area for using type information is the widely-used OLE automation technique which is
also used by NaturalX.

There are several ways to store type information. A common way is generating the type information in
type library (.TLB) files.

NaturalX and Type Information

Creating Type Information

For each Natural class, a type library file is created when the class is registered.

The type library is generated in the $NATDIR/$NATVERS/etc/<serverid>/<classname>/<version>
directory and connected to the class via an entry in the registry.

The name of the class module is used, and the ".tlb" extension is appended unless the type library file
name conflicts with an existing name. Then a number is attached to the class module name.

Using Type Information
Each interface defined in a Natural class is seen by clients as a dynamic interface (also called a "dispatch
interface"). Each method of an interface is seen by clients under the name defined in the METHOD
statement.

The first interface in a Natural class is marked as the default dispatch interface.

The support of type information also makes it possible to define multiple interfaces with identical
method/property names. The Natural client simply addresses the corresponding method by using the
interface name (as defined in the Natural class) as the prefix of the method name, as shown in the

1

Type InformationType Information

following example:

CREATE OBJECT #O3 OF CLASS "DepartmentList"
SEND "Iterate.PositionTo" TO #O3 WITH "C" RETURN #DEPT

Natural clients use type information to find out to which interface a method or property belongs.

Note:
Natural clients do not use type information at catalog time to perform syntax checks.

Data Type Conversions

The following topics are covered below:

Natural Data Formats to OLE Types
OLE Types to Natural Data Formats

Natural Data Formats to OLE Types

In order to receive data from clients or to pass data to classes written in different programming languages,
the Natural data formats are converted to so-called OLE Automation-compatible types. This table shows
how COM clients see the method parameters or properties of a Natural class. For example, if a Natural
class has a method parameter or a property with the format A, this is seen by a COM client as VT_BSTR.

2

Data Type ConversionsType Information

Natural Data Format Automation-Compatible Type

A VT_BSTR

B1 VT_UI1

B2 VT_UI2

B4 VT_UI4

Bn (n != 1, 2, 4) SAFEARRAY of VT_UI1

C not supported

D VT_DATE

F4 VT_R4

F8 VT_R8

I1 VT_I2

I2 VT_I2

I4 VT_I4

HANDLE OF GUI not supported

HANDLE OF OBJECT VT_DISPATCH

L VT_BOOL

N15.4 VT_CY

Nn.m (n.m != 15.4) VT_R8

P15.4 VT_CY

Pn.m (n.m != 15.4) VT_R8

T VT_DATE

U VT_BSTR

An array of a given Natural data format is mapped to a SAFEARRAY of the corresponding "VT" type.

There are, however, some special cases:

A variable of format Bn with fixed length, where n is not 1, 2 or 4, or an array of such a variable, is
mapped to a one-dimensional SAFEARRAY of VT_UI1. This is for compatibility with previous
versions of Natural, where large and dynamic variables were not yet supported. Therefore, large
binary variables had to be simulated by arrays of variables of type B with fixed length.

A dynamic variable of format B is mapped to a one-dimensional SAFEARRAY of VT_UI1.

An array of dynamic variables of format B is mapped to a SAFEARRAY of variants, each containing
a one-dimensional SAFEARRAY of VT_UI1.

Attribute control variables are not mapped. They have no meaning outside of Natural. Variables of
format HANDLE OF GUI are also not mapped. There is no corresponding Automation-compatible
type. Therefore properties of the formats Attribute control variable or HANDLE OF GUI cannot be
accessed by clients through COM/DCOM. Method parameters of these types should be marked as

3

Type InformationData Type Conversions

optional in the parameter data area, so that clients can omit the parameters when calling the method
through COM/DCOM.

OLE Types to Natural Data Formats

This table shows how parameters or properties of an external class can be addressed by Natural. For
example, if an external class has a method parameter or property with type VT_R4, this parameter or
property can be addressed in Natural as F4 or with a format that is MOVE-compatible to F4.

Automation -Compatible Type Natural Data Format

VT_BOOL L

VT_BSTR A or U

VT_CY P15.4

VT_DATE T

VT_DISPATCH HANDLE OF OBJECT

VT_UNKNOWN HANDLE OF OBJECT

VT_I1 I1

VT_I2 I2

VT_I4 I4

VT_INT I4

VT_R4 F4

VT_R8 F8

VT_U1 B1

VT_U2 B2

VT_U4 B4

VT_UINT B4

A SAFEARRAY of up to three dimensions is converted into a Natural array with the same dimension count
and the corresponding format. SAFEARRAYs with more than three dimensions cannot be used from within
Natural.

There are, however, some special cases:

A VT_BSTR maps either to a Natural variable of format A or to a one-dimensional array of Natural
variables of format A with fixed length. The additional dimension is then used to store strings longer
than 253 characters. This is for compatibility with previous versions of Natural, where large and
dynamic variables were not yet supported. This mapping should no longer be used. Instead, a
dynamic variable of format A should be used.

A SAFEARRAY of VT_BSTRs maps either to an array of Natural variables of format A with the same
dimension count, or to an array of Natural variables of format A with fixed length with one more
dimension. The additional dimension is then used to store strings longer than 253 characters. This is
for compatibility with previous versions of Natural, where large and dynamic variables were not yet

4

Data Type ConversionsType Information

supported. This mapping should no longer be used. Instead an array of dynamic variables of format A
should be used.

A SAFEARRAY of VT_UI1 can be mapped to an array of Natural variables of format B with fixed
length that has a matching total size. This is for compatibility with previous versions of Natural, where
large and dynamic variables were not yet supported. This mapping should no longer be used. Instead a
dynamic variable of format B should be used.

5

Type InformationData Type Conversions

	Type Information
	Overview
	NaturalX and Type Information
	Creating Type Information

	Using Type Information
	Data Type Conversions
	Natural Data Formats to OLE Types
	OLE Types to Natural Data Formats

