
Activation Policies
This chapter covers the following topics:

Activation Policies on Windows Platforms

Setting Activation Policies

When to Use Which Activation Policy

Activation Policies on Windows Platforms
If a client makes a request to create an object of a certain class, it is DCOM’s task to start a server process
that provides the class and to direct the request to this process. For Natural classes, the responsible server
process is a NaturalX server. DCOM recognizes different options that control when a new server process
is started or when an object is created in a server process that is already running. For further information,
see the section Registration. While registering a Natural class with the REGISTER command, you can
control which activation options DCOM shall use for this class. NaturalX combines the different options
supported by DCOM in the form of the following three activation policies:

ExternalMultiple
If a Natural class is registered with the activation policy "ExternalMultiple", and a client requests an
object of that class, DCOM tries first to create the requested object in the current process. Remember
that the client itself might at the same time be a NaturalX server and might provide the class itself. If
the current process is not a server for the class, DCOM starts a new NaturalX server process and
creates the object in that process. If a second object of the same class is created later, this object is
also created in that server process. This means that the same server process can contain several
objects of the class.

ExternalSingle
If a Natural class is registered with the activation policy "ExternalSingle", DCOM starts a new
NaturalX server process each time an object of this class is created. One server process can contain
only one object of the class.

InternalMultiple
If a Natural class is registered with the activation policy "InternalMultiple", DCOM always creates
objects of this class in the current process. The same server process can contain several objects of the
class.

The default activation policy is "ExternalMultiple". This default is defined with the Natural parameter
ACTPOLICY and can be changed with the Configuration Utility.

Setting Activation Policies
The activation policy of a class can be set in three different ways, in the following order of precedence:

Explicity as part of the REGISTER command.

1

Activation PoliciesActivation Policies

In the DEFINE CLASS statement.

With the profile parameter ACTPOLICY.

When to Use Which Activation Policy
Non-trivial DCOM applications will mostly deal with "persistent" objects, i.e. objects stored in databases.
For such applications, some considerations concerning database access, transaction handling and user
isolation must be made. Consider the following scenario: clients A and B both create an object of a class
that is provided by a certain NaturalX server process. Assume that the NaturalX server uses a database to
load and store its objects. If both clients were served by the same server process, they would appear to the
database as one single user. This would have the consequence that a transaction started by a method call
from Client A can be committed or backed out by a method call from Client B. Such interferences are
obviously to be avoided.

There are two approaches to avoid this interference: either the clients do not use persistent objects, or each
of them is served by its own NaturalX server process. Both approaches have their advantages in different
situations; for a class or application that does not access databases or other shared resources, it is useful to
serve several clients with a single server process. For classes that access databases or other shared
resources, it is necessary to isolate different clients in different server processes. Hence both approaches
should be possible. Activation policies give an administrator the means to control the activation behavior
for each class at registration time.

Example

This example illustrates how the various activation policies can be used. Let us consider parts of an
imaginary travel agency application. The application contains the business classes Trip, Skipper and
RoutePlanner. The Trip class represents a sailing trip to be planned; the Skipper class represents
the skippers available to lead the trips. RoutePlanner is a class that determines an optimal route for a
trip. Assume that the Trip and Skipper classes use a database to read and store their objects. The
RoutePlanner class just performs some calculations on a given Trip object and does not use a
database.

Since some of the business classes use transactional access to a database, and a transaction might span
several method calls, each active client needs to be served with its own NaturalX server process. This can
be done by defining an additional class SagTours, which represents an application session. This class
can be used, for example, to keep general information about the session status, but the main task will be to
create business objects on behalf of a client.

Class SagTours

* Represents a SagTours application session.
 *
 define class SagTours
 local using tour-ids
 id clsid-sagtours
 *
 interface Create /* Used to create application objects. */
 id iid-sagtours-create
 *
 method newTrip /* Creates a new Trip object. */
 is trip-n
 parameter
 1 trip handle of object by value result

2

When to Use Which Activation PolicyActivation Policies

 end-method

 method newSkipper /* Creates a new Skipper object. */
 is skip-n
 parameter
 1 skipper handle of object by value result
 end-method
 *
 end-interface
 *
 end-class
 end

This class will be registered as "ExternalSingle". This means that each creation of a SagTours object
starts a NaturalX server process for the client that requested the object. A client will create a SagTours
object only once and will use its methods later to create the business objects it needs. In order to create a
Trip object, the client will call the method newTrip, which is implemented as follows.

Method newTrip

* This method creates a new Trip object.
*
define data parameter
1 trip handle of object by value result
end-define
*
create object trip of class "Trip"
*
end

The Trip class itself will be registered as "InternalMultiple". This ensures that the Trip objects created
by the method newTrip are created in the NaturalX server process just started for this client.

Now let us look at the class RoutePlanner.

Class RoutePlanner

* Plans optimal routes for sailing trips.
 *
 define class RoutePlanner
 local using tour-ids
 id clsid-planner
 *
 interface routing
 id iid-planner-routing
 *
 method plan /* Plans a sailing trip. */
 is plan-n
 parameter
 1 trip handle of object by value
 end-method
 *
 end-interface
 *
 end-class
 end

3

Activation PoliciesExample

Method plan

* This method plans a sailing trip.
*
define data parameter
1 trip handle of object by value
end-define
*
* Perform some operations on the given Trip object.
*
end

This class can be registered as "ExternalMultiple". In this case, all RoutePlanner objects created by
different clients would be created in the same NaturalX server process. This does not do any harm if the
methods of this class do not access databases, or if each database transaction is fully contained in a
method (i.e. if each method subprogram ends with either a BACKOUT TRANSACTION statement or an
END TRANSACTION statement).

Now let us look at a sample client program.

Sample Client Program

define data local
 sagTours handle of object
 trip handle of object
 planner handle of object
end-define
*
* Start the application session.
create object sagTours of "SagTours"
*
* Create a Trip object.
send "newTrip" to sagTours return trip
* Create a RoutePlanner object.
create object planner of "RoutePlanner"
* Plan the trip.
send "plan" to planner with trip
*
end

The client first creates a SagTours object. This starts a new NaturalX server process exclusively for this
client. The client then uses the SagTours object to create a Trip object in the context of this
application session. Note that the client creates the RoutePlanner object directly. This is possible
because the class is registered as "ExternalMultiple", but it is not necessary: the SagTours class could
also provide a method for the creation of RoutePlanner objects. Afterwards it lets the business objects
do their jobs. The objects are automatically released at program end. The deletion of the SagTours
object causes the NaturalX server to shut down.

Note:
This example shows only the NaturalX techniques needed to illustrate the usage of activation policies. A
real-world application would require a lot more. The classes would use object data areas and they would
surely have globally unique IDs assigned. Also parameter data areas would be used instead of inline
parameter declarations.

4

ExampleActivation Policies

	Activation Policies
	Activation Policies on Windows Platforms
	Setting Activation Policies
	When to Use Which Activation Policy
	Example
	Class SagTours
	Method newTrip
	Class RoutePlanner
	Method plan
	Sample Client Program

