
Support of Different Character Sets with
NATCONV.INI
The settings in the configuration file NATCONV.INI apply to the A format. For the U format, the ICU
library is used.

This chapter describes how Natural supports different character sets. It covers the following topics:

Why is the Support of Different Character Sets Important?

How to Use Different Character Sets

Why is the Support of Different Character Sets Important?
The support of multiple languages with different character sets represents Natural’s approach towards
internationalization. It can help you when using:

upper-/lower-case translation of language-specific characters;

language-specific characters in Natural identifiers, object names and library names;

language-specific characters in an operand compared with a mask definition (see MASK Option in the
Programming Guide).

How to Use Different Character Sets
All check, translation and classification tables used by Natural to support language-specific characters
reside in the configuration file NATCONV.INI. By default, this file is located in Natural’s etc directory.

You can modify NATCONV.INI to support local or application-specific character sets.

In a standard application, NATCONV.INI need not and should not be modified, because this could lead to
serious inconsistencies, in particular if Natural objects and database data are already present.

Any modifications of NATCONV.INI should be well considered and carefully performed, otherwise
problems might occur that are difficult to locate.

NATCONV.INI is subdivided in sections and subsections. The following sections are defined:

1

Support of Different Character Sets with NATCONV.INI Support of Different Character Sets with NATCONV.INI

Section Description

CHARACTERSET-DEFINITION This section defines the name of the internal character set. The
default is "ISO8859_1".

If you choose a different character set, subsections for this
character set must be contained in the sections described below.

CASE-TRANSLATION This section contains the tables required for the conversion from
upper-case to lower-case which is performed when one of the
following is specified:

the terminal command %U,

the field attribute AD=T,

the statement EXAMINE TRANSLATE.

This conversion is done within the internal character set. If the
internal character set is, for example, "ISO8859_5", the following
two subsections must be contained in this section:

[ISO8859_5->UPPER]

[ISO8859_5->LOWER]

IDENTIFIER-VALIDATION This section contains the tables required for the validation of
identifiers (that is, user-defined variables in source programs),
object names and library names. It contains a subsection for each
defined internal character set.

The special characters "#" (for non-database variables), "+" (for
application-independent variables), "@" (for SQL and Adabas
null or length indicators) and "&" (for dynamic source
generation) can be redefined in this section. In addition, the set of
valid first and subsequent characters for identifiers, object names
and library names can be modified.

Note:
When extending the set of valid characters for object names with
values greater than "x7f" (decimal 127), the sorting sequence of
the objects (for example, during a LIST * command) may not
be in the numerical order.

CHARACTER-CLASSIFICATION This section contains the tables required for the classification of
characters, which, for example, are used when evaluating the
MASK option. It contains a subsection for each defined internal
character set.

The section CHARACTERSET-DEFINITION and each subsection contain lines which describe how
characters are to be converted and which characters are related with which attributes. These lines are
represented as follows:

2

How to Use Different Character SetsSupport of Different Character Sets with NATCONV.INI

line ::= key = value
key ::= name_key | range_key
name_key ::= keyword{ CHARS }
keyword ::= INTERNAL-CHARACTERSET | NON-DB-VARI | DYNAMIC-SOURCE |
 GLOBAL-VARI | FIRST-CHAR | SUBSEQUENT-CHAR |
 LIB-FIRST-CHAR | LIB-SUBSEQUENT-CHAR | ALTERNATE-CARET
 ISASCII | ISALPHA | ISALNUM | ISDIGIT | ISXDIGIT |
 ISLOWER | ISUPPER | ISCNTRL | ISPRINT | ISPUNCT |
 ISGRAPH | ISSPACE
range_key ::= hexnum | hexnum-hexnum
value ::= val {, val }
val ::= hexnum | hexnum-hexnum
hexnum ::= xhexdigithexdigit | xhexdigithexdigit

Notes:

1. If the range_key variable is specified on the left-hand side, the number of values specified on the
right-hand side must correspond to the number of values specified in the key range, unless only one
value is specified on the right-hand side, which is then assigned to each element of the key range.

2. When the name_key variable is specified on the left-hand side and the corresponding list of
character codes does not fit in one line, it can be continued on the next line by specifying "name_key
=" again. You must not start the lines with leading blanks or tabulators.

Examples of Valid Lines

x00-x1f = x00 All characters between "x00" and "x1f" are converted to "x00".

x00-x7f = x00-x7f All characters between "x00" and "x7f" are not converted.

x00-x08 = x00,x01-x07,x00 The characters "x00" and "x08" are converted to "x00" and
characters between "x01" and "x07" are not converted.

ISALPHA =
x41-x5a,x61-x7a,xc0-xd6,xd8
ISALPHA = xd9-xf6,xf8-xff

The attribute ISALPHA is assigned to all characters specified in
these two lines.

Examples of Invalid Lines

x41 = ’A’ All characters must be specified in hexadecimal format.

0x00-0x1f = 0x00 Hexadecimal values have to be specified in either of the following ways:

xdigitdigit
Xdigitdigit

x00-x0f = x00,x01 The number of specified values does not correspond to the number of
elements in the key range.

3

Support of Different Character Sets with NATCONV.INIHow to Use Different Character Sets

	 Support of Different Character Sets with NATCONV.INI
	Why is the Support of Different Character Sets Important?
	How to Use Different Character Sets
	
	Examples of Valid Lines
	Examples of Invalid Lines

