
Database Access
You will now write a short program which reads specific data from a database file and displays the
corresponding output.

When you have completed the exercises below, your sample application will consist of just one module
(the data fields that are used by the program are defined within the program):

This chapter contains the following exercises:

Starting the Demo Database

Saving Your Program Under a New Name

Defining the Required Data Using a View

Reading Data from a Database

Reading Selected Data from a Database

Starting the Demo Database
The demo database SAG-DEMO-DB is not started automatically. Before you can proceed with the
exercises in this tutorial, you must make sure that it has been started. Otherwise, the examples will not
work.

The following description applies when Adabas has been installed locally under Windows. If you want to
work with the UNIX version and the demo database is not already running, ask your UNIX administrator
to start it.

 To start the demo database

1. From the Start menu, choose Programs > Adabas n.n > DBA Workbench.

The status of the demo database is shown in the resulting database list. When the status is "Active",
no further steps are required and you can close the DBA Workbench application window.

When the status is not "Active", proceed as described below.

1

Database AccessDatabase Access

2. Select SAG-DEMO-DB in the database list.

3. From the Database menu, choose Start.

A dialog box appears indicating that the database has been started.

4. Choose the OK button to close the dialog box.

5. Close the DBA Workbench application window.

Saving Your Program Under a New Name
You will now create a new program which will be used in the remainder of this tutorial. It will be created
by saving your Hello World program under a new name.

 To save the program under a new name

1. From the Object menu, choose Save As.

Tip:
Make sure that the program editor is selected. Otherwise the above command is not available.

The Save As dialog box appears.

2. Specify "PGM01" as the new name for the program.

3. Choose the OK button.

The new name is now shown in the title bar of the program editor.

In the library workspace, the new program is shown in the Programs node. Since it has not yet been
stowed, its program icon does not contain a green dot.

4. Delete all code in the program editor (for example, by pressing CTRL+A to select all text and then
pressing the DEL key - this is standard Windows functionality).

Defining the Required Data Using a View
The database file and the fields that are to be used by your program have to be specified between DEFINE
DATA and END-DEFINE at the top of the program.

For Natural to be able to access a database file, a logical definition of the physical database file is
required. Such a logical file definition is called a data definition module (DDM). The DDM contains
information about the individual fields of the file. DDMs are usually defined by the Natural administrator.

2

Saving Your Program Under a New NameDatabase Access

To be able to use the database fields in a Natural program, you must specify the fields from the DDM in a
view. Sample DDMs are provided in the system library SYSEXDDM. For this tutorial, we will use the
DDM for the EMPLOYEES database file.

You can import the fields, including the required format and length definitions, from the DDM into the
program editor.

 To specify the DEFINE DATA block

Enter the following code in the program editor:

DEFINE DATA
LOCAL

END-DEFINE
*
END

Tip:
The Windows version of Natural does not distinguish between uppercase and lowercase letters.
However, when working with the mainframe version of Natural, keywords and identifiers are always
entered with uppercase letters; text constants may contain lowercase letters. Therefore, if you also
want to edit your programs on a mainframe, it is recommended that you always enter your program
code as you would on a mainframe.

LOCAL means that the variables that you will define with the next step are local variables which
apply only to this program.

 To import data fields from a DDM

1. Place the cursor in the line below LOCAL.

2. From the Program menu, choose Import.

The Import Data Field dialog box appears.

3

Database AccessDefining the Required Data Using a View

3. From the Library drop-down list box, select SYSEXDDM.

When the DDM option button is selected, all defined DDMs are shown in the Object list box.

4. Select the sample DDM with the name EMPLOYEES.

The importable data fields are now shown at the bottom of the dialog box.

5. Press CTRL and select the following fields:

FULL-NAME
NAME
DEPT
LEAVE-DATA
LEAVE-DUE

6. Choose the Import button.

The View Definition dialog box appears.

4

Defining the Required Data Using a ViewDatabase Access

By default, the name of the DDM is proposed as the view name. You can specify any other name.

7. Enter "EMPLOYEES-VIEW" as the view name.

8. Choose the OK button.

The Cancel button in the Import Data Field dialog box is now labeled Quit.

9. Choose the Quit button to close the Import Data Field dialog box.

The following code has been inserted in the program editor:

1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 FULL-NAME
 3 NAME (A20)
 2 DEPT (A6)
 2 LEAVE-DATA
 3 LEAVE-DUE (N2)

The first line contains the name of your view and the name of the database file from which the fields have
been taken. This is always defined on level 1. The level is indicated at the beginning of the line. The
names of the database fields from the DDM are defined at levels 2 and 3.

Levels are used in conjunction with field grouping. Fields assigned a level number of 2 or greater are
considered to be a part of the immediately preceding group which has been assigned a lower level number.
The definition of a group enables reference to a series of fields (this may also be only one field) by using
the group name. This is a convenient and efficient method of referencing a series of consecutive fields.

Format and length of each field is indicated in parentheses. "A" stands for alphanumeric, and "N" stands
for numeric.

Reading Data from a Database
Now that you have defined the required data, you will add a READ loop. This reads the data from the
database file using the defined view. With each loop, one employee is read from the database file. Name,
department and remaining days of vacation for this employee are displayed. Data are read until all
employees have been displayed.

Note:
It may happen that an error message is displayed indicating that the transaction has been aborted. This
usually happens when the non-activity time limit which is determined by Adabas has been exceeded.
When such an error occurs, you should simply repeat your last action (for example, issue the RUN
command once more).

5

Database AccessReading Data from a Database

 To read data from a database

1. Insert the following below END-DEFINE:

READ EMPLOYEES-VIEW BY NAME
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
END-READ

BY NAME indicates that the data which is read from the database is to be sorted alphabetically by
name.

The DISPLAY statement arranges the output in column format. A column is created for each
specified field and a header is placed over the column. 3X means that 3 spaces are to be inserted
between the columns.

2. Run the program.

The following output appears.

Page 1 09-06-30 16:06:49

 NAME DEPARTMENT LEAVE
 CODE DUE
-------------------- ---------- -----

ABELLAN PROD04 20
ACHIESON COMP02 25
ADAM VENT59 19
ADKINSON TECH10 38
ADKINSON TECH10 18
ADKINSON TECH05 17
ADKINSON MGMT10 28
ADKINSON TECH10 26
ADKINSON SALE30 36
ADKINSON SALE20 37
ADKINSON SALE20 30
AECKERLE SALE47 31
AFANASSIEV MGMT30 26
AFANASSIEV TECH10 35
AHL MARK09 30
AKROYD COMP03 20
ALEMAN FINA03 20

As a result of the DISPLAY statement, the column headers (which are taken from the DDM) are
underlined and one blank line is inserted between the underlining and the data. Each column has the
same width as defined in the DEFINE DATA block (that is: as defined in the view).

The title at the top of each page, which contains the page number, date and time, is also caused by the
DISPLAY statement.

3. Press ENTER repeatedly to display all pages.

You will return to the program editor when all employees have been displayed.

6

Reading Data from a DatabaseDatabase Access

Tip:
If you want to return to the program editor before all employees have been displayed, press ESC.

Reading Selected Data from a Database
Since the previous output was very long, you will now restrict it. Only the data for a range of names is to
be displayed, starting with "Adkinson" and ending with "Bennett". These names are defined in the demo
database.

 To restrict the output to a range of data

1. Before you can use new variables, you have to define them. Therefore, insert the following below
LOCAL:

1 #NAME-START (A20) INIT <"ADKINSON">
1 #NAME-END (A20) INIT <"BENNETT">

These are user-defined variables; they are not defined in demo database. The hash (#) at the
beginning of the name is used to distinguish the user-defined variables from the fields defined in the
demo database; however, it is not a required character.

INIT defines the default value for the field. The default value must be specified in pointed brackets
and quotation marks.

2. Insert the following below the READ statement:

STARTING FROM #NAME-START
ENDING AT #NAME-END

Your program should now look as follows:

DEFINE DATA
LOCAL
 1 #NAME-START (A20) INIT <"ADKINSON">
 1 #NAME-END (A20) INIT <"BENNETT">
 1 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 2 FULL-NAME
 3 NAME (A20)
 2 DEPT (A6)
 2 LEAVE-DATA
 3 LEAVE-DUE (N2)
END-DEFINE
*
READ EMPLOYEES-VIEW BY NAME
 STARTING FROM #NAME-START
 ENDING AT #NAME-END
*
 DISPLAY NAME 3X DEPT 3X LEAVE-DUE
*
END-READ
*
END

3. Run the program.

7

Database AccessReading Selected Data from a Database

The output is shown. When you press ENTER repeatedly, you will notice that you will return to the
program editor after a couple of pages (that is: when the data for the last employee named Bennett has
been displayed).

4. Stow the program.

You can now proceed with the next exercises: User Input.

8

Reading Selected Data from a DatabaseDatabase Access

	Database Access
	 Starting the Demo Database
	Saving Your Program Under a New Name
	Defining the Required Data Using a View
	Reading Data from a Database
	Reading Selected Data from a Database

