
Class Builder
The Class Builder is a tool which can be used to display a Natural class in a structured hierarchical order,
and also to manage the class and its components efficiently.

A Natural class can be composed of various components: "real" Natural objects (for example, an object
data area) or objects which exist only in the class source (for example, interface components).

The Class Builder represents each component of the class in the form of a node. By selecting these
nodes, the class and its components can be managed in a context-sensitive manner.

The Class Builder documentation explains how to create and modify a Natural class with the Class
Builder. Please refer to Defining Classes in Introduction to NaturalX (Programming Guide) to become
acquainted with the general usage of Natural classes.

What is the Class Builder?

Class Builder Interface

Class Builder Nodes

Node Properties

Adding Class Components

Renaming Class Components

Removing Class Components

Editing Class Components

Using Interfaces from Several Classes

Locking Concept

Tutorial

Glossary

What is the Class Builder?
The Class Builder provides the following features:

It is fully integrated in the general Natural user interface.

The components of a class are displayed as nodes in the same way as Natural modules. Every type of
node has a special icon assigned which provides detailed information for that component.

Natural objects which are used by a class (for example, ODA), can be managed (edit, stow, ...) by the
Class Builder.

1

Class Builder Class Builder

Class and interface GUIDs (Global Unique IDs) are generated and hidden.

Class comments (one comment for every class component) can be created and changed by the Class
Builder.

The class source is generated automatically.

Which Classes can be handled by the Class Builder?

The Class Builder can manage any syntactically correct class. Even if it is possible to change the class
source with the program editor as well, the Class Builder is the recommended editor for changing classes.
Please note that a class, which has been changed with the program editor and saved with syntax errors, can
no longer be opened using the Class Builder.

The class syntax is highly "flexible", i.e., it is possible to obtain the same runtime behavior with different
syntax constructs. This was important for earlier Natural versions, because the user had to type all class
code himself. With the Class Builder, this is no longer necessary; the Class Builder will generate the class
code and create Natural objects, which are used by the class. The Class Builder will generate only the
most reasonable code.

For this reason, the following features are not supported by the Class Builder:

create a new GUID LDA:
The Class Builder generates a GUID for the class and the interfaces of the class. If you wish to
define the GUID yourself, you must create a LDA outside of the Class Builder and then link it to the
class.

create new inline data definitions:
The Class Builder only provides for the creation of new data areas. This is because data definitions
are usually used in several places (for example, method parameter in class and method subprogram)
and it is fault-prone if the same inline data definitions have to be used more than once.

use data from inline data definitions for assignments in the Class Builder:
If data definitions have to be assigned to class components in the case of unique IDs and property
implementations, the Class Builder offers a list of all data definitions from the corresponding data
areas. Data from inline data definitions will not be included in these lists. This means, for example,
that the object data variable which is defined inline cannot be used as property implementation.

Although the Class Builder does not permit the creation of all class syntax constructs, it can nonetheless
read existing classes with these constructs and can be used to modify these constructs.

If the Class Builder cannot read a class because it is syntactically incorrect, it displays an error message
and activates the program editor. The syntax error must be corrected in the program editor. After the class
has been saved, it can be opened with the Class Builder.

Note:
If you save a class with the Class Builder, the class source will be generated. This means that any special
source formats, such as indentation, will be lost.

2

Which Classes can be handled by the Class Builder?Class Builder

When is a Class saved?

When a class is opened in the Class Builder, the contents are read from the class source and stored in an
internal structure. If you then change the class, these changes are performed only on the internal
structures. The changes are visible in all views of Natural. So, for example, when a new interface is added
in the library workspace, a node for this interface will also be created in the "Interfaces" list view of the
class. If you want to save your changes, you must execute Save, Save As or Stow for the class.

If you create a new class, this does not automatically create a new class module. This is only done when
Save, Save As or Stow is executed for the class. For this reason, a "new" class will not be visible in the
File View of the library workspace until it is saved the first time.

If you want to remove the changes which you applied to a class, you can use the Restore command. This
command will restore the class as it is contained in the class module, i.e., the last saved state.

If Natural is ended and unsaved classes exits, the user will be asked if the classes should be saved.

Class Comments

The Class Builder tries to assign every comment found in the class source to one component of the class.
A comment is usually assigned to the following class component. For example a comment which is found
before the definition of an interface is taken as comment for this interface.

The comments can be changed and created via the Properties menu item, which is available for all class
component nodes. For more information, see Node Properties.

Note:
If a class is read by the Class Builder for the first time, it is possible that the Class Builder assigns the
comments to a component other than the one the user expects. No comment will be lost when the class is
saved, but the user should check if the comments are assigned to the correct components.

When a class is saved by the Class Builder for the first time, all comments will be marked with a special
tag. This ensures that the comment assignment is correct when this class is read later by the Class Builder.

Class Builder Interface
The Class Builder is available in the logical and flat view of Natural. It is fully integrated in the general
Natural user interface which shows the Natural objects as nodes of a tree or list view.

In a tree view of the Library Workspace or Application Workspace, a class can be "opened" by expanding
the class node. The class nodes are grouped hierarchically. For example, the interface is a child of the
class node and the method is a child of the interface node. Every class node provides the same features as
all other nodes, for example, a context menu which allows node-specific actions. Most of the class nodes
that have child nodes can be opened as a list view which displays all children of this node. The List View
shows more information about the nodes (for example, the library in which an object data area is located).
The list view nodes offer the same context menu as the corresponding tree view nodes.

3

Class Builder Class Builder Interface

The following topics are covered below:

Logical View

Flat View

Logical View

The class nodes of the logical view are inscribed with the class name, i.e., the name that is used when an
object of this class is created with the CREATE OBJECT statement.

In the logical view the nodes are, as a basic principle, grouped by their type. This is also valid for the class
nodes. Class nodes of the same type are collected under a group node which describes the type with its
contents. Therefore, all object data nodes are children of the object data group node named "Object Data".

The following topics are covered below:

4

Logical ViewClass Builder

Tree Views
List Views
Class List View
Object Data Group List View
Local Data Group List View
Interface Modules Group List View
Interface ModuleList View
Interfaces Group List View
Interface List View
Properties Group List View
Methods Group List View
Method Parameter Data Group List View

Tree Views

You can expand and collapse nodes of a class. Expand displays all child nodes and Collapse hides all
child nodes of the selected class node.

The logical view provides you with a structured view of the class. You can then expand those class nodes
on which you wish to work. For more information, refer to the section Library Workspace.

List Views

Most of the parent nodes of a class have an assigned list view which can be opened with the Open
command from the context menu. This section describes the information which is shown in the list views
of the logical view. For more information, refer to the section List View.

Class List View

The class list view consists of group nodes. The list view for a group node can be opened with the Open
command.

The following group nodes exist:

"Object Data" group:
is displayed if the class uses a ODA

"Local Data" group:
is displayed if the class uses a LDA for class or interface GUIDs

"Interface Modules" group:
is displayed if the class uses an Interface Module (see Using Interfaces from several Classes).

"Interfaces" group:
is displayed if the class has defined interfaces (internal or external)

The class list view has the following columns:

Type:
type of the node (e.g. Object Data)

5

Class BuilderLogical View

Count:
number of components of the specified type

Object Data Group List View

The "Object Data" group list view consists of object data nodes. Choosing the Open command for a node
will open the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Object Data" group list view has the following columns:

Name:
name of the object data module or "Inline" in the case of an inline data definition

Library:
library where the object data module is located (is empty for inline data definitions or if the data area
has not yet been created)

Type:
Natural type of the object data module ("Local Data Area", "Parameter Data Area" or "Inline
Definition")

Local Data Group List View

The "Local Data" group list view consists of local data nodes. Choosing the Open command for a node
will open the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Local Data" group list view has the following columns:

Name:
name of the local data module or "Inline" for an inline data definition.

Library:
library where the local data module is located (empty for inline data definitions or if the data area has
not yet been created).

Type:
Natural type of the local data module ("Local Data Area", "Parameter Data Area" or "Inline
Definition").

Interface Modules Group List View

The "Interface Modules" group list view consists of interface module nodes (see Interface Module List
View). Choosing the Open command for a node will open the list view (see Using Interfaces from several
Classes) for this particular interface module.

The "Interface Modules" group list view has the following columns:

Name:
name of the interface module (copycode name)

Library:
library where interface module is located.

6

Logical ViewClass Builder

Interface ModuleList View

The interface module list view consists of interface nodes. Choosing the Open command for a node will
open the list view (see Interface List View) for this particular interface.

The interface module list view has the following columns:

Name:
name of the interface.

Interfaces Group List View

The "Interfaces" group list view consists of interface nodes. Choosing the Open command for a node will
open the list view (see Interface List View) for this particular interface.

The "Interfaces" group list view has the following columns:

Name:
name of the interface.

Component Type:
"Internal Interface" for interfaces which are defined in the class and "External Interface" for
interfaces which are defined in an interface module included in this class.

Defined In:
interface module name for externally defined interfaces (empty for internal interfaces).

Interface List View

The interface list view consists of group nodes. Choosing the Open command for a node will open a list
view for this particular group.

The following group nodes exist:

"Properties" group:
is displayed if the interface contains property definitions

"Methods" group:
is displayed if the interface contains method definitions.

The interface list view has the following columns:

Type:
type of the node (e.g. Properties).

Count:
number of components of the specified type.

Properties Group List View

The "Properties" group list view consists of property nodes. The "Property" group list view has the
following columns:

7

Class BuilderLogical View

Name:
name of the property.

Format:
format of property.

Length:
length of property.

Dimension:
dimension of property.

Read-only:
shows whether property is read-only or not.

ODA Variable:
name of assigned ODA variable

Methods Group List View

The "Methods" group list view consists of method implementation and parameter data nodes. For every
method of the interface, it contains one method implementation (subprogram) node and one node for
every parameter data definition of the method.

Choosing the Open command for a node of this list view will open the editor for the particular node type
(for example, program editor for method implementation node).

The "Methods" group list view has the following columns:

Name:
name of the method. The parameter data nodes are numbered from 1 to n (for example, INIT (2) for
the second parameter data node of method INIT).

Implementation:
only for method implementation node: the name of the subprogram which implements the method

Parameter Data:
only for method parameter data node: the name of the parameter data module or "Inline" for an inline
data definition

Library:
depending on the node type, library where implementation or parameter data module is located
(empty for inline data definitions or if the Natural module has not yet been created).

8

Logical ViewClass Builder

Method Parameter Data Group List View

The "Parameter Data" group list view consists of parameter data nodes. Choosing the Open command for
a node will open the data area editor for data areas and a special Class Builder dialog for inline definitions.

The "Parameter Data" group list view has the following columns:

Name:
name of the parameter data module or "Inline" for an inline data definition.

Library:
library where parameter data module is located (empty for inline data definitions or if the data area
has not yet been created)

Type:
Natural type of parameter data module ("Parameter Data Area" or "Inline Definition")

Flat View

The class nodes of the flat view show the class module name.

Unlike the logical view, the flat view does not contain any group nodes. The flat view has the advantage
that the level where a specific class component is displayed is lower compared to the logical view, and
thereby provides you with a better class overview.

The following topics are covered below:

9

Class BuilderFlat View

Tree Views
List Views
Class List View
Interface Module List View
InterfaceList View

Tree Views

You can expand and collapse nodes of a class. Expand displays all child nodes and Collapse hides all
child nodes of the selected class node. The flat view provides you with a general overview of the class. It
lists all sub-components of a class component on the same level. For example, if an interface node is
expanded, all properties and methods of the interface will be displayed as child nodes of the interface
node. For more information, see Library Workspace.

List Views

The flat view supports only a few list views because of the low node nesting level. The list views can be
opened with the Open command from the context menu. This section describes the information which is
shown in the list views of the flat view. For more information, refer to the section List View.

Class List View

The class list view contains a node for every child component.

The following nodes exist:

Object Data node
for every ODA of the class. Choosing the Open command of the node opens the data area editor for
data areas and a special Class Builder dialog for inline definitions

Local Data node
for every GUID LDA of the class. Choosing the Open command of the node opens the data area
editor for data areas and a special Class Builder dialog for inline definitions.

Interface Module node
for every interface module which is used by the class.Choosing the Open command of the node will
open the interface module list view.

Interface node
for every interface of the class (external and internal). Choosing the Open command of the node will
open the interface list view.

The class list view has the following columns:

Name:
name of the component.

Component Type:
indicates the type of the component ("Object Data", "Local Data", "Interface Module", "External
Interface" or "Internal Interface").

10

Flat ViewClass Builder

Type:
only for component type "Object Data" and "Local Data": Natural type of data module ("Local Data
Area", "Parameter Data Area" or "Inline Definition")

Interface Module List View

The interface module list view consists of interface nodes. Choosing the Open command of a node will
open the list view (see List Views) for this particular interface.

The interface module list view has the following columns:

Name:
name of the interface.

InterfaceList View

The interface list view contains all nodes for the properties and methods of the interface.

The following nodes exist:

Property node
for every property of the interface.

11

Class BuilderFlat View

Method implementation node
for every method of the interface. Choosing the Open command for the node will open the program
editor with the specified implementation (subprogram).

Method parameter data node
for every parameter data component of every method of the interface. Choosing the Open command
for the node will open the data area editor for data areas and a special Class Builder dialog for inline
definitions.

The interface list view has the following columns:

Name:
name of the property or method; the parameter data nodes for methods are numbered from 1 to n (for
example, INIT (2) for the second parameter data node of method INIT).

Implementation:
only for properties and method implementation node: the name of the assigned ODA variable for
properties and the name of the subprogram which implements the method for methods.

Parameter Data:
only for method parameter data node: the name of the parameter data module or "Inline" for an inline
data definition.

Library:
only for methods: depending on the node type, library where implementation or parameter data
module is located (empty for inline data definitions or if the Natural module has not yet been
created).

Format:
only for properties: format of property.

Length:
only for properties: length of property.

Dimension:
only for properties: dimension of property.

Read-only:
only for properties: shows whether property is read-only or not.

Class Builder Nodes
Related to the user interface, every component of a class is represented by a node. Nodes are displayed
both in tree views and in list views.

Every node has an icon and textual information about the component which can be the name of the
component (in the library workspace) or the name of the component and additional information (in the list
views).

The following table lists all available Class Builder nodes with their icons and a short description:

12

 Class Builder NodesClass Builder

Type Icon Description

new class new class which has not yet been saved

class (src) class which is only available as source

class (gp) class which is only available as generated program

class (src & gp) class which is available as source and generated program

ODA object data defined in a data area module

inline ODA object data defined with an inline data definition

LDA local data (for GUIDs) defined in a data area module

inline LDA local data (for GUIDs) defined with an inline data definition

Interface Module interface module, i.e., copycode which defines interfaces

internal interface interface which is defined in the class

external interface interface which is defined in an interface module that is used by the
class

internal property property which is defined in an internal interface

external property property which is defined in an external interface

internal method method which is defined in an internal interface

external method method which is defined in an external interface

method
implementation

subprogram which implements a method

method PDA method parameter data defined in a data area module

inline method PDA method parameter data defined with an inline data definition

In the following section, the Class Builder nodes are described in more detail. The commands of a specific
node can be invoked from the context menu of the node or the "Classes" toolbar.

The following topics are covered below:

Class Nodes

Object Data Nodes

GUID Local Data Nodes

Interface Nodes

Property Nodes

Method Nodes

Method Implementation Nodes

13

Class Builder Class Builder Nodes

Method Parameter Data Nodes

Class Nodes

The class node represents the class itself. The name displayed in the class node is either the class name
(logical view) or the class module name (flat view).

Types

New Class

If a new class is created, it is displayed with the new class icon until it is saved the first time. Therefore,
new class means that the class is only "transient" in the current Natural session and is not available in
source format. For this reason, the new class will not be shown in the File View which shows the source
and gp files of the Natural objects. In addition, it is not possible to execute all class node commands on a
new class.

Source-Only

The source-only class icon is displayed if the class is only available in source format but has not yet been
cataloged.

GP-only

The GP-only class icon is displayed if the class is only available in GP format. Classes of this type cannot
be handled with the Class Builder and the context menu of these classes is the same as for all other
Natural objects which are only available in GP format.

Source-and-GP

The Source-and-GP class icon is displayed if the class is available in source and GP format.

Commands

Command available for Description

Open new
source-only
source-and-GP

Opens the class list view. For more information, see List Views

List new
source-only
source-and-GP

Opens the program editor in read-only state with the internal source
format of the current class structure.

Cat source-only
source-and-GP

Catalogs the current class.

Save new
source-only
source-and-GP

Saves the current class structure in the given class module.

Save As new
source-only
source-and-GP

Saves the current class structure in a new Natural module or with a
different encoding.

14

Class NodesClass Builder

Command available for Description

Stow new
source-only
source-and-GP

Stows the current class structure in the given class module.

New ODA new
source-only
source-and-GP

Creates a new object data area for the class.

New Interface new
source-only
source-and-GP

Creates a new interface for the class.

New Interface
Module

new
source-only
source-and-GP

Creates a new interface module. This interface module is linked to
the class.

Link LDA new
source-only
source-and-GP

Uses an existing data area as GUID LDA for the class. See Link.

Link ODA new
source-only
source-and-GP

Uses an existing data area as ODA for the class. See Link.

Link Interface
Module

new
source-only
source-and-GP

Uses an existing copycode as interface module for the class. All
interfaces defined in the Interface Module will be included in the
class. See Link.

Register source-and-GPRegisters the class in the system registry. For more information, see
NaturalX in the Programming Guide.

Unregister source-and-GPUnregisters the class from the system registry. For more information,
see NaturalX in the Programming Guide.

Rename new
source-only
source-and-GP

Changes either the class name or the class module name depending
on the current view of the library workspace. For more information,
see Renaming Class Members.

Delete new
source-only
source-and-GP

Deletes the Natural module of the class (for source-only and
source-and-GP) or only the internal structure of the class (new).

Restore source-only
source-and-GP

Removes all changes of the class which have not yet been saved.
This command will close all list views of the class and collapse the
class node in the library workspace.

Cut source-only
source-and-GP

Cuts the class module.

Copy source-only
source-and-GP

Copies the class module.

Paste source-only
source-and-GP

Pastes the class module.

15

Class BuilderClass Nodes

Command available for Description

Print new
source-only
source-and-GP

Prints the source format of the current class structure.

Properties new
source-only
source-and-GP

Opens the Properties dialog which shows class-specific information.
For more information, see Node Properties.

Object Data Nodes

An object data node represents an object data area module or an inline object data definition. A class can
have several object data nodes. If more than one object data node exists, you must take care to follow the
correct object data sequence when you use these nodes in method implementations.

Types

Data Area

This type indicates that the object data is defined in a separate Natural module of type local data area or
parameter data area. The name which is displayed in the node is the name of the Natural data area module.

Inline Data Definition

This type indicates that the object data is defined direct in the class source with a DEFINE DATA
OBJECT statement. In this case, the object data has to be defined again in every method implementation
which uses the object data. A node of this type is always named "Inline".

Commands

16

Object Data NodesClass Builder

Command available for Description

Open data area Opens the data area module with the data area editor.

Edit inline data
definition

Opens a dialog which shows the contents of the inline data definition for
editing.

List data area Lists the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlink data area Unlinks the data area module from the class, i.e. it is no longer used as
Object Data Area for the class.

Rename data area Renames the Object Data Area link, i.e. uses another data area module as
Object Data Area for the class. For more information, see Renaming
Class Members.

Delete inline data
definition

Deletes the inline data definition from the class.

Print data area Prints the data area module.

Properties data area
inline data
definition

Opens the Properties dialog which shows object data-specific
information. For more information, see Node Properties.

GUID Local Data Nodes

An GUID Local Data node represents a local data area module or an inline local data definition which
contains GUID definitions. A class can have several local data nodes.

Types

Data Area

This type indicates that the GUID local data is defined in a separate Natural module of type local data area
or parameter data area. The name which is displayed in the node is the name of the Natural data area
module.

Inline Data Definition

This type indicates that the GUID local data is defined direct in the class source with a DEFINE DATA
LOCAL statement. A node of this type is always named "Inline".

Commands

17

Class BuilderGUID Local Data Nodes

Command available for Description

Open data area Opens the data area module with the data area editor.

Edit inline data
definition

Opens a dialog which shows the contents of the inline data definition for
editing.

List data area Lists the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlink data area Unlinks the data area module from the class, i.e. the data area module is
no longer used as GUID Local Data Area for the class.

Rename data area Renames the GUID Local Data Area link, i.e. uses another data area
module as GUID Local Data Area for the class. For more information, see
Renaming Class Members.

Delete inline data
definition

Deletes the inline data definition from the class.

Print data area Prints the data area module.

Properties data area
inline data
definition

Opens the Properties dialog which shows local data-specific information.
For more information, see Node Properties.

Interface Module Nodes

An Interface Module node represents an interface module. The interface module is a Natural module of
type copycode which defines interfaces that can be included in several classes. For more information
about interface modules and their usage, see Using Interfaces from several Classes.

Commands

Command Description

Open Opens the interface module list view. For more information, see List Views.

List Opens the program editor in read-only state with the source format of the current
Interface Module structure.

Save Saves the current Interface Module structure in the given Natural copycode module.

New
Interface

Creates a new interface in the Interface Module.

Unlink Unlinks the Interface Module from the class, i.e. the interfaces defined in the Interface
Module are no longer available in the class.

Print Prints the source format of the current Interface Module structure.

Properties Opens the Properties dialog which shows Interface Module-specific information. For
more information, see Node Properties.

18

GUID Local Data NodesClass Builder

Interface Nodes

An interface node represents an interface of an interface module or a class. For more information about
internal and external interfaces, see Using Interfaces from several Classes.

Types

Internal

The parent of an internal interface is either an interface module or a class. If its parent is an interface
module, this means that the interface is defined in the interface module which is used by the class. In this
case, the interface will be displayed a second time as an external interface of the class (For more
information, see Using Interfaces from several Classes). If the internal interface is a child of the class
itself, this means that the interface is defined direct in the class.

External

An external interface can appear only as subnode of a class, which uses an interface module which defines
this interface. The commands which can be executed on an external interface node are only a subset of the
commands available for an internal interface. Basically you can only change the implementation of such
an interface. For more information, see Using Interfaces from several Classes.

Commands

Command available for

Description

Open internal
external

Opens the interface list view. For more information, see List Views.

New
Method

internal Creates a new method for the interface.

New
Property

internal Creates a new property for the interface.

Rename internal Renames the interface. For more information, see Renaming Class
Members.

Delete internal Deletes the interface and all its dependent components.

Properties internal
external

Opens the Properties dialog which shows interface-specific
information. For more information, see Node Properties.

Property Nodes

A property node represents a property of an internal or external interface.

Types

19

Class BuilderInterface Nodes

Internal

If a property appears as subnode of an internal interface, it will be displayed as internal property. An
internal property node always has a dedicated external property node.

External

If a property appears as subnode of an external interface, it will be displayed as external property. The
commands which can be executed on an external property are only a subset of the commands which are
available for internal properties.

Commands

Command available
for

Description

Rename internal Renames the property. For more information, see Renaming Class Members.

Delete internal Deletes the property.

Properties internal
external

Opens the Properties dialog which shows property-specific information. For
more information, see Node Properties.

Method Nodes

A method node represents a method of an internal or external interface.

Types

Internal

If a method appears as subnode of an internal interface, it will be displayed as an internal method. An
internal method node always has a dedicated external method node.

External

If a method appears as subnode of an external interface, it will be displayed as external method. The
commands which can be executed on an external method are only a subset of the commands which are
available for internal methods.

Commands

20

Method NodesClass Builder

Command available
for

Description

New PDA internal Creates a new method parameter data area for the method.

Link PDA internal Uses an existing parameter data area as method PDA. See Link.

Link
implementation

internal
external

Uses an existing subprogram as method implementation. See Link.

Rename internal Renames the method. For more information, see Renaming Class
Members.

Delete internal Deletes the method and all its dependent components.

Properties internal
external

Opens the Properties dialog which shows method-specific
information. For more information, see Node Properties.

Method Implementation Nodes

A method implementation node represents the Natural subprogram which is executed when the method is
called.

Commands

Command Description

Open Opens the subprogram of the method implementation in the program editor.

List Lists the subprogram of the method implementation in read-only mode in the program
editor.

Cat Catalogs the subprogram of the method implementation.

Stow Stows the subprogram of the method implementation.

Rename Renames the method implementation, i.e. uses another subprogram for the method
implementation. For more information, see Renaming Class Members.

Print Prints the subprogram of the method implementation.

Properties Opens the Properties dialog which shows method implementation-specific information.
For more information, see Node Properties.

Method Parameter Data Nodes

A method parameter data node represents a parameter data area module or an inline parameter data
definition. A method can have several method parameter data nodes, which define the parameter used by
the method implementation. If more than one method parameter data node exists, you must ensure that the
correct parameter data sequence is used in method implementations.

Types

21

Class BuilderMethod Implementation Nodes

Data Area

This type indicates that the method parameter data is defined in a separate Natural module of type
parameter data area. The name which is displayed in the node is the name of the Natural parameter data
area module.

Inline Data Definition

This type indicates that the method parameter data is defined direct in the class source (or interface
module source) with a DEFINE DATA PARAMETER statement. In this case, the parameter data must be
defined again in every method subprogram. A node of this type is always named "Inline".

Commands

Command available for Description

Open data area Opens the data area module with the data area editor.

Edit inline data
definition

Opens a dialog which shows the contents of the inline data definition for
editing..

List data area Shows the listing of the data area module.

Cat data area Catalogs the data area module.

Stow data area Stows the data area module.

Unlink data area Unlinks the data area module from the method, i.e. the data area module is
no longer used as parameter data area for the method.

Rename data area Renames the method parameter data area link, i.e. uses another data area
module as parameter data area for the method. For more information, see
Renaming Class Members.

Delete inline data
definition

Deletes the inline data definition.

Print data area Prints the data area module.

Properties data area
inline data
definition

Opens the Properties dialog which shows method parameter data-specific
information. For more information, see Node Properties.

Node Properties
The Class Builder provides node-specific information on Natural classes and their elements if
context-menu entry Properties is chosen. This context-menu entry is available if an object is selected in
the library workspace or in a list view. The property sheet provides no information on group nodes.

The information itself is presented in a property sheet. The actual number of property pages shown
depends on the type of the selected object.

OK : Accept modifications.

22

 Node PropertiesClass Builder

Cancel: Skip modifications.

For all class elements, property pages General and Comment are available. The other property pages
depend on the selected node type.

The following topics are covered below:

General

Comments

Identification

Settings

Definition

General

This property page shows general information on the selected object. Its contents vary with the
corresponding type of node and are described in the following sections.

Class

Name Class Name

Defined in Class Module

Library Library

23

Class BuilderGeneral

Object and Local Data Area

Name Name of Object or Local Data Area

Used in Class Name

Library Library

Inline Data Definition

Name "Inline Definition"

Defined in Class Name

Interface Module

Name Name of Interface Module

Used in Class Name

Library Library

Interface

Name Name of Interface

Defined in Class Name

Interface
Module

If the interface is defined in an interface module this field shows the corresponding
name.

Method

Name Name of Method

Defined in Name of the interface that offers this method.

Interface
Module

If the method is defined in an interface module this field shows the corresponding
name.

Implementation

Name Name of Subprogram

Used in Name of the method that is implemented by this subprogram.

Library Library

Parameter Data Area

24

GeneralClass Builder

Name Name of Parameter Area

Used in Name of Method

Library Library

Property

Name Name of Property

Defined in Name of the interface that offers this property.

Interface
Module

If the property is defined in an interface module this field shows the corresponding
name.

Comments

Each component has its own comment.

This property page shows the comment and allows adding new or modifying existing comments. They are
entered and listed without any special syntactic notation.

The comment is changed if the property sheet is left by pressing OK . Pressing Cancel leaves the comment
unchanged.

25

Class BuilderComments

Identification

This property page is available for class and interface nodes. For interfaces, the list box below is only
enabled if the interface is defined direct as part of the class. The list box is not visible if the interface is
defined in an interface module.

The upper control Unique ID shows the current Global Unique ID of a class or an interface as read-only
information.

This list box offers all data variables contained in local data areas that are linked to the class. These
variables can be used as unique identifiers. Inline definitions of variables are not supported.

To exchange the current Global Unique ID that is displayed in the upper control with another value, select
a variable from the list. The name control is then updated with the newly selected variable name. The
Global Unique ID is exchanged if a variable has been selected and the property sheet is left by pressing
OK . Pressing Cancel leaves the identification unchanged. There is no check whether a selected variable
represents a valid Global Unique ID .

Settings

26

IdentificationClass Builder

This property page is available for class nodes only. It allows setting the class’s activation policy within
the Class Builder.

An activation policy for a class can be:

External Single

Internal Multiple

External Multiple

Or it is set to default.

More information on the meaning of these values can be found in NaturalX in the Programming Guide.

To change the current activation policy select the required value.

The value is changed if the property sheet is left by pressing OK . Pressing Cancel leaves the
identification unchanged.

Definition

27

Class BuilderDefinition

This property page is available for properties of interfaces only. It allows modifying the definition of an
existing property.

The property’s name cannot be changed. The following changes are possible:

An Object Data Variable can be assigned to the property.

The available Object Data Variables are listed in the page’s list box together with their format
definition and dimension.

They are taken from the Object Data Areas that are linked to the current class. Inline definitions of
variables are not supported.

Existing assignments of Object Data Variables to properties can be changed. The corresponding
control is then updated with the newly selected variable’s name.

The property’s format definition can be added or changed if it is different from the Object Data
Variable’s definition.

Otherwise format and length definition are taken from the assigned Object Data Variable.

It can be defined whether this property is used read only.

The definition of the property is changed if the property sheet is left by pressing OK . Pressing Cancel
leaves the definition unchanged.

28

DefinitionClass Builder

Adding Class Components
To make the development of a class more comfortable the Class Builder offers two ways to add
components to a class.

The following topics are covered below:

Link

New

New Class

New Object Data Area

New Interface Module

New Interface

New Method

New Property

Link

Existing Natural objects can be linked to a class component.

If context menu item Link is activated for an object node a dialog is opened. It lists all objects of the
required type that can be found in the current library or its steplibs.

If an object has been selected and the dialog is left by pressing OK , a reference to the selected object is
added to the class structure. Cancel leaves the class structure unchanged.

29

Class Builder Adding Class Components

Link to Class

A GUID Local Data Area, an Object Data Area or an Interface Module can be linked to a class. The
dialog shows object name and library.

Link to Method

Each method requires a method implementation. The existing implementation can be exchanged by
linking another subprogram to a selected method. Moreover, one or more Parameter Data Areas can be
linked to a method. The dialog shows object name and library.

New

New class components are created with context menu item New.

In the library workspace, class components are created using in-place editing. List views use dialogs to
query the necessary data and create new objects. This applies to all nodes apart from class properties:
They are always created using a dialog.

The following sections describe how the different class components are created.

New Class

A new class is first created as an internal class structure. At this time the class name is defined. The class
module name, i.e. the name of the actual Natural object, is assigned when the class is saved the first time.

30

 NewClass Builder

Library Workspace

A new class name, for example NEWCLS, is generated. The corresponding tree node is selected and
made available for in-place editing. The name can be changed to any valid class name.

List View

A dialog is opened that asks for the name of the new class.

New Object Data Area

Creating a new object data area adds a reference to a new component to the class structure. The
corresponding Natural object is not yet created. It is created if you confirm such when you open it.

Library Workspace

A new object data area, for example NEWODA, is generated. The corresponding node is selected and is
made available for in-place editing. The name can be changed to any valid data area name.

List View

A dialog is opened that asks for the name of the new object data area.

New Interface Module

Creating a new interface module adds a reference to a new component to the class structure. The
corresponding Natural object is not yet created. It is created if it contains interfaces at the time the class is
saved.

Library Workspace

A new interface module, for example NEWEIF, is generated. The corresponding node is selected and is
made available for in-place editing. The name can be changed to any valid copycode name.

List View

A dialog is opened that asks for the name of the interface module.

New Interface

Library Workspace

A new interface, for example NEWIIF, is generated. The corresponding node is selected and is made
available for in-place editing. The name can be changed to any valid interface name.

List View

A dialog is opened that asks for the name of the interface.

31

Class BuilderNew Object Data Area

New Method

Library Workspace

A new method, for example NEWMET, is generated. The corresponding node is selected and is made
available for in-place editing. The name can be changed to any valid method name. The new method name
is also taken as the name of the method implementation. Both are added to the class structure. If the
method name is longer than a valid Natural subprogram name, only the first characters are used to
guarantee a valid implementation name.

List View

A dialog is opened that asks for the name of the method. The new method name is also taken as the name
of the method implementation. Both are added to the class structure. If the method name is longer than a
valid Natural subprogram name the first characters are used to guarantee a valid implementation name.

New Property

New properties are always created using a dialog.

This dialog retrieves the following information:

32

New MethodClass Builder

Property
name:

A valid property name. This is either a new name or the name of the selected ODA
variable. For fully qualified ODA variable names the dot is replaced by an underscore.

ODA
variable:

The list box lists all variables that are defined in the linked ODAs.

If property name, format and length are not changed, these values are taken from the
selected ODA variable.

Format: Format and length can be changed if they must be different from the ODA variable’s
definitions.

Read-Only: The property can be marked as read-only.

Renaming Class Components
Like any other Natural object that can be modified in the Natural Studio, the components of a class are
renamed by editing their identifier in place. This is done using the mouse or by pressing F2 or by choosing
context menu entry Rename which is enabled for every class component.

During the edit process the new name is checked for syntactical correctness. If it is not a valid Natural
name the edit mode cannot be left. Pressing ESC cancels the edit mode and resets the old identifier.

If class components refer to Natural objects such as Object Data Areas, Parameter Data Areas or Interface
Modules, only the references within the class are changed. The corresponding Natural objects are not
renamed. They have to be changed explicitly if required.

Removing Class Components

Unlink

Context menu entry Unlink is available for class components that refer to Natural objects like Data Areas
or Interface Modules. If these modules have been linked to a class previously they can be removed using
Unlink .

This action only removes the reference to selected components from the class. It does not delete an
existing Natural object.

Delete

Context menu entry Delete is available for classes and those of their components that do not refer to
Natural objects.

If this context menu item is selected, the Class Builder’s Delete dialog will be displayed.

You are asked whether you want to delete the selected component(s). A list of references that shows the
dependent Natural objects is displayed for each component (if you do not choose Yes to All). These
Natural objects are identified by name, library and Natural object type if required. The list serves for
information purposes only. The dependent Natural sources are not affected.

If the selected component is the class itself, the internal structure is deleted and the corresponding Natural
source and cataloged modules are removed from the library.

33

Class Builder Renaming Class Components

Yes Deletes the selected component. If several components are selected, the list of references is
shown for the next component.

Yes to
All

Closes the dialog and deletes all selected components.

No Does not delete the selected component. If other components are selected, the delete
procedure continues by displaying the delete dialog for the next component.

Cancel Closes the dialog without deleting anything.

Editing Class Components

Classes

At the time a new class is created, the corresponding new class module is not yet created. This occurs only
if Save, Save As or Stow is called for the class.

Save

Save called for an existing class writes the class source to the class module.

If Save is called for a new class that does not yet have a corresponding class module, then Save is treated
like Save As. The encoding is initialized with the default code page currently used. If such a class module
does not yet exist in the current library, the class module is created and the source is written to this object.

Save As

If Save As is called, a dialog is opened that prompts for the class module and the encoding of the class.
The input length is restricted to guarantee a valid Natural class module name and the input is checked for
validity. If such a class module does already exist or if the name is invalid, an error message is issued.

Cat

If the command Cat is called, the class source is cataloged and a corresponding class GP is generated.
This does not apply to new classes.

Stow

As for other Natural objects Stow internally saves and catalogs a class. If a new class is to be stowed, you
are prompted for the class module as described for Save As.

Natural Objects

Natural objects that can act as class components can also be modified in the context of the class structure.
References to Object Data Areas, Parameter Data Areas and Interface Modules can be created by New.
Existing objects can be edited, saved and stowed.

Local Data Areas and method implementations cannot be created in the class’s context. Here only existing
objects can be linked to the class. But they can be edited, saved and stowed.

34

 Editing Class ComponentsClass Builder

Other Class Components

Other class components such as interfaces, methods and properties cannot be saved, cataloged or stowed
independently. They can only be modified in the context of a class.

Using Interfaces from Several Classes
For some applications, it is useful to implement the same interface in several classes. For this purpose, it is
possible to define the interface in a Natural copycode module and include this copycode module in the
class which wants to implement the interface. The implementation-specific settings, like method
implementations, can be defined in the copycode as a default setting, and they can be overwritten in the
class, to use class specific implementations.

Natural copycode modules which define interfaces are called Interface Modules in the Class Builder
environment. Interface Modules are fully integrated in the Class Builder, so that interfaces defined in an
Interface Module can be handled in the same way as interfaces of a class. However, an Interface Module
can only be changed with the Class Builder when it is included from a class.

Interfaces which are defined in an Interface Module are always visible in two places of a class: they are
shown as an internal interface under the Interface Module node and they are shown as an external
interface under the class node. The commands available for an external interface can be used to change
the implementation of the interface.

You can save a changed Interface Module without saving the whole class. If an Interface Module is
changed and the class which is the parent of the Interface Module node is saved, the Class Builder asks the
user if he wants to save the Interface Module as well.

The locking principles for Interface Modules are described in Locking Concept.

Note:
If you change an Interface Module, you should always be aware that this Interface Module can also be
used by other classes. After saving the changes other classes can possibly no longer be stowed without
errors. The Class Builder cannot check if your Interface Module is used by other classes!

Creating a new Interface Module

The class command New Interface Module (see Class Builder Nodes) creates a new Interface Module.

An Interface Module node is added in the tree and list views and you can then create new interfaces for
the Interface Module, methods and properties for the interfaces and so on. If a new component is created
for the Interface Module, the corresponding external node will be added for the class. For example, if a
new interface INT1 as added to the Interface Module, an external interface node named INT1 will be
created as subnode of the class. The new Interface Module is saved just as an existing Interface Module.
As soon as the Interface Module exists as Natural module, it can be linked from other classes.

Linking an existing Interface Module

The class command Link Interface Module (see Class Builder Nodes) uses an existing Interface Module
for the class. A dialog is shown which lists all Natural copycode modules of the current step libraries.

35

Class Builder Using Interfaces from Several Classes

Note:
The dialog will list all copycode modules and not only the Interface Modules.

If you select a copycode module from this list which defines class interfaces, these interfaces are added to
the current class interfaces. An error will be generated if you select a copycode module which does not
define interfaces or if the selected copycode module contains an interface which is already defined in the
class. In this case, the Interface Module is not linked to the class.

If the Interface Module was linked successfully to the class, a node for it will be added to the class tree.
Opening the Interface Module node will show the interfaces of the Interface Module. Furthermore all
interfaces of the Interface Module are added as external interfaces nodes to the class itself.

Unlinking an Interface Module

If the Unlink command (see Interface Module Nodes) is executed for an Interface Module, the interfaces
of this Interface Module are no longer used by the class.

This has the effect that the Interface Module node itself and all external interface nodes from this Interface
Module are removed from the class.

Note:
If you unlink an Interface Module from a class, all class-specific settings contained in the class source
module, such as method implementations for the interfaces of this Interface Module, will be deleted as
well.

Interface Nodes

If an Interface Module is used by a class, every interface defined in the Interface Module is represented by
two nodes: an internal interface node which is a subnode of the Interface Module and an external interface
node which is a subnode of the class. These two interface node types can be distinguished by their icon
(see Interface Nodes). The same is of course valid for the property and method nodes: if they are children
of an internal interface, they are represented by an internal node and if they are children of an external
interface, they are represented by an external node (see Property Nodes and Method Nodes).

Furthermore the commands which can be executed on external interfaces, properties and methods are only
a subset of the commands available on internal interfaces, properties and methods. For example, the name
of an interface can only be changed for an internal interface. External interfaces allow only the
redefinition of the implementation of the interface, i.e. changing the method implementation and the ODA
variable which is assigned to a property.

Locking Concept
Natural must ensure that a Natural module cannot be changed at the same time from different places.
Therefore, related to the Class Builder, this means that a Natural user must be prevented from changing a
Natural module with the program editor which has already been changed with the Class Builder and vice
versa.

The Class Builder can be used to change Natural classes and Interface Modules which are special
copycode modules (see Using Interfaces from several Classes).

36

 Locking ConceptClass Builder

Because of the different requirements, the locking concept for classes differs from the Interface Module
locking concept. In the following sections both concepts are described.

Locking of Classes

The locking of classes is done very flexibly. The Class Builder does not lock a class until it is changed.
This means that a class which is opened with the Class Builder can be opened in the program editor as
well.

If a class is opened in the program editor, the class nodes can be viewed in the Class Builder, but it is not
possible to apply any changes. Before changing the class, the program editor session has to be closed first.

If a class is visible in the Class Builder and the user changed the class in the program editor, the changes
will also be shown in the Class Builder when the class is saved. If a class has been changed with the Class
Builder it is no longer possible to open this class with the program editor.

Locking of Interface Modules

The locking of Interface Modules is a bit more restrictive than the locking of classes. A two stage locking
exists for the Interface Modules. For the first time the Class Builder must ensure that the Interface Module
cannot be changed with the Class Builder and the program editor at the same time: if a class which uses an
Interface Module is opened in the Class Builder, the Interface Module is locked. This means on the one
hand, that an Interface Module can no longer be opened with the program editor, when a class which uses
it is opened in the Class Builder. On the other hand, a class cannot be opened with the Class Builder when
it uses an Interface Module which is already open in the program editor.

Moreover, an Interface Module can be opened several times in the Class Builder if it is included from
several classes. The Class Builder must ensure that an Interface Module is opened only once, when the
user wants to change it, because the other Interface Module instances are then no longer up-to-date: it will
try to close all other instances, to make sure that only the current instance of the Interface Module remains
visible. The Class Builder will display a confirmation dialog for this purpose which allows the user to stop
the process.

If one of the classes was already changed, the user will be asked, if the changes are to be saved . After
saving a changed Interface Module, it is again possible to open other classes which use the Interface
Module.

Tutorial
This section provides a short introduction on the usage of the Class Builder.

The example shows how class EMPLOYEE in library SYSEXCOM can be built using the Class Builder.

The following topics are covered:

New class

Linking Object Data

Creating an Interface

37

Class BuilderTutorial

Creating Methods

Creating Properties

Using an Interface Module

Linking a GUID Local Data Area

Activation Policy

Save and Stow Class

Register

New class

Activate the logical view in the library workspace and create a new library MYEXCOM that contains the
local data areas EMPGUIDS and EMPLOY-O. These are just copies of the objects in SYSEXCOM.

EMPGUIDS contains GUID definitions and EMPLOY-O contains object data definitions. To create a new
class MYEMPLOYEE select the library node and then select context menu item New Source > Class. A
new tree node labeled "NEWCLS" is presented for in-place editing. Just change its name to
"MYEMPLOYEE".

Linking Object Data

The object data for MYEMPLOYEE have to be defined in an object data area. This object data area can
either be created by selecting context menu item New of node "MYEMPLOYEE" or by linking an
existing object data area via context menu item Link > Object Data Area.

A dialog pops up and shows a list of all local and parameter data areas in MYEXCOM and its steplibs.
These objects can be used as object data areas. Select EMPLOY-O.

Creating an Interface

To create the first interface select context menu item New > Interface of node "MYEMPLOYEE". A new
tree node labeled "NEWIIF" is presented for in-place editing. Just change its name to "EMPLOY-I".
Further interfaces can be created accordingly or by selecting New in the context menu for "Interfaces" (
group node).

Creating Methods

To create the first method select context menu item New > Method of interface node "EMPLOY-I". A
new tree node labeled "NEWMET" is presented for in-place editing. Rename this node to "INIT". A
method implementation node with the same name is created automatically.

To use subprogram ELOAD-N (copied from SYSEXCOM) to implement this method, select the method’s
context-menu item Link > Implementation and change the method implementation.

Parameter Data Area ELOAD-A (copied from SYSEXCOM) can be linked using Link > Parameter
Data Area and then selecting the appropriate module. Further methods can be created accordingly or by
selecting New in the "Methods" (group node) context menu.

38

New classClass Builder

Creating Properties

To create the first property, select context-menu item New > Property of interface node "EMPLOY-I".
The dialog lists all object data variables that are defined in linked object data areas and can be assigned to
a property. They are shown together with their format and length definition and dimension. If one of these
variables is selected without entering any information in the other control, this variable name is taken as
property name and format and length definition are generated accordingly.

But the Class Builder allows assigning the property another name and format and length can be adapted as
long as the new format is data-transfer compatible (see NaturalX in the Programming Guide). The new
property can be marked as read only.

Using an Interface Module

So far class MYEMPLOYEE only defines interfaces internally. But there might be interfaces defined in
modules that were adequate to incorporate.

For this purpose an interface module can be linked using the Class’s context-menu item Link > Interface
Module. The interfaces that are defined in this module are then inserted under the corresponding interface
module in group "Interface Modules" and at the same time under the group node "Interfaces". To
implement their methods, select the corresponding node that can be found under "Interfaces".

Linking a GUID Local Data Area

The Class Builder generates Global Unique IDs for classes and interfaces automatically. But if variables
are to be used instead of the generated identifiers, a local data area with the corresponding definition can
be linked to MYEMPLOYEE.

The existing Global Unique ID of MYEMPLOYEE can then be changed. Select context menu item
Properties and activate page Identifiers. This page is available for classes and interfaces.

The generated GUID is displayed in the upper control. Local variables that are defined in EMPGUIDS are
listed in the lower box. Select EMPGUID and leave the property sheet with OK .

Activation Policy

The Class Builder allows setting a class’s activation policy explicitly. The current activation policy of
MYEMPLOYEE can be viewed under Settings if context menu item Properties is selected. This option is
available for classes only. Select External Multiple and leave the property sheet with OK .

Save and Stow Class

Up to now the new class MYEMPLOYEE has only existed as an internal class structure. To save all
changes the class can be saved and stowed in the class module. This change of state is indicated by the
changed icon.

Register

And finally register MYEMPLOYEE by selecting context menu item Register on the class node.

39

Class BuilderCreating Properties

Glossary

External Interface

An external interface is an interface which is defined in an interface module, that is included by the class.

Interface Module

An Interface Module is a Natural copycode module which defines interfaces. The Interface Module can be
used in a class to define the contained interfaces. The class can overwrite the method and property
implementations, but all other settings of the interface are used as defined in the Interface Module.

Internal Interface

An internal interface is an interface which is defined direct in the class, or an interface of an Interface
Module, which is defined in the Interface Module.

Method Implementation

A method implementation is a Natural subprogram which is assigned to the method and executed when
this method is called for a class object.

Property Implementation

A property implementation is the object data variable that is assigned to a property.

40

GlossaryClass Builder

	 Class Builder
	What is the Class Builder?
	Which Classes can be handled by the Class Builder?
	 When is a Class saved?
	 Class Comments

	 Class Builder Interface
	Logical View
	Tree Views
	List Views
	Class List View
	Object Data Group List View
	Local Data Group List View
	Interface Modules Group List View
	Interface ModuleList View
	Interfaces Group List View
	Interface List View
	Properties Group List View
	Methods Group List View
	Method Parameter Data Group List View

	Flat View
	Tree Views
	List Views
	Class List View
	Interface Module List View
	InterfaceList View

	 Class Builder Nodes
	Class Nodes
	Types
	New Class
	Source-Only
	GP-only
	Source-and-GP
	Commands

	Object Data Nodes
	Types
	Data Area
	Inline Data Definition
	Commands

	GUID Local Data Nodes
	Types
	Data Area
	Inline Data Definition
	Commands
	Interface Module Nodes
	Commands

	Interface Nodes
	Types
	Internal
	External
	Commands

	Property Nodes
	Types
	Internal
	External
	Commands

	Method Nodes
	Types
	Internal
	External
	Commands

	Method Implementation Nodes
	Commands

	Method Parameter Data Nodes
	Types
	Data Area
	Inline Data Definition
	Commands

	 Node Properties
	General
	Class
	Object and Local Data Area
	Inline Data Definition
	Interface Module
	Interface
	Method
	Implementation
	Parameter Data Area
	Property

	Comments
	Identification
	Settings
	Definition

	 Adding Class Components
	 Link
	Link to Class
	Link to Method

	 New
	New Class
	Library Workspace
	List View

	New Object Data Area
	Library Workspace
	List View

	New Interface Module
	Library Workspace
	List View

	New Interface
	Library Workspace
	List View

	New Method
	Library Workspace
	List View

	New Property

	 Renaming Class Components
	 Removing Class Components
	 Unlink
	 Delete

	 Editing Class Components
	Classes
	Save
	Save As
	Cat
	Stow

	Natural Objects
	Other Class Components

	 Using Interfaces from Several Classes
	 Creating a new Interface Module
	 Linking an existing Interface Module
	 Unlinking an Interface Module
	Interface Nodes

	 Locking Concept
	Locking of Classes
	Locking of Interface Modules

	Tutorial
	New class
	Linking Object Data
	Creating an Interface
	Creating Methods
	Creating Properties
	Using an Interface Module
	Linking a GUID Local Data Area
	Activation Policy
	Save and Stow Class
	Register

	Glossary
	External Interface
	Interface Module
	Internal Interface
	Method Implementation
	Property Implementation

