
SORT
Structured Mode Syntax

END-ALL

[AND]

SORT THEM [BY] operand1 ASCENDING

 10 RECORDS DESCENDING

 USING-clause

 [GIVE-clause]

 statement

END-SORT

* If a statement label is specified, it must be placed before the keyword SORT, but after END-ALL (and
AND).

Reporting Mode Syntax

SORT THEM [BY] operand1 ASCENDING

 10 RECORDS DESCENDING

 [USING-clause]

 [GIVE-clause]

 statement

[LOOP]

This chapter covers the following topics:

Function

Restrictions

Syntax Description

Three-Phase SORT Processing

Example

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: FIND with SORTED BY option

1

SORTSORT

Belongs to Function Group: Loop Execution

Function
The SORT statement is used to perform a sort operation, sorting the records from all processing loops that
are active when the SORT statement is executed.

For the sort operation, the OpenVMS Sort utility is used.

Restrictions
The SORT statement must be contained in the same object as the processing loops whose records it
sorts.

Nested SORT statements are not allowed.

The total length of a record to be sorted must not exceed 10240 bytes.

The number of sort criteria must not exceed 10.

Syntax Description
Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 S A N P I F B D T no no

Syntax Element Description:

2

FunctionSORT

Syntax
Element

Description

END-ALL Closing All Currently Active Loops:

In structured mode, the SORT statement must be preceded by END-ALL, which
serves to close all active processing loops. The SORT statement itself initiates a new
processing loop, which must be closed with END-SORT.

Note:
For reporting mode: The SORT statement closes all active processing loops and
initiates a new processing loop.

operand1 Sort Criteria:

operand1 represents the fields/variables to be used as the sort criteria. 1 to 10
database fields (descriptors and non-descriptors) and/or user-defined variables may
be specified. A multiple-value field or a field contained within a periodic group may
be used. A group or an array is not permitted.

ASCENDING Sort Sequence:

The default sort sequence is ascending. If you wish the values to be sorted in
descending sequence, specify DESCENDING.

ASCENDING/DESCENDING may be specified for each sort field.

DESCENDING

USING USING Clause:

See USING Clause below.

GIVE GIVE Clause:

See GIVE Clause below.

END-SORT End of SORT Statement:

The Natural reserved word END-SORT must be used to end the SORT statement.

USING Clause

The USING clause indicates the fields which are to be written to intermediate sort storage. It is required in
structured mode and optional in reporting mode. However, it is strongly recommended to also use it in
reporting mode so as to reduce memory requirements.

USING {operand2}...
USING KEYS

Operand Definition Table:

3

SORTUSING Clause

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand2 S A A N P I F B D T L C no no

Syntax Element Description:

Syntax Element Description

USING
operand2

Additional Fields:

You can specify additional fields that are to be written to the intermediate sort
storage - in addition to the sort key fields (as specified with operand1).

USING KEYS Sort Key Fields Only:

Only the sort key fields, as specified with operand1, will be written to
intermediate sort storage.

In Reporting Mode: If you omit the USING clause, all database fields of processing loops initiated before
the SORT statement, as well as all user-defined variables defined before the SORT statement, will be
written to intermediate sort storage.

If, after sort execution, a reference is made to a field which was not written to the sort intermediate
storage, the value for the field will be the last value of the field before the sort.

GIVE Clause

The GIVE clause is used to specify Natural system functions (such as MAX, MIN) that are to be evaluated
in the first phase of the SORT statement. These system functions may be referenced in the third phase (see
SORT Statement Processing).

A reference to a system function after the SORT statement must be preceded by an asterisk, for example,
*AVER(SALARY).

 MAX

 MIN

 NMIN

 COUNT

GIVE NCOUNT [OF] (operand3) [(NL=nn)]

OLD operand3

 AVER

 NAVER

 SUM

 TOTAL

4

GIVE ClauseSORT

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand3 S A * yes no

* depends on function

Syntax Element Description:

Syntax Element Description

MAX | MIN | NMIN | COUNT |
NCOUNT | OLD | AVER |
NAVER | SUM | TOTAL

System Functions:

For details on the individual system functions, see the System
Functions documentation.

operand3 Field Name:

operand3 is the field name.

(NL= nn) Preventing Arithmetic Overflows:

This option applies to the system functions AVER, NAVER, SUM and
TOTAL only. It will be ignored for any other system function.

This option may be used to prevent an arithmetic overflow during the
evaluation of system functions; it is described under Arithmetic
Overflows in AVER, NAVER, SUM or TOTAL in the System Functions
documentation.

Three-Phase SORT Processing
A program containing a SORT statement is executed in three phases.

1st Phase - Selecting the Records to be Sorted

The statements before the SORT statement are executed. Data as described in the USING clause will be
written to intermediate sort storage.

In reporting mode, any variables to be used as accumulators following the sort must not be defined before
the SORT statement. In structured mode, they must not be included in the USING clause. Fields written to
intermediate sort storage cannot be used as accumulators because they are read back with each individual
record during the 3rd processing phase. Consequently, the accumulation function would not produce the
desired result because with each record the field would be overwritten with the value for that individual
record.

The number of records written to intermediate storage is determined by the number of processing loops
and the number of records processed per loop. One record on the internal intermediate storage is created
each time the SORT statement is encountered in a processing loop. In the case of nested loops, a record is
only written to intermediate storage if the inner loop is executed. If in the example below a record is to be
written to intermediate storage even if no records are found for the inner (FIND) loop, the FIND

5

SORTThree-Phase SORT Processing

statement must contain an IF NO RECORDS FOUND clause.

READ ...
 ...
 FIND ...
...
END-ALL
SORT ...
 DISPLAY ...
END-SORT
...

2nd Phase - Sorting the Records

The records are sorted.

3rd Phase - Processing the Sorted Records

The statements after the SORT statement are executed for all records on the intermediate storage in the
specified sorting sequence. Database fields to be referenced after a SORT statement must be correctly
referenced using the appropriate statement label or reference number.

Example
Example 1 - SORT

Example 2 - SORT

Example 1 - SORT
** Example ’SRTEX1S’: SORT (structured mode)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
 2 CITY
 2 SALARY (1:2)
 2 PERSONNEL-ID
 2 CURR-CODE (1:2)
*
1 #AVG (P11)
1 #TOTAL-TOTAL (P11)
1 #TOTAL-SALARY (P11)
1 #AVER-PERCENT (N3.2)
END-DEFINE
*
LIMIT 3
FIND EMPL-VIEW WITH CITY = ’BOSTON’
 COMPUTE #TOTAL-SALARY = SALARY (1) + SALARY (2)
 ACCEPT IF #TOTAL-SALARY GT 0
 /*
END-ALL
AND
SORT BY PERSONNEL-ID USING #TOTAL-SALARY SALARY(*) CURR-CODE(1)
 GIVE AVER(#TOTAL-SALARY)
 /*
 AT START OF DATA
 WRITE NOTITLE ’*’ (40)
 ’AVG CUMULATIVE SALARY:’ *AVER (#TOTAL-SALARY) /

6

ExampleSORT

 MOVE *AVER (#TOTAL-SALARY) TO #AVG
 END-START
 COMPUTE ROUNDED #AVER-PERCENT = #TOTAL-SALARY / #AVG * 100
 ADD #TOTAL-SALARY TO #TOTAL-TOTAL
 /*
 DISPLAY NOTITLE PERSONNEL-ID SALARY (1) SALARY (2)
 #TOTAL-SALARY CURR-CODE (1)
 ’PERCENT/OF/AVER’ #AVER-PERCENT
 AT END OF DATA
 WRITE / ’*’ (40) ’TOTAL SALARIES PAID: ’ #TOTAL-TOTAL
 END-ENDDATA
END-SORT
*
END

Output of Program SRTEX1S:

PERSONNEL ANNUAL ANNUAL #TOTAL-SALARY CURRENCY PERCENT
 ID SALARY SALARY CODE OF
 AVER
 --------- ---------- ---------- ------------- -------- -------

 ** AVG CUMULATIVE SALARY: 41900

 20007000 16000 15200 31200 USD 74.00
 20019200 18000 17100 35100 USD 83.00
 20020000 30500 28900 59400 USD 141.00

 ** TOTAL SALARIES PAID: 125700

The previous example is executed as follows:

First Phase:

Records with CITY=BOSTON are selected from the EMPLOYEES file.

The first 2 occurrences of SALARY are accumulated in the field #TOTAL-SALARY.

Only records with #TOTAL-SALARY greater than 0 are accepted.

The records are written to the sort intermediate storage. The database arrays SALARY (first 2
occurrences) and CURR-CODE (first occurrence), the database field PERSONNEL-ID, and the
user-defined variable #TOTAL-SALARY are written to the intermediate storage.

The average of #TOTAL-SALARY is evaluated.

Second Phase:

The records are sorted.

Third Phase:

The sorted intermediate storage is read.

At the at-start-of-data condition, the average of #TOTAL-SALARY is displayed.

7

SORTExample 1 - SORT

#TOTAL-SALARY is added to #TOTAL-TOTAL and the fields PERSONNEL-ID, SALARY(1) ,
SALARY(2) , #AVER-PERCENT and #TOTAL-SALARY are displayed.

At the end-of-data condition, the variable #TOTAL-TOTAL is written.

Equivalent reporting-mode example: SRTEX1R.

Example 2 - SORT
** Example ’SRTEX2’: SORT
**
DEFINE DATA LOCAL
1 VEHIC-VIEW VIEW OF VEHICLES
 2 MAKE
 2 YEAR
END-DEFINE
*
LIMIT 10
*
READ VEHIC-VIEW
END-ALL
SORT BY MAKE YEAR USING KEY
 DISPLAY NOTITLE (AL=15) MAKE (IS=ON) YEAR
 AT BREAK OF MAKE
 WRITE ’-’ (20)
 END-BREAK
END-SORT
END

Output of Program SRTEX2S:

 MAKE YEAR
--------------- -----

FIAT 1980
 1982
 1984

PEUGEOT 1980
 1982
 1985

RENAULT 1980
 1980
 1982
 1982

8

Example 2 - SORTSORT

	SORT
	
	
	Structured Mode Syntax
	Reporting Mode Syntax

	Function
	Restrictions
	Syntax Description
	USING Clause
	GIVE Clause

	Three-Phase SORT Processing
	
	1st Phase - Selecting the Records to be Sorted
	2nd Phase - Sorting the Records
	3rd Phase - Processing the Sorted Records

	Example
	Example 1 - SORT
	Output of Program SRTEX1S:
	First Phase:
	Second Phase:
	Third Phase:

	Example 2 - SORT
	Output of Program SRTEX2S:

