
REQUEST DOCUMENT
REQUEST DOCUMENT FROM operand1

 WITH

 [USER operand2]

 [PASSWORD operand3]

 [HEADER[[NAME] operand4 [VALUE] operand5]}...]

DATA ALL operand6 [ENCODED [[IN] CODEPAGE
operand7]]

{[NAME] operand8 [VALUE] operand9}...

RETURN

HEADER [ALL operand10] [[NAME] operand11 [VALUE] operand12]...

[PAGE operand13 [ENCODED [[FOR TYPES[S] operand14...] [IN] CODEPAGE operand15]]]

 RESPONSE operand16

[GIVING operand17]

This chapter covers the following topics:

Function

Syntax Description

Encoding of Incoming/Outgoing Data

Examples

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Internet and XML

Function
The REQUEST DOCUMENT statement gives you the means to access an external system, see Statements
for Internet and XML Access in the Programming Guide.

1

REQUEST DOCUMENTREQUEST DOCUMENT

For information on Unicode support, see Statements in the Unicode and Code Page Support
documentation.

Restrictions for Cookies

Under the HTTP Protocol, a server uses cookies to maintain state information on the client workstation.

REQUEST DOCUMENT is implemented using internet option settings. This means that, depending on the
security settings, cookies will be used.

If the internet option setting Disabled is set, no cookies will be sent, even if a cookie header
(operand4/operand5) is sent.

For server environments, do not use the internet option setting Prompt . This setting leads to a "hanging"
server, because no client will be able to answer the prompt.

In mainframe environments, cookies are not supported and are ignored.

The following profile parameters have to be considered: NOPROX, PROXPORT, PROX, SSLPRX,
SSLPRXPT, NOSSLPRX. For information on these profile parameters, refer to the Parameter Reference.

For HTTPS, OpenSSL must be installed.

Syntax Description
Operand Definition Table:

2

Syntax DescriptionREQUEST DOCUMENT

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A no yes

operand2 C S A no yes

operand3 C S A no yes

operand4 C S A no yes

operand5 C S A N P I F D T L no yes

operand6 C S A U N P I F B D T L no yes

operand7 C S A no yes

operand8 C S A no yes

operand9 C S A N P I F D T L no yes

operand10 S A no yes

operand11 C S A no yes

operand12 S A N P I F B D T L no yes

operand13 S A U B no yes

operand14 C S A no yes

operand15 C S A no yes

operand16 S I4 no yes

operand17 S I4 no no

Syntax Element Description:

Syntax Element Description

DOCUMENT FROM operand1 Location of Document:

operand1 is the URL to access a document.

Note:
The information below is only valid if operand1
begins with http:// or https:// .

WITH WITH Clause:

This clause may be used to specify optional
user/password, header and data details for the
request.

USER operand2 User Name:

operand2 is the name of the user that will be used
for the request.

3

REQUEST DOCUMENTSyntax Description

Syntax Element Description

PASSWORD operand3 User Password:

operand3 is the password of the user that will be
used for the request.

HEADER {[[NAME] operand4 [VALUE]
operand5]}...

Header Clause:

operand4 and operand5 can only be used in
conjunction with each other:

operand4 is the name of a HEADER variable
sent with this request.

operand5 is the value of a HEADER variable
sent with this request.

Note:

Header Name for operand4:

Header names must not contain a carriage return
(CR), a line feed (LF) or a colon (:). This will not be
checked by the REQUEST DOCUMENT statement.
For valid header names, please see the HTTP
specifications. For compatibility with the web
interface, header names can be written with
underscore (_) instead of a dash (-). (Internally, the
underscore is replaced by a dash).

Header Value for operand5:

Header values are not allowed to contain CR/LF.
This will not be checked by the REQUEST
DOCUMENT statement. For valid header values and
formats, please see the HTTP specifications.

General Information on Headers:

For a HTTP request, some headers are required, for
example: Request-Method or Content-Type. These
headers will be automatically generated depending
on the parameters given with the REQUEST
DOCUMENT statement.

See also Automatically Generated Headers.

DATA DATA Clause:

You may specify either a specific DATA variable
name and value (see operand8 and operand9
below) or the complete document (see DATA ALL
Clause below).

4

Syntax DescriptionREQUEST DOCUMENT

Syntax Element Description

ALL operand6 operand6 is a complete document that is to be
sent. This value is needed for the HTTP request
method PUT (see Automatically Generated
Headers).

See Encoding of Incoming/Outgoing Data, DATA
ALL Clause.

[ENCODED [[IN] CODEPAGE
operand7]

operand6 will be encoded from the default code
page (value of the system variable *CODEPAGE) to
the code page given in operand7.

See Encoding of Incoming/Outgoing Data, DATA
ALL Clause.

5

REQUEST DOCUMENTSyntax Description

Syntax Element Description

{[NAME] operand8 [VALUE]
operand9}...

DATA Variable Name and Value:

operand8 and operand9 can only be used in
conjunction with each other:

operand8 is the name of a DATA variable to
be sent with this request. This value is needed
for the HTTP request method POST
(URL-encoding necessary, especially
ampersand (&), equal sign (=), percent sign
(%) characters.

operand8 is the name of a DATA variable to
be sent with this request. This value is needed
for the HTTP request method POST
(URL-encoding necessary, especially
ampersand (&), equal sign (=), percent sign
(%) characters.

Restriction:

If operand8/operand9 is given, and the
communication is http:// or https:// by
default, the request method POST (see
Automatically Generated Headers) with content
type
application/x-www-form-urlencoded is
used. During the request, operand8/operand9
will be separated by equal sign (=) and ampersand
(&) characters. Therefore the operands are not
allowed to contain equal sign (=), ampersand (&)
and, because of URL-encoding, percent sign (%)
characters. These characters are considered "unsafe"
and need to be encoded as:

Character URL-Encoding Syntax

% %25

& %26

= %3D

See also General Note for URL-Encoding.

RETURN RETURN Clause:

This clause can be used to specify the HEADER
and/or PAGE return information.

6

Syntax DescriptionREQUEST DOCUMENT

Syntax Element Description

HEADER [ALL operand10] RETURN HEADER ALL Clause:

When this clause is specified, operand10
contains all header values delivered with the HTTP
response.

The first line contains the status information and all
following lines contain the headers as pairs of name
and value. The names always end in a colon (:) and
the values end in a linefeed (LF). Internally, all
carriage returns/line feeds (CR/LF) are transformed
into line feeds (LF).

HEADER [[NAME] operand11]
[VALUE] operand12]...

RETURN HEADER NAME/VALUE Clause:

When this clause is specified, only specific header
information is returned.

operand11 and operand12 can only be used in
conjunction with each other:

operand11 is the name of a HEADER
received with this request. The HEADER is
needed for HTTP.

operand12 is the value of a HEADER
received with this request. The HEADER is
needed for HTTP.

Return Header Name for operand11:

For compatibility with the web interface, header
names can be written with underscore (_) instead of
dash (-) characters.

Internally, the underscore is replaced by a dash. If
operand11 is a blank string, the status
information is returned.

HTTP/1.0 200 OK

RETURN PAGE RETURN PAGE Clause:

You can use the PAGE clause if you want to have
the incoming data encoded in a specific code page.

See Encoding of Incoming/Outgoing Data,
RETURN PAGE Clause below.

7

REQUEST DOCUMENTSyntax Description

Syntax Element Description

PAGE operand13 operand13 is the document returned for this
request.

See Encoding of Incoming/Outgoing Data,
RETURN PAGE Clause below.

[ENCODED [[FOR TYPE[S]
operand14...] [IN] CODEPAGE
operand15]]

operand14 is the list of mime-types for which an
encoding of the returned document in operand13
will be performed.

See Encoding of Incoming/Outgoing Data,
RETURN PAGE Clause below.

operand15 is the code page which, if necessary,
will be used for the encoding of operand13.

If the value of operator15 is blank, no
conversion occurs. operand13 is then encoded in
the default code page (profile parameter CP in the
Configuration Utility).

See Encoding of Incoming/Outgoing Data,
RETURN PAGE Clause below.

RESPONSE operand16 RESPONSE Clause:

The RESPONSE clause is used to display the
response code number of the request.

operand16 is the response code number of the
request, for example: 200 (Request Completed).

See also Overview of Response Numbers for HTTP
Requests.

GIVING operand17 GIVING Clause:

operand17 contains the Natural error if the
request could not be performed.

Automatically Generated Headers (operand4/5)

Request-Method

The following values are supported for operand5: HEAD, POST, GET, and PUT.

The following table shows the automatic calculation of Request-Method depending on the given operands:

8

Automatically Generated Headers (operand4/5)REQUEST DOCUMENT

Operand Request Method

HEAD POST GET PUT

WITH HEADER

(operand4/operand5)

optional optional optional optional

WITH DATA

(operand7/operand8)

not
specified

specified not
specified

only with option ALL
(operand6)

RETURN HEADER

(operand10 to
operand12)

specified optional optional optional

RETURN PAGE

(operand13)

not
specified

specified specified optional

Content-Type

If the request method is POST, a content-type header has to be delivered with the HTTP request. If no
content-type is set explicitly, the automatically generated value of operand5 is:

application/x-www-form-urlencoded

Note:
It is possible to overwrite the automatically generated headers. Natural will not check them for errors.
Unexpected errors may occur.

General Note for URL-Encoding

When sending POST data with the content type application/x-www-form-urlencoded , certain
characters must be represented by means of URL-encoding, which means substituting the character with
%hexadecimal-character-code. The full details of when and why URL-encoding is necessary are
discussed in RFC 1630, RFC 1738 and RFC 1808. Some basic details are given here. All non-ASCII
characters (that is, valid ISO 8859/1 characters that are not also ASCII characters) must be URL-encoded,
for example, the file köln.html would appear in an URL as k%F6ln.html .

Some characters are considered to be "unsafe" when web pages are requested by e-mail.

These characters are:

9

REQUEST DOCUMENTGeneral Note for URL-Encoding

Character URL-Encoding Syntax

the tab character %09

the space character %20

[%5B

\ %5C

] %5D

^ %5E

‘ %60

{ %7B

| %7C

} %7D

~ %7E

When writing URLs, you should URL-encode these characters.

Some characters have special meanings in URLs, such as the colon (:) that separates the URL scheme
from the rest of the URL, the double slash (//) that indicates that the URL conforms to the Common
Internet Scheme syntax and the percent sign (%). Generally, when these characters appear as parts of file
names, they must be URL-encoded to distinguish them from their special meaning in URLs (this is a
simplification, read the RFCs for full details).

These characters are:

Character URL-Encoding Syntax

" %22

%23

% %25

& %26

+ %2B

, %2C

/ %2F

: %3A

< %3C

= %3D

> %3E

? %3F

@ %40

10

General Note for URL-EncodingREQUEST DOCUMENT

Overview of Response Numbers for HTTP Requests

Status Value Response

STATUS CONTINUE 100 OK to continue with request

STATUS SWITCH_PROTOCOLS101 Server has switched protocols in upgrade header

STATUS OK 200 Request completed

STATUS CREATED 201 Object created, reason = new URL

STATUS ACCEPTED 202 Async completion (TBS)

STATUS PARTIAL 203 Partial completion

STATUS NO_CONTENT 204 No info to return

STATUS RESET_CONTENT 205 Request completed, but clear form

STATUS PARTIAL_CONTENT 206 Partial GET fulfilled

STATUS AMBIGUOUS 300 Server could not decide what to return

STATUS MOVED 301 Object permanently moved

STATUS REDIRECT 302 Object temporarily moved

STATUS REDIRECT_METHOD 303 Redirection w/o new access method

STATUS NOT_MODIFIED 304 If-modified-since was not modified

STATUS USE_PROXY 305 Redirection to proxy, location header specifies proxy to
use

STATUS
REDIRECT_KEEP_VERB

307 HTTP/1.1: keep same verb

STATUS BAD_REQUEST 400 Invalid syntax

STATUS DENIED 401 Access denied

STATUS PAYMENT_REQ 402 Payment required

STATUS FORBIDDEN 403 Request forbidden

STATUS NOT_FOUND 404 Object not found

STATUS BAD_METHOD 405 Method is not allowed

STATUS NONE_ACCEPTABLE 406 No response acceptable to client found

STATUS PROXY_AUTH_REQ 407 Proxy authentication required

STATUS REQUEST_TIMEOUT 408 Server timed out waiting for request

STATUS CONFLICT 409 User should resubmit with more info

STATUS GONE 410 The resource is no longer available

STATUS LENGTH_REQUIRED 411 The server refused to accept request w/o a length

STATUS PRECOND_FAILED 412 Precondition given in request failed

STATUS REQUEST_TOO_LARGE413 Request entity was too large

11

REQUEST DOCUMENTOverview of Response Numbers for HTTP Requests

Status Value Response

STATUS URL_TOO_LONG 414 Request URL too long

STATUS UNSUPPORTED_MEDIA415 Unsupported media type

STATUS SERVER_ERROR 500 Internal server error

STATUS NOT_SUPPORTED 501 "Required" not supported

STATUS BAD_GATEWAY 502 Error response received from gateway

STATUS SERVICE_UNAVAIL 503 Temporarily overloaded

STATUS GATEWAY_TIMEOUT 504 Timed out waiting for gateway

STATUS VERSION_NOT_SUP 505 HTTP version not supported

Response 301 - 303 (Redirection)

Redirection means that the requested URL has moved. As a response, the Return Header with the name
LOCATION will be displayed. This header contains the URL where the requested page has moved to. A
new REQUEST DOCUMENT request can be used to retrieve the page moved.

HTTP browsers redirect automatically to the new URL, but the REQUEST DOCUMENT statement does
not handle redirection automatically.

Response 401 (Denied)

The response Access Denied means that the requested page can only be accessed if a valid user ID
and password are provided with the request. As a response, the Return Header with the name
WWW-AUTHENTICATE will be delivered with the realm needed for this request.

HTTP browsers normally display a dialog with user ID and password, but with the REQUEST
DOCUMENT statement, no dialog is displayed.

Encoding of Incoming/Outgoing Data
Data transfer with the REQUEST DOCUMENT statement normally does not involve any code page
conversion. If you want to have the outgoing and/or incoming data encoded in a specific code page, you
can use the DATA ALL clause and/or the RETURN PAGE clause to specify this.

DATA ALL Clause

RETURN PAGE Clause

DATA ALL Clause

For the encoding of outgoing data, the DATA ALL clause is used:

ALL operand6 [ENCODED [[IN] CODEPAGE operand7]]

12

Encoding of Incoming/Outgoing DataREQUEST DOCUMENT

Syntax Element Description:

Syntax Element Description

ALL operand6 operand6 is a complete document that is to be sent. This value is
normally needed for the automatically HTTP request method PUT (see
Automatically Generated Headers).

[ENCODED [[IN]
CODEPAGE
operand7]]

operand6 will be encoded from the default code page (value of system
variable *CODEPAGE) to the code page given in operand7.

RETURN PAGE Clause

For the encoding of incoming data, the RETURN PAGE clause is used:

[PAGE operand13 [ENCODED [[FOR TYPE[S] operand14...] [IN] CODEPAGE operand15]]]

As a response of an HTTP/HTTPS request, incoming data may contain binary data (for example,
image/gif) or character data (for example, text/html). Together with the response, the REQUEST
DOCUMENT statement receives a parameter which specifies the type of content of the requested document
(mime-type). This parameter may contain information about the code page in which the document is
encoded.

This clause provides an automatic conversion to the default code page (value of system variable
*CODEPAGE) of the Natural session.

Syntax Element Description:

Syntax Element Description

RETURN PAGE operand13 No encoding at all of the returned page will be done; that is,
the page will remain encoded as delivered from the http server.

RETURN PAGE operand13
ENCODED

If the returned mime-type contains an encoding, operand13
will be encoded from this code page to the default code page
(A/B) or (U). See note below.

RETURN PAGE operand13
ENCODED [IN] CODEPAGE
operand15

If the returned mime-type does not contain an encoding, then
operand13 will be encoded from the code page defined with
operand15 to the default code page (value of system
variable *CODEPAGE) (A/B) or (U).

RETURN PAGE operand13
[ENCODED [[FOR TYPE[S]
operand14...] [IN]
CODEPAGE operand15]]

If the returned mime-type does not contain an encoding, then
an additional check is performed if the returned mime-type
matches one of the types given with operand14. If a match
occurs, operand13 will be encoded from the code page
defined with operand15 to the default code page (A/B) or
(U).

13

REQUEST DOCUMENTRETURN PAGE Clause

Note:
"Returned mime-type contains an encoding" means that the http server returns a content-type header with
a charset= clause, for example: charset=ISO-8859-1 .

Examples
Example 1 - General Request

Example 2 - Simple Get Request (no data)

Example 3 - Simple Head Request (no return page)

Example 4 - Simple Post Request (default)

Example 5 - Simple Put Request (with data all)

Note:
There is an example dialog V5-RDOC for this statement in the example library SYSEXV.

Example 1 - General Request
REQUEST DOCUMENT FROM "http://bolsap1:5555/invoke/sap.demo/handle_RFC_XML_POST"
 WITH
 USER #User PASSWORD #Password
 DATA
 NAME ’XMLData’ VALUE #Queryxml
 NAME ’repServerName’ VALUE ’NT2’
 RETURN
 PAGE #Resultxml
RESPONSE #rc

Example 2 - Simple Get Request (no data)
REQUEST DOCUMENT FROM "http://pcnatweb:8080"
 RETURN
 PAGE #Resultxml
RESPONSE #rc

Example 3 - Simple Head Request (no return page)
REQUEST DOCUMENT FROM "http://pcnatweb"
RESPONSE #rc

Example 4 - Simple Post Request (default)
REQUEST DOCUMENT FROM "http://pcnatweb/cgi-bin/nwwcgi.exe/sysweb/nat-env"
 WITH
 DATA
 NAME ’XMLData’ VALUE #Queryxml
 NAME ’repServerName’ VALUE ’NT2’
 RETURN
 PAGE #Resultxml
RESPONSE #rc

14

ExamplesREQUEST DOCUMENT

Example 5 - Simple Put Request (with data all)
REQUEST DOCUMENT FROM "http://pcnatweb/test.txt"
 WITH
 DATA ALL #document
 RETURN
 PAGE #Resultxml
RESPONSE #rc

15

REQUEST DOCUMENTExample 5 - Simple Put Request (with data all)

	REQUEST DOCUMENT
	Function
	Restrictions for Cookies

	Syntax Description
	Automatically Generated Headers (operand4/5)
	Request-Method
	Content-Type

	General Note for URL-Encoding
	Overview of Response Numbers for HTTP Requests
	Response 301 - 303 (Redirection)
	Response 401 (Denied)

	Encoding of Incoming/Outgoing Data
	DATA ALL Clause
	RETURN PAGE Clause

	Examples
	Example 1 - General Request
	Example 2 - Simple Get Request (no data)
	Example 3 - Simple Head Request (no return page)
	Example 4 - Simple Post Request (default)
	Example 5 - Simple Put Request (with data all)

