
Programs, Functions, Subprograms and
Subroutines
This document discusses those object types which can be invoked as routines; that is, as subordinate
programs.

Helproutines and maps, although they are also invoked from other objects, are strictly speaking not
routines as such, and are therefore discussed in separate documents; see Helproutines and Maps.

This chapter covers the following topics:

A Modular Application Structure

Multiple Levels of Invoked Objects

Program

Function

Subroutine

Subprogram

Processing Flow when Invoking a Routine

A Modular Application Structure
Typically, a Natural application does not consist of a single huge program, but is split into several
modules. Each of these modules will be a functional unit of manageable size, and each module is
connected to the other modules of the application in a clearly defined way. This provides for a well
structured application, which makes its development and subsequent maintenance a lot easier and faster.

During the execution of a main program, other programs, subprograms, subroutines, helproutines and
maps can be invoked. These objects can in turn invoke other objects (for example, a subroutine can itself
invoke another subroutine). Thus, the modular structure of an application can become quite complex and
extend over several levels.

Multiple Levels of Invoked Objects
Each invoked object is one level below the level of the object from which it was invoked; that is, with
each invocation of a subordinate object, the level number is incremented by 1.

Any program that is directly executed is at Level 1; any subprogram, subroutine, map or helproutine
directly invoked by the main program is at Level 2; when such a subroutine in turn invokes another
subroutine, the latter is at Level 3.

A program invoked with a FETCH statement from within another object is classified as a main program,
operating from Level 1. A program that is invoked with FETCH RETURN, however, is classified as a
subordinate program and is assigned a level one below that of the invoking object.

1

Programs, Functions, Subprograms and SubroutinesPrograms, Functions, Subprograms and Subroutines

The following illustration is an example of multiple levels of invoked objects and also shows how these
levels are counted:

If you wish to ascertain the level number of the object that is currently being executed, you can use the
system variable *LEVEL (which is described in the System Variables documentation).

This document discusses the following Natural object types, which can be invoked as routines (that is,
subordinate programs):

program

function

subroutine

subprogram

Helproutines and maps, although they are also invoked from other objects, are strictly speaking not
routines as such, and are therefore discussed in separate documents; see Helproutines and Maps.

Basically, programs, subprograms and subroutines differ from one another in the way data can be passed
between them and in their possibilities of sharing each other’s data areas. Therefore the decision which
object type to use for which purpose depends very much on the data structure of your application.

2

Multiple Levels of Invoked ObjectsPrograms, Functions, Subprograms and Subroutines

Program
A program can be executed - and thus tested - by itself.

To compile and execute a source program, you use the system command RUN.

To execute a program that already exists in compiled form, you use the system command EXECUTE.

A program can also be invoked from another object with a FETCH or FETCH RETURN statement. The
invoking object can be another program, a subprogram, function, subroutine or helproutine.

When a program is invoked with FETCH RETURN, the execution of the invoking object will be
suspended - not terminated - and the fetched program will be activated as a subordinate program.
When the execution of the FETCHed program is terminated, the invoking object will be re-activated
and its execution continued with the statement following the FETCH RETURN statement.

When a program is invoked with FETCH, the execution of the invoking object will be terminated and
the FETCHed program will be activated as a main program. The invoking object will not be
re-activated upon termination of the fetched program.

The following topics are covered below:

Program Invoked with FETCH RETURN

Program Invoked with FETCH

Program Invoked with FETCH RETURN

3

Programs, Functions, Subprograms and SubroutinesProgram

A program invoked with FETCH RETURN can access the global data area used by the invoking object.

In addition, every program can have its own local data area, in which the fields that are to be used only
within the program are defined.

However, a program invoked with FETCH RETURN cannot have its own global data area.

Program Invoked with FETCH

4

Program Invoked with FETCHPrograms, Functions, Subprograms and Subroutines

A program invoked with FETCH as a main program usually establishes its own global data area (as shown
in the illustration above). However, it could also use the same global data area as established by the
invoking object.

Note:
A source program can also be invoked with a RUN statement; see the RUN statement in the Statements
documentation.

Function
An object of type "function" contains the definitions of a single function and may be structured as shown
in the following code example:

5

Programs, Functions, Subprograms and SubroutinesFunction

DEFINE FUNCTION
 ...
 DEFINE SUBROUTINE
 ...
 END-SUBROUTINE
 ...
END-FUNCTION

The block of statements between DEFINE FUNCTION and END-FUNCTION must contain all those
statements which are to be executed when the function is called.

Internal subroutines are allowed to be defined inside a function definition.

A function is invoked using the Function Call syntax.

If you have a block of code which is to be executed several times within the object, it is useful to use an
inline subroutine. You then only have to code this block once within a DEFINE SUBROUTINE statement
block and invoke it with several PERFORM statements.

The global data area of the invoking object (for example, GDA1) cannot be referenced inside the function
definition. Also, objects which will be invoked by a function cannot reference the global data area (GDA)
of the object (GDA1) invoking the function, because entering a function causes a new global data area to
be created by the runtime environment.

Parameter data areas (for example, PDA1) may be used to access parameters for function calls and
function definitions in order to minimize the maintainance effort when changing parameters.

The copycode object containing the prototype definition is used at compilation time only in order to
determine the type of the return variable for function call reference and to check the parameters, if this is
desired.

6

FunctionPrograms, Functions, Subprograms and Subroutines

7

Programs, Functions, Subprograms and SubroutinesFunction

Subroutine
The statements that make up a subroutine must be defined within a DEFINE SUBROUTINE ...
END-SUBROUTINE statement block.

A subroutine is invoked with a PERFORM statement.

A subroutine may be an inline subroutine or an external subroutine:

Inline Subroutine
An inline subroutine is defined within the object which contains the PERFORM statement that
invokes it.

External Subroutine
An external subroutine is defined in a separate object - of type subroutine - outside the object which
invokes it.

If you have a block of code which is to be executed several times within an object, it is useful to use an
inline subroutine. You then only have to code this block once within a DEFINE SUBROUTINE statement
block and invoke it with several PERFORM statements.

The following topics are covered below:

Inline Subroutine

Data Available to an Inline Subroutine

External Subroutine

Data Available to an External Subroutine

Inline Subroutine

8

Subroutine Programs, Functions, Subprograms and Subroutines

An inline subroutine can be contained within a programming object of type program, function,
subprogram, subroutine or helproutine.

If an inline subroutine is so large that it impairs the readability of the object in which it is contained, you
may consider putting it into an external subroutine, so as to enhance the readability of your application.

Data Available to an Inline Subroutine

An inline subroutine has access to the local data area and the global data area used by the object in which
it is contained.

9

Programs, Functions, Subprograms and SubroutinesData Available to an Inline Subroutine

External Subroutine

An external subroutine - that is, an object of type subroutine - cannot be executed by itself. It must be
invoked from another object. The invoking object can be a program, function, subprogram, subroutine or
helproutine.

Data Available to an External Subroutine

An external subroutine can access the global data area used by the invoking object.

Moreover, parameters can be passed with the PERFORM statement from the invoking object to the
external subroutine. These parameters must be defined either in the DEFINE DATA PARAMETER
statement of the subroutine, or in a parameter data area used by the subroutine.

10

External SubroutinePrograms, Functions, Subprograms and Subroutines

In addition, an external subroutine can have its local data area, in which the fields that are to be used only
within the subroutine are defined.

However, an external subroutine cannot have its own global data area.

Subprogram
Typically, a subprogram would contain a generally available standard function that is used by various
objects in an application.

A subprogram cannot be executed by itself. It must be invoked from another object. The invoking object
can be a program, function, subprogram, subroutine or helproutine.

A subprogram is invoked with a CALLNAT statement.

When the CALLNAT statement is executed, the execution of the invoking object will be suspended and the
subprogram executed. After the subprogram has been executed, the execution of the invoking object will
be continued with the statement following the CALLNAT statement.

Data Available to a Subprogram

With the CALLNAT statement, parameters can be passed from the invoking object to the subprogram.
These parameters are the only data available to the subprogram from the invoking object. They must be
defined either in the DEFINE DATA PARAMETER statement of the subprogram, or in a parameter data
area used by the subprogram.

11

Programs, Functions, Subprograms and SubroutinesSubprogram

In addition, a subprogram can have its own local data area, in which the fields to be used within the
subprogram are defined.

If a subprogram in turn invokes a subroutine or helproutine, it can also establish its own global data area
to be shared with the subroutine/helproutine.

Processing Flow when Invoking a Routine
When the CALLNAT, PERFORM or FETCH RETURN statement that invokes a routine - a subprogram, an
external subroutine, or a program respectively - is executed, the execution of the invoking object is
suspended and the execution of the routine begins.

The execution of the routine continues until either its END statement is reached or processing of the
routine is stopped by an ESCAPE ROUTINE statement being executed.

12

Processing Flow when Invoking a RoutinePrograms, Functions, Subprograms and Subroutines

In either case, processing of the invoking object will then continue with the statement following the
CALLNAT, PERFORM or FETCH RETURN statement used to invoke the routine.

Example:

13

Programs, Functions, Subprograms and SubroutinesProcessing Flow when Invoking a Routine

	Programs, Functions, Subprograms and Subroutines
	A Modular Application Structure
	Multiple Levels of Invoked Objects
	Program
	Program Invoked with FETCH RETURN
	Program Invoked with FETCH

	Function
	Subroutine
	Inline Subroutine
	Data Available to an Inline Subroutine
	External Subroutine
	Data Available to an External Subroutine

	Subprogram
	Data Available to a Subprogram

	Processing Flow when Invoking a Routine
	
	Example:

