
Developing NaturalX Applications
This chapter describes how to develop an application by defining and using classes.

The following topics are covered:

Development Environments

Defining Classes

Using Classes and Objects

Development Environments
Developing Classes on Windows Platforms
On Windows platforms, Natural provides the Class Builder as the tool to develop Natural classes.
The Class Builder shows a Natural class in a structured hierarchical order and allows the user to
manage the class and its components efficiently. If you use the Class Builder, no knowledge or only a
basic knowledge of the syntax elements described below is required.

Developing Classes Using SPoD
In a Natural Single Point of Development (SPoD) environment that includes a Mainframe, UNIX
and/or OpenVMS remote development server, you can use the Class Builder available with the
Natural Studio front-end to develop classes on Mainframe, UNIX and/or OpenVMS platforms. In
this case, no knowledge or only a basic knowledge of the syntax elements described below is
required.

Developing Classes on Mainframe, UNIX or OpenVMS Platforms
If you do not use SPoD, you develop classes on these platforms using the Natural program editor. In
this case, you should know the syntax of class definition described below.

Defining Classes
When you define a class, you must create a Natural class module, within which you create a DEFINE
CLASS statement. Using the DEFINE CLASS statement, you assign the class an externally usable name
and define its interfaces, methods and properties. You can also assign an object data area to the class,
which describes the layout of an instance of the class.

This section covers the following topics:

Creating a Natural Class Module

Specifying a Class

Defining an Interface

Assigning an Object Data Variable to a Property

1

Developing NaturalX Applications Developing NaturalX Applications

Assigning a Subprogram to a Method

Implementing Methods

Creating a Natural Class Module

 To create a Natural class module

Use the CREATE OBJECT statement to create a Natural object of type Class.

Specifying a Class

The DEFINE CLASS statement defines the name of the class, the interfaces the class supports and the
structure of its objects.

 To specify a class

Use the DEFINE CLASS statement as described in the Statements documentation.

Defining an Interface

Each interface of a class is specified with an INTERFACE statement inside the class definition. An
INTERFACE statement specifies the name of the interface and a number of properties and methods. For
classes that are to be registered as COM classes, it specifies also the globally inique ID of the interface.

A class can have one or several interfaces. For each interface, one INTERFACE statement is coded in the
class definition. Each INTERFACE statement contains one or several PROPERTY and METHOD clauses.
Usually the properties and methods contained in one interface are related from either a technical or a
business point of view.

The PROPERTY clause defines the name of a property and assigns a variable from the object data area to
the property. This variable is used to store the value of the property.

The METHOD clause defines the name of a method and assigns a subprogram to the method. This
subprogram is used to implement the method.

 To define an interface

Use the INTERFACE statement as described in the Statements documentation.

Assigning an Object Data Variable to a Property

The PROPERTY statement is used only when several classes are to implement the same interface in
different ways. In this case, the classes share the same interface definition and include it from a Natural
copycode. The PROPERTY statement is then used to assign a variable from the object data area to a
property, outside the interface definition. Like the PROPERTY clause of the INTERFACE statement, the
PROPERTY statement defines the name of a property and assigns a variable from the object data area to
the property. This variable is used to store the value of the property.

 To assign an object data variable to a property

2

Creating a Natural Class ModuleDeveloping NaturalX Applications

Use the PROPERTY statement as described in the Statements documentation.

Assigning a Subprogram to a Method

The METHOD statement is used only when several classes are to implement the same interface in different
ways. In this case, the classes share the same interface definition and include it from a Natural copycode.
The METHOD statement is then used to assign a subprogram to the method, outside the interface definition.
Like the METHOD clause of the INTERFACE statement, the METHOD statement defines the name of a
method and assigns a subprogram to the method. This subprogram is used to implement the method.

 To assign a subprogram to a method

Use the METHOD statement as described in the Statements documentation.

Implementing Methods

A method is implemented as a Natural subprogram in the following general form:

DEFINE DATA statement
*
* Implementation code of the method
*
END

For information on the DEFINE DATA statement see the Statements documentation.

All clauses of the DEFINE DATA statement are optional.

It is recommended that you use data areas instead of inline data definitions to ensure data consistency.

If a PARAMETER clause is specified, the method can have parameters and/or a return value.

Parameters that are marked BY VALUE in the parameter data area are input parameters of the method.

Parameters that are not marked BY VALUE are passed "by reference" and are input/output parameters.
This is the default.

The first parameter that is marked BY VALUE RESULT is returned as the return value for the method. If
more than one parameter is marked in this way, the others will be treated as input/output parameters.

Parameters that are marked OPTIONAL need not be specified when the method is called. They can be left
unspecified by using the nX notation in the SEND METHOD statement.

To make sure that the method subprogram accepts exactly the same parameters as specified in the
corresponding METHOD statement in the class definition, use a parameter data area instead of inline data
definitions. Use the same parameter data area as in the corresponding METHOD statement.

To give the method subprogram access to the object data structure, the OBJECT clause can be specified.
To make sure that the method subprogram can access the object data correctly, use a local data area
instead of inline data definitions. Use the same local data area as specified in the OBJECT clause of the
DEFINE CLASS statement.

3

Developing NaturalX Applications Assigning a Subprogram to a Method

The GLOBAL, LOCAL and INDEPENDENT clauses can be used as in any other Natural program.

While technically possible, it is usually not meaningful to use a CONTEXT clause in a method
subprogram.

The following example retrieves data about a given person from a table. The search key is passed as a BY
VALUE parameter. The resulting data is returned through "by reference" parameters ("by reference" is the
default definition). The return value of the method is defined by the specification BY VALUE RESULT.

Using Classes and Objects
Objects created in a local Natural session can be accessed by other modules in the same Natural session.

4

Using Classes and ObjectsDeveloping NaturalX Applications

The statement CREATE OBJECT is used to create an object (also known as an instance) of a given class.

To reference objects in Natural programs, object handles have to be defined in the DEFINE DATA
statement. Methods of an object are invoked with the statement SEND METHOD. Objects can have
properties, which can be accessed using the normal assignment syntax.

These steps are described below:

Defining Object Handles

Creating an Instance of a Class

Invoking a Particular Method of an Object

Accessing Properties

Defining Object Handles

To reference objects in Natural programs, object handles have to be defined as follows in the DEFINE
DATA statement:

DEFINE DATA

 level-handle-name [(array-definition)] HANDLE OF OBJECT

 ...

END-DEFINE

Example:

DEFINE DATA LOCAL
1 #MYOBJ1 HANDLE OF OBJECT
1 #MYOBJ2 (1:5) HANDLE OF OBJECT
END-DEFINE

Creating an Instance of a Class

 To create an instance of a class

Use the CREATE OBJECT statement as described in the Statements documentation.

Invoking a Particular Method of an Object

 To invoke a particular method of an object

Use the SEND METHOD statement as described in the Statements documentation.

Accessing Properties

Properties can be accessed using the ASSIGN (or COMPUTE) statement as follows:

5

Developing NaturalX Applications Defining Object Handles

ASSIGN operand1.property-name = operand2

ASSIGN operand2 = operand1.property-name

Object Handle - operand1

operand1 must be defined as an object handle and identifies the object whose property is to be accessed.
The object must already exist.

operand2

As operand2, you specify an operand whose format must be data transfer-compatible to the format of the
property. Please refer to the data transfer compatibility rules for further information.

property-name

The name of a property of the object.

If the property name conforms to Natural identifier syntax, it can be specified as follows

create object #o1 of class "Employee"
 #age := #o1.Age

If the property name does not conform to Natural identifier syntax, it must be enclosed in angle brackets:

create object #o1 of class "Employee"
 #salary := #o1.<<%Salary>>

The property name can also be qualified with an interface name. This is necessary if the object has more
than one interface containing a property with the same name. In this case, the qualified property name
must be enclosed in angle brackets:

create object #o1 of class "Employee"
 #age := #o1.<<PersonalData.Age>>

Example:

define data
 local
 1 #i (i2)
 1 #o handle of object
 1 #p (5) handle of object
 1 #q (5) handle of object
 1 #salary (p7.2)
 1 #history (p7.2/1:10)
 end-define
 * ...
 * Code omitted for brevity.
 * ...
 * Set/Read the Salary property of the object #o.
 #o.Salary := #salary
 #salary := #o.Salary
 * Set/Read the Salary property of
 * the second object of the array #p.
 #p.Salary(2) := #salary
 #salary := #p.Salary(2)
 *

6

 Accessing PropertiesDeveloping NaturalX Applications

 * Set/Read the SalaryHistory property of the object #o.
 #o.SalaryHistory := #history(1:10)
 #history(1:10) := #o.SalaryHistory
 * Set/Read the SalaryHistory property of
 * the second object of the array #p.
 #p.SalaryHistory(2) := #history(1:10)
 #history(1:10) := #p.SalaryHistory(2)
 *
 * Set the Salary property of each object in #p to the same value.
 #p.Salary(*) := #salary
 * Set the SalaryHistory property of each object in #p
 * to the same value.
 #p.SalaryHistory(*) := #history(1:10)
 *
 * Set the Salary property of each object in #p to the value
 * of the Salary property of the corresponding object in #q.
 #p.Salary(*) := #q.Salary(*)
 * Set the SalaryHistory property of each object in #p to the value
 * of the SalaryHistory property of the corresponding object in #q.
 #p.SalaryHistory(*) := #q.SalaryHistory(*)
 *
 end

In order to use arrays of object handles and properties that have arrays as values correctly, it is important
to know the following:

A property of an occurrence of an array of object handles is addressed with the following index notation:

#p.Salary(2) := #salary

A property that has an array as value is always accessed as a whole. Therefore no index notation is
necessary with the property name:

#o.SalaryHistory := #history(1:10)

A property of an occurrence of an array of object handles which has an array as value is therefore
addressed as follows:

#p.SalaryHistory(2) := #history(1:10)

7

Developing NaturalX Applications Accessing Properties

	 Developing NaturalX Applications
	Development Environments
	 Defining Classes
	Creating a Natural Class Module
	Specifying a Class
	Defining an Interface
	 Assigning an Object Data Variable to a Property
	 Assigning a Subprogram to a Method
	 Implementing Methods

	Using Classes and Objects
	 Defining Object Handles
	 Creating an Instance of a Class
	 Invoking a Particular Method of an Object
	 Accessing Properties
	Object Handle - operand1
	operand2
	 property-name

