
Processing Work Files and Nested Loops
This chapter describes restrictions on the use of work file attributes, the support of work file formats and
the impact of READ loops.

Work File Format and Attributes

Maximum File Transfer Record Length for Natural Connection

Streaming

Dynamic Variables in READ WORK FILE

Nested READ Loops

Subsequent READ Loops

Work File Format and Attributes
Below are the restrictions that apply to the use of work file attributes:

Accessing PC work files is restricted to a fixed record length of 1073741823 bytes or 32767 bytes
when using the statement WRITE WORK FILE VARIABLE . Depending on the Entire Connection
version installed on the PC, additional restrictions may apply as described below.

Maximum File Transfer Record Length for Natural
Connection
As of Natural for OpenVMS Version 6.3, the maximum record length supported for file transfer depends
on the version of Entire Connection installed on the PC.

For Entire Connection up to Version 4.2, the maximum record length is limited by the number of bytes
that can be displayed on the appropriate 3270 model. For example, for a 3270 Model 2 device the record
length is 24*80 = 1920 bytes. Since all data buffers are enclosed by a header and trailer, the resulting net
record length is 1887 bytes.

For Entire Connection Version 4.3.1, the maximum record length is limited to 32 KB - 1 byte = 32767
bytes.

As of Entire Connection Version 4.3.2 Patch Level 1 and Entire Screen Builder Version 5.2.1, the
maximum record length is increased to 1 GB - 1 byte = 1073741823 bytes. But writing work files in
variable format (WRITE WORK VARIABLE) is still restricted to a maximum record length of 32 KB - 1
byte.

1

Processing Work Files and Nested LoopsProcessing Work Files and Nested Loops

Streaming
Entire Connection provides the option to transfer byte-streamed data that are non-record-oriented. A
byte-streamed data transfer is activated when a READ WORK FILE or WRITE WORK FILE statement
is coded with only one single operand of binary format.

Downloading and Uploading Binary Data

Binary data is usually object code or executable code that does not contain displayable or printable
characters. To prevent standard character translations being performed during data transfer, Natural and
Entire Connection use special methods for transferring binary data.

 To download binary data

1. Define a binary variable.

2. If the last block of downloaded data contains less data than the block size chosen, insert X’FF’ at
the position that marks the end of the binary data. (If you omit X’FF’ , the rest of the last block will
be filled with X00.)

 To upload binary data

1. Define a binary variable.

2. Remove X’FF from the last block. X’FF marks the end of the binary data.

Dynamic Variables in READ WORK FILE
If you define a dynamic variable of the format binary or alphanumeric as operand of a READ WORK
FILE statement, when processing the corresponding READ loop, any resize operation on this variable will
only be valid until the next READ is performed. While processing the READ, Natural resizes all dynamic
variables to the size they had when the work file was opened. This is required in the open process which
determines the record layout. The record layout is mandatory for processing the corresponding work file.
The record layout is valid until the next close of the work file occurs.

Exception: An internal resize cannot be performed for inner loops if nested READ loops are processed on
the same work file. See also the programming recommendations about nested loops below. If a dynamic
variable of size 0 is used as the only operand of a READ WORK FILE statement, Natural issues the error
NAT1500.

Nested READ Loops
Do not specify nested READ loops on one work file. The result of the inner loop(s) can be unpredictable if
the operands of the inner loop do not correspond to the operands of the outer loop. The reason is that all
records uploaded from the PC are processed in the format that was determined when the work file was
opened in the outermost loop.

Below are example programs that demonstrate the unpredictable results the inner loop(s) of nested READ
loops can have:

2

StreamingProcessing Work Files and Nested Loops

Example of Inner READ Loop

Example of READ Loop and CALLNAT

Example of Inner READ Loop

In the example program PCNESTED, during READ processing, another READ is performed:

/* PCNESTED
/*
DEFINE DATA LOCAL
 1 #REC1 (A) DYNAMIC
 1 #NUMBER (N10)
END-DEFINE
*
MOVE ALL ’TEST RECORD 1’ TO #REC1 UNTIL 100
READ WORK FILE 1 #REC1
 READ WORK FILE 1 #NUMBER
 DISPLAY #NUMBER
 END-WORK
END-WORK
END

Example of READ Loop and CALLNAT

In the example program PCMAIN and subprogram PCRSUB01, during READ loop processing, an external
object is called:

/* PCMAIN
/*
DEFINE DATA
LOCAL
 1 RECL (A2000)
 1 REDEFINE RECL
 2 RECNR (N4)
 1 CO (N4
END-DEFINE
*
WRITE WORK 1 COMMAND
 ’SET PCFILE 2 UP DATA C:/TSTPCAM/PCMAIN.TXT’
READ WORK 2 RECL
 DISPLAY RECL (AL=72)
 CALLNAT ’PCRSUB01’ RECL
END-WORK
END

Subprogram PCRSUB01:

/*Subprogram PCRSUB01
/*
DEFINE DATA
PARAMETER
 1 RECL (A2000)
LOCAL
 1 #CC1 (A20)
 1 #CC2 (N4)
*
END-DEFINE
READ WORK 2 RECL

3

Processing Work Files and Nested LoopsExample of Inner READ Loop

 #CC1 #CC2
 DISPLAY #CC1 #CC2
END-WORK
END

Subsequent READ Loops
If a READ loop is terminated by a conditional ESCAPE, close the work file explicitly with the CLOSE
WORK FILE statement so that the same work file can be processed in a subsequent READ in the same
object.

Exception: You can omit the CLOSE WORK FILE if you need not read the file again from the beginning,
and if the subsequent READ uses the same record layout as the preceding one.

Below is an example that demonstrates how to correctly code a program with two READ loops on one
work file.

Example of Loop with ESCAPE and CLOSE

In the example program PCESCAPE, the work file is explicitly closed after the first READ loop has been
terminated by ESCAPE BOTTOM so that the second READ loop must reopen the work file:

/*PCESCAPE
/*
DEFINE DATA
LOCAL
 1 #CC1 (A20)
 1 #CC2 (A40)
 1 #COUNTER (I2)
*
END-DEFINE
READ WORK 2 #CC1
 DISPLAY #CC2
 ADD 1 TO #COUNTER
 IF #COUNTER GE 3
 ESCAPE BOTTOM
 END-IF
END-WORK
CLOSE WORK FILE 2
*
READ WORK 2 #CC2
 DISPLAY #CC2
END-WORK
END

4

Subsequent READ LoopsProcessing Work Files and Nested Loops

	Processing Work Files and Nested Loops
	Work File Format and Attributes
	Maximum File Transfer Record Length for Natural Connection
	Streaming
	Downloading and Uploading Binary Data

	Dynamic Variables in READ WORK FILE
	 Nested READ Loops
	Example of Inner READ Loop
	Example of READ Loop and CALLNAT

	Subsequent READ Loops
	Example of Loop with ESCAPE and CLOSE

