
Unicode and Code Page Support in the
Natural Programming Language
This chapter covers the following topics:

Natural Data Format U for Unicode-Based Data

Statements

Logical Condition Criteria

System Variables

Large and Dynamic Variables

Session Parameters

Sample Programs

Natural Data Format U for Unicode-Based Data
In Natural, you can specify Unicode strings with the format U and U constants.

Format U
With format U, you can define data which holds Unicode strings. The Natural data format U is
internally UTF-16.

See also Format and Length of User-Defined Variables in the Programming Guide.

U Constants
You can define Unicode constants with the prefix "U". For example:

U’Äpfel’

The prefix "UH" can be used for defining Unicode constants in hexadecimal format. Four
hexadecimal digits represent one UTF-16 code unit as defined by the Unicode Standard. So the
overall length must be a multiple of four. For example, if you need the hexadecimal form of

U’Äpfel’

you need the UTF-16 code units for "Ä", "p", "f", "e" and "l" (which are "U+00C4", "U+0070",
"U+0066", "U+0065" and "U+006C") and you have to combine them to the following hexadecimal
string:

UH’00C4007000660065006C’

See also Unicode Constants in the Programming Guide.

The data format U is endian-dependant. This has to be considered when moving between the formats B
and U.

1

Unicode and Code Page Support in the Natural Programming LanguageUnicode and Code Page Support in the Natural Programming Language

U versus A

The advantage of the U format (as compared with the A format) is, that it can hold any combinations of
characters from different languages and that it does not depend on the default code page (value of the
system variable *CODEPAGE). Moreover, the U format makes it easier to share data between different
platforms; no more conversions (for example, from EBCDIC to ASCII) are necessary.

On the other hand, U format data often consumes more memory than A format data. For languages in
which most strings can be represented by single-byte encoding, U format will result in strings occupying
twice the space that was previously required. However, for East Asian languages, the memory
consumption will often not be higher.

Statements
Basically, U format can be used in most statements which allow A format. However, if a Natural object
name is given as an operand of a statement (for example, in the CALLNAT statement), U cannot be used
because Natural object names have A format. For information on a specific statement, see the Statements
documentation.

Basically, A and U format can be used together in one statement, however, it is recommended that you use
only one format within one statement, either A or U. If both formats are used together, all variables have
to be converted to a uniform format; this may lead to conversion errors.

The following statements are particularly affected when using Unicode:

MOVE NORMALIZED

MOVE ENCODED

EXAMINE

PARSE XML

REQUEST DOCUMENT

CALLNAT (RPC)

MOVE NORMALIZED

Normalization in Unicode: A process of removing alternate representations of equivalent sequences from
textual data in order to convert the data into a form that can be binary-compared for equivalence. The
Unicode Standard defines different normalization forms. The normalization form that results from the
canonical decomposition of a Unicode string, followed by the replacement of all decomposed sequences
by primary composites where possible, is called "Normalization Form Composed" (NFC).

Natural assumes that all Unicode data is in NFC format to assure that string operations can be performed
without partial truncation of a Unicode character. Natural conversion operations assure that the resulting
Unicode string is in NFC. If Unicode data is received from outside of Natural and it is not guaranteed that
the data has NFC format, the MOVE NORMALIZED statement can be applied.

2

StatementsUnicode and Code Page Support in the Natural Programming Language

Example:

Character Sequence NFC

ê (U+00EA) ê (U+00EA)

e (U+0065) + ^ (U+0302) ê (U+00EA)

Note:
Concatenating two or more strings in NFC format can result in not-NFC format.

MOVE ENCODED

An implicit conversion between Unicode and the default code page (value of the system variable
*CODEPAGE) is performed when moving strings from U to A or vice versa with the MOVE statement.

Furthermore, the MOVE ENCODED statement can be used for conversion between different code pages or
from any available code page to Unicode and vice versa. This can be helpful if data is coming from
outside of Natural and this data is coded in a code page which differs from the default code page. But even
for conversions between the default code page and Unicode, this statement can be used if you want to
obtain a potential conversion error with the GIVING clause; if CPCVERR is set to ON, the MOVE statement
will stop with a runtime error in this case.

If a character cannot be converted, it depends on the setting of the CPCVERR parameter whether a
substitution character is used for this character or whether the conversion fails. The default substitution
character (defined by ICU) for the conversion from Unicode to the default code page (CP) can be changed
with the profile parameter SUBCHAR.

This statement can also be used for conversion from U data into UTF-8 format.

Note:
If you convert data to a code page which differs from the default code page, it is recommended not to use
this data in I/O. I/O is only meaningful with the default code page.

EXAMINE

A "grapheme" is what a user normally thinks of as a character. In most cases, a Unicode code point is a
grapheme, however, a grapheme can also consist of several Unicode code points. For example, a sequence
of one base character and one or more combining characters is a grapheme.

Example: "a" (U+0061) + "." (U+0323) + "^" (U+0302) defines one grapheme which is displayed as
follows:

Note:
If a base/combining character sequence is normalized, this does not mean that the sequence is always
replaced by a pre-composed character, because not all characters are available in a pre-composed format.

A "supplementary code point" is a Unicode code point between "U+10000" and "U+10FFFF". A
supplementary code point is in UTF-16, represented by a surrogate pair which consists of two code units
where the first value of the pair is a "high-surrogate code unit", and the second is a "low-surrogate code
unit". Such characters are generally rare, but some are used, for example, as part of Chinese and Japanese

3

Unicode and Code Page Support in the Natural Programming LanguageMOVE ENCODED

personal names, and therefore support for these characters is commonly required for government
applications in East Asian countries.

The string handling statements such as EXAMINE and its SUBSTRING option work on UTF-16 code
units. It is the user’s responsibility that the code does not separate graphemes or surrogate pairs.

However, the clauses CHARPOSITION and CHARLENGTH of the EXAMINE statement (see Syntax 3 -
EXAMINE for Unicode Graphemes) can be used to ask for the start and length (in UTF-16 code units) of
graphemes. The result values can be used for SUBSTRING calls. With these clauses, it is possible to scan
a string grapheme by grapheme.

Example:

DEFINE DATA LOCAL
1 #UNICODE-STRING (U15)
1 #CODE-UNIT-INDEX (N4)
1 #CODE-UNIT-LEN (N4)
1 #GRAPHEME-NUMBER (N4)
END-DEFINE

MOVE U’ ’ TO #UNICODE-STRING

#GRAPHEME-NUMBER := 1

REPEAT
EXAMINE
 FULL VALUE OF #UNICODE-STRING
 FOR CHARPOSITION #GRAPHEME-NUMBER
 GIVING POSITION IN #CODE-UNIT-INDEX
 GIVING LENGTH IN #CODE-UNIT-LEN

 DISPLAY #UNICODE-STRING #GRAPHEME-NUMBER #CODE-UNIT-INDEX #CODE-UNIT-LEN

 #GRAPHEME-NUMBER := #GRAPHEME-NUMBER + 1
WHILE #CODE-UNIT-INDEX NE 0
END-REPEAT

END

The above example program provides the following output:

Page 1 05-12-15 09:33:49

#UNICODE-STRING #GRAPHEME-NUMBER #CODE-UNIT-INDEX #CODE-UNIT-LEN
--------------- ---------------- ---------------- --------------

 1 1 1

 2 2 2

 3 4 1

 4 5 3

 5 8 1

 6 9 3

 7 12 1

 8 13 3

 9 0 0

4

EXAMINEUnicode and Code Page Support in the Natural Programming Language

PARSE XML

XML documents can contain information within the XML document header about the encoding of the
document (for example, <?xml version="1.0" encoding="UTF-8" ?>). If an XML document
contains this information, the parsing of the XML document on Windows, UNIX and OpenVMS
platforms always includes a conversion of the code page given within the XML document header to the
default code page of Natural (value of the system variable *CODEPAGE), if the receiving field is not of
format U.

See the description of the PARSE XML statement for further information.

See also Statements for Internet and XML Access in the Programming Guide.

REQUEST DOCUMENT

Data transfer with the REQUEST DOCUMENT statement normally does not involve any code page
conversion. If you want to have the outgoing and/or incoming data encoded in a specific code page, you
can use the DATA ALL clause and/or the RETURN PAGE clause of the REQUEST DOCUMENT statement
to specify this.

See the description of the REQUEST DOCUMENT statement for further information.

See also Statements for Internet and XML Access in the Programming Guide.

CALLNAT (RPC)

Data exchange in Unicode format via RPC is supported. See the description of the CALLNAT statement.

If U data is sent from a platform with big endian encoding to a platform with little endian encoding or vice
versa, the encoding is adapted so that it conforms with the encoding on the receiving platform. For
example, when U data in little endian encoding arrives on a big endian platform, this data is converted to
big endian encoding before it is handed over to the program. When this data is sent back, it is converted
back to little endian encoding.

Logical Condition Criteria
In a logical condition criterion, Unicode operands can be used together with alphanumeric and binary
operands. If not all operands are Unicode operands (format U), the second and all following operands are
converted to the format of the first operand. If a binary operand (format B) is specified as the second or a
following operand, the length of the binary operand must be even; the binary operand is assumed to
contain Unicode code points.

If the first operand is a Unicode operand (format U) and the comparison is therefore performed as a
Unicode comparison, the ICU collation algorithm is used. The ICU algorithm does not perform a plain
binary comparison. For example,

some code points such as "U+0000" are ignored during the comparison process,

combined characters are considered as being equal to the equivalent single code point (for example,
the German character "ä" represented by "U+00E4" and the combination of the code points
"U+0061" and "U+0308" are considered as being equal by ICU).

5

Unicode and Code Page Support in the Natural Programming LanguageLogical Condition Criteria

Note:
Comparing an alphanumeric and a Unicode operand can deliver different results, depending on the
sequence of the fields.

See also Logical Condition Criteria in the Programming Guide.

System Variables

*CODEPAGE

The system variable *CODEPAGE is used to return the IANA name of the default code page, that is, the
code page used for conversions between Unicode and code page format.

*LOCALE

The system variable *LOCALE contains the language and country of the current locale.

Large and Dynamic Variables
U format can be used for large and dynamic variables. For dynamic U variables, *LENGTH returns the
number of UTF-16 code units.

See also Introduction to Dynamic Variables and Fields in the Programming Guide.

Session Parameters
The following session parameters are available:

Parameter Description

DL Specifies the display length for a field of format A or U. See also Display Length for
Output - DL Parameter in the Programming Guide.

EMU Edit mask in Unicode.

ICU Insertion character in Unicode.

LCU Leading characters in Unicode.

TCU Trailing characters in Unicode.

DL versus AL

As long as Natural was not Unicode-enabled, the length of an alphanumeric field was always identical to
the number of columns needed for displaying the field (called number of display columns). This was even
true for the East Asian languages which use DBCS code pages: an A format field can hold only half the
characters (for example, A10 results in A5).

Example:

6

System VariablesUnicode and Code Page Support in the Natural Programming Language

DEFINE DATA LOCAL
1 #A8 (A8)
END-DEFINE
#A8 := ’computer’
WRITE #A8

#A8 := ’ ’
WRITE #A8
END

The above code results in the following output:

Page 1 ...

computer

With U format fields, the length of a field and the number of display columns is no longer identical. U
characters can have narrow width (for example, Latin characters), wide width (for example, Chinese
characters) or no width (for example, combining characters). Therefore, it is totally unknown how many
display columns a U field needs; this depends on the contents of the field. Natural cannot automatically
decide how many columns are to be reserved on the screen: if the maximum size is assumed, Latin output
will have large gaps, and if the minimum size is assumed, Chinese output cannot be displayed totally.
Therefore, the Natural programmer has to define the display width of a field; this is done with the DL
parameter. The AL parameter cannot be used for this purpose, because it cuts away the part of the field
which exceeds the defined length. But we do not want to cut any characters from the U field; we only
want to define the start position of the following field.

Example:

DEFINE DATA LOCAL
1 #U8 (U8)
1 #U4 (U4)
END-DEFINE
#U8 := ’computer’
WRITE #U8

#U4 := U’ ’
WRITE #U4 (DL=8)
END

The above code results in the same output as above:

Page 1 ...

computer

On Windows, either locally with the output window or in a remote development environment with the
Natural Web I/O Interface client, it is possible to scroll in a field where the defined value for the DL
parameter is smaller than the real display width of the field.

EMU, ICU, LCU, TCU versus EM, IC, LC, TC

The parameters EMU, ICU, LCU and TCU allow using characters which are not included in the default
code page. They are stored in Unicode format in the generated program. These parameters can be used
with all field formats.

7

Unicode and Code Page Support in the Natural Programming LanguageEMU, ICU, LCU, TCU versus EM, IC, LC, TC

The parameters EM, IC , LC and TC can also be used with U format fields. These parameters may also be
useful if characters which are contained in the default code page have different encodings in other code
pages. For example, the Euro sign (€) has the code point "0x80" in the "windows-1252" (Latin 1) code
page, but the code point "0x88" in the "windows-1251" (Cyrillic) code page. Thus, using a Unicode
parameter will assure that the Euro sign is always displayed correctly, no matter what code page is
installed on the PC.

Example for EMU:

DEFINE DATA
LOCAL
 01 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 02 FIRST-NAME
 02 NAME
 02 SALARY (1)
END-DEFINE
*
 READ (6) EMPLOYEES-VIEW
 DISPLAY NAME FIRST-NAME SALARY(1) (EMU=999,999)
 END-READ
*
END

The above code results in the following output:

Page 1 05-12-15 11:45:36

 NAME FIRST-NAME ANNUAL
 SALARY
-------------------- -------------------- --------

ADAM SIMONE 159,980
MORENO HUMBERTO 165,810
BLOND ALEXANDRE 172,000
MAIZIERE ELISABETH 166,900
CAOUDAL ALBERT 167,350
VERDIE BERNARD 170,100

Sample Programs
The library SYSEXPG contains sample programs for Unicode and code page support in Natural:

UNICOX01 lists all Unicode characters.

UNICOX02 converts Unicode characters to code points and vice versa.

CODEPX01 lists all code pages, whether the code page is supported in Natural and which encoding it
uses. For all supported code pages, it offers services to list the characters of the code page and to
convert a string from the code page into its hexadecimal representation and vice versa.

CODEPXL1 lists all characters of any 1-byte code page.

CODEPXL2 lists all characters of any 2-byte code page.

8

Sample ProgramsUnicode and Code Page Support in the Natural Programming Language

CODEPXC1 converts a string from any code page into its hexadecimal representation and vice versa.

9

Unicode and Code Page Support in the Natural Programming LanguageSample Programs

	Unicode and Code Page Support in the Natural Programming Language
	 Natural Data Format U for Unicode-Based Data
	U versus A

	Statements
	MOVE NORMALIZED
	MOVE ENCODED
	EXAMINE
	PARSE XML
	REQUEST DOCUMENT
	CALLNAT (RPC)

	Logical Condition Criteria
	System Variables
	*CODEPAGE
	*LOCALE

	Large and Dynamic Variables
	Session Parameters
	DL versus AL
	EMU, ICU, LCU, TCU versus EM, IC, LC, TC

	Sample Programs

