
Basic Syntactical Items
This chapter describes basic syntactical items, which are not explained any further within the individual
SQL statement descriptions.

This chapter covers the following topics:

Constants

Names

Parameters

Natural Formats and SQL Data Types

Constants
The constants used in the syntactical descriptions of the Natural SQL statements are:

constant

integer

These items are described below.

constant The item constant always refers to a Natural constant.

integer The item integer always represents an integer constant.

Note:
If the character for decimal point notation (session parameter DC) is set to a comma (,), any specified
numeric constant must not be followed directly by a comma, but must be separated from it by a blank
character; otherwise an error or wrong results occur.

Invalid Syntax: Valid Syntax:

VALUES (1,’A’) leads to a syntax error
VALUES (1,2,3) leads to wrong results

VALUES (1 ,’A’)
VALUES (1 ,2 ,3)

Names
The names used in the syntactical descriptions of the Natural SQL statements are:

authorization-identifier

ddm-name

view-name

1

Basic Syntactical ItemsBasic Syntactical Items

column-name

table-name

correlation-name

These items are described below.

authorization-identifier The item authorization-identifier, which is also
called creator name, is used to qualify database tables and views.
See also below.

ddm-name The item ddm-name always refers to the name of a Natural data
definition module (DDM) as created with the Natural utility
SYSDDM.

view-name The item view-name always refers to the name of a Natural
view as defined in the DEFINE DATA statement.

column-name The item column-name always refers to the name of a physical
database column.

2

 NamesBasic Syntactical Items

table-name Syntax:

[location-name.][authorization-identifier.] ddm-name

The item table-name in this section is used to reference both
SQL base tables and SQL viewed tables.

ddm-name

A Natural data definition module (DDM) must have been created
for a table to be used. The name of such a DDM must be the
same as the corresponding database table name or view name.

location-name

This optional item specifies the location of the table to be
accessed.

authorization-identifier

There are two ways of specifying the
authorization-identifier of a database table or view.

One way corresponds to the standard SQL syntax, in which the
authorization-identifier is separated from the table
name by a period. Using this form, the name of the DDM must be
the same as the name of the database table without the
authorization-identifier.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF PERSONNEL
 02 NAME
 02 AGE
END-DEFINE
SELECT *
 INTO VIEW PERS
 FROM SQL. PERSONNEL
...

Alternatively, you can define the
authorization-identifier as part of the DDM name.
The DDM name then consists of the
authorization-identifier and the database table name
separated by a hyphen (-). The hyphen between the
authorization-identifier and the table name is
converted internally into a period.

Note:
This form of DDM name can also be used with a FIND or READ
statement, because it conforms to the DDM naming conventions
applicable to these statements.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
END-DEFINE
SELECT *
 INTO VIEW PERS
 FROM SQL-PERSONNEL
...

If the authorization-identifier has been specified
neither explicitly nor within the DDM name, it is determined by
the SQL database system.

In addition to being used in SELECT statements, table names can
also be specified in DELETE, INSERT and UPDATE statements.

Examples:

...
DELETE FROM SQL.PERSONNEL
 WHERE AGE IS NULL
 ...

...
INSERT INTO SQL.PERSONNEL (NAME,AGE)
 VALUES (’ADKINSON’,35)
...

...
UPDATE SQL.PERSONNEL
SET SALARY = SALARY * 1.1
WHERE AGE > 30
...

3

Basic Syntactical Items Names

correlation-name The item correlation-name represents an alias name for a
table-name. It can be used to qualify column names; it also
serves to implicitly qualify fields in a Natural view when used
with the INTO clause of the SELECT statement.

Example:

DEFINE DATA LOCAL
01 PERS-NAME (A20)
01 EMPL-NAME (A20)
01 AGE (I2)
END-DEFINE
...
SELECT X.NAME , Y.NAME , X.AGE
 INTO PERS-NAME , EMPL-NAME , AGE
 FROM SQL-PERSONNEL X , SQL-EMPLOYEES Y
 WHERE X.AGE = Y.AGE
END-SELECT
...

Although in most cases the use of correlation-names is not
necessary, they may help to make the statement clearer.

Parameters
parameter

[:] host-variable [INDICATOR [:] host-variable] [LINDICATOR [:] host-variable]

The syntax items are described below:

See also Natural
Formats and SQL
Data Types.

host-variable A host-variable is a Natural user-defined variable (no system variable)
which is referenced in an SQL statement. It can be either an individual field or
defined as part of a Natural view.

When defined as a receiving field (for example, in the INTO clause), a
host-variable identifies a variable to which a value is assigned by the
database system.

When defined as a sending field (for example, in the WHERE clause), a
host-variable specifies a value to be passed from the program to the
database system.

See also Natural Formats and SQL Data Types.

[:] Colon:

To comply with SQL standards, a host-variable can also be prefixed by a colon
(:). When used with flexible SQL, host-variables must be qualified by colons.

Example:

SELECT NAME INTO :#NAME FROM PERSONNEL
WHERE AGE = :VALUE

The colon is always required if the variable name is identical to an SQL
reserved word. In a context in which either a host-variable or a column can be
referenced, the use of a name without a colon is interpreted as a reference to a
column.

4

 ParametersBasic Syntactical Items

INDICATOR INDICATOR Clause:

The INDICATOR clause is an optional feature to distinguish between a "null"
value (that is, no value at all) and the actual values 0 or "blank".

When specified with a receiving host-variable (target field), the
INDICATOR host-variable (null indicator field) serves to find out
whether a column to be retrieved is "null".

Example:

DEFINE DATA LOCAL
1 NAME (A20)
1 NAMEIND (I2)
END-DEFINE
SELECT *
 INTO NAME INDICATOR NAMEIND
...

In this example, NAME represents the receiving host-variable and
NAMEIND the null indicator field.

If a null indicator field has been specified and the column to be retrieved is
null, the value of the null indicator field is negative and the target field is set to
0 or "blank" depending on its data type. Otherwise, the value of the null
indicator field is greater than or equal to 0.

When specified with a sending host-variable (source field), the null
indicator field is used to designate a null value for this field.

Example:

DEFINE DATA LOCAL
1 NAME (A20)
1 NAMEIND (I2)
UPDATE ...
SET NAME = :NAME INDICATOR :NAMEIND
WHERE ...

In this example, :NAME represents the sending host-variable and :NAMEIND
the null indicator field. By entering a negative value as input for the null
indicator field, a null value is assigned to a database column.

An INDICATOR host-variable is of format/length I2.

5

Basic Syntactical Items Parameters

LINDICATOR LINDICATOR Clause:

The LINDICATOR clause is an optional feature which is used to support
columns of varying lengths, for example, VARCHAR or LONG VARCHAR type.

When specified with a receiving host-variable (target field), the
LINDICATOR host-variable (length indicator field) contains the
number of characters actually returned by the database into the target field. The
target field is always padded with blanks.

If the VARCHAR or LONG VARCHAR column contains more characters than fit
in the target field, the length indicator field is set to the length actually returned
(that is, the length of the target field) and the null indicator field (if specified)
is set to the total length of this column.

Example

DEFINE DATA LOCAL
1 ADDRESSLIND (I2)
1 ADDRESS (A50/1:6)
END-DEFINE
SELECT *
 INTO :ADDRESS(*) LINDICATOR :ADDRESSLIND
 ...

In this example, :ADDRESS(*) represents the target field which receives the
first 300 bytes (if available) of the addressed VARCHAR or LONG VARCHAR
column, and :ADDRESSLIND represents the length indicator field which
contains the number of characters actually returned.

When specified with a sending host-variable (source field), the length
indicator field specifies the number of characters of the source field which are
to be passed to the database.

Example:

DEFINE DATA LOCAL
1 NAMELIND (I2)
1 NAME (A20)
1 AGE (I2)
END-DEFINE
MOVE 4 TO NAMELIND
MOVE ’ABC%’ TO NAME
SELECT AGE
 INTO :AGE
WHERE NAME LIKE :NAME LINDICATOR :NAMELIND
 ...

A LINDICATOR host-variable is of format/length I2 or I4. For
performance reasons, it should be specified immediately before the
corresponding target or source field; otherwise, the field is copied to the
temporary storage at runtime.

If the LINDICATOR field is defined as an I2 field, the SQL data type
VARCHAR is used for sending or receiving the corresponding column. If the
LINDICATOR host-variable is specified as I4, a large object data type
(CLOB/BLOB) is used.

If the field is defined as DYNAMIC, the column is read in an internal loop up to
its real length. The LINDICATOR field and *LENGTH are set to this length. In
case of a fixed length field, the column is read up to the defined length. In both
cases, the field is written up to the value defined in the LINDICATOR field.

Let a fixed length field be defined with a LINDICATOR field specified as I2. If
the VARCHAR column contains more characters than fit into this fixed length
field, the length indicator field is set to the length actually returned and the null
indicator field (if specified) is set to the total length of this column (retrieval).
This is not possible for fixed length fields >= 32 KB (length does not fit into
null indicator field).

6

 ParametersBasic Syntactical Items

Natural Formats and SQL Data Types
The Natural format of a host-variable is converted to an SQL data type according to the following table:

Natural Format/Length SQL Data Type

An CHAR (n)

B2 SMALLINT

B4 INT

Bn; n not equal to 2 or 4 CHAR (n)

F4 REAL

F8 DOUBLE PRECISION

I2 SMALLINT

I4 INT

Nnn.m NUMERIC (nn+m,m)

Pnn.m NUMERIC (nn+m,m)

T TIME

D DATE

Gn; for view fields only GRAPHIC (n)

Natural does not check whether the converted SQL data type is compatible to the database column. Except
for fields of format N, no data conversion is done.

In addition, the following extensions to standard Natural formats are available with Natural SQL:

A one-dimensional array of format A can be used to support alphanumeric columns longer than 253
bytes. This array must be defined beginning with index 1 and can only be referenced by using an
asterisk (*) as the index. The corresponding SQL data type is CHAR (n) , where n is the total
number of bytes in the array.

A special host variable indicated by the keyword LINDICATOR can be used to support
variable-length columns. The corresponding SQL data type is VARCHAR (n) ; see also the
LINDICATOR clause.

The Natural formats date (D) and time (T) can be used with Entire Access and will be converted into
the corresponding database-dependent formats (see the Entire Access documentation for details)

A sending field specified as one-dimensional array without a LINDICATOR field is converted into the
SQL data type VARCHAR. The length is the total number of bytes in the array, not taking into account
trailing blanks.

7

Basic Syntactical ItemsNatural Formats and SQL Data Types

	Basic Syntactical Items
	Constants
	 Names
	 Parameters
	Natural Formats and SQL Data Types

