
User-Defined Functions
This chapter covers the following topics:

Introduction to User-Defined Functions

Difference between Function Call and Subprogram Call

Function Definition (DEFINE FUNCTION)

Prototype Definition (DEFINE PROTOTYPE)

Symbolic and Variable Function Call

Automatic/Implicit Prototype Definition (APT)

Prototype Cast (PT Clause)

Intermediate Result for Return Value (IR Clause)

Combinations of Possible Prototype Definitions

Recursive Function Call

Behavior of Functions in Statements and Expressions

Usage of Functions as Statements

Introduction to User-Defined Functions
Functions, as do subprograms, give you the possibility to receive data, to change it and to give the results
to the calling module. The advantage of using functions over subprograms is that function calls can be
used directly in statements and expressions without the need for additional temporary variables.

Normally, depending on the parameters that are given to the function, the result is produced in the
function and is returned to the calling object. If other values are to be returned to the calling module, this
can be done by using the parameters; see Subprogram.

Once the function code has been completely executed, control is given back to the calling object and the
program continues with the statement that comes after the function call.

For further information, see also:

Natural object type Function

Function Call

Natural statements DEFINE FUNCTION, DEFINE PROTOTYPE

1

User-Defined Functions User-Defined Functions

Difference between Function Call and Subprogram Call
The following two examples show the difference between using function calls and subprogram calls.

Example of Using a Function Call:

The following example comprises a program object that uses a function call, a function object containing
a function definition created with a DEFINE FUNCTION statement, and a copycode object created with a
DEFINE PROTOTYPE statement.

Program Object:

/* Excerpt from a Natural program using a function call
INCLUDE C#ADD
WRITE #ADD(< 2,3 >) /* function call; no temporary variable necessary
END

Function Object:

/* Natural function definition
DEFINE FUNCTION #ADD
 RETURNS (I4) BY VALUE
 DEFINE DATA PARAMETER
 1 #SUMMAND1 (I4) BY VALUE
 1 #SUMMAND2 (I4) BY VALUE
 END-DEFINE

 #ADD := #SUMMAND1 + #SUMMAND2
END-FUNCTION
END

Copycode Object (for example, C#ADD):

/* Natural copycode containing prototype
DEFINE PROTOTYPE #ADD
 RETURNS (I4)
 DEFINE DATA PARAMETER
 1 #SUMMAND1 (I4) BY VALUE
 1 #SUMMAND2 (I4) BY VALUE
 END-DEFINE
END-PROTOTYPE

If you want to achieve the same functionality by using a subprogram, you must use temporary variables.

Example of Using a Subprogram:

The following example comprises a program object that calls a subprogram object, involving the use of a
temporary variable.

Program Object:

2

 Difference between Function Call and Subprogram CallUser-Defined Functions

/* Natural program using a subprogram
DEFINE DATA LOCAL
1 #RESULT (I4) INIT <0> /* temporary variable
END-DEFINE

CALLNAT ’N#ADD’ USING #RESULT 2 3 /* result is stored into #RESULT
WRITE #RESULT /* print out the result of the subprogram
END

Subprogram Object (for example, N#ADD):

/* Natural program using a subprogram
DEFINE DATA PARAMETER
1 #RETURN (I4) BY VALUE RESULT
1 #SUMMAND1 (I4) BY VALUE
1 #SUMMAND2 (I4) BY VALUE
END-DEFINE

#RETURN := #SUMMAND1 + #SUMMAND2
END

Function Definition (DEFINE FUNCTION)
The function definition contains the Natural code to be executed when the function is called. As with
subprograms, you need to create a Natural object, in this case, of type "Function" which contains the
function definition. The function definition is created using the Natural statement DEFINE FUNCTION.

The function call itself can be in any object type which contains executable code.

Prototype Definition (DEFINE PROTOTYPE)
To be able to compile function calls, Natural needs information about the format-length/array-definition
of the return value. This information is then made available to the compiler in the prototype definition.
This definition is created using the Natural statement DEFINE PROTOTYPE. You can also include the
definition of the parameter to be passed back, which is then checked at compile time.

Since Natural makes the connection between "calling" and "called" objects at runtime, and not before, the
computer does not know with which type of a function return value it is dealing at compile time. This is
due to the fact that the object containing the function does not necessarily have to exist (at compile time).
It is for this reason that the prototype definition is created, so that the format-length/array-definition can
be generated into the generated program at compile time.

It is important to remember that a prototype definition never contains executable code. A prototype
definition simply contains the following information about the function call: the
format/length/array-definition of the return value or the parameter being passed back.

Symbolic and Variable Function Call
To define a variable function call, it is always necessary to use a DEFINE PROTOTYPE VARIABLE
statement. Otherwise, the function call is assumed to be an implicit symbolic function call.

3

User-Defined Functions Function Definition (DEFINE FUNCTION)

See the section Function Call for more details about this topic.

Automatic/Implicit Prototype Definition (APT)
If neither an explicit prototype definition (EPT) nor a PT clause exists, a search for the prototype
definition takes place in the generated program. For further information, see Combinations of Possible
Prototype Definitions below.

Prototype Cast (PT Clause)
In order to find the corresponding prototype of a specific function, Natural searches for a prototype which
bears the name of the function. If this is not the case, it is assumed that the function call is symbolic. In
this case, the function "signature" must be defined by using the keyword PT= in the function call.

Intermediate Result for Return Value (IR Clause)
This clause enables you to specify the format/length of the return value for a function call without using
an explicit or implicit prototype definition, that is, it enables the explicit specification of an intermediate
result. For further information, see Function Call, intermediate-result-definition.

Combinations of Possible Prototype Definitions
The following table explains the effects on the prototype definition according to various syntax
combinations that are possible when using the DEFINE PROTOTYPE statement and/or the clauses
available in the function call. The following possibilities are available in order to define parts of a function
prototype taking effect only on the function call to which they belong:

Explicit DEFINE PROTOTYPE Definition (EPT)
Can decide on symbolic/variable function call; parameter definition; return value definition.

Prototype Cast (PT Clause)
Can decide on parameter definition; return value definition.

Intermediate Result for Return Value (IR Clause)
Can decide on return value definition.

4

Automatic/Implicit Prototype Definition (APT)User-Defined Functions

Case Explicit prototype
definition in DEFINE
PROTOTYPE (EPT)

PT clause in
function call

(PT)

IR clause in
function call

(IR)

 Automatic
reading-in of

prototype definition
from GP (APT)

Prototype
behavior

1 x x x - SV(EPT),
PS(PT),
R(IR)

2 - x x - S, PS(PT),
R(IR)

3 x - x - SV(EPT),
PS(EPT),

R(IR)

4 - - x x S, PS(APT),
R(IR)

5 x x - - SV (EPT),
PS(PT),
R(PT)

6 - x - - S, PS(PT),
R(IR)

7 x - - - SV(EPT),
PS(EPT),
R(EPT)

8 - - - x S, PS(APT),
R(APT)

Where:

5

User-Defined FunctionsCombinations of Possible Prototype Definitions

EPT Explicit DEFINE PROTOTYPE statement.

PT Prototype Cast (PT clause).

IR Intermediate Result for Return Value (IR clause).

APT Automatic Prototype Definition via external generated program (GP).

S Symbolic function call.

V Variable function call.

SV(EPT) Explicit prototype definition decides whether a symbolic or variable function call is
performed.

R(IR) The return variable (R) is defined by the IR clause in the function call.

R(PT) The return variable (R) is defined by the PT clause in the function call.

R(EPT) The return variable (R) is defined by the explicit DEFINE PROTOTYPE statement.

PS(PT) The parameter signature (PS) (that is, the parameter definition, without return value
definition) is defined by the PT clause in the function call.

PS(EPT) The parameter signature (PS) (that is, the parameter definition, without return value
definition) is defined by the explicit DEFINE PROTOTYPE statement.

PS(APT) The parameter signature (PS) is defined automatically by reading in the prototype
definition from the generated program (GP).

R(APT) The return variable (R) is defined by the automatic prototype definition via external
generated program (GP).

For example, the behavior of Case1 shown in the table above:

What is the behavior if an explicit DEFINE PROTOTYPE statement (EPT) is used, and in the function
call, the PT and IR clauses are defined?

The EPT definition decides whether a symbolic or variable function call is performed. The variable
function call is assumed when DEFINE PROTOTYPE VARIABLE has been defined previously. The
parameter signature (that is, the format/length definition of all parameters without return value definition)
is defined by the PT clause, and the format/length of the return value is defined by the IR clause in the
function call. In this case, no automatic prototype definition (APT) will be started.

In conclusion, the following general rules can be derived from the above cases:

In case of variable function calls, there must always be an explicit prototype definition (EPT) for the
call.

The PT clause does not decide whether it is a symbolic or variable function call.

The definitions in the PT clause overwrite the EPT definitions for parameters and return value.

The definitions in the IR clause overwrite the return value definition.

If neither an EPT nor a PT clause exists, a search for the prototype definition takes place in the
generated program (automatic prototype definition).

6

Combinations of Possible Prototype DefinitionsUser-Defined Functions

Recursive Function Call
If a function is to be called recursively, the function prototype must be contained in the function
definition, or be inserted by means of an INCLUDE file.

Example:

Function Object:

/* Function definition for calculation of the math. factorial
DEFINE FUNCTION #FACT
 RETURNS (I4) BY VALUE
 DEFINE DATA PARAMETER
 1 #PARA (I4) BY VALUE
 LOCAL
 1 #TEMP (I4)
 END-DEFINE

 /* Prototype definition is necessary
 INCLUDE C#FACT

 /* Program code
 IF #PARA=0
 #FACT := 1
 ELSE
 #TEMP := #PARA - 1
 #FACT := #PARA * #FACT(< #TEMP >)
 END-IF

END-FUNCTION
END

Copycode Object (for example, named C#FACT):

/* Prototype definition is necessary
DEFINE PROTOTYPE #FACT
 RETURNS (I4)
 DEFINE DATA PARAMETER
 1 #PARA (I4) BY VALUE
 END-DEFINE
END-PROTOTYPE

Program Object:

/* Prototype definition
INCLUDE C#FACT

/* function call
WRITE #FACT(<12>)
END

Behavior of Functions in Statements and Expressions
Instead of operands, function calls can be used directly in statements or expressions. However, this is only
allowed in places where operands cannot be modified.

7

User-Defined Functions Recursive Function Call

All function calls are executed according to their syntactical sequence which is analyzed at compile time.
The results of the function calls are saved in internal temporary variables and passed to the statement or
expression.

This fixed sequence makes it possible to allow and execute standard output in functions, without, for
example, unwillingly influencing the output of a statement.

Example:

Program:

/* Natural program using a function call
INCLUDE CPRINT
PRINT ’before’ #PRINT(<>) ’after’
END

Function Object:

/* Natural function definition
/* function returns integer value 10
DEFINE FUNCTION #PRINT
 RETURNS (I4)
 WRITE ’#PRINT’
 #PRINT := 10
END-FUNCTION
END

Copycode (for example, CPRINT):

DEFINE PROTOTYPE #PRINT END-PROTOTYPE

The following is the result which is then sent to the standard output:

#PRINT
before 10 after

Usage of Functions as Statements
Functions can also be called as statements independently from statements and expressions. In this case,
the return value - assuming it has been defined - is not taken into account.

If, however, an independent function is declared after an optional operand list, the operand list must be
followed by a semicolon to make it clear that the function call is not a part of the operand list.

Example:

Program Object:

/* Natural program using a function call
DEFINE DATA LOCAL
1 #A (I4) INIT <1>
1 #B (I4) INIT <2>
END-DEFINE

INCLUDE CPROTO

WRITE #A #B

8

 Usage of Functions as StatementsUser-Defined Functions

#PRINT_ADD(< 2,3 >) /* function call belongs to operand list just in front of it

WRITE ’******’

WRITE #A #B; /* semicolon separates operand list and function call
#PRINT_ADD(< 2,3 >) /* function call doesn’t belong to the operand list
END

Function Object:

/* Natural function definition
DEFINE FUNCTION #PRINT_ADD
 RETURNS (I4) BY VALUE
 DEFINE DATA PARAMETER
 1 #SUMMAND1 (I4) BY VALUE
 1 #SUMMAND2 (I4) BY VALUE
 END-DEFINE

 #PRINT_ADD := #SUMMAND1 + #SUMMAND2
 PRINT ’#PRINT_ADD =’ #PRINT_ADD
END-FUNCTION
END

Copycode Object (for example, named CPROTO):

/* Natural copycode containing prototype
DEFINE PROTOTYPE #PRINT_ADD
 RETURNS (I4)
 DEFINE DATA PARAMETER
 1 #SUMMAND1 (I4) BY VALUE
 1 #SUMMAND2 (I4) BY VALUE
 END-DEFINE
END-PROTOTYPE

9

User-Defined Functions Usage of Functions as Statements

	 User-Defined Functions
	Introduction to User-Defined Functions
	 Difference between Function Call and Subprogram Call
	
	Example of Using a Function Call:
	Example of Using a Subprogram:

	 Function Definition (DEFINE FUNCTION)
	Prototype Definition (DEFINE PROTOTYPE)
	 Symbolic and Variable Function Call
	Automatic/Implicit Prototype Definition (APT)
	Prototype Cast (PT Clause)
	Intermediate Result for Return Value (IR Clause)
	Combinations of Possible Prototype Definitions
	 Recursive Function Call
	
	Example:

	 Behavior of Functions in Statements and Expressions
	
	Example:

	 Usage of Functions as Statements
	
	Example:

