
Performance Optimization with Containers
Containers internally use HTML table rendering for arranging their content: inside a container there are
rows, inside the rows there are columns and inside the columns there are controls.

HTML table rendering is very powerful: if you have already written pages on your own using an HTML
editor, then you know that you can size the container in the following way:

<table width=’100%’>
<tr>
 <td width=’100’>Hallo</td>
 <td width=’100%’>Hello world!</td>
 <td></td>
</tr>
</table>

During rendering time, the browser tries to optimize the table rendering. The browser knows that inside
the definitions there is one column that wants to occupy the whole width, one column that wants to have a
width of 100 pixels and one column that holds an image. Consequently, it somehow renders the table so
that the best result is rendered. This optimization is quite expensive - especially if you have tables nested
in tables nested in tables etc.

In nested table scenarios, every little change in one table can have the consequence that the whole HTML
table is optimized again.

graphics/image056.png

Since the optimization now happens on several levels, the browser uses a lot of resources to do so. This
can be noticed especially if you render pages with a height of 100%: the page is not built by appending
one information after the other - but you tell that the controls occupy a certain percentage based height of
the whole page.

How can you find that out? If you have got the feeling that a page behaves in a slow way and you are not
sure whether it is your server side application or the browser side rendering, then there are two ways to
easily find out:

Look into the Application Designer log file. Each server side request is recorded with its
consumption of milliseconds on server side.

Resize the page in the browser: if this is not fast but takes time, then this is an indicator for bad
rendering performance - or in other words: for a lot of optimization that is happening behind the
curtain.

But: there are nice ways to speed up the rendering - and to build optimization limits for the browser.
Internally, the ways are quite simple, but the consequence can be dramatic.

Most containers support a fixlayout property: the possible values are "true" or "false" - "false" being
the default. When switching the fixlayout property to "true", then the content area of the container is
internally arranged in such a way that the area always determines its size from its own width and height
specification. The browser does not look into the contents of the area in order to try to optimize the size of
the area, but always follows the width and height that you define.

1

Performance Optimization with ContainersPerformance Optimization with Containers

What happens if the controls inside your container area do not fit into the area? What does not fit inside
the container area, is cut.

Setting fixlayout to "true" means that the browser only optimizes table rendering inside the container
- but never outside - because the container has a certain size:

graphics/image057.png

Follow the rules:

Every time the size of a container area is not determined by its content but is explicitly set by you,
switch the fixlayout flag to "true".

The flag only has consequences if you define the width and height of the corresponding container. In
cases in which the width is defined by the control (for example, ROWAREA always has a width of
100%), you have to define the height. The height is either defined by a corresponding height
property or by a takefullheight property.

2

Performance Optimization with ContainersPerformance Optimization with Containers

	Performance Optimization with Containers

