
Creating the Natural Code
This chapter contains the following exercises:

Importing the Adapter into Natural

Creating the Main Program

Testing the Completed Application

Importing the Adapter into Natural
You will now import the generated adapter into Natural to make it available to your application.

When you saved your page layout, Application Designer created the Natural adapter HELLO-A for your
page. This is the name that you have specified earlier in this tutorial. Your application program will use
the adapter to communicate with the page. The adapter has been generated into the following directory:

<installdir>/cisnatfirst/nat

Note:
The location of <installdir> depends on your application server environment.

 To import the adapter

1. Import the adapter source into the Natural library CISHELLO which you have created earlier in this
tutorial. To do so, use either drag-and-drop or the import function of the SYSMAIN utility.

The adapter code looks as follows:

* PAGE1: PROTOTYPE --- CREATED BY Application Designer --- /*<RO>>
* PROCESS PAGE USING ’XXXXXXXX’ WITH
* NAME RESULT
DEFINE DATA PARAMETER
1 NAME (U) DYNAMIC
1 RESULT (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE U’/cisnatfirst/helloworld’ WITH
PARAMETERS
 NAME U’name’
 VALUE NAME
 NAME U’result’
 VALUE RESULT
END-PARAMETERS
*
* TODO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
* VALUE U’nat:page.end’
* /* Page closed.
* IGNORE
* VALUE U’sayHello’
* /* TODO: Implement event code.
* PROCESS PAGE UPDATE FULL

1

Creating the Natural CodeCreating the Natural Code

* NONE VALUE
* /* Unhandled events.
* PROCESS PAGE UPDATE
* END-DECIDE
/*/*) END-HANDLER
*
END /*<<RO>

2. Stow the adapter.

Creating the Main Program
You will now create the main program which uses the adapter to display the page and which handles its
events. The name of the program will be HELLO-P and you will store it in the library CISHELLO.

This description assumes that you are working with Natural Studio.

 To create the main program

1. Make sure that the library CISHELLO is selected.

2. From the Object menu, choose New > Program.

3. Enter a DEFINE DATA statement:

DEFINE DATA LOCAL
END-DEFINE

4. Import the adapter interface into the DEFINE DATA statement:

1. Place the cursor in END-DEFINE.

2. From the Program menu, choose Import.

3. In the resulting dialog box, select the Adapter option button.

4. Select the object HELLO-A.

5. Select all importable data fields.

6. Choose the Import button.

The result is your completed DEFINE DATA statement:

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE

5. Enter the PROCESS PAGE statement. The statement uses the page adapter to display the page in the
web browser and to pass data to the controls on the page:

2

Creating the Main ProgramCreating the Natural Code

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING ’HELLO-A’
WITH NAME RESULT

6. Initialize the page data. In the page layout definition, the property name has been bound to the
FIELD control with the label Your Name. For the property name, a parameter NAME has been
generated into the parameter data area of the adapter. Thus, in order to preset the FIELD control, we
will preset the variable NAME with the value "Application Designer".

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := ’Application Designer’
PROCESS PAGE USING ’HELLO-A’
WITH NAME RESULT

7. Handle the events that can occur on the page. A template for the event handler code has been
generated as a comment block into the page adapter HELLO-A. List the adapter HELLO-A and copy
this comment block into your main program and terminate the program with an END statement:

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := ’Application Designer’
PROCESS PAGE USING ’HELLO-A’
WITH NAME RESULT
*
DECIDE ON FIRST *PAGE-EVENT
 VALUE ’nat:page.end’
 /* Page closed.
 IGNORE
 VALUE ’sayHello’
 /* TODO: Implement event code.
 PROCESS PAGE UPDATE FULL
 NONE VALUE
 /* Unhandled events.
 PROCESS PAGE UPDATE
END-DECIDE
*
END

After the page has been displayed, the user raises events on the page by using the controls. The name
of the raised event is then contained in the system variable *PAGE-EVENT. Depending on the event,
the program modifies the page data, resends it to browser with a PROCESS PAGE UPDATE FULL
statement and waits for the next event to occur.

The predefined event nat:page.end is raised when the user closes the page. The event
sayHello is raised when the user chooses the Say Hello button. Previously in this tutorial, you
have bound the event sayHello to this button while designing the page. The NONE VALUE block
should always be defined as above. It contains the default handling of all events that are not handled
explicitly.

3

Creating the Natural CodeCreating the Main Program

8. When the event sayHello occurs, we want to display a greeting in the FIELD control with the
label Result. Therefore, we modify the variable RESULT (which is bound to the corresponding
FIELD control in the page layout) accordingly before we resend the page data.

DEFINE DATA LOCAL
1 NAME (A) DYNAMIC
1 RESULT (A) DYNAMIC
END-DEFINE
*
NAME := ’Application Designer’
PROCESS PAGE USING ’HELLO-A’
WITH NAME RESULT
*
DECIDE ON FIRST *PAGE-EVENT
 VALUE ’nat:page.end’
 /* Page closed.
 IGNORE
 VALUE ’sayHello’
 /* TODO: Implement event code.
 COMPRESS ’Hello, ’ NAME ’!’ TO RESULT
 PROCESS PAGE UPDATE FULL
 NONE VALUE
 /* Unhandled events.
 PROCESS PAGE UPDATE
END-DECIDE
*
END

The main program is now complete.

If you have not yet saved the program, save or stow it now with the name "HELLO-P".

9. Catalog all modules in the library CISHELLO.

Testing the Completed Application
You will now run the application in your web browser and check whether it provides the desired result.

The generated HTML file helloworld.html (which is updated each time you save your layout) can be
found within the root of your application project, that is in <installdir>/cisnatfirst.

This HTML page has some prerequisites concerning the browser workplace in which it is running.
Therefore, it is per se not usable as a directly accessible page but needs to be embedded into a frame
providing a defined set of functions.

It is necessary to logon to Natural before starting an application. Therefore, Natural applications are
started using a logon page.

 To test the application

1. Enter the following URL inside your browser:

http://localhost:8080/cisnatural/servlet/StartCISPage?PAGEURL=/cisnatural/NatLogon.html

4

Testing the Completed ApplicationCreating the Natural Code

The logon page should now appear.

If the logon page is not displayed, check the following:

URLs are case-sensitive. Double-check your input.

Check whether the file NatLogon.html is available in the directory cisnatural.

2. On the logon page, select the entry Execute samples from the Session ID drop-down list box. You
have prepared this entry earlier in this tutorial when you have set up the runtime environment.

3. Provide your user ID and password valid for the machine on which the Natural application will be
running.

4. In the Natural application text box, enter the following information, depending on your Natural
platform:

Natural for Mainframes
Enter the name of the Natural program that is to be started. In our case, this is HELLO-P.

Natural for UNIX
Enter the name of the UNIX shell script that is used to start Natural. By default, this is nwo.sh.

Natural for Windows
Enter the name of the Windows command file (.bat) that is used to start Natural. By default, this
is nwo.bat.

5. In the Natural parameters text box, enter the following information, depending on your Natural
platform:

5

Creating the Natural CodeTesting the Completed Application

Natural for Mainframes
Enter the dynamic Natural profile parameters that are necessary to start your application:

STACK=(LOGON CISHELLO)

Note:
With Natural for Mainframes, is recommended to specify the Natural program that starts the
application in the Natural application text box instead of passing it with the profile parameter
STACK.

Natural for UNIX and Natural for Windows
Enter the Natural command line that is necessary to start your application:

STACK=(LOGON CISHELLO;HELLO-P)

6. Choose the Connect button.

Your application should be started now.

7. Enter your name and choose the Say Hello button.

The page should now successfully "talk" to your adapter.

You have now completed this tutorial. See the remaining section of these First Steps for some background
information.

6

Testing the Completed ApplicationCreating the Natural Code

	Creating the Natural Code
	Importing the Adapter into Natural
	Creating the Main Program
	Testing the Completed Application

