5 software~

Natural fur Windows

Operations

Version 6.3.8 fur Windows

Februar 2010

Natural

Dieses Dokument gilt fiir Natural ab Version 6.3.8 fiir Windows.

Hierin enthaltene Beschreibungen unterliegen Anderungen und Erginzungen, die in nachfolgenden Release Notes oder Neuausgaben
bekanntgegeben werden.

Copyright © 1992-2010 Software AG, Darmstadt, Deutschland und/oder Software AG USA, Inc., Reston, VA, Vereinigte Staaten von
Amerika, und/oder ihre Lizenzgeber..

Der Name Software AG, webMethods und alle Software AG Produktnamen sind entweder Warenzeichen oder eingetragene Waren-
zeichen der Software AG und/oder der Software AG USA, Inc und/oder ihrer Lizenzgeber. Andere hier erwédhnte Unternehmens- und
Produktnamen kénnen Warenzeichen ihrer jeweiligen Eigentiimer sein.

Die Nutzung dieser Software unterliegt den Lizenzbedingungen der Software AG. Diese Bedingungen sind Bestandteil der Produkt-

dokumentation und befinden sich unter http://documentation.softwareag.com/legal/ und/oder im Wurzelverzeichnis des lizensierten
Produkts.

Diese Software kann Teile von Drittanbieterprodukten enthalten. Die Hinweise zu den Urheberrechten und Lizenzbedingungen der
Drittanbieter entnehmen Sie bitte den "License Texts, Copyright Notices and Disclaimers of Third Party Products". Dieses Dokument

Operations

ist Bestandteil der Produktdokumentation und befindet sich unter http://documentation.softwareag.com/legal/ und/oder im Wurzel-
verzeichnis des lizensierten Produkts.

Operations 3

Inhaltsverzeichnis

1 OPerationsccuiiiiiiiiiiiiici s 1
2 Configuring the Microsoft Windows Personal Firewall to Run Natural 3
Method 1 - Allow a Specific Executable to Open a Portcccccocvviviiiiiiiinnnnnnn. 4
Method 2 - Allow a Specific Port to be used on your PCccooiiii, 5
Overview of Executables and Port Numbersc.ccccoooiiiiiiiiiniiii 5
3 Profile Parameter USAecccevviiiiiiiiiiiiiiiiciiccceececc e 7
Parameter Hierarchyccccooiiiiiiiiiiiiiiiii 8
Static Assignment of Parameter Valuesccccocciiiiiiiiiiiiiiiiiiin, 9
Dynamic Assignment of Parameter Valuesc.cccoooiii 10
Runtime Assignment of Parameter Valuescccocceeviiiiiiiiiiiiiniiiiiiicnn, 11
4 System FIlescc.ooiiiiiiiicc s 13
System File Structureccccoooiiiiiiiiiiiiiiicccc 14
System Files FNAT and FUSERccccccciiiiiiiiiiiiiiiiiiicececcce 15
System File FDDMcccccoiiiiiiiiiiiiiiiiiiiiiiiciicc e 17
Important Information and Warningsccccccecviviiiiiiiiiiiiiniiiiiecs 20
The File FILEDIR.SAGc.ccciiiiiiiiiiiiiiiiiicc s 20
Portable Natural System Filesccccocoviiiiiiiiiiiiiiiiiiiiiiccc, 21
Using NFS to Store Natural Librariesccccocooviiiiiiiiiiiic, 23
5 WOTK FileS ...oouviiiiiiiiiiiiicc 25
Defining WOrk Filesccccoviiiiiiiiiiiiiiiiiiii 26
Work File FOrmatscccoviiiiiiiiiiii 29
Special Considerations for Work Files with the Extension NCDccccccouee.e. 32
6 Natural Buffer Pool ... 35
General Informationc.cocooiiiiiiiiiiii 36
Setting up a Buffer Pool ..o 40
Using the Natural Buffer Pool Servicecccoocvveiiviiiiiiiiiiiiiiiiicieeceeee e 40
Using the Utility NATBPSRYV for Creating the Buffer Poolc.coccoeoin 43
Monitoring the Buffer Poolccccooiiiiiiiii 44
Trouble SNOOHINEcc.coiiiiiiiiiiiii e 44
The Natural Client Buffer Pool Serviceccccoviiiiiiiiiiiiiiii, 45
7 Using the GUI Version of the Buffer Pool MONitorcccceveiiiiiiiiiniiiiiiiicceeee, 47
Starting and Terminating the Buffer Pool Monitor ... 48
Elements of the Natural Buffer Pool Monitor Windowcccccoecviiiiiiiinininnn. 49
Disconnecting and Connecting a Buffer Poolc.cccccoooiiiiiiiiis 52
Shutting Down a Buffer Pool Server ... 53
Starting a Buffer POOl SEIVercccociiiiiiiiiiiiiiiiiiiiiiccc 54
Changing the Properties of the Buffer Pool Monitorccocoviiiiiiiinn. 55
Global INformationccceciiiiiiiiiiiiii 56
Buffer POOl COntentcoouiiiiiiiiiiiiiiiiiiicicccc e 58
Graphic ANalyzZer ... 61
REPOTES oo 66
8 Using the Command Line Version of the Buffer Pool Monitor (NATBPMON) 71
Invoking the NATBPMON UtLEY ...coooviiiiiiiiiiiiiiiiiiiciiccieeccccce e 72

Operations

NATBPMON COMMANSeeeviiiiiiiiiiiieiiieeniie ettt e 73
Displaying the Objects in the Buffer Pool ..., 74
Specifying a Patternccciiiiiiiiiiiiiiiiiii 75
Displaying the Buffer Pool Settingscccccoviiiiiiiiiii 76
Statistical Information About the Buffer Poolcccoccoiiiiiii 77
9 Natural in Batch Modecccoiiiiiiiiiii 81
What is Batch Mode?cccociiiiiiiiiiiii 82
Starting a Natural Session in Batch Modec.ccccoviiiiiiiiiiiiiiii, 82
Terminating a Natural Session in Batch Modec...ccoooo 83
Using Natural in Batch Modeccocooiiiiiiiiiiiiie 83
Sample Session for Batch Mode ... 85
Batch Mode Detectioncccoiiiiiiiiiiiiiiiii 88
Batch Mode Restrictionscccooiiiiiiiiiiiiiiiiiiiiii 88
Hints for Using Natural Maps and Dialogs in Batch Modeccccccociiiininine. 89
10 Output WINAOWeoiiiiiiiiiiiiiiiiiiiciic s 91
About the Output WIndowccooiiiiiiiii, 92
Working in the Output WIndowcccccooiiiiiiiiiiiiiiiic 92
Changing the Output Window Profilecccoooiiiiii 93
Using Your Own Icon for the Output Windowcccceceivviiniiiiiiniiiiiiniiceen, 94
11 Natural RUNTIMEooooviiiiiiiiiii e e 97
What is not Supported by Natural Runtime?c..ccoooiiiiiiiii, 98
Porting Procedure OVEIVIEWcccccccuiiiiiiiiiiiiiiiiiiiiiiic e 99
Step 1: Packaging the Application on the Development Workstation 99
Step 2: Installing Natural Runtimeccoccooiiiiiiiiiiniiiiiiecce, 104
Step 3: Installing the Application on the Runtime Workstationc.cc...o..... 104
Step 4: Starting the Application on the Runtime Workstationccccccoceeeeenne. 107
Using the Natural Runtime Startup Servicec.ccooovviiiiiiiiiiiiiiniiiiiie, 108
12 Support of Different Character Sets with NATCONV.INIccocooiiiiiiiiiinnnnn. 113
Why is the Support of Different Character Sets Important?ccccoeeiinninnn 114
How to Use Different Character Setsccccooviiiiiiiiiiiiiiii 114
13 Natural Exit Codesccoouiiiiiiiiiiiiiiiiiiiiiccccc 117
Natural Startup Errors ..o 118
14 Setting Up the Entire System Server Interfacecccccooivviiiiiiniiiiiii, 121
Prerequisitescccoooiiiiiiiiiiiiiii 122
ACHVALION ..oiiiiiiiiii 122
Changing the Database ID for the Entire System Server DDMscccccceeueenen. 123
15 Administrating NaturalX Applicationscccoeieiiiiiiiiiiiiicccc 125
16 NaturalX Serverscccoviiiiiiiiiiiiiiiii 127
COM Classes and SEIVETScccccovuiiiiiiiiiiiiiiiiiiiiciir e 128
NaturalX Classes and Serversccccoiiiiiiiiiiiiiiiiiiiic 128
NaturalX Servers and Natural Sessions under Windowsc.ccccceeiiiiinninnen. 128
The Role of the Server IDccccoiiiiiiiiiiiiii e, 129
Organizing Server IDSccociiiiiiiiiiiiiiiiiii 130
17 Activation POLICIESc.coooviiiiiiiiiiiiiiiiiii 131
Activation Policies on Windows Platformsccccociiiiiiiiiiiiiiinie 132

vi

Operations

Operations

Setting Activation POLiCIESccccuiiiiiiiiiiiiiiiiiiiii 132
When to Use Which Activation POLiCYccoooiiiiiiiiii, 133
18 RegIStrationcociiiiiiiiiiiiiiiii 137
Registration with Natural ..o, 138
Automatic Registrationccccciiviiiiiiiiiiii 138
Manual Registrationcccocoiiiiiiiiiiiiii 139
Registration Files and Type Librarycccccoeoieiiiniiiiiiniiiiieneececceeceeeee e 141
Client Registrationcccoeiiiiiiiiiiiiiiiiiiiiii 142
Registration HInts ..., 143
19 Type INformationcccooiiiiiiiiiiiiiiiii 145
OVEIVIEW ..ottt 146
NaturalX and Type Informationc.cccceevviiiiiiniiiiiiiiiiiic e, 146
Using Type Informationcccooiiiiiiiiiiiiiicccc 146
20 Configuration OVEIVIEWc.ccceiiiiiiiiiiiiiiiiiiiicic s 151
Server Configuration - General Settingscccccoccviviiiiiiiiiiiiiiiiie 152
Server Configuration - Application-Specific Settingscccooeviiiiiiinn. 153
Client Configuration - General Settingsccccccevviiiiiiiiiiiiiiiiiiiice 153
Client Configuration - Application-Specific Settingscccoccovvvviiviniiiinnnnn. 154
21 Security with NaturalXccccoociiiiiiiiiiiiiic e 155
OVEIVIEW ..ottt 156
Activation SECUTILYc.ooiiiiiiiii 156
Call SECUTILY ..oiuviiiiiiiiiiiiiii e 157
22 DCOM Configuration on Windowscccocueiiiiiiiiiiiniecceee 159
Configuring NaturalX SeIverscccccooiiiiiiiiiiiiiiiiiiiii e 160
Configuring NaturalX CHentsccccoviiiiiiiiiiiiiicec 171
23 NaturalX System Registry ENtriesccccoociviiiiiiiiiiiiiiiiicicieccceccececee, 175
Registry Entries fOr SErverscccooiiiiiiiiiiiiiiiiiiiiiii 176
Registry Entries for CLHentsc.cocooiiiiiiiiii 177
24 Using Statements and Commands in a NaturalX Server Environment 179
Natural Statementscccccoiiiiiiiiiiiiii 180
Natural System Commandsccoecuiiiiiiiiiiiiiii e 181

Operations Vii

viii

1

Operations

This documentation contains information for operating Natural in a Windows environment. It is
organized under the following headings:

<@

Configuring the Microsoft Windows
Personal Firewall to Run Natural

How to run Natural in an environment protected by the
Windows firewall.

Profile Parameter Usage

Information on the parameter hierarchy. How to assign profile
parameter values statically, dynamically and at runtime.

System Files How system files and Natural objects are stored in the file
system. Information on the system files FNAT, FUSER and FDDM.
Work Files How to define work files. Information on the different work file

formats.

Natural Buffer Pool

How the buffer pool is used by Natural and how it is started.

¢ ¢ & ¢

Using the GUI Version of the Buffer
Pool Monitor

How to connect and disconnect to a buffer pool, and how to
shut down and start a buffer pool server. A description of the
information that can be displayed using the Buffer Pool Monitor.

¢

Using the Command Line Version
of the Buffer Pool Monitor
(NATBPMON)

How to invoke the NATBPMON utility. Information on the
commands that are available with this utility.

Natural in Batch Mode How to run Natural in batch mode. Information on the required
input and output channels.
Output Window How to use the output window, change the output window

profile and use your own icon for the output window.

Natural Runtime

How to port an application from a development workstation to
aruntime workstation. How to use a service for starting Natural
Runtime processes.

Support of Different Character Sets
with NATCONV.INI

How to define different character sets in the file NATCONV.INI.

Natural Exit Codes

Information on the Natural exit codes, including startup errors.

Operations

Setting Up the Entire System Server
Interface

How to activate the Entire System Server Interface for the
product Entire System Server.

@ |Administrating NaturalX

Applications

How to distribute applications consisting of NaturalX classes
across several processes and machines using DCOM.

The Natural utilities which can be used to execute numerous administrative functions are described
separately; see the Tools and Utilities documentation for detailed information.

Security is also described separately; see the Natural Security documentation for detailed informa-

tion.

| Note: We would like to remind our customers who have purchased the Natural Runtime

version that the Natural development tools are not included in the Natural Runtime version.
In addition, not all Natural system commands are supported in the Natural Runtime version.

Operations

2 Configuring the Microsoft Windows Personal Firewall to

Run Natural

= Method 1 - Allow a Specific Executable 10 Open a Portvviiiiiiiiiiee e
= Method 2 - Allow a Specific Port to be used on your PCovviiiiiiiiiiiii e
= Qverview of Executables and Port NUMDETSviiiiiiiiiii e

Configuring the Microsoft Windows Personal Firewall to Run Natural

In Windows, the firewall is switched on by default. When you do not configure the firewall to
allow Natural, it is not possible to start Natural.

@ Caution: Software AG does not recommend to disable a firewall. Disabling a firewall is
solely your responsibility as user.

For detailed information on configuring the Windows firewall, see the Microsoft documentation.

This chapter provides examples of how to run Natural in an environment protected by the Windows
tirewall. However, these examples only provide technical guidelines; Software AG cannot guarantee
that the examples given will provide the security you require.

The examples are based on two methods: one to allow a specific executable to open ports, the other
to allow a specific port to be used by a certain program on your PC. These methods use Natural
as an example. For other Natural components, see Overview of Executables and Port Numbers
for the relevant information.

If elevated rights are required on Vista (for example, to remove an allowed program or to close a
port), run cmd.exe by executing the Run as administrator command which is available when you
invoke the context menu for cmad.exe.

Method 1 - Allow a Specific Executable to Open a Port

This method involves adding the Natural executable as an ,,allowed program”. This means it can
open any port for both TCP and UDP communication.

The parameters may be customized during the installation process. If you did not install using
the default settings, you will need to use your custom parameters.

The following examples apply to the Natural executable. To add other Natural or Entire Access
components as allowed programs, see Overview of Executables and Port Numbers below.

| Note: The examples below use the default installation settings for Windows and Natural

for Windows Version 6.3.

» To add Natural as an allowed program

= Enter the following command:

netsh firewall add allowedprogram program="C:\Program Files\Software
AG\Natural\6.3\Bin\natural.exe" name="Natural" profile=ALL

4 Operations

Configuring the Microsoft Windows Personal Firewall to Run Natural

» To remove Natural as an allowed program

= Enter the following command:

netsh firewall delete allowedprogram program="C:\Program Files\Software
AG\Natural\6.3\Bin\natural.exe" profile=ALL

Method 2 - Allow a Specific Port to be used on your PC

This method involves opening a specific port.

The following examples apply to the Natural executable. To open a port for other Natural or
Entire Access components, see Overview of Executables and Port Numbers below.

» To open a specific port

= Enter the following command:

netsh firewall add portopening protocol=TCP port=nnnnn name="Natural" profile=ALL

where nnnnn is the number of the port that is to be opened.

» To close a specific port

= Enter the following command:

netsh firewall delete portopening protocol=TCP port=nnnnn profile=ALL

where nnnnn is the number of the port that is to be closed.

Overview of Executables and Port Numbers

To run all of Natural and its subprograms, you will need to open a variety of communications
ports, depending on the functionality you are using. Below is a list of programs that need to establish
communications ports. You may choose which of the programs or ports you want to use on the
PC.

See Method 1 - Allow a Specific Executable to Open a Port and Method 2 - Allow a Specific Port
to be used on your PC for the required syntax.

Operations 5

Configuring the Microsoft Windows Personal Firewall to Run Natural

A

Important: The file locations and the port numbers listed below are the default settings.

These parameters may be customized during the installation process. If you did not install
using the default settings, you will need to use your custom parameters.

Component Method 1 Method 2
Executable File Location Default Port
number
Natural natural.exe C:\Program Files\ Software AG\ Natural\6.3\bin\
Debugger natdbgsv.exe C:\Program Files\ Software AG\Natural\6.3\bin\ |2600
Terminal Emulation |natpccserver2.exe|C:\ Program Files\ Software 22334

AG\ Natural\ 6.3\ Terminal \

Entire Access Server

serversingle.exe

C:\Program Files\ Software AG\ Entire
Access\6.1.1\bin

Entire Access Client

vtx3.dll

C:\Program Files\ Software AG\ Entire
Access\6.1.1\bin

Operations

3 Profile Parameter Usage

B PAramMEter HIBFAICNYciiiiiii ettt 8
= Static Assignment of Parameter VAIUESviiiiiiiiiiiiii et 9
= Dynamic Assignment of Parameter VAIUEScooiiiiiiiiii e 10
= Runtime Assignment of Parameter ValUEScooiiiiiiiiiii e 11

Profile Parameter Usage

Natural profile parameters affect the appearance and the response of your working environment.

The parameters are described in detail in the Parameter Reference.

Parameter Hierarchy

The values for the Natural parameters are taken from different sources. The priority of the para-
meters is as follows:

1. Static Assignments
Lowest priority. Static assignments are made by parameters specified in the Natural parameter
file NATPARM.

2. Dynamic Assignments
Dynamic assignments are made by specifying an alternative parameter file and/or individual
parameters when starting Natural.

3. Runtime Assignments
Highest priority. Runtime assignments are made during the session by specifying session
parameters.

See the remainder of this section for further information on the different types of assignments.

| Note: When Natural Security is active, the use of specific parameters may be restricted.

The following graphic illustrates the parameter hierarchy:

8 Operations

Profile Parameter Usage

Dynamic
Parameters

2

hJ

Current

Natural < 5 Natural
Nucleus Security
Settings

NATPARM — 1 g

A

Session
Parameters

Static Assignment of Parameter Values

By default, the parameter specifications in the parameter file NATPARM are used to determine the
characteristics of your Natural environment. Initially, this file contains the default values as supplied
by Software AG. It can be changed using the Configuration Utility.

() Tip: Itis recommended that you do not modify the default parameter file NATPARM. If you
want to use Natural with parameter values other than the default values, create your own
parameter file (see also the following section).

Operations

Profile Parameter Usage

Dynamic Assignment of Parameter Values

Using the dynamic parameters, you can set up your own environment when starting Natural.
When the session is started, the operating system passes the values for the dynamic parameters
to Natural.

The dynamic parameters are valid for the current Natural session. They override the static assi-
gnments specified in the default parameter file NATPARM.

Using the Configuration Utility can also create your own parameter files. To use one of your own
parameter files, you have to specify its name when starting Natural.

» To start Natural with dynamic parameter values

= Add the dynamic parameters and their values to the command that is used to start Natural.

Example: The profile parameter PARM is used to invoke Natural with the alternative parameter
file MYPARM. The values for the profile parameters SM and DTFORM are to be used instead of
those defined in MYPARM:

natural PARM=MYPARM SM=ON DTFORM=I

Or:

When you start Natural using a shortcut, specify the dynamic parameters as shown in the
example below:

"C:\Program Files\Software AG\Natural\n.n\bin\natural.exe" PARM=MYPARM SM=0ON
DTFORM=I

where n.nis the current version number.
Special Characters

Special characters like brackets and asterisks are interpreted by the operating system. Therefore,
itis necessary to put the parameters which use these special characters in double quotation marks.
Example:

natural "FNAT=(99,30) FUSER=(99,32)"

As an exception to this rule, the parameters FNAT, FDIC, FSEC, FDDM and FUSER can also be specified
without brackets to avoid using quotation marks. Example:

natural FNAT=99,30 FUSER=99,32

10 Operations

Profile Parameter Usage

Runtime Assignment of Parameter Values

The runtime assignments are made during the session by setting session parameters. The values
of the session parameters override static and dynamic assignments.

When using Natural Studio, you can set the session parameters in a window (this corresponds to
issuing the system command GLOBALS without parameters). See Using Session Parameters in the
documentation Using Natural Studio.

Session parameters can also be set with the system command GLOBALS. Example:

GLOBALS SA=0ON,IM=D

In reporting mode, session parameters can also be set with the SET GLOBALS statement in a program.
Example:

SET GLOBALS SA=O0N, IM=D

| Note: Inaddition to setting the session parameters at session level (as described above), you

can also set them at program, statement or field level. For further information, see Introduc-
tion to Session Parameters in the Parameter Reference.

Operations 1

12

4 System Files

= System File Structure
= System Files FNAT and FUSER
= System File FDDM
= |mportant Information and Warnings
= The File FILEDIR.SAG
= Portable Natural System Files
= Using NFS to Store Natural Libraries

13

System Files

Natural for Windows stores objects in files accessible by operating system functions. Unlike
Natural for Mainframes where the objects are stored in Adabas system files, Natural for Windows

stores the objects in specific directories on the disk. Thus, a database such as Adabas is not required
to run Natural for Windows.

System File Structure

By default, the Natural libraries are created as subdirectories below the Natural root directory of
a specific Natural version. The subdirectories have the same names as the libraries.

The Natural objects are stored as files in the subdirectories. The file name for a Natural object has
the following form:

file-name . NKT

f1le-name|This the name of the object. See also Object Naming Conventions in Using Natural Studio.

N The first character of the extension is always "N". It stands for ,,Natural”.
K The second character of the extension can be one of the following:
S for source files
G for generated programs
R for resources
T The third character of the extension stands of the type of the object. For valid values, see the
list below.

For example, the source program TESTPROG is stored as file TESTPROG.NSP, while the generated
code for the map TESTMAP is stored as file TESTMAP.NGM.

| Note: The file name is not always identical to the object name. Both the current object name
and the corresponding internal object name are documented in the file FILEDIR.SAG.

The following object types and the respective letters and numbers are used for the extensions
available:

Letter or Number | Object Type

A Parameter data area (PDA)
C Copycode

D DDM

G Global data area (GDA)

H Helproutine

14

Operations

System Files

Letter or Number | Object Type

Local data area (LDA)
Map
Subprogram

Program

Subroutine

Text

Dialog
Class

Command processor

Adapt view

Function

Adapter

System Files FNAT and FUSER

The Natural system files FNAT (for system programs) and FUSER (for user-written programs) are
located in different subdirectories.

FNAT assumes the following directory structure:

FNAT

- LIBDIR.SAG

“-SYSTEM
FILEDIR.SAG

The file LIBDIR.SAG, which is only available for FNAT, contains information on all further installed
Software AG products using Natural. This information can be displayed by using the system
command SYSPROD.

Operations 15

System Files

FUSER assumes the following directory structure:

FUSER

wuser-libraryl
“FILEDIR.SAG

The name of a user library must not start with "SYS".

The directory structure is generated during the installation of Natural. The directories representing
the system and user libraries contain the following:

" FILEDIR.SAG
This file contains internal library information used by Natural. For further information, see The
File FILEDIR.SAG below.

" SRC
This subdirectory contains the Natural source objects stored in the library.
" GP
This subdirectory contains the generated Natural programs stored in the library.

* ERR
This subdirectory contains the error messages stored in the library.

* RES
This subdirectory contains the private and shared resources stored in the library.

DDMs can be stored in local libraries. If DDMs are used by a program, Natural first searches the
current library, then the steplibs, and then the library SYSTEM. If the DDMs are not found, the
program does not compile and displays an error message. However, if FDDM mode has been
activated, Natural searches for the DDMs only in the system file FDDM.

The paths to the system files FNAT, FUSER and FDDM are defined in the Configuration Utility. System
files are version-dependent. Therefore, Natural can only access system files of the current Natural
version. It is recommended that you only have one FNAT system file. It is possible, however, to
define several FUSER system files (for example, when you have different development areas for
different purposes).

16 Operations

System Files

System File FDDM

The system file FDDM is a container in which all DDMs can be stored.

FDDM assumes the following directory structure:

FDDM
SYSTEM
FILEDIR.SAG
SRC
GP

By default, the system file FDDM is not active. If you want to use it, you have to activate FDDM
mode as described below.

= Activating FDDM Mode
= Migrating DDMs to the System File FDDM
= Checking whether the System File FDDM is Used

Activating FDDM Mode

If FDDM mode is activated (both database ID and file number do not equal 0 in the global confi-
guration file), all DDMs are stored and read in the system file FDDM. DDMs stored in libraries will
no longer be accessible from Natural. This is similar to the mainframe, where all DDMs are stored
in the system file FDIC.

If the FDDM system file is undefined in the global configuration file, the DDMs are stored in the
Natural libraries FUSER and FNAT, and the FDDM system file is displayed as an inactive environment.

» To activate FDDM mode

1 Create an empty directory in which the DDMs are to be stored in FDDM mode. The directory
can have any name which corresponds to the Natural naming conventions.

2 Invoke the Configuration Utility.

3 Inthe global configuration file (category System Files), assign a database ID and file number
for the system file FDDM and define the path to the directory that you have created in the first
step.

4 Select the required parameter file.

5 Locate the parameter FDDM.

Tip: Locate this parameter by searching for "FDDM". See Finding a Parameter in the
Configuration Utility documentation for further information.

Operations 17

System Files

6 Select the required path for the parameter FDDM from the drop-down list box.
7 Save your changes.

8 Migrate all required DDMs to the system file FDDM as described below.
Migrating DDMs to the System File FDDM

All DDMs that are to be available in FDDM mode must be contained in the system file FDDM.
Especially the example DDMs delivered with Natural in library SYSEXDDM must be available in the
system file FDDM.

For migration of DDMs to the FDDM system file, you can choose between different alternatives:

" You can use the Object Handler which supports the FDDM system file and offers the possibility
to migrate the DDMs into the FDDM system file. The DDMs can be unloaded from the Natural
libraries and can be stored into the FDDM system file in the active Natural session.

A\ Important: To migrate a complete development environment, it is recommended to use
the Object Handler.

" Itis also possible to migrate the DDMs with the copy or move function of the SYSMAIN utility,
or to copy and move (or drag-and-drop) the DDMs with Natural Studio as described below. In
this case, it is required that the FDDM parameter is first deactivated so that your old environment
is used again.

These alternatives are described below in detail.

Note: The INPL utility loads DDMs either to Natural libraries if FDDM mode is not active

or to the system file FDDM if FDDM mode is active. This may have some impact if the loaded
INPL files are intended to work in both modes. It may be necessary that the DDMs are
available in the Natural libraries as well as in the FDDM system file.

» To migrate DDMs to the system file FDDM using the Object Handler

1 Activate FDDM mode as described above.

2 Start Natural Studio using the modified parameter file (that is, the parameter file in which
path for the parameter FDDM has been defined).

3 From the Tools menu, choose Development Tools > Object Handler to start the Object
Handler.

4 From the Options menu of the Object Handler, choose Settings.

5 In the resulting dialog box, select the option button Additional Options and choose the Set
button.

6 In the resulting dialog box, select the Special page.

18 Operations

System Files

7 Deactivate the check box Use FDDM file for DDMs.

This activates your old environment (which contains the DDM to migrated). If you do not
deactivate this check box, you cannot access the DDMs that are to be migrated.

8 Unload the DDMs stored in Natural libraries (either with the wizard or in advanced-user
mode).

9 Activate the check box Use FDDM file for DDMs (see the above steps).
This activates your new environment containing the FDDM system file.

Note: In different libraries, DDMs can exist with identical names. To prevent overwriting

DDMs in the FDDM system file and to detect DDMs with identical names, it is recom-
mended to load the DDMs with the Do not replace option. This option is located on
the same page as the check box Use FDDM file for DDMs.

10 Load the DDMs into the FDDM system file (either with the wizard or in advanced-user mode).

» To migrate DDMs to the system file FDDM using the copy or move function of Natural Studio

1 Start Natural with the dynamic parameter FDDM=0, 0 as shown below:

natural FDDM=0,0

This activates your old environment containing the DDM to migrated. If you do not override
the new FDDM specification in your modified parameter file, you cannot access these DDMs.

2 Copy or move all required DDMs from the Natural libraries into the library SYSTEM in your
designated FDDM file. This file is displayed in the inactive environment of Natural Studio.

3 Terminate Natural.

The next time you start Natural without the above-mentioned dynamic parameter, the FDDM
system file will be used.

Checking whether the System File FDDM is Used

When you have migrated all DDMs to the system file FDDM, you can check whether FDDM is used.

» To check whether FDDM is used

1 Start Natural.

2 From the Tools menu, choose System Information > System Files. See also System Files in
the documentation Using Natural Studio.

The SYSPROF dialog box appears.

Operations 19

System Files

3 If the FDDM file is displayed, Natural will access only DDMs stored in this system file.

If the FDDM file is not displayed or if the expected files are not displayed, revise the parameter
file used for your session.

Important Information and Warnings

A Natural developer must have read, write and delete rights for all objects.

An end-user must only have read rights for the generated programs (and in some special cases
also read rights for the sources).

Do not access Natural files with operating system utilities. These utilities might modify and destroy
the Natural directory information.

Do not store private data files in the directories FNAT, FUSER and FDDVM, since Natural may delete
or modify them in an unexpected way.

Do not use one of the directories FNAT, FUSER and FDDM as working directories for your Windows
applications, since this can cause problems when issuing Natural system commands.

The file name (i.e path including file name in 8.3 format) of any object accessed by Natural must
not exceed 255 bytes.

The File FILEDIR.SAG

The file FILEDIR.SAG supports up to 60000 objects. It contains internal library information used
by Natural including the programming mode of an object (structured or reporting) and internally
converted object names. These internal object names are automatically created when storing
Natural objects to disk with:

" names longer than 8 characters (which can be the case with DDMs);

" names containing any special character supported by Natural but not by the operating system.

Internal object names are unique and consist of an abbreviation of the current object name and an
arbitrary number. Both the current object name and the corresponding internal object name are
documented in FILEDIR.SAG.

Even if an object is located in the correct directory, it can only be used by Natural after this library
information is included in FILEDIR.SAG. For objects created within Natural, the library informa-
tion is included automatically. Information on how to import other objects can be found in the
section Importing Objects in the documentation Using Natural Studio.

20 Operations

System Files

The utility FTOUCH can be used to update FILEDIR.SAG without entering Natural.

Portable Natural System Files

Starting with Natural Version 6.2, the directory file FILEDIR.SAG in a Natural library as well as
the Natural error message files are created in a portable platform-independent format. This offers,
for example, the possibility of exchanging FUSER libraries between different Windows, UNIX and
OpenVMS platforms simply by copying the libraries via operating system commands.

The FNAT system file belongs to a Natural installation and is both version-specific and platform-
specific. Therefore, it is not recommended to share FNAT system files among different platforms.
Especially the FNAT system file on a Windows platform contains a completely different set of utilities
as the FNAT system file on some UNIX or OpenVMS platforms.

Although it is now possible to share an FUSER system file among different platforms, this possibi-
lity should by handled with care because Natural's locking mechanism does not cross machine
boundaries and hence it would be possible for two Natural sessions on different platforms to
modify the same object at the same time with unpredictable results.

All libraries that are newly created as of Natural Version 6.2 have a new FILEDIR.SAG structure.
Especially the FNAT system file delivered and installed as of Natural Version 6.2 has only libraries
with the new structure.

The following topics are covered below:

= | anguage-dependent Objects
= Migrating an Old FILEDIR.SAG File

Language-dependent Objects

When the application to be ported uses the system variable *LANGUAGE, you have to take notice of
the following information.

Almost all Natural objects are stored in the system file with a name which contains only upper-
case characters. An exception are the language-dependent objects (that is: the objects which have
been created for a specific language). Language-dependent objects may contain lower-case charac-
ters in their names. Since Windows is a case-preserving operating system (whereas UNIX is a case-
sensitive operating system), it may happen that names which have been created under UNIX
cause a conflict in Windows, or that an application which has been developed under UNIX yields
unexpected results in Windows.

| Note: OpenVMS behaves similar to Windows. It does not distinguish between upper-case

and lower-case characters. However, file names are always created with upper-case charac-
ters.

Operations 21

System Files

Example

The command SAVE PGM& creates an object where the object name contains the language identifier.
The resulting object name depends on the setting of * LANGUAGE:

An object with the followi i ted
Settlng of *LANGUAGE n object wi e Toliowing hame Is create
33 PGMX (with an upper-case X)
59 PGMx (with a lower-case X)

The separate objects which have been created under UNIX (PGMX.NGP and PGMx.NGP) get
entries in the file FILEDIR.SAG with the names PGMX and PGMx. These two objects will be treated
differently, depending on the environment in which Natural is being executed:

® When you execute PGMX with Natural for UNIX, the file PGMX.NGP is loaded into the buffer
pool and executed.

® When you execute PGMX with Natural for Windows, either the file PGMX.NGP or PGMx.NGP
is loaded into the buffer pool and executed. This is because Windows does not distinguish bet-
ween these two objects and treats them as one and the same object. Thus it may be possible that
applications which share an FUSER, or a copy of such an FUSER, behave in a different manner.

Migrating an Old FILEDIR.SAG File

Starting with version 6.2, Natural can read old platform-specific FILEDIR.SAG files on the platform
for which they were formerly generated, but it cannot modify old FILEDIR.SAG files. When a
library with an old FILEDIR.SAG file is accessed for modification, FILEDIR.SAG is converted into
the new format before any further modification takes place.

/A Important: It is recommended that you create a backup copy of the old FUSER system file
before executing any of the steps (which lead to a conversion of FILEDIR.SAG) listed below.

There are a number of possibilities that lead to a conversion of an old FILEDIR.SAG file into the
new format:

" As of version 6.2, Natural automatically converts an old FILEDIR.SAG format when a modify
access is made. This is completely transparent for the user; it has not to be forced in any way.
A modify access is, for example, a SAVE of a new source, a CATALOG of a source or a CATALL. A
copy operation modifies the destination library and hence the FILEDIR.SAG file of the destina-
tion library. A move operation additionally modifies the source library because the object has
to be deleted there. In any case, the original FILEDIR.SAG file is saved as FILEDIR.BCK in the
library directory.

= All libraries that are to be converted can be unloaded with the Object Handler (SYS0BJH). When
the resulting work file is reloaded into a new FUSER system file, all libraries are generated with
the new FILEDIR.SAG structure.

22 Operations

System Files

® The utility FTOUCH provides the option convert which converts the FILEDIR.SAG file of the
specified library into the new structure. The original FILEDIR.SAG file remains in the library
directory as FILEDIR.BCK. Refer to the description of the FTOUCH utility for the syntax and a
usage example.

® The copy function of the utility SYSMAIN or the drag-and-drop (copy and paste) functionality of
Natural Studio can be used to copy a complete set of libraries from an old format FUSER system
file into a new FUSER system file. In the destination FUSER, the FILEDIR.SAG files are automati-
cally generated with the new structure.

The Natural versions prior to Natural Version 6.2 cannot access libraries with a new portable
FILEDIR.SAG file. Therefore, system files cannot be shared between Natural Version 6.2 or above
and an older version of Natural. This is only possible when all libraries are still in the old FILE-
DIR.SAG format and when no modify access has ever been made. In a production environment,
it is possible, for example, to make use of an FUSER from Natural Version 6.1 with Natural Version
6.2 when no modification on the libraries is made. However, it is recommended not share system
files between Natural Version 6.2 or above and an older version

Using NFS to Store Natural Libraries

When you use NFS (Network File System) to store Natural libraries, you can run into problems
when the directories in which the Natural libraries are stored are mounted via NFS from a file
server in your network.

The reason for this is the need to lock the FILEDIR.SAG file stored in each library during update
operations of Natural objects.

If your NFS locking is incompatible or not properly set up between the involved platforms,
Natural can hang in an uninterruptible state while waiting for NFS locking requests to be processed.
These requests are generally logged on the consoles of the involved systems or in some other
system-dependent log file.

The work-around to solve this problem is to store Natural libraries only on local disks if problems
with a hanging and uninterruptible nucleus occur.

Operations 23

24

5 Work Files

B DEfiNING WOTK FIlES ...t

B VVOTK FIlE FOMMALS .. vvviiiiiiiiiiiiiii ittt s s e e s s s e s e eneeee e
= Special Considerations for Work Files with the Extension NCDooiiiiiiiiiiiiiii e

25

Work Files

Work files are files to which data can be written and from which data can be read by Natural
programs. They are used for intermediate storage of data and for data exchange between programs.
Data can be transferred from or to a work file by using the Natural statements READ WORK FILE
and WRITE WORK FILE.

Defining Work Files

Using the Configuration Utility or the DEFINE WORK FILE statement, you can assign names
(including the path) for up to 32 work files.

The maximum number of work files that can be used depends on the setting of the parameter
WORK.

If you run a program which uses a work file for which a name and path has not been assigned,
Natural automatically creates the file name and writes the work file into the temporary directory
specified in the local configuration file. The name of such a file consists of the specified work file
number and an arbitrary number assigned by the operating system. The generation of the work
file name is based on an algorithm which tries to generate a unique name. Depending on the
Natural parameter TMPSORTUNIQ, the naming convention may vary. If work file names are referenced
from outside Natural, it is recommended that you specify the names explicitly to avoid problems
identifying the files.

The following topics are covered below:

= Defining Work File Names with the Configuration Utility
= Defining Work File Names with Environment Variables
= Defining Work File Names with an Application Programming Interface

Defining Work File Names with the Configuration Utility

In the Configuration Utility, the work file names are assigned in the category Work Files of a
parameter file. The above mentioned parameters WORK and TMPSORTUNIQ can also be found in this
category. See Work File Assignments in the Configuration Utility documentation for further informa-
tion.

() Tip: Locate the work file assignments by searching for "Work Files". See Finding a Parameter

in the Configuration Utility documentation for further information.

26 Operations

Work Files

Defining Work File Names with Environment Variables

The following topics are covered below:

= General Information

= Delimiters of Environment Variables

= Dollar Sign ($) in the File Name
General Information
Work files can also be defined by using Windows environment variables. Once you have defined
the work file names in the parameter file, the work file names can be set without further change

to the parameter file. For example, when you specify the following name for a work file in the
parameter file (or in a DEFINE WORK FILE statement):

ANaturals\zmyfile?
and assume the following settings in your operating system:

set Natural=D:\natural
set myfile=sub\test

this will expand into the following file name:
D:\natural\sub\test
Delimiters of Environment Variables

Names of environment variables are delimited by special characters. A left-hand delimiter is to
the left of a variable, a right-hand delimiter is to the right.

For example, the string #TEMP% identifies an environment variable named TEMP; % is used as both
the left-hand and right-hand delimiter.

Valid delimiters are:

Type of Delimiter Valid Delimiters
Left-hand delimiter |%

$
Right-hand delimiter | %

/

\

Operations 27

Work Files

| Note: The end-of-string mark is by default a right-hand delimiter, i.e. 4TEMP is recognized

as an environment variable named TEMP.

Although "%" is the only valid left-hand delimiter for environment variables in Windows, Natural
for Windows allows "%" and "$" as left-hand delimiters in order to preserve upward compatibility
with previous versions. This setting allows UNIX-like work file name assignments in a Windows
session. $TEMP is recognized in Natural for UNIX as well as in Natural for Windows as the envi-
ronment variable TEMP.

Example:

The following lines of Natural code are interpreted as being the same:
DEFINE WORK FILE 1 '$TEMP\myfile.dat'

and

DEFINE WORK FILE 1 "ZTEMP%\myfile.dat'

TEMP is recognized as an environment variable. The string $TEMP (or 4TEMP%) is replaced at runtime
by the contents of the environment variable TEMP.

Dollar Sign ($) in the File Name

A dollar sign ($) in a file name has two meanings:

= If"$" appears on the left or in the middle of a string embedded in delimiters, it will be interpreted
as the left-hand delimiter of the environment variable being used. All characters following the
left-hand delimiter up to the right-hand delimiter or EOS are considered to be the name of an
environment variable.

= If "$" is the last character of a string, it is not considered to be a delimiter character. It is a part
of the string scanned.

Example:
The following line of Natural code does not result in an error:

DEFINE WORK FILE I "\\MYPC\C$\myfile.dat'

\\MYPC\C$ is considered to be a default share. "C$" is a valid directory.

28 Operations

Work Files

However, the following line of Natural code may result in an error, depending on whether A has
been defined or not:

DEFINE WORK FILE 1 '\\MYPC\C$A\myfile.dat'

"A" is interpreted as an environment variable since it is preceded by a dollar sign. If "A" has not
been defined, an error will occur. If "A" has been defined, an error does not occur.

Defining Work File Names with an Application Programming Interface

You can also define work files with the application programming interface USR1050N in library
SYSEXT.

Work File Formats

The format of a work file depends on the work file type that has been defined. Different work file
formats are available. Natural recognizes the format by checking the file name and its extension:

file-name.extension

where file-name can have a maximum of 8 characters and extension can have a maximum of 3
characters.

The work file formats are:

= Binary Format

= ASCII Format

= Entire Connection Format
= Portable Format

= Unformatted Format

= CSV Format

See also Work Files and Print Files in the Unicode and Code Page Support documentation.

Operations 29

Work Files

Binary Format

Possible type: SAG.

This format, which is specific to Software AG, is the preferred format since it can be used with all
data types.

Each record that is written is preceded by two bytes which contain the length of the record.

To define binary format for a work file, use either a file name with a period and the extension
"SAG" (for example, <file-name>SAG), or just the file name without a period (for example, <fi7e-
name>).

ASCII Format

Possible types: ASCII and ASCII compressed.

Since each written record is terminated with a carriage return and line feed (CR/LF), ASCII format
is only recommended for alphanumeric data.

To define ASCII format for a work file, enter either a file name with a period and any extension
except "SAG" and "NCD" (for example, <file-name>.<ext>), or a file name with a period and
without an extension (for example, <fi7le-name>).

Entire Connection Format

Possible type: Entire Connection.

The product Entire Connection uses two files: a data file which contains the actual data and a
format file which contains formatting information about the data in the data file.

Natural automatically generates the corresponding format file for the type Entire Connection. The
format file has the same name as the data file, however the extension is "NCF". For detailed
information on the content of a format file with the extension "NCEF", see the Entire Connection
documentation.

To define Entire Connection format for a work file, enter a file name with a period and the exten-
sion "NCD" (for example, <file-name>NCD).

You can read/write work files in Entire Connection format directly from/to your local disk.
See also Special Considerations for Work Files with Extension NCD.

) Notes:

1. The RECORD option of the READ WORK FILE statement is not available for reading work files of
format Entire Connection.

30 Operations

Work Files

2. The operand format U (Unicode) is not supported for the work file types Entire Connection. If
U is used with these work file types, a runtime error message is displayed.

Portable Format

Possible type: Portable.

The type Portable performs an automatic endian conversion of a work file when the work file is
transferred to a different machine. For example, a work file written on a PC (little endian) can be
read correctly on an RS6000 or HP machine (big endian). The endian conversion applies only to
field formats 12, I4, F4, F8 and U. The floating point format is assumed to be IEEE. There are,
however, slight differences in IEEE floating point representation by different hardware systems.
As a rule, these differences apply only to infinity and NaN representations, which are normally
not written into work files. Check the hardware descriptions if you are uncertain.

The files are always written in the machine-specific representation, so that a conversion is performed
only if the file is read by a machine with different representation. This keeps performance as fast
as possible.

There are no other conversions for this format apart from the conversions mentioned above.

When a READ WORK FILE statement is used for a dynamic variable, the variable is resized to the
length of the current record.

Unformatted Format

Possible type: Unformatted.

The type Unformatted reads or writes a complete file with just one dynamic variable and just one
record (for example, to store a video which was read from a database). No formatting information
is inserted; everything is written and read just as it is.

CSV Format

Possible type: CSV (comma-separated values).

Note: If you want to use the work file type CSV, you have to recatalog your sources using

the CATALOG or STOW command. It is not possible to use the work file type CSV with generated
programs of Natural Version 4.

The Natural fields are stored in a CSV work file as described below.

1. In the first step, the internal field data is converted into a readable format:

® The field data of the internal Natural data formats B (binary), O (object handle), G (GUI
handle) and C (attribute control) is copied to the record without field conversion. The data
is taken as it is.

Operations 31

Work Files

® The field data of the internal Natural data format A (alphanumeric) is converted into the
specified work file code page (see Work Files in the Configuration Utility documentation). If
no work file code page is specified in the Configuration Utility, the default code page which
is defined with the parameter CP is used and no conversion is done.

The field data of the internal Natural data format U (Unicode), is converted into the specified
work file code page (see Work Files in the Configuration Utility documentation) or, if no work
file code page is specified, into the default code page which is defined with the parameter
CP.

® The values of the internal Natural formats D (date) and T (time) are converted into an
alphanumeric output format. The DTFORM parameter is evaluated so that the user-specified
date and time format is used.

® The internal field values of the numeric types are converted into an alphanumeric output
format.

In the second step, the field data in readable format is copied to the CSV work file record. The
fields in the work file are separated by the specified separator character. If a field contains
special characters, the field is delimited by double quotes. Each written record is terminated
with a carriage return and line feed (CR/LF).

If you have defined that a header with the Natural field names is to be written to the work file
(see Work File Assignments in the Configuration Utility documentation), the following applies:

With the WRITE WORK FILE statement, a header line containing the field names of the first written
record is stored in the first line of the work file. If subsequent CSV records contain a different

number of fields, it may be possible that the header line does not correspond to these subsequent
CSV records.

With the READ WORK FILE statement, it is assumed that the first line of the CSV work file is the
header line. Therefore, the first line is skipped (that is: the record data in the first line is not
returned).

Special Considerations for Work Files with the Extension NCD

If files with the extension "NCD" are created by Entire Connection and are then read into Natural
via the READ WORK FILE statement, it is required that the Entire Connection option Keep trailing
blanks is activated in the session properties. See your Entire Connection documentation for further
information.

Note: When you create an NCD file using Entire Connection and load this file using the

Object Handler, you may receive an error indicating that the source control record is missing.
To avoid this, make sure that the option Keep trailing blanks is active when you create the
NCD file.

32

Operations

Work Files

The following considerations apply for work files in Entire Connection format:

If an NCD file is read with a READ WORK FILE statement and the corresponding NCF format file
is not available or contains invalid information, the NCD file is assumed to be an ASCII work
file.

When the APPEND attribute is used to append data to an NCD file, the record layouts (that is:
the field format and length information which is written to the NCF format file) of the old and
new data must match. If the record layouts are different, an error occurs during runtime.

The maximum work-file record size for WRITE WORK FILE VARIABLE that can be handled by
Entire Connection is 32767 bytes.

If you have ,,0ld” work files with the extension "NCD", the extensions must be changed.
Each of the following profile parameters must be set to the same value for both read and write

operations:

DC (decimal character)
IA (input assign character)
ID (input delimiter character)

Remember that the range of possible values for floating point variables on a mainframe computer
is different from that on other platforms. The possible value range for F4 and F8 variables on a
mainframe is:

+5.4 * 107" to +7.2 * 10

The possible value range on most other platforms for F4 variables is:

+1.17 * 107 to +3.40 * 10%

The possible value range on most other platforms for F8 variables is:

£2.22 * 107°% to £1.79 * 10°"

Operations 33

34

6 Natural Buffer

Pool
B GENEral INFOMMALIONeiii it e e 36
B Setting Up @ BUFFEI POOI 40
= Using the Natural BUffer POOI SEIVICEcooiiiiiii et 40
= Using the Utility NATBPSRV for Creating the Buffer POOl ..o 43
m Monitoring the BUFEr POOIvviiiiii e 44
B TTOUDIE SNOOTING .ttt 44
= The Natural Client Buffer POOI SEIVICEccoiiiiiiiiii e 45

35

Natural Buffer Pool

General Information

The Natural buffer pool is used to share Natural objects between several Natural processes that
access objects on the same computer. It is a storage area into which compiled Natural programs
are placed in preparation for their execution. Programs are moved into and out of the buffer pool
as Natural users request Natural objects.

Since Natural generates reentrant Natural object code, it is possible that a single copy of a Natural
program can be executed by more than one user at the same time. For this purpose, each object is
loaded only once from the system file into the Natural buffer pool, instead of being loaded by
every caller of the object.

The following topics are covered below:

= Objects in the Buffer Pool

= Resource Handling

= Multiple Buffer Pools

= Storing Objects in the Buffer Pool
= Read-Only Buffer Pool

= Restrictions

Objects in the Buffer Pool

Objects in the buffer pool can be any executable objects such as programs and dialogs. The follo-
wing executable objects are only placed in the buffer pool for compilation purposes: local data
areas, parameter data areas and copycodes.

When a Natural object is loaded into the buffer pool, a control block called a directory entry is
allocated for that object. This control block contains information such as the name of the object, to
which library or application the object belongs, from which database ID and Natural system file
number the object was retrieved, and certain statistical information (for example, the number of
users who are concurrently executing a program).

Resource Handling

Resources are loaded into the buffer pool if they reside in a library of a Natural system file (for
example, FUSER) and if their names do not exceed 32 characters (including the file extension).

Each resource that resides in the directory which is assigned to the environment variable NATGUI_BMP
or whose name is longer than 32 characters, is loaded directly into the Natural process every time
it is accessed (that is: the resource is not loaded into the buffer pool).

36 Operations

Natural Buffer Pool

Multiple Buffer Pools

Depending on the individual requirements, it is possible to run different buffer pools of the same
Natural version simultaneously on the same computer.

For each buffer pool, synchronization can be enabled in the Configuration Utility (see also Sefting
up a Buffer Pool below). All buffer pools which contain objects from the same system file and for
which synchronization has been enabled are then synchronized automatically.

/\, Important: If the system file resides on a shared drive, synchronization only works if the file

system on the server is NTFS.

The following applies when synchronization has been enabled: If an object that is loaded to more
than one buffer pool is modified by one Natural process, it is first marked as invalid. When the
object is no longer used by any process, it is deleted from the buffer pool. The next time this object
is requested by a process, it will be loaded into the buffer pool again.

Storing Objects in the Buffer Pool

When a user executes a program, a call is made to the buffer pool manager. The directory entries
are searched to determine whether the program has already been loaded into the buffer pool. If
it does not yet exist in the buffer pool, a copy is retrieved from the appropriate library and loaded
into the buffer pool.

When a Natural object is being loaded into the buffer pool, a new directory entry is defined to
identify this program, and one or more other Natural objects which are currently not being executed
may be deleted from the buffer pool in order to make room for the newly loaded object.

For this purpose, the buffer pool maintains a record of which user is currently using which object,
and it detects situations in which a user exits Natural without releasing all its objects. It dynami-
cally deletes unused or out-of-date objects to accommodate new objects belonging to other appli-
cations.

Read-Only Buffer Pool

A read-only buffer pool is a special buffer pool that only allows read access. If an object is not

found in the read-only buffer pool, Natural issues error 82 (object not found). As no attempt is
made to retrieve the missing object in the system files, all lock operations on the system file as

well as on the buffer pool are skipped. No account data are gathered. An unlimited number of
users can access read-only buffer pool.

A read-only buffer pool is defined in the Configuration Utility (see also Setting up a Buffer Pool
below). If a buffer pool has been defined as a read-only buffer pool, the value defined for the
maximum number of users is ignored.

Operations 37

Natural Buffer Pool

The utility NATBPSRV does not allocate semaphores for a read-only buffer pool. It expects, however,
a preload list in a file named <bufferpool-name>.PRL at the location of the Natural parameter files,
which is defined in the local configuration file (installation assignments). For example, if the name
of the read-only buffer pool is "ROBP", the file name must be ROBP.PRL.

A preload list can be generated using the Natural utility CRTPRL. This utility extracts the contents
of a buffer pool and merges it with the existing preload data of a buffer pool.

The preload list in the PRL file contains records with comma-separated data in the following form:

database-1ID, file-number,library,object-name,Kkind, type

The keywords in the file have the same meaning as the keywords shown by the DIR command of
the NATBPMON utility.

With the exception of directory-describing records (the kind of object is "D", which means the
object is part of FILEDIR.SAG), a value must be assigned to all keywords. Examples:

K
eywords NATBPSRV loads the following into the buffer pool

222,111,MY_LIB,PGMI, G, P|Object code of program PGMI from library MY_LIB which is located on
database 222 and file number 111.

222,113,*,*,D LIBDIR.SAG which is located on FNAT=222,113.
222,111 ,MY_LIB,*,D FILEDIR.SAG from library MY_LIB which is located on FUSER=222,111 .

Using a read-only buffer pool has the disadvantage that the application must be known in detail
(as missing objects cannot be loaded). This means that all objects needed by an application must
be specified in the preload list. In seldom cases, the complete set of objects needed by an applica-
tion can be determined in advance.

Secondary Read/Write Buffer Pool

Natural can run with a read-only buffer pool as the primary buffer pool. Such a buffer pool is not
modifiable. Objects missing in the read-only buffer pool cannot be loaded. If an object is not found
in the read-only buffer pool, Natural issues error 82 (object not found). To avoid this, Natural can
attach during execution to a secondary standard buffer pool (which allows read/write access) and
activate the missing objects there. If a call to locate an object in the primary buffer pool fails, the
secondary buffer pool operates as a backup buffer pool. The dynamic parameter BPID2 identifies
the secondary buffer pool.

Other than for the read-only buffer pool, there is a maximum number of users that can attach to
the secondary buffer pool and object locking through semaphores takes place each time the
secondary buffer pool is accessed.

38 Operations

Natural Buffer Pool

The preload list of the read-only buffer pool can be updated/enhanced by merging the contents
of the secondary read/write buffer pool with the preload list of a read-only buffer pool using the
utility CRTPRL.

Alternate Read-Only Buffer Pool

For a read-only buffer pool, it is possible to define the name of an alternate buffer pool in the
Configuration Utility (see also Setting up a Buffer Pool below).

Using the SWAP command of the NATBPMON utility, which is only available for a read-only buffer
pool, you can tag a read-only buffer pool as , obsolete”. All Natural sessions attached to an obso-
lete buffer pool will detach from this buffer pool and will attach to the alternate buffer pool - but
only if the alternate buffer pool is also a read-only buffer pool. The swap from one buffer pool to
the other occurs either when Natural tries to load a new object (for example, when executing a
CALLNAT or RETURN statement) or when Natural tries to interpret a command which has been put
on the stack. The IPC resources (that is, the shared memory segment) of a buffer pool tagged as
obsolete can be removed after issuing the SWAP command of the NATBPMON utility. This feature
allows exchanging a buffer and its contents by another read-only buffer pool with updated contents
without stopping Natural sessions.

Creating a Preload List Using the CRTPRL Utility

The Natural utility CRTPRL, which is located in the library SYSBPM, is used to create a preload list
for a read-only buffer pool.

The utility uses the content of a source buffer pool as the basis for the preload list and checks
whether the preload list already exists for a read-only (target) buffer pool:

= If the preload list exists, the existing data in the preload list is merged with the data from the
source buffer pool, and the preload list is saved with the new content.

= If the preload list does not yet exist, it is created using the content from the source buffer pool.

The content of the resulting preload list determines the content of the read-only buffer pool. The

preload list is read by the utility NATBPSRV which loads the corresponding objects into the read-
only buffer pool.

Operations 39

Natural Buffer Pool

Restrictions

When using the Natural buffer pool, only minimum restrictions must be considered:
® When a Natural session hangs up, do not terminate it by using the Windows Task Manager.

If this session is currently performing changes to the buffer pool internal data structures, an
interruption may occur at a stage where the update is not fully completed. If the buffer pool
internal data structures are inconsistent, this could have negative effects.

| Note: This can only happen when the Natural nucleus is executing buffer pool routines.

Setting up a Buffer Pool

The buffer pool assignments are stored in the local configuration file. To set up a buffer pool, you
have to specify specific values in the local configuration file using the Configuration Utility. For
a list of these values, see Buffer Pool Assignments in the Configuration Utility documentation.

Using the Natural Buffer Pool Service

Natural uses a Windows service, the Software AG Natural n. n Buffer Pool Service, to start the
Buffer Pool Server when the PC is booted.

Natural is installed with the default buffer pool NATBP. NATBP is also used as the default buffer
pool name at Natural startup (a different buffer pool can be defined using the profile parameter
BPID).

You can modify the service configuration to meet your requirements. This is explained in the fol-
lowing topics:

= Buffer Pool Service Commands

40 Operations

Natural Buffer Pool

= Example: Starting Natural with Your Own Buffer Pool

Buffer Pool Service Commands

The file natbpsvc.exe, which is stored in the Natural bin directory, is used to execute the service

commands.

The following service commands can be specified in the Command Prompt window of Windows:

Command

Description

NATBPSVC INSTALL mode

Installs the buffer pool service. mode can be one of the following:

Default. The service is installed and must be
started manually (either with the START
command or by starting the Software AG
Natural n. n Buffer Pool Service in Windows).

manual

automatic The service is installed and is automatically

started when the PC is booted.

NATBPSVC CREATE
buffer-pool-name

Creates a new buffer pool to be started by the service. The service
checks whether the buffer pool with the specified name is defined in
the Natural parameter file.

NATBPSVC START

Starts the service (if not yet active) and all created buffer pools (see the
CREATE command) for which the start parameter has been set to "yes"
(see the SET command).

NATBPSVC START
buffer-pool-name

Starts the specified buffer pool. If the service has not been started (either
automatically at boot time or manually by the user) an error message
appears.

NATBPSVC SET
buffer-pool-name start=mode

Defines whether the specified buffer pool is to be started when the
service is started. mode can be one of the following:

yes The buffer pool is started.

no Default. The buffer pool is not started.

NATBPSVC STOP

Stops the service and all previously started buffer pools.

NATBPSVC STOP
buffer-pool-name

Stops the specified buffer pool.

NATBPSVC SHOW

Displays the configuration parameters for all buffer pools that are
defined for the service, that is: whether these buffer pools are to be
started when the service is started.

NATBPSVC SHOW
buffer-pool-name

Displays the configuration parameters for the specified buffer pool,
that is: whether this buffer pool is to be started when the service is
started.

NATBPSVC STATUS

Displays the status of all buffer pools that are defined for the service,
that is: whether these buffer pools are active or not active.

Operations

41

Natural Buffer Pool

buffer-pool-name

Command Description

NATBPSVC STATUS Displays the status of the specified buffer pool, that is: whether this
buffer-pool-name buffer pool is active or not active.

NATBPSVC DELETE Deletes the specified buffer pool from the service.

Vorsicht: Do not delete the default buffer pool NATBP, as it is possible

that Natural may not function properly anymore.

NATBPSVC REMOVE Removes the service from the system.

Example: Starting Natural with Your Own Buffer Pool

This example explains how to create a new buffer pool with the name MYBP and how to start
Natural with your new buffer pool.

» To start Natural with your own buffer pool

1 Use the Configuration Utility to define an additional buffer pool with the name MYBP in the
local configuration file. See Buffer Pool Assignments in the Configuration Utility documentation.
. Note: For this example, you can use the same values as defined for the default buffer
pool NATBP.
2 Invoke the Command Prompt window of Windows.
3 Go to the Natural bin directory which contains the file natbpsvc.exe.
4 Enter the following command to create a buffer pool with the name MYBP:
NATBPSVC CREATE MYBP
The following information is shown:
ZNATBPSVC-1: Natural n.n Buffer Pool Service
ANATBPSVC-1: New buffer pool 'MYBP' created
ZNATBPSVC-1: Natural n.n Buffer Pool Service
/) Important: When the buffer pool with the specified name has not yet been defined in
the local configuration file, a corresponding message is shown instead. Make sure to
define the buffer pool in the local configuration file before you proceed with the steps
below.
5 Enter the following command to define that your buffer pool is to be started when the service
is started:
NATBPSVC SET MYBP start=yes
The following information is shown:
42 Operations

Natural Buffer Pool

ANATBPSVC-1: Natural n.n Buffer Pool Service
ZNATBPSVC-I: Configuration successfully set
ANATBPSVC-1: Natural n.n Buffer Pool Service

6 Enter the following command to start your buffer pool now (without having to restart the
service):

NATBPSVC START MYBP

The following information is shown:

AZNATBPSVC-I: Natural n.n Buffer Pool Service

HNATBPSVC-1: Send request to Natural n.n Buffer Pool Service
ANATBPSVC-1: Buffer pool 'MYBP' started

ANATBPSVC-I: Natural n.n Buffer Pool Service

7 Enter the following command to display the status of all buffer pools that are currently defined
for the service:

NATBPSVC STATUS

The following information is shown:

ANATBPSVC-1: Natural n.n Buffer Pool Service
ANATBPSVC-1: Send request to Natural n.n Buffer Pool Service
ANATBPSVC-T: MYBP is active
NATBP is active
ANATBPSVC-1: Natural n.n Buffer Pool Service

8 Start Natural with the dynamic parameter BPID as shown below:

natural BPID=MYBP

Using the Utility NATBPSRYV for Creating the Buffer Pool

The buffer pool is created using the utility NATBPSRV.
The buffer pool server is automatically started by the Natural Buffer Pool Service.

| Note: The utility NATBPSRV should not be accessible to all Natural users, because it can cause

damage to the work of other buffer pool users.

NATBPSRV allocates the resources required by the buffer pool and creates the permanent communi-
cation facilities (that is, shared memory and semaphores) used for the buffer pool. The necessary
specifications for the resources and facilities are made with the Configuration Utility (see Setting
up a Buffer Pool).

Operations 43

Natural Buffer Pool

By default, the buffer pool NATBP is started. If another buffer pool is to be started, you specify its
name with the following NATBPSRV command line option:

NATBPSRV BP = buffer-pool-name

Monitoring the Buffer Pool

The Buffer Pool Monitor is used to oversee the buffer pool's activity during its operation. The
Buffer Pool Monitor can also be used to shut down the buffer pool when Natural must be stopped
on a computer.

The Buffer Pool Monitor collects information on the current state of your Natural buffer pool.

If multiple buffer pools are active on the same computer and an object that is loaded to more than
one buffer pool is modified by a Natural process, the object will only be removed from the buffer
pool to which the modifying Natural process is attached. To ensure that modified objects are also
removed from other buffer pools on the same computer to which the object is currenly loaded,
you can enable the buffer pool synchronization in the Configuration Utility.

Natural provides two versions of the Buffer Pool Monitor: a graphical user interface and the
NATBPMON utility which is a command line version.

For detailed information for how to use the different versions of the Buffer Pool Monitor, see Using
the GUI Version of the Buffer Pool Monitor and Using the Command Line Version of the Buffer
Pool Monitor (NATBPMON).

Trouble Shooting

This section describes problems that may occur when using the Natural buffer pool and how to
solve them.

The following is a typical command output example, with an explanation of what went wrong
during execution.

44 Operations

Natural Buffer Pool

Problem

Either Natural or the Natural Buffer Pool Monitor cannot be started.
Examples

The following examples describe the most typical problems you are likely to encounter as a
Natural administrator or user. These problems occur when you start Natural or the NATBPMON
utility, and the buffer pool is not active.

" You try to start Natural and the following message appears:

Natural Startup Error 16: Unable to open buffer pool.
Buffer pool error: "unexpected system call error occurred"” (20)
Buffer pool could not attach to the global shared memory.

" You try to start the Natural Buffer Pool Monitor and the following message appears:

Cannot get shared memory
Buffer pool error: "unexpected system call error occurred” (20)
Buffer pool could not attach to the global shared memory.

Solution

Start the buffer pool service as described in Using the Natural Buffer Pool Service.

The Natural Client Buffer Pool Service

When Natural or Natural Runtime is installed on a file server, a service called Software AG
Natural n. n Client Buffer Pool Service is installed in the client environment (natcbpsvc.exe). This
service is only installed during a client installation. It is used to create the shared memory for the
Natural buffer pool server.

In the client environment, the Natural buffer pool server is started by a Natural process. This is
different from a local installation on a PC where the Natural buffer pool server is started by the
Natural buffer pool service.

The client buffer pool service cannot be configured using service commands.

Operations 45

46

7 Using the GUI Version

of the Buffer Pool Monitor

= Starting and Terminating the Buffer Pool Monitor ...

= Elements of the Natural Buffer Pool Monitor WINAOWcooeeee e

= Disconnecting and Connecting a Buffer Pool
= Shutting Down a Buffer Pool Server
= Starting a Buffer Pool Serverooo

= Changing the Properties of the Buffer Pool Monitor

= Global Informationcccccevvvvvvvvvviiiiniinnnnnn,
= Buffer Pool Contentcooooviviiiiiiiiiiei,
= GraphiC AnalyzZercoovveiiiiiiiiieiiee,
B REPOMS v

47

Using the GUI Version of the Buffer Pool Monitor

See also Natural Buffer Pool which provides general information on the buffer pool and explains
how to start the buffer pool.

@ Caution: This utility should not be generally accessible to all users of Natural, because its
use can cause damage to the work of other users of the buffer pool.

Starting and Terminating the Buffer Pool Monitor

A Natural folder automatically appears in the Programs folder of the Start menu after Natural
has been installed. It contains the shortcuts for Natural, including the Buffer Pool Monitor.

» To start the Buffer Pool Monitor

s From the Windows Start menu choose Programs > Software AG Natural n.n > Buffer Pool
Monitor.

The Natural Buffer Pool Monitor window appears.

Note: The buffer pool can also be started using the executable file natbpmong.exe which
is stored in the Natural bin directory.

» To terminate the Buffer Pool Monitor

s From the Monitor menu, choose Exit.
Or:
Press ALT+F4.
Or:
From the Control menu, choose Close.
Or:

Choose the corresponding standard button at the right of the title bar.

48 Operations

Using the GUI Version of the Buffer Pool Monitor

Elements of the Natural Buffer Pool Monitor Window

When you start the Buffer Pool Monitor, it automatically tries to connect to Natural's default buffer
pool NATBP. The name of the buffer pool which is currently used is shown in the title bar. It is also

selected in the tree.

Natural Buffer Pool Monitor - MATEP
Monitor Bufferpool Miew Help

=] B3

S AN IR L

Ly MYEP

=4, NATEP |
“E'i. Global Information
“E'i. Buffer Pool Content
{3 Graphic Analyzer
&-{73 Reports

For Help, press F1

.

The following topics are covered below:

= Menu Bar
= Toolbar

= Tree

= Status Bar

Operations

49

Using the GUI Version of the Buffer Pool Monitor

Menu Bar

The following menus are available:

Menu Using the commands in this menu, you can ...

Monitor |Change the properties or exit the Buffer Pool Monitor.

Bufferpool | Disconnect and connect a buffer pool. Shut down and start the buffer pool server.

View Show or hide the various elements of the Natural Buffer Pool Monitor window.
Help Invoke the online documentation and display information about the Buffer Pool Monitor.
Toolbar

You can execute the most important functions using a toolbar button. When you move the mouse
pointer over a toolbar, a brief description for the button is shown in the status bar.

The following toolbar buttons are available:

Change properties

2€ Connect to another buffer pool
%4 Disconnect current buffer pool
y Shutdown buffer pool server
A Start buffer pool server
®

Display online help

» To switch the toolbar display on and off

m From the View menu, choose Toolbar.

When the toolbar is displayed in the Natural Buffer Pool Monitor window, a check mark is
shown next to this menu command.

50 Operations

Using the GUI Version of the Buffer Pool Monitor

Tree

The tree on the left side of the Natural Buffer Pool Monitor window shows all buffer pools
currently assigned in the local configuration file. See Buffer Pool Assignments in the Configuration
Utility documentation.

Only one buffer pool can be monitored at a time. If you want to connect to a different buffer pool,
see Connecting and Disconnecting a Buffer Pool.

When all nodes for the buffer pool which is currently used (NATBP in the example below) are
expanded, the tree looks as follows.

a1

Ea Global Information
..... Skatistics

----- Paramekers
(=5 Buffer Poal Content
-3 Ohbjecks

------ Directory Entries

=123 Graphic Analyzer
(=-£5) Statistics Charts

------ B4 Line Graph

=5 Reports

----- 12 Simple Report

----- =| Logging

----- =| Advanced analysis

When you select a node in the tree, the corresponding page is shown on the right side of the win-
dow. See the following sections for a detailed description of each page:

= Global Information

Buffer Pool Content

® Graphic Analyzer
" Reports

Operations 51

Using the GUI Version of the Buffer Pool Monitor

Status Bar

The status bar is the horizontal information line at the bottom of the Natural Buffer Pool Monitor
window. It shows short help texts for the commands in the menu bar and toolbar.

» To switch the status bar display on and off

s From the View menu, choose Status Bar.

When the status bar is displayed in the Natural Buffer Pool Monitor window, a check mark
is shown next to this menu command.

Disconnecting and Connecting a Buffer Pool

Only one buffer pool can be connected at a time. To switch to another buffer pool in the environ-
ment, you disconnect the currently used buffer pool and then connect to the new buffer pool.

Note: When you connect to another buffer pool, the previously connected buffer pool is

automatically disconnected. Thus, it is not necessary to use the Disconnect command first.
The icon next to a buffer pool name indicates one of the following states:

#1, The Buffer Pool Monitor is connected to the buffer pool (green icon).

#1, The Buffer Pool Monitor is not connected to the buffer pool (gray icon).

» To disconnect the currently used buffer pool

1 Select the name of the currently connected buffer pool in the tree.

2 From the Monitor menu, choose Disconnect.
Or:
Invoke the context menu and choose Disconnect.

Or:

52 Operations

Using the GUI Version of the Buffer Pool Monitor

Choose the following toolbar button:

-

The tree for this buffer pool is no longer shown.

» To connect a buffer pool

1 Select the name of a buffer pool in the tree.

2 From the Monitor menu, choose Connect.
Or:
Invoke the context menu and choose Connect.

Or:

Choose the following toolbar button:

3¢
-

The tree for this buffer pool is shown.

Shutting Down a Buffer Pool Server

When you are connected to a buffer pool, you can shut it down. This is only possible if the buffer
pool has not been started via the buffer pool service.

For example, if you want to to initialize the buffer pool, you shut it down and then restart it.

The buffer pool server will not shut down as long as any Natural process is still connected. It will
only shut down after the last process has disconnected from the buffer pool. As long as processes
are connected, the buffer pool status is ,,shutdown pending”; this is indicated in the tree, next to
the buffer pool name.

» To shut down the buffer pool server

1 Select the name of the currently connected buffer pool in the tree.

2 From the Monitor menu, choose Shutdown Server.
Or:

Invoke the context menu and choose Shutdown Server.

Operations 53

Using the GUI Version of the Buffer Pool Monitor

Or:

Choose the following toolbar button:

\

The tree for this buffer pool is no longer shown.

Starting a Buffer Pool Server

A buffer pool server can only be started via the Buffer Pool Monitor if a buffer pool server has not
yet been started.

» To start a buffer pool server

1 Select the name of a buffer pool in the tree.

2 From the Monitor menu, choose Start Server.
Or:
Invoke the context menu and choose Start Server.

Or:
Choose the following toolbar button:

A

The buffer pool server is started.

This does not automatically connect the buffer pool. You have to connect it manually as des-
cribed in Disconnecting and Connecting a Buffer Pool.

54 Operations

Using the GUI Version of the Buffer Pool Monitor

Changing the Properties of the Buffer Pool Monitor

You can define the files that are to be provided as the defaults on several pages of the Buffer Pool
Monitor. You can also define the default text editor that is to be used.

» To change the properties
1 From the Monitor menu, choose Properties.

The following dialog box appears. By default, a temporary directory is defined for the current
user. Example: when you have defined your own temporary directory, the dialog box may
look as follows:

Buffer Pool Monitor Properties

D efaulk text editar: IE:'&F‘rn:ngram Filezvwindows\Accessarieshiwordpad. exe Browsze.

Fiepot file: IE:"sT empBP_Simple_Report. txt Browze.

Lag file; IEZ'\T emphBP_Log. txt Erowsze. ..

Analysis file: |E:T emphBP_Analysis. bt Browse. .

Diurnp file: IE:'\Temp'\EF'_Dump.t:-:t Browse. ..

ddady

Directony entry fils: IE:"sT empBP_Directory_Entries. bt Browze...

] I Cancel

You can change the following information:

The default text editor to be used for opening the text files on the pages listed below.

The report file to be used on the Simple Report page.

The log file to be used on the Logging page.

The analysis file to be used on the Advanced Analysis page.
® The dump file to be used on the Advanced Analysis page.

The directory entry file to be used on the Directory Entries page.

2 If you want to change an entry, specify the path and file name in the corresponding text box.

Or:

Operations 55

Using the GUI Version of the Buffer Pool Monitor

Choose the corresponding Browse button to select the file from a dialog box.

3 Choose the OK button.

Global Information

When you expand the Global Information node in the tree, you can display statistical data of the
buffer pool and its parameters.

The following pages are available:

= Statistics
= Parameters

Statistics

The following page appears when you select Statistics in the tree.

56 Operations

Using the GUI Version of the Buffer Pool Monitor

Statisticz | Parameters

— General information
BFID: MHATEF Active since: F-APR-2005 11:48:25
Shutdown status: achive Last time cleared: F-4PR-2005 11:48:25
— Memory allocation — I zer statiztics
Allocated memaony; 107,360 bytez 104.84 KB Current uzers: 2
Smallest allocation: 20 bytez 002 KB Peak uzers:
Largest allocation: 28.844 btes . 2317 KB Dead uzers purged:
Free mermary: 3038380 bytez 290 MEB
Smallest contiguous; 6252 bytez B.17 KB ~ Object use statistics
Largest contiguous: 032128 bytes . 283 MB [rarmant objects: g
Active objects: 1
— Object loading statistics e o 0
Stored objects: 1] Obsolete objects: 0
Loaded objects: 11
Aictivated objects: | — Object size statiztics
Aborted loads: 1 Largest object; 28.828 butes 2815 KB
Smallest object: 144 bytezs 014 KB
Total object zizes: 92605 butes 90,43 KB
— Locate statiztics
el 23 — General loading statistics
Altempted fast locates: g Objects purged: 1]
Successful fast locates:] Peak parallel activations: 1
Percent successful: B2 500000 Object reuzage factaor: 1.905091
Clear counters | Refresh I v Automatic refresh

This page shows general information about the buffer pool and detailed information about
memory, users and objects. It shows the same information as the STATUS command of the NATBPMON
utility; see Statistical Information About the Buffer Pool for further information.

When the Automatic refresh check box is selected, the page is automatically refreshed every
second. When this check box is not selected, you have to refresh the values manually by choosing
the Refresh button.

When you choose the Clear counters button, the internal statistics of the buffer pool are reset to
Zero.

Operations 57

Using the GUI Version of the Buffer Pool Monitor

Parameters
The following page appears when you select Parameters in the tree.

Staligticz Farameters |

Buffer poal [D; MATBF

Shared memory key: GlobalhMATETTBPMER 016117111
Semaphore key: GlobalhMATETTBEFSERM_ 0216111111
bl ernory size: 3145728 bytes .00 MB

b sirnum wzers: 20

This page shows the same information as the PARAM command of the NATBPMON utility; see Displaying
the Buffer Pool Settings.

Buffer Pool Content

When you expand the Buffer Pool Content node in the tree, you can display details about the
Natural objects which have been loaded into the buffer pool, as well as the users who are accessing
them.

The following pages are available:

= Directory Entries
= Corpses
= Users

Directory Entries

The following page appears when you expand the Objects node in the tree and select Directory
Entries.

58 Operations

Using the GUI Version of the Buffer Pool Monitor

Directory Entries | Eg[psesl

| Befrezh directary entries I Delete all directory entries

— Filter options
[~ Use filker
DEID:

FMR:

Library

M ame:

Kind:

Type:

Ix

Ix

Ix

Ix

Ix

Ix

ik file

File name: Il:: “TemphBP_Directorny_Entries. bt

[~ “white directory entry memory

Wirite file |

L

Mr | DEID | FMRE | [L)ibrary | [M]ame | [F.Jind | [T]_l,lpel Userl Pealk userl Uzages | Generated | Size [but... | GF velsionl

1 93 102 0 D 1] 1] a false 604

2 9 102 SYSLE O D 1] 1] a false 27100

- 102 SYSTEM 0 D 1] 1] a false 23644

4 39 102 SYSS5aT 1 D 1] 1] a false 28828

5 93 102 SYS5AT 2 o] 1] 1] a false §380

6 93 102 (@ D 1] 1] a false 144

79 102 SYsUE @& D 1] 1] a false 144

83 3 102 SYSSAT @ D 1] 1] a false 144

3 9, 102 SYSTEM @& D 1] 1] a false 144

o 93 102 SYSSAT ES_INTRM G 4 1 1] a false 3473 E1.1.12

This page provides a table containing information on all currently loaded directory entries. It
shows the same information as the DIR command of the NATBPMON utility; see also Displaying the
Objects in the Buffer Pool.

The following command buttons are provided:

Command Button Description

Refresh directory entries |Updates the table.

Delete all directory entries|Deletes all Natural objects which are currently loaded in the buffer pool.

When the mouse is positioned over the table, you can invoke a context menu containing the follo-
wing commands:

Command in Context Menu |Description

Select all Selects all entries in the table.

Delete

Deletes the selected entries in the table.

Filter options

Using a filter, you can reduce the number of directory entries that are shown in the table.

» To define a filter

1 Activate the Use filter check box.
2 Specify the filter criteria in the text boxes DBID, FNR, Library, Name, Kind and/or Type.

For example, to display all programs in the libraries starting with "MY", specify "MY*" in the
Library text box, and "P" in the Type text box.

Operations 59

Using the GUI Version of the Buffer Pool Monitor

3 Choose the Refresh directory entries button to update the table.
Write file

You can write all directory entries which are currently shown in the table to a file. If required, the
memory of the directory entries can also be written to this file.

» To write the directory entries to a file

1 Optional. In the File name text box, specify the path to the file to which the directory entries
are to be written.

Or:
Use the button to the right of this text box to select the file from a dialog box.

| Note: By default, the File name text box contains the path to the file which has been
defined in the properties.

2 Optional. If the memory of the directory entries is to be written to this file, activate the Write
directory entry memory check box.

3 Choose the Write file button.

The information is written to the specified file. The content of this file is automatically shown
in the text editor which has been defined in the properties.

Corpses
The following page appears when you expand the Objects node in the tree and select Corpses.

Directory Entries Corpses |

| Befresh corpzes I

My I DEID I FHF I [Llibrary I [Nlame | [KJind I [Tlvpe I Uszer I FPeak usell Uszages I Generated I Size [byt... I GF velsionl

A corpse is an object which is to be deleted from the buffer pool, but is still in use. When corpses
are available, they are shown in the table.

You can use the Refresh corpses button to update the table.

60 Operations

Using the GUI Version of the Buffer Pool Monitor

Users

The following page appears when you select Users in the tree.

I sers |
| Refrezh uzers I
|ndex | zer D | T erminal 1D | Froceszs D |
1] kol 262334 944
1 kol 196964 2520

This page shows a table containing information on the users who are currently using the buffer
pool.

You can use the Refresh users button to update the table.

Graphic Analyzer

When you expand the Graphic Analyzer node in the tree, you can display graphical representations
of the statistical numbers and a direct view on what is taking place inside the buffer pool memory.

The following pages are available:

= |ine Graph
= Bar Chart
= Memory Usage

Line Graph

The following page appears when you expand the Statistics Charts node in the tree and select
Line Graph. When you have added data sources and have started the analyzer, this page may
look as follows:

Operations 61

Using the GUI Version of the Buffer Pool Monitor

1007

S0

S0

70

&0

S04

401

=0

z0

101

0 t T T T T T T 1

oo-oo o0:0& oo-04 on:0e oo:-o02 oo:- 1o on:-lz oo:-l4 oo:-le

—Analyzer control

Add data source. .. | Fausze analyzer | Reset analyzer | |rterval: IEEID ms j
Statuz: Analyzer active.

Color | I ame | Drezcription | Growth Factor | Finirnvirn | b &xirnuinm | Current |
I :located memory Sum total of all allocated memary 00001000 108128.000 108128.000 108128,
B Fice temary Surmn tatal af all free mermary 00000100 3037612000 3037612000 303761..
P Generating obje.. Mumber of objects that are curently b... 1 0.000 0.000 0.000

The line graph and the bar chart are both working with the same statistical data sources. When

you apply one of the following actions to the line graph, this action is also applied to the bar chart,

and vice versa:

® add, modify or delete a data source,
" start, pause or reset the analyzer,

® adjust the update interval.

| Note: The analyzer is also used on the Memory Usage page.

» To add data sources

1 Choose the Add data source button.

62 Operations

Using the GUI Version of the Buffer Pool Monitor

The Data Source dialog box appears.

Data Source

Data source: Bl yy=yyta it

D ezcription: Sum katal af all allacated rmemary

Growth factar: |0.0001000 =l

Colar; _ Chooze u:u:ulu:ur...l
k. I Canicel |

2 From the Data source drop-down list box, select the data source that is to be shown in the
chart.
A description is shown for the selected data source.

3 Optional. From the Growth factor drop-down list box, select the required value for the
selected data source.
This adjusts the range on the y-axis. The current value of the data source is multiplied by that
factor to accomplish an appropriate representation on the chart.

4 Optional. If you want to define a different color for the selected data source, choose the
Choose color button.
The standard Windows Color dialog box appears in which you can select or define another
color to be used for the data source.

5 Choose the OK button to add the data source to the table which is shown at the bottom of the
page. The data source is then available for both the line graph and the bar chart.
The table shows the color, name, description and growth factor of each data source that you
have added. It also shows the minimum, maximum and current values of the data source.

6 Optional. Repeat the above steps, if you want to add further data sources to the table.

» Managing the defined data sources

1 Select a data source in the table and invoke the context menu.

Operations 63

Using the GUI Version of the Buffer Pool Monitor

The context menu contains the following commands:

Command in Context Menu |Description

Properties Invokes the Data Source dialog box for the selected data source. In this case,
the dialog box can only be used to define another color.

Select all Selects all data sources in the table.

Delete Deletes the selected data source(s) in the table.

2 Choose one of the above commands.

» To adjust the update interval

s From the Interval drop-down list box, select the update time (different values are provided
for updating in milliseconds, seconds or minutes).

The update interval is adjusted for the charts.

| Note: The Interval drop-down list box is only available when the analyzer is inactive.

» To start the analyzer

s When all required data sources have been added to the table, choose the Start analyzer button.

This starts the analyzer in all charts. The graphical representation of the selected data sources
is painted in the line graph and in the bar chart.

» To pause the analyzer

s Choose the Pause analyzer button.

This freezes the current state of the graphical representation in all charts.

» To reset the analyzer

ms Choose the Reset analyzer button.

This resets the graphical representation in all charts. For the line graph and bar chart, the
minimum, maximum and current values are reset in the table. The time base which is shown
in the line graph is also reset.

64 Operations

Using the GUI Version of the Buffer Pool Monitor

Bar Chart

The following page appears when you expand the Statistics Charts node in the tree and select
Bar Chart. When you have added data sources and have started the analyzer, this page may look

as follows:

100

S0

20

0

&0

50

0 1

307

201

L
u]

—Analyzer control

Add data zource. .. |

Start analyzer I Pauze anal_l.Jzerl Rezet analyzer | |nteryval: IEEIEI i1t j

Status: Analyzer active.

Color I Mame I Dezcription I Growth Factar I inirmvinn I b airnLimn I Current I
I :located memory | Som tokal of all allocated memory 0.0001000 1081 28.000 108128.000 108128,
B Free temany Sum total of all free memory 00000100 3037612000 3037612000 303761...
I Gererating obje.. | Mumnber of objects that are curenty b... 1 0.000 0.000 0.000

When you apply an action to the line graph, this action is also applied to the bar chart, and vice
versa. See Line Graph for detailed information on how to add, modify and delete data sources,
how to start, pause and reset the analyzer, and how to adjust the update interval.

Operations

65

Using the GUI Version of the Buffer Pool Monitor

Memory Usage

The following page appears when you select Memory Usage in the tree.

1024 1
hytes
u} Eao laoa 1500 z0oo Z&00 2072
EEytes
- Allocated Memory
|:| Free Memory
Analyzer control
Start analyzerl Pause analyzer Rezet analyzer Interval; | 500 ms j
Statuz: Analyzer active.

This chart simply shows the structure of the buffer pool memory. It shows allocated and free
memory.

When the analyzer is active for a line graph or bar chart, it is also active on this page, and vice
versa. See Line Graph for detailed information on how to start, pause and reset the analyzer, and
how to adjust the update interval.

Reports

When you expand the Reports node in the tree, several pages are available. They can be used to
write certain types of information about the buffer pool into a file.

The following pages are available:

= Simple Report
= | ogging

66 Operations

Using the GUI Version of the Buffer Pool Monitor

= Advanced Analysis
Simple Report
The following page appears when you select Simple Report in the tree.
Simple Report I Lu:uggingl Advanced .-'f-.nal_l,lsisl

—Data zelection
Available data sources: Selected data zources:

Allacated memarn -

Smallest allocation

Largest allocation

Free Memaom

Smallest contiguaus free memary =
Largest contiguous free meman

Current users <4
Peak uzers

Dead users purged

Drarmant objects

Artive nhirrts ;I

— File zelection

Report file; IE:'\T emphBP_Simple_Repart bt Browse. . |

Wwirite report |

You can write a report which contains information on the data sources that you select on this page.

» To select the data sources and write the report

1 Select one or more data sources in the Available data sources list box.

2 Choose the >> button.
The selected data sources are moved to the Selected data sources list box.

| Note: If you have accidentally moved the wrong data source to the Selected data sources

list box, you can move it back to the Available data sources list box by choosing the
<< button.

3 Optional. In the Report file text box, specify the path to the file to which the report is to be
written.

Operations 67

Using the GUI Version of the Buffer Pool Monitor

Or:
Choose the Browse button to select the file from a dialog box.

| Note: By default, the Report file text box contains the path to the file which has been
defined in the properties.

4 Choose the Write report button.

The report is written to the specified file. The content of this file is automatically shown in
the text editor which has been defined in the properties.

Logging

The following page appears when you select Logging in the tree.

Simple Feport Logging .-’-'-.dvanc:ed.-‘i'-.nalysisl

— Data selection
Available data zources: Selected data sources:

Allozated memarny -

Smallest allocation

Largest allocation

Free Meman

Smallest contiguous free memony =
Largest contiguous free meman

Current users <2
Peak uzers

Dead uzers purged

Drormant objects lI

Arhve nhirrts

— File zelection
Log file; IEZ"'-T empsBF_Log txt Browse... |

— Log cantral

Le

Interval: I 10 zeconds v Start now | Stop |

Start schedule |

Start ime: |n4m?xznua 12:259:26

Bl

Stop time: |EI4.-’EI?.-’2EIEI5 12:23:26

L

Stakus:

68 Operations

Using the GUI Version of the Buffer Pool Monitor

The upper part of this page contains the same information as the Simple Report page. The only
difference is that a different log file is used by default.

In addition to selecting the data sources in upper part of this page, you can decide whether the
log file is to be written immediately (manually) or whether it is to be scheduled for a specific time
range.

» To start the logging process manually

1
2

Select all data sources and (optionally) the log file as described for the Simple Report page.

From the Interval drop-down list box, select the interval which determines how often the log
information is to be written to the file.

Choose the Start now button to start writing information to the log file.

A status message indicating the number of done circles and the elasped time is shown at the
bottom of the Log control group box.

Choose the Stop button to stop writing information to the log file.

When the logging process has been stopped, the content of the log file is automatically shown
in the text editor which has been defined in the properties.

» To schedule the log process for a specific time range

Select all data sources and (optionally) the log file as described for the Simple Report page.

From the Interval drop-down list box, select the interval which determines how often the log
information is to be written to the file.

Specify a start date and time.

Specity a stop date and time.

Choose the Start schedule button.

A status message is shown at the bottom of the Log control group box. It indicates the time

that is to elapse until the log process is started. When the start time is reached, a different
status message is shown which indicates the number of done circles and the elasped time.

| Note: You can choose the Stop button to cancel the schedule before the specified start

time.

When the stop time is reached (or when you choose the Stop button after the start time has
been reached), the content of the log file is automatically shown in the text editor which has
been defined in the properties.

Operations 69

Using the GUI Version of the Buffer Pool Monitor

Advanced Analysis

The following page appears when you select Advanced Analysis in the tree. It provides informa-

tion for the Software AG support team.

A

Important: Do not use this page unless you are requested to do so by Software AG Support.

Simple Hepu:urtl Logging Advanced Analysis

—Anhalyziz
Chooze types: [Global pool stuctures

[T Memony slats
[T Mode lizt array

Analysiz file: IE:'\lTemp'xE P_tinalpziz. tat

Wiite analyziz file

Browse... |

— Buffer pool memary dump

Diurnip file: C:ATemphBP_Dump. bt

Durnp rmernary

Browse. .. |

70

Operations

8 Using the Command Line Version of the Buffer Pool Monitor

(NATBPMON)

= |nvoking the NATBPMON UHIItYevviiiieiecee e 72
B NATBPMON COMMEANGS ...ttt e e e e ettt e e ettt e e e et e e e et e e e et e e e e ennees 73
= Displaying the Objects in the BUffer POOIoooiiiiiiii e 74
B SPECITYING @ PAEIN ... 75
= Displaying the Buffer POOI SEHINGSccoiiiiiiiii e 76
= Statistical Information About the BUffer POOIoooiiiiiiii e 77

7"

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

See also Natural Buffer Pool which provides general information on the buffer pool and explains
how to start the buffer pool.

@ Caution: This utility should not be generally accessible to all users of Natural, because its
use can cause damage to the work of other users of the buffer pool.

Invoking the NATBPMON Utility

You can invoke the NATBPMON utility either for the default buffer pool NATBP or for another existing
buffer pool.

» To invoke the NATBPMON utility

1 Invoke the Command Prompt window of Windows.
2 Go to the Natural bin directory which contains the file natbpmon.exe.

3 If the default buffer pool NATBP is to be used, enter the following command in the Command
Prompt window:

NATBPMON

Or:

If another buffer pool is to be used, enter the following command in the Command Prompt
window:

NATBPMON BP=buffer-pool-name

The following prompt appears:

NATBPMON>

72 Operations

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

NATBPMON Commands

The following commands can be entered at the NATBPMON prompt:

{pattern|[*]}

Command Description

CLEAR This is the same as the ZERO command.

CORPSES Displays the list of corpses. A corpse is an object that has been deleted, but was still
being used in the buffer pool when its deletion took place. Once this object is no
longer used, it will automatically disappear from the list of corpses.

Anmerkung: The column cusr which is shown with the DIR command indicates if
an object is being used.

DELETE Deletes an object from the buffer pool. All objects can be deleted from the buffer pool

by using an asterisk (*). A pattern is used to specify a collection of objects, similar to
current operating systems which allow the specification of a class of files with
wildcards. For further information, see Specifying a Pattern.

DIR
{pattern|[*])

Displays a directory containing all objects in the buffer pool. For further information,
see the sections Specifying a Pattern and Displaying the Objects in the Buffer Pool.

DUMP

Used for error analysis.

Wichtig: Do not use this command unless you are requested to do so by Software
AG Support.

EXIT Exits the NATBPMON utility.

FIN Exits the NATBPMON utility. This is the same as the EXIT command.

HELP Displays a list of all available commands of the NATBPMON utility.

PARAM Displays the buffer pool settings. For further information, see Displaying the Buffer
Pool Settings.

QUIT Exits the NATBPMON utility. This is the same as the EXIT command.

SHUTDOWN Shuts down the buffer pool. No new processes will be able to use the buffer pool once
this command has been issued. The NATBPMON utility is able to run with a buffer pool
which has the shutdown status ,,pending”; all commands of the NATBPMON utility are
available in this case.

Anmerkung: To start the buffer pool after shutdown, you can use the utility NATBPSRV.

STATUS Displays statistical information about the buffer pool. For further information, see
Statistical Information About the Buffer Pool.

SWAP Only available for a read-only buffer pool. Tags a read-only buffer pool as ,,obsolete”.
All Natural sessions attached to such a buffer pool will detach from that buffer pool
and attach to the alternate buffer pool.

WHO Displays a list of all users who are using the buffer pool. The following statistics are

displayed: a number that the NATBPMON utility automatically assigns to each buffer

Operations

73

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

Command Description

the buffer pool (tid).

pool user (index) and the user ID, terminal ID and process ID of the process using

a file name.

index numbers.

WRITE Writes a buffer pool object onto the disk. You are prompted to specify an index and

Anmerkung: The column ,indx” which is shown with the DIR command shows the

ZERO Resets to 0 all counters that are displayed by the STATUS command.

Displaying the Objects in the Buffer Pool

The DIR command displays a list of objects. This list contains the following information:

Column |Explanation

buffer pool.

indx |A number that the NATBPMON utility automatically assigns to an object when it is loaded into the

cusr |The current number of users that are using an object in the buffer pool.

pusr |The peak number of concurrent activations of an object in the buffer pool.

nusg |The number of times an object has been activated in the buffer pool.

8 Specifies whether an object is being loaded into the buffer pool from the system file. Has one of
the following values:
0 The object is not being loaded.
1 The object is being loaded.

size |Specifies the size (in bytes) of an object in the buffer pool.

gpv |The version number of the generated program.

key Specifies the following information about an object:

D Database ID.

F File number.

L The library in which the object is located.

N The name of the object. Numbers and "@" indicate chunks of FILEDIR.SAG

for the currently loaded library.

FILEDIR.SAG; "R"=resource).

K The kind of object ("G"=generated object module; "S"=source; "D"=part of

T The object type (which is blank when "D" is shown in the "K" field).

74 Operations

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

When the DIR command is issued, all objects in the pool will be displayed in a notation similar to
the following:

indx: index of the element

cusr: current number of concurrent users

pusr: peak number of concurrent users

nusg: number of usages

g g set if object is generating

gpv : version of generated program

indx | cusr | pusr | nusg | g | size | gpv | key

----- T e
1 | 0 | 1 | 4 | 0 | 920 | | (D=99 F=101 L="DEMO"
N="SEL-MAP" K='G' T='M")

2 | 1 | 7 | 2 | 0 | 3096 | | (D=99 F=101 L="DEMO" N="EMWND"
K='G' T='P")

3 | 4 | 9 | 4 | 0 | 604 | | (D=99 F=101 L="DEMO" N="HDR"
K='G' T='P")

4 | 2 | 3 | 7 | 0 | 412 | | (D=99 F=101 L="RPA"
N="MMUPROGL" K='G' T='P")

5 | O | 1 | 5 | 0 | 372 | | (D=99 F=101 L="RPA"
N="MMUPROG2" K='G' T='P")

6 | O | 5 | 4 | 0 | 372 | | (D=99 F=101 L="RPA"
N="MMUPROG3" K='G' T='P")
Specifying a Pattern

A pattern can be specified with the commands DIR and DELETE. The examples in this section apply
to the DIR command.

To select some objects, it is possible to restrict the values of certain key fields by specifying a
matching pattern expression.

To restrict the allowed field values of a given field, the following pattern notation must be used:
name=expression

You can specify multiple patterns by separating them with a comma.

The specified patterns must all match their corresponding fields in order to accept the entire key.
The expression accepts the specification of the wildcard characters "*" and "?".

The character "*" matches any or no occurrences of a sequence of characters, and the wildcard
character "?" matches exactly one specific character.

Operations 75

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

Examples

To select all objects of type "P" in the sample above, the following command would be used:

DIR T=P

To select all programs in the demo library, the following command would be used:

DIR T=P, L=DEMO

To select all objects containing an "M" in their name, the following command would be used:

DIR N=*M*

Displaying the Buffer Pool Settings

The following settings are displayed with the PARAM command:

Active since: 4-JAN-2007 10:16:52, Version 6.3(631)
Last time cleared: 4-JAN-2007 10:16:52

Bpid: NATBP

Shmkey: Global\NAT631BPMEM_0x16221111

Semkey: Global\NAT631BPSEM_0x16221111

Memsize ...t 3145728

MAXUSErS vttt iieeeeeee et 20

Bpid Buffer pool ID.

Shmkey |Unique name used to create a buffer pool or to connect to a buffer pool.

Semkey |Unique name used to synchronize accesses to the buffer pool memory.

Memsize |Size of the available shared memory.

Maxusers | Maximum number of users that can have simultaneous access to the buffer pool.

See Buffer Pool Assignments in the Configuration Utility documentation.

76 Operations

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

Statistical Information About the Buffer Pool

The following statistics are displayed with the STATUS command:

Active since: 4-JAN-2007 10:16:52, Version 6.3(631)

Last time cleared: 4-JAN-2007 10:16:52

Bpid: NATBP

Allocated memory (bytes) ..: 18207752 Max USErS ...t 50
Smallest allocation: 32 Current users: 5
Largest allocation: 4707272 Peak users: 9
Free memory (bytes): 2763768 Dead users purged: 623
Smallest free: 136

Largest free: 33136

Dormant objects: 2010 Smallest object (bytes) .: 15
Active objects: 1 Largest object (bytes) ..: 49383
Generating objects: 0 Total object sizes: 12394644
Obsolete objects: 0

Attempted Tocates: 1646837910 Stored objects: 0
Attempted fast locates: 823725223 Loaded objects: 1520609
Successful fast locates ...: 822423506 Activated objects: 1645410434
Percent: 99.84 Aborted loads: 323104
Dormant objects purged: 51919 Peak parallel activations: 4
Object reusage factor: 1082.07

General Information

Active since Date and time when the buffer pool was started and the version number of
the buffer pool.

Last time cleared Date and time when the buffer pool was most recently cleared.

Bpid Buffer pool ID.

Memory Allocation

Allocated memory (bytes) |Total of all allocated memory.

Smallest allocatio Smallest amount of allocated memory.

Largest allocation Largest amount of allocated memory.

Free memory (bytes) Total of all free memory.

Smallest free Smallest amount of contiguous free memory.

Largest free Largest amount of contiguous free memory.

User Statistics

Max. users Maximum number of users that can have simultaneous access to the buffer

pool. See Buffer Pool Assignments in the Configuration Utility documentation.

Current users Number of users currently using the buffer pool.

Operations 77

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

Peak users

Peak number of users that have been using the buffer pool.

Dead users purged

Number of inactive users that have been deleted from the buffer pool. This
number should be close to 0 (zero). An increment of this number indicates that
entries for buffer pool users (i.e. Natural sessions) were canceled or killed
unconditionally. Each time an entry for such a user is identified by the buffer
pool manager, this number is incremented and cleanup is performed to remove
residuals which have been left in the buffer pool by a canceled session.

Object Use Statistics

Dormant objects

Number of available, but inactive objects. These objects are in the buffer pool,
but are not being used. They are available for later use and will become active
objects as soon as a buffer pool user requests their availability.

Active objects

Number of active objects. These objects are currently in use by one or more
buffer pool users.

Generating objects

Number of objects that are currently being loaded into the buffer pool. These
objects will become available as soon as the load operation completes.

Obsolete objects

Number of objects that are to be deleted from the buffer pool, but are still being
used. These objects can be displayed by using the CORPSES command. An
obsolete object is removed from the buffer pool as soon as all users who
activated this object have released this object. In a production environment,
this number should be 0 (zero). A value other than zero indicates that objects
were deleted either using the DELETE command of NATBPMON or became
obsolete because new objects were created (for example, due to a CATALOG
command).

Object Size Statistics

Smallest object (bytes)

Size of smallest object in the buffer pool.

Largest object (bytes)

Size of largest object in the buffer pool.

Total object sizes

Total size of all objects in the buffer pool.

Locate Statistics

Attempted locates Number of successful and failed object locates. This number tells you how
many times the buffer pool manager was asked to locate an object in the buffer
pool.

Attempted fast locates Number of attempted activations with known slot. This is the number of object

activations when the former location of an object was known. It is highly
probable that an object can be found in the same place in the buffer pool when
it is reactivated.

Successful fast locates

Number of successful fast locates.

Percent Percentage of successful fast locates.

Object Loading Statistics

Stored objects The number of objects stored in the buffer pool. This is the number of objects
that were stored into the buffer pool and which were not loaded from the
system file.

78 Operations

Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)

Loaded objects The number of objects loaded from the system file. Each time an object is not
found in the buffer pool, it is loaded from the system file. This number is
increased each time an object is successfully loaded into the buffer pool.

Activated objects The number of activated objects. Activation is the process of marking an object
which is found in the buffer pool as ,,in use” by a buffer pool user.

Aborted loads The number of load operations that were aborted due to memory shortages

within the buffer pool, or due to an error when loading an object into the buffer
pool. This number should not vary in a noticeable way:.

General Loading Statistics

Dormant objects purged

The number of unused objects deleted from the buffer pool to make room for
newly loaded ones.

Peak parallel activations

The maximum number of parallel activations of one of the objects in the buffer
pool.

Object reusage factor

Average number of times an object was reactivated. This number is the ratio
of the number of object activations to the number of objects loaded into the
buffer pool.

Operations

79

80

9 Natural in Batch Mode

B What iS BatCh MOTET ... 82
= Starting a Natural Session in BatCh MOGEuvviiiiiiiiie et 82
= Terminating a Natural Session in Batch MOdeoviiiiiiiiie e 83
= Using Natural in BatCh MOGEoiiiiiiiiiii e 83
= Sample Session for Batch MOTEvviiiiiiii e 85
® BatCh MOAE DEECHON ... 88
® Batch MOde RESIICHONSviiiiiii e 88
= Hints for Using Natural Maps and Dialogs in Batch MOdecccuviiiiiiiiiiiii e 89

81

Natural in Batch Mode

This chapter contains special considerations that apply when running Natural in batch mode.

What is Batch Mode?

Natural distinguishes between two processing modes:

" interactive mode (with Natural Studio)

= batch mode

The main difference between these two modes is that in interactive mode, the commands and data
are input by the user by means of the keyboard and the output is displayed on a screen. In batch
mode, input is read from a file and output is written to a file - without user interaction.

When Natural is run as a batch job, no interaction between Natural and the person who submitted
the batch job is necessary. The batch job consists of programs that are executed sequentially and
that receive sequential input data.

Batch mode is useful for mass data processing on a regular basis.

Starting a Natural Session in Batch Mode

Batch mode is activated with the parameter BATCHMODE.

» To start a Natural session in batch mode

1 Start Natural with the dynamic parameter BATCHMODE as shown below:

natural BATCHMODE

The above call (where only the BATCHMODE parameter is specified) assumes that the required
input and output channels have already been defined in the Configuration Utility. For infor-
mation on the input and output channels, see Using Natural in Batch Mode later in this sec-
tion). For information on the batch-mode-relevant profile parameters in the parameter file,
see Batch Mode in the Configuration Utility documentation.

It is also possible to add the required input and output channels as dynamic parameters to
the above call. This is illustrated in Sample Session for Batch Mode later in this section. Any
input and output channels that are specified as dynamic parameters with the above call
override the channel definitions in the parameter file.

2 Check the file which has been defined as the output channel. At its end, this file should contain
the message that your session has terminated normally.

82 Operations

Natural in Batch Mode

Terminating a Natural Session in Batch Mode

A Natural session in batch mode is terminated when one of the following is encountered during
the session:

" the system command FIN in the batch input file, or

" a TERMINATE statement in a Natural program which is being executed.

) Note: When an end-of-input condition occurs in the batch input file, the batch session is

also terminated. In this case, the file which has been defined as the output channel contains
a message which indicates an unexpected end.

Using Natural in Batch Mode

To start a Natural session in batch mode you have to specify the dynamic parameter BATCHMODE.
In addition, input and output channels have to be defined as described below.

A\ Important: The input channels CMSYNIN and/or CMOBJIN and the output channel CMPRINT are

always required for batch mode.
The following topics are covered below:

= |nput and Output Channels
= Code Pages for the Input and Output Files

Input and Output Channels

The following parameters are available for batch mode:

Parameter |Description

CMSYNIN |Defines the batch input file which contains the Natural commands and (optionally) data to be
read by INPUT statements during execution of Natural programs.

CMOBJIN |Defines the batch input file which contains the data to be read by INPUT statements. This data
can alternatively be placed in the file defined with the parameter CMSYNIN, immediately following
the relevant RUN or EXECUTE command.

CMPRINT |Defines the batch output file for the output resulting from DISPLAY, PRINT and WRITE statements
in a Natural program.

CMPRTnn |Defines an output file for additional reports referenced by any Natural program executed during
the session. nn is a two-digit decimal number in the range from 01 to 31 which corresponds to
the report number used ina DISPLAY, PRINT or WRITE statement.

Operations 83

Natural in Batch Mode

Parameter |Description

CMWRKnn |Defines a work file referenced by any Natural program executed during the session. nnis a
two-digit decimal number in the range from 01 to 32 which corresponds to the number used in
a READ WORK FILE or WRITE WORK FILE statement.

NATLOG |Used to log messages that could not be written to the batch output file defined with the parameter
CMPRINT. It is recommended to enable NATLOG in batch mode.

Code Pages for the Input and Output Files

The following parameters are used to specify the code pages in which the input files are encoded
and in which the output file shall be encoded.

Parameter |Description

CPSYNIN |Specifies the code page in which the batch input file for commands is encoded. This file is defined
with the parameter CMSYNIN.

CPOBJIN |Specifies the code page in which the batch input file for data is encoded. This file is defined with
the parameter CMOBJIN.

CPPRINT |Specifies the code page in which the batch output file shall be encoded. This file is defined with
the parameter CMPRINT.

Encoding for CMSYNIN and CMOBJIN:

" If a code page is specified for one of the input files CMSYNIN or CMOBJIN, it is assumed that the
data in the input file is encoded using this code page.

® If no code page is specified for one of the input files CMSYNIN or CMOBJIN, it is assumed that the
data in the input file is encoded using the default code page specified in the Natural parameter
CP.

® If no code page is specified in the Natural parameter CP, it is assumed that the data in the input
file is encoded using the current system code page.

Encoding for CMPRINT:
® If a code page is specified for the output file CMPRINT, the output data will be encoded using
this code page.

® If no code page is specified for the output file CMPRINT, the output data will be encoded using
the default code page specified in the Natural parameter CP.

® If no code page is specified in the Natural parameter CP, the output data will be encoded using
the current system code page.

If the encoding/decoding fails (for instance if a character is written to CMPRINT that is not contained
in the code page used to encode the file), the batch job terminates with a startup error 42 (batch
mode driver error) that specifies the file on which the encoding/decoding error occurred.

84 Operations

Natural in Batch Mode

Note that it is possible in particular to specify UTF-8 as code page in each of these parameters.
This allows for reading and writing Unicode data encoded in UTE-8.

Sample Session for Batch Mode

This example demonstrates how to start Natural in batch mode. A simple Natural program is
executed and data items are taken from the batch input file. After the items are processed with
the INPUT statement, a DISPLAY statement follows, which writes the data to the batch output file.
Then, Natural terminates.

This example uses the program RECCONT which is stored in the library SYSEXBAT.

| Note: See the text A-README in the library SYSEXBAT for information on the objects that are
stored in this library.

The sample session is invoked with the following call:

natural BATCHMODE CMSYNIN=cmd.txt CMOBJIN=data.txt CMPRINT=out.txt NATLOG=ALL

| Note: This call assumes that all files can be found in the current directory and that the output

is written to this directory. If the files are located in different directories or if the output is
to be written to a different directory, you have to specify the path.

The parameters in the above call are described below:

BATCHMODE

The parameter BATCHMODE enables batch mode and sets the value of the system variable *DEVICE
to "BATCH".

CMSYNIN=cmd.txt
The batch input file cmd.txt is a text file which is stored in your file system. The content of this
file is shown below. It contains Natural system commands for logging on to the library SYSEXBAT,
executing the Natural program RECCONT, and terminating the Natural session.

LOGON SYSEXBAT
EXECUTE RECCONT
FIN

Operations 85

Natural in Batch Mode

The Natural program RECCONT has the following content:

DEFINE DATA
LOCAL
1 #firstname (A1Q)
1 flastname (A10)
END-DEFINE
INPUT (IP=0FF AD=M) #firstname #lastname
DISPLAY #firstname #lastname
END

CMOBJIN=data.txt

The INPUT statement in the program RECCONT uses the data which is defined in the batch input
file data.txt. This is a text file which is stored in your file system. The content of this file is
shown below.

Ben %
Smith

Note: The character "%" indicates that the information continues in the next line.

CMPRINT=out.txt

The DISPLAY statement in the program RECCONT writes the data to the batch output file out.txt
which is created in your file system. The content of this file is shown below:

NEXT LOGON SYSEXBAT
Logon accepted to library SYSEXBAT.
NEXT EXECUTE RECCONT

DATA Ben %
DATA Smith

Page 1 25.04.05 13:39:09

fFFIRSTNAME #FLASTNAME

Ben Smith
NEXT FIN
NAT9995 Natural session terminated normally.

NATLOG=ALL
When you invoke the sample session with the above call, a log file is created with contains all
types of messages (which also includes the names of the batch input and outfile files). The log
file is normally created in Natural's temporary directory which is defined in the local configu-
ration file. See also the description of the NATLOG parameter.

86 Operations

Natural in Batch Mode

The image below illustrates the different ways in which Natural reads input and writes output in
batch mode.

File File STACK File
Ben % LoGON SYSEXBAT LoGON SYSEXBAT
Smith EXECUTE RECCONT EXECUTE RECCONT
Ben Smith FIN
FIN
CMOBJIN CMOBJINSCMSYNI ' CMSYNIN
CMPRINT CMPRTAR CMWRKnn NATLOG
File ' File ' File ' File
NHEXT LOGEON
SYSEXBAT

Logon accepted
to STYSEXBAT.
NEXT RECCONT

As shown in the above graphic, you can proceed in one of the following ways:

® CMOBJIN andCMSYNIN

Different files are used for batch input. One file contains the Natural commands and the other
file contains the data:

natural BATCHMODE CMSYNIN=cmd.txt CMOBJIN=data.txt CMPRINT=out.txt

Operations 87

Natural in Batch Mode

® CMSYNIN
One file is used for batch input. It contains both the Natural commands and data:

natural BATCHMODE CMSYNIN=data.txt CMOBJIN=data.txt CMPRINT=out.txt
Note: Even though only one batch input file is used, both parameters CMSYNIN and CMOBJIN

have to be specified. Both parameters must refer to the same file.

® CMOBJIN andSTACK
One file is used for batch input. It contains the data. The Natural commands are specified with
the profile parameter STACK:

natural BATCHMODE CMOBJIN=data.txt STACK="(LOGON SYSEXBAT; RECCONT;FIN)"

Batch Mode Detection

The system variable *DEVICE indicates whether Natural is running in batch mode or interactive
mode.

Mode Description

Batch mode *DEVICE contains the value "BATCH". This value is set by the parameter BATCHMODE.

Interactive mode |*DEVICE contains a value other than "BATCH". In most cases, it contains the value
"VIDEO".

Example:

IF *DEVICE = "BATCH" THEN

WRITE 'This is the background task'
ELSE

WRITE 'This is the interactive session'
END-IF

Batch Mode Restrictions

When Natural is running in batch mode, some features are not available or are disabled:

* Interactive input or output is not possible.
® There is no mouse support.

" No different character fonts are available.

88 Operations

Natural in Batch Mode

® Only data for an INPUT statement can be processed. Dialog input is only conditionally supported
(see Hints for Using Natural Maps and Dialogs in Batch Mode).

® The output appearance is not GUI-like (it is character-oriented output).
® No colors and video attributes are written to the batch output file defined by CMPRINT.
® Filler characters are not displayed within an INPUT statement.

® Certain Natural system commands are not executable in batch mode, and are ignored. In the
System Commands documentation, a corresponding note is provided for each system command
to which this restriction applies.

Hints for Using Natural Maps and Dialogs in Batch Mode

If an application is designed to run in batch mode as well as in interactive mode, the following
considerations should be taken into account.

Within Natural, there are two ways to read input data:

" using a map (by using an INPUT statement or the Natural object Map),
" using a dialog (by using the Natural object Dialog).

In batch mode, data have to be processed using an INPUT statement, because a dialog does not
allow data processing in batch mode. Terminal commands for navigating and controlling data are
also not supported by a dialog. Nevertheless, a dialog may be executed in batch mode. In this case,
however, the dialog must be altered in the following way:

® The dialog attribute VISIBLE must be set to "FALSE".

® Within the event AFTER-0PEN, code should be inserted to read data during batch mode processing.
If Natural runs in batch mode, an INPUT statement should be coded to get the input data. For
interactive mode, the dialog attribute VISIBLE has to be set to "TRUE" to make the dialog visible.

Example for the AFTER-OPEN event:

I[F *DEVICE EQ "BATCH" THEN
/* Batch mode processing: call a map */
INPUT USING MAP "BATCHINP" #pl #p2 #p3

/* ... further data processing ... */

/* Close dialog immediately */
CLOSE DIALOG *DIALOG-ID
ELSE

/* Interactive mode processing: make dialog visible */
#DLGSWINDOW.VISIBLE = TRUE

END-IF

Operations 89

Natural in Batch Mode

= If there is a CLOSE event, ensure that the appropriate code does not contain any GUI actions in
batch mode.

Example for the CLOSE event:

IF *DEVICE NE "BATCH" THEN
/* ... GUI actions ... */
END-IF

Operations

10 Output Window

® AbOUt the OUEPUE WINAOW ... e e a e e e e e 92
m Working in the OUEPUE WINAOWeeiiii e s 92
= Changing the Output WINdOW PrOfilecooiiiiii e 93
= Using Your Own Icon for the OUtPUt WINAOWoooiiiiiiiiiii s 94

91

Output Window

About the Output Window

In the local environment, an output window appears when a Natural program writes output to
the screen. Example:

ENatural M=]

Page 1 61.11.84 15:16:87 ﬂ

Hello world?

=

Note: In a remote development environment, a terminal emulation window or a Natural

Web I/O Interface client appears instead of an output window. See Terminal Emulation and
Natural Web I/O Interface Client in the Remote Development Using SPoD documentation.

Working in the Output Window

A button for the output window is shown in the Windows taskbar; keep this in mind when you
minimize the output window.

The output window can be resized and moved. If the output window is smaller than the Natural
output page, scroll bars appear.

PF keys defined in a Natural program are converted to command buttons. You can either use
these command buttons or the PF keys on your keyboard.

92 Operations

Output Window

Information from an input field in the Natural output can be cut or copied to the Windows clip-
board, and information from the Windows clipboard can be pasted into an input field of the output
window.

The cursor can be positioned using the mouse. Double-clicking the left mouse button simulates
the ENTER key. The system variables *CURSOR, *CURS-COL and *CURS-LINE are always set to the
current mouse position.

Windows created using the statement DEFINE WINDOW or the terminal command %W are placed into
the output window. They are moveable, sizeable, and scrollable child windows of the output
window.

The output window is automatically closed when the program terminates. It cannot be closed
manually using the standard Windows close button. If you want to close the output window
before the regular termination of the program, you can press ESC (provided that this feature has
not been disabled; see below).

Changing the Output Window Profile

Several options can be set for the output window. These options can either be set directly in the
output window (as described below) or in Natural Studio (see Setting the Options in the documen-
tation Using Natural Studio).

» To change the output window profile

1 From the control menu of the output window, choose Profile.

| Note: This command is not available when the display of the profile dialog has been
disabled. In this case, the output window options can only be set in Natural Studio.

The following dialog box appears.

Operations 93

Output Window

MATURAL Output Window Profile |

[~ Save cument size and position

[T Activate report page buffer

¥ Dizplay input figlds with frame

[Dizplay PF key buttonz with number
[Display more prompt

[T Disable ESC key

¥ Dizable help menu

[T Disable profile dislog

¥ Fived fonts anly

Colars... | Faonts. .. |

k. I Save | Cancel

This dialog box contains the same options as the Options dialog box of Natural Studio. There
is one exception: the following command is only available in the above dialog box since it can
only be specified for a running application:

Save current size and position
When this check box is selected, the current size and position of the output window is
saved.

2 Setall required options. For a detailed description of each option, see Output Window Options
in the documentation Using Natural Studio.

3 Choose the Save button to save your changes permanently.
Or:

Choose the OK button to save your changes for the current session only.

Using Your Own Icon for the Output Window

Instead of using the Natural icon for the output window, you can use your icon. This icon will be
shown in the control menu of the output window and in the Windows taskbar.

» To use your own icon

1 Create an icon file (*.ico).

2 Store your icon file in a directory where it can be found by Natural.

%4 Operations

Output Window

Natural tries to find the icon file first in the RES subdirectory of the logon library, then in the
RES subdirectory of each steplib and then in the directory assigned to the Windows environ-
ment variable NATGUI_BMP.

3 To use your own icon file, use the following statement in your program:

SET CONTROL 'I=icon-file-name.ICO'

See also the description of the terminal command %I.

Operations 95

96

11 Natural Runtime

= What is not Supported by Natural RUNIME?oiiiiiiiie e 98
B POrtiNG PrOCEAUIE OVEIVIEWciiiiiiee ettt ettt e et e e et e e et e e e et e e e et e e e e nnees 99
= Step 1: Packaging the Application on the Development Workstationcccccooiiiiiiiiiiiiiicceee 99
= Step 2: Installing Natural RUNTIME ..o 104
= Step 3: Installing the Application on the Runtime Workstationccccvvviiiiiiiiiii e, 104
= Step 4: Starting the Application on the Runtime Workstation ..o, 107
= Using the Natural Runtime Startup SEIVICEviiiiiiiiiiie e 108

97

Natural Runtime

Natural Runtime is used to execute applications that have been written using the development
version of Natural for Windows.

This chapter tells you how to port an application from a Natural development workstation to a
Natural Runtime workstation. This porting process can be used for a first-time installation of
Natural Runtime and for Natural Runtime workstation updates.

You will also learn how to use a service for starting Natural Runtime processes.

A\ Important: Before porting an application to a Natural Runtime workstation, ensure that all
objects have been compiled using identical Natural and Natural Runtime versions.

What is not Supported by Natural Runtime?

System Commands

The following Natural system commands are not supported by Natural Runtime:

CATALL
CATALOG
CHECK
CLEAR
COMPOPT
DEBUG
DELETE
EDIT
GLOBALS
PURGE
READ
RENUMBER
RUN
SAVE
SCAN
SCRATCH
STOW
STRUCT
SYSDDM
SYSMAIN
UNCATALOG
UNLOCK

98 Operations

Natural Runtime

Editors
Natural editors are not supported by Natural Runtime.
Utilities

Natural utilities providing developer functionality are not supported by Natural Runtime.

Porting Procedure Overview

To port an application to a runtime workstation, the following steps (which are described in detail
later in this section) are required:
1. Package the application on the development workstation:
a. Create a collecting directory in your file system.
b. Customize the global configuration file and copy it to the collecting directory.
c. Customize the Natural parameter file and copy it to the collecting directory.
d. Copy or unload all required objects to the collecting directory.
e. Copy the contents of the collecting directory to a transfer medium (for example, to a CD).
2. Install Natural Runtime on the runtime workstation.
3. Install the application on the runtime workstation:
a. Copy the global configuration file from the transfer medium to the runtime workstation.
b. Copy the Natural parameter file from the transfer medium to the runtime workstation.
c. Copy or load the Natural objects from the transfer medium to the runtime workstation.

4. Start the application on the runtime workstation.

See also Transferring Natural Generated Programs in the Programming Guide.

Step 1: Packaging the Application on the Development Workstation

The following topics are covered below:

= Creating a Collecting Directory

= Customizing and Copying the Global Configuration File
= Customizing and Copying the Natural Parameter File

= Copying or Unloading the Objects

Operations 99

Natural Runtime

= Copying the Collecting Directory to a Transfer Medium
Creating a Collecting Directory

Use the Windows Explorer to create a new directory in the file system of the development work-
station. Use this temporary directory to collect all files which belong to the application.

Customizing and Copying the Global Configuration File

You have to create a global configuration file which contains all settings required to run your
application on the runtime workstation. To do so, you create a backup version of your current
global configuration file, make all required changes for the runtime version, copy the customized
global configuration file to the collecting directory and then restore your old global configuration
file. This is described in detail below.

» To customize and copy the global configuration file

1 Use the Windows Explorer to back up the existing global configuration file.

Note: If you do not know where to find the global configuration file, invoke the Confi-

guration Utility, expand the Local Configuration File node and select the Installation
Assignments node. The full path and name of the global configuration file is then
shown.

2 Invoke the Configuration Utility and expand the Global Configuration File node.
3 Adjust the settings of the global configuration file as required for your application and save

your changes. See also the notes below.

A\ Important: Aslong as the global configuration file with the settings for the runtime

environment is active, you cannot work with the development version of Natural.

4 Use the Windows Explorer to copy the customized global configuration file to the collecting
directory.

5 Use the Windows Explorer to restore the backup version of the global configuration file.
Notes:

® The default paths to the FNAT and FUSER system files differ in the development and runtime
environments. To simplify the installation of the application in the runtime environment, adjust
the paths in this step: select the System Files node of the global configuration file and change
the FNAT and FUSER paths to the settings of the runtime version.

100 Operations

Natural Runtime

Example: Change the following default paths of a Natural development version installation:

DBID [FNR|Path

99 |100 |C:\Program Files\ Software AG\Natural\ <n.n>\Fnat
99 |101 |C:\Program Files\ Software AG\ Natural\ Natapps\ Fuser

to the following default paths of a Natural Runtime installation:

DBID [FNR|Path

99 |100 |C:\Program Files\ Software AG\ Natural Runtime\ <n.n>\Fnat
99 |101 |C:\Program Files\ Software AG\ Natural Runtime\ Natapps\ Fuser

where n. n stands for the version number.
® Make sure that with every new application you are porting, the new settings are compatible

with the old settings.

Example: Your first application accesses an SQL database and the DBID entry applies to this
SQL database. Your second application, which you are porting at a later date, accesses an Adabas
C database. In this case, you must add a second DBID entry for Adabas C. If you do not add a
second entry, the new global configuration file will overwrite the SQL database's DBID and
your first application will no longer be able to access its database.

Customizing and Copying the Natural Parameter File

You have to create a Natural parameter file which contains all settings required to run your app-
lication on the runtime workstation.

» To customize the Natural parameter file

1 Invoke the Configuration Utility and expand the node for the required parameter file.
2 Adjust the settings of the parameter file as required for your application to run in the runtime

environment.

Ensure that the parameter file contains the name of the program to be started. The examples
below show different possibilities for this purpose.

Operations 101

Natural Runtime

Example 1:

Parameter |Required Setting

AUTO Must be set to "ON" so that an automatic logon is executed at the start of the Natural
session.

INIT-LIB|The name of the library into which the application is to be moved.

STARTUP |The name of the program that is to be started.

USER The default user ID that is to be set when Natural is started.

Example 2:

Parameter |Required Setting

STACK |Must contain the library and the program to be started. For example:

LOGON MYLIB;EXECUTE MYAPP

3 Save the modified parameter file with the name that you want to use in the runtime environ-
ment (for example, with the name RUNPARM).

4 Use the Windows Explorer to copy the customized parameter file (which has the extension
"SAG") to the collecting directory.

Note: If you do not know where to find the parameter file, expand the Local Configu-

ration File node of the Configuration Utility and select the Installation Assignments
node. The location of the Natural parameter files is then listed as Path to parameter.

Copying or Unloading the Objects

To make compiled code available with Natural Runtime, you have to copy the cataloged objects
from the Natural development environment to the runtime environment.

If the Natural application consists of complete Natural libraries, you can copy the libraries with
the copy-and-paste functionality of the Windows Explorer.

Another way for porting the objects is use the Object Handler for unloading the objects in the
Natural development environment and for loading them in the runtime environment.

» To copy the objects

1 Use Natural Studio to create a new library which is to contain all objects for the runtime ver-
sion.

A\ Important: If the application consists of more than one library, create a new library for
each library that is used by the application and proceed as described below.

102 Operations

Natural Runtime

»

Use Natural Studio to copy all cataloged objects, resources and error messages from the
development library to the new library. Do not copy the sources.

Use the Windows Explorer to copy the entire directory which corresponds to the new library
(including the file FILEDIR.SAG and the subdirectories GP, RES and ERR) to the collecting
directory.

Notes:

1. If you do not know where to find this directory, execute the system command SYSPROF in
Natural Studio. The Files in File System tab of the resulting dialog box shows the path to
the directory that has been created for the system file FUSER. Your new library is a subdi-
rectory of the FUSER directory; it has the same name as defined in Natural Studio.

2. You can also find out the path to the FUSER directory by using the Configuration Utility:
select the parameter file that you have created in a previous step (that is: the parameter
file that will be used to start the application in the runtime environment), expand the
Natural Execution Configuration node and select the System Files node. The path to the
FUSER directory is shown on the FUSER tab.

If required, rename the copied directory in in the collecting directory: enter the name of the
library that is to be used in the runtime environment.

To unload the objects

From the Tools menu, choose Development Tools > Object Handler to start the Object
Handler.

Start the Unload Wizard.

In the first dialog of the unload wizard, select the option button Unload objects into Natural
work file(s).

In the next dialog in which you have to specify the options settings, define a Natural work
file in the Unload file text box. This work file must be located in the collecting directory which
you have created previously.

If the application uses the same library names in both environments, do not specify any
information in the next dialog (which can be used to specify parameters).

However, if the application uses library names in the runtime environment which are different
from those used in the development environment, select the option button Use global para-
meters, choose the Set button and set the name in the resulting dialog box.

In the next dialog in which you have to specify the object type, select the option button
Natural library objects.

In the next dialog in which you have to select the Natural library objects to unload, choose
the Details button.

Operations 103

Natural Runtime

8 Intheresulting dialog box, specify all cataloged objects, resources and error messages contained
in the application. Do not unload the sources: from the S/C-Kind drop-down list box, choose
Gp.

9 Proceed to the next dialog and unload the objects.

10 After a successful unload, check the work file that has been created in the collecting directory.
Use the Load Wizard to scan the work file for all objects.

Copying the Collecting Directory to a Transfer Medium
When all files in the collecting directory are ready for porting, use the Windows Explorer to copy

the contents of the collecting directory (including all subdirectories) to the transfer medium (for
example, to a CD).

Step 2: Installing Natural Runtime

Install Natural Runtime on the runtime workstation. See the Installation documentation for further
information.

| Note: This step is not required when updating applications on the Natural Runtime work-

station.

Step 3: Installing the Application on the Runtime Workstation

The following topics are covered below:

= Copying the Global Configuration File
= Copying the Natural Parameter File
= Copying or Loading the Objects

Copying the Global Configuration File

Use the Windows Explorer to copy the global configuration file (in which the required DBID has
been defined) from the transfer medium to the directory on the runtime workstation which contains
the global configuration file.

@ Caution: An existing global configuration file will be overwritten.

| Note: If you do not know where to find the global configuration file, invoke the Configura-
tion Utility on the runtime workstation, expand the Local Configuration File node and

104 Operations

Natural Runtime

select the Installation Assignments node. The full path and name of the global configura-
tion file is then shown.

Copying the Natural Parameter File

Use the Windows Explorer to copy the Natural parameter file from the transfer medium to the
directory on the runtime workstation which contains the Natural parameter files.

(Caution: An existing parameter file will be overwritten.

Note: If you do not know where to find the parameter files, select the Installation Assi-

gnments node of the Configuration Utility as described above. The location of the Natural
parameter files is then listed as Path to parameter.

Copying or Loading the Objects

Depending on how the objects have been packaged (see Copying or Unloading the Objects), the
transfer medium contains either complete libraries or a Natural work file.

If complete libraries have been copied using the Windows Explorer, the transfer medium contains
directories with Natural library names. Each directory reflects the Natural library structure: it
contains the file FILEDIR.SAG and the subdirectories GP, RES and ERR. In this case, you have to
copy the libraries as described below.

If the objects have been unloaded into a Natural work file using the Object Handler, the transfer
medium contains this work file. In this case, you have to load the objects using the Object Handler
as described below.

» To copy the libraries

m» Use the Windows Explorer to copy the libraries (including all subdirectories) to the directory
for the FUSER system file.

Note: If you do not know where to find this directory, invoke the Configuration Utility,

select the parameter file that you have copied in a previous step, expand the Natural
Execution Configuration node and select the System Files node. The path to the FUSER
directory is shown on the FUSER tab.

» To load the objects
1 Invoke the Configuration Utility and make sure that the FUSER settings of the parameter file

NATPARM have the same DBID and FNR as the parameter file that you have copied in a previous
step.

Operations 105

Natural Runtime

) Note: The DBID and FNR of the FUSER are shown on the FUSER tab which is invoked
as described above.

2 From the Windows Start menu choose Programs > Software AG Natural Runtime n.n >
Natural Runtime.

Or:

Use the following shortcut on your Windows desktop.

i
1
This invokes Natural Runtime with the standard parameter file NATPARM.

3 Logon to the library SYSOBJH.
4 Execute the program MENU in the library SYSOBJH.

The Object Handler window appears.

5 Inthe first dialog of the load wizard, select the option button Load objects from Natural work
file(s).

6 Inthenext dialog in which you have to specify the options settings, define your Natural work
file in the Load file text box. This must be the work file which is located on the transfer
medium.

| Note: If DBID and FNR of the new parameter file differ from the standard NATPARM

settings, enter the values used by the new parameter file in the next dialog (which can
be used to specify parameters): Select the option button Use global parameters and
choose the Set button. In the resulting dialog box, select the Load Target tab and enter
the corresponding values for DBID and FNR in theLoad FUSER group box.

7 In the next dialog in which you have to specify the object type, select the option button Load
all objects from work file.

8 Proceed to the next dialog and load the objects.
9 Exit the Object Handler and then exit Natural Runtime.

106 Operations

Natural Runtime

Step 4: Starting the Application on the Runtime Workstation

When all required files have been copied to the runtime workstation, you can start your application.
It is recommended that you create a shortcut for each application. You can then define the name
of the parameter file which is required to run the application in the shortcut.

On the runtime workstation, you can start the application in different ways:

* With naturalr.exe
The user interface, which appears when you do not specify the name of a parameter file with
the naturalr.exe command, runs invisibly in the background. For example:

"C:\Program Files\Software AG\Natural Runtime\n.n.\bin\naturalr.exe" PARM=file-name

where n.nis the current version number and 77 7e-name is the name you have assigned to your
customized Natural parameter file (without any file extension).

The user interface becomes visible only if the application for which it was started does not ter-
minate this runtime process properly (for example, if the application does notissue a TERMINATE
statement). This user interface increases the consumption of system resources, even if it does
not appear.

® With natrt.exe
This so-called ,,mini runtime” does not have a user interface that would allow the user to select
an application for execution. It requires that the name of the program that is to be started is
defined in the parameter file. For example:

"C:\Program Files\Software AG\Natural Runtime\n.n.\bin\natrt.exe" PARM=file-name

where n. nis the current version number and f77e-name is the name you have assigned to your
customized Natural parameter file (without any file extension).

The mini runtime terminates as soon as all commands in the parameter file have been processed.

If a program name is not specified in the parameter file, the mini runtime terminates immedia-
tely.

When you use the mini runtime, the consumption of system resources is decreased and it is
ensured that the runtime process terminates at the end of the application processing.

Operations 107

Natural Runtime

Using the Natural Runtime Startup Service

When the Natural Runtime startup service has been installed and is active, it is possible to start
one or more Natural Runtime processes automatically when the PC is booted.

You can define parameter templates which are used to hold Natural parameters. It is thus possible
to start a Natural Runtime process with all parameters that are defined in the template.

A Natural Runtime process is normally used to run a Natural application. For this purpose, the
Natural Runtime process has to be started with a template in which the STACK parameter has been
defined as follows:

STACK=(LOGON T7ibrary-name; program-name)

When the STACK parameter has not been defined, Natural is started without running any applica-
tion.

By default, the Natural Runtime startup service is not installed. You have to install it as described
below.

The following topics are covered below:

= Natural Runtime Startup Service Commands
= Example: Starting a Natural Process Automatically

Natural Runtime Startup Service Commands

The file natrtsvc.exe, which is stored in the bin directory of Natural Runtime, is used to execute the
service commands.

The following service commands can be specified in the Command Prompt window of Windows:

Command Description
NATRTSVC INSTALL mode Installs the Natural Runtime startup service. mode can be one of the
following:
manual Default. The service is installed and must be
started manually (either with the START command
or by starting the Software AG Natural Runtime
n.n Startup Service in Windows).
automatic The service is installed and is automatically started
when the PC is booted.
NATRTSVC REMOVE Removes the Natural Runtime startup service from the system.

108 Operations

Natural Runtime

Command

Description

NATRTSVC START

Starts the Natural Runtime startup service if it had not been started yet.
The service searches for previously created parameter templates for which
the start parameter has been set to "yes". In addition, it starts a Natural
Runtime process with the Natural parameters which are also stored in
the template.

NATRTSVC START
template-name

Starts a Natural Runtime process with the Natural parameters stored in
the specified template. If the Natural Runtime startup service has not
been started (automatically at boot time or manually by the user) an error
message is displayed.

NATRTSVC STOP

Stops the Natural Runtime startup service and all Natural Runtime
processes that have been started by the Natural Runtime startup service.

NATRTSVC STOP
template-name

Stops the Natural Runtime processes that have been started by the Natural
Runtime startup service with the Natural parameters stored in the
specified template.

NATRTSVC CREATE
template-name

Creates a new parameter template to be started by the Natural Runtime
startup service.

NATRTSVC DELETE
template-name

Deletes the specified template from the Natural Runtime startup service.

NATRTSVC SET template-name
start=mode

Defines whether a Natural Runtime process with the Natural parameters
stored in the specified template is to be started when the Natural
Runtime startup service is started. mode can be one of the following:
yes

no

A Natural Runtime process is started.

Default. A Natural Runtime process is
not started.

NATRTSVC SET template-name
Natural-parameters

Stores the Natural parameters in the specified template. For valid Natural
parameters, refer to the Parameter Reference. When you specify more than
one parameter, you have to separate the parameters with blanks. Instead
of parameters, it is also possible to specify the name of a Natural
parameter file.

NATRTSVC SHOW

Displays the startup settings and the stored Natural parameters for all
templates.

NATRTSVC SHOW
template-name

Displays the startup settings and the stored Natural parameters for the
specified template.

NATRTSVC STATUS

Displays the status of all templates, that is: whether these templates are
active or not active.

NATRTSVC STATUS
template-name

Displays the status of the specified template, that is: whether this template
is active or not active.

Operations

109

Natural Runtime

Example: Starting a Natural Process Automatically

This example explains how to install the Natural Runtime startup service, create a new template
and start the corresponding Natural process each time the PC is booted.

» To start a Natural process when the PC is booted

1 Invoke the Command Prompt window of Windows.
2 Go to the Natural bin directory which contains the file natrtsvc.exe.

3 Enter the following command to install the Natural Runtime startup service:

NATRTSVC INSTALL automatic

The following information is shown:

BNATRTSVC-T1: Natural Runtime n.n Startup Service

ANATRTSVC-T: Natural Runtime n.n Startup Service successfully installed
BNATRTSVC-1: Path of binary is C:\PROGRAM FILES\SOFTWARE AG\NATURAL

RUNTIMENn. n\BIN\NATRTSVC.EXE

ANATRTSVC-1: Startup mode of Natural Runtime n.n Startup Service is '"Automatic'
ANATRTSVC-T: Natural Runtime n.n Startup Service

From now on, the Natural Runtime startup service will be started automatically each time
the PC is booted.

4 Enter the following command to create an empty parameter template with the name
"exa_temp":

NATRTSVC CREATE exa_temp

The following information is shown:

ANATRTSVC-I: Natural Runtime n.n Startup Service
ANATRTSVC-T: New Natural instance 'exa_temp' created
ANATRTSVC-I: Natural Runtime n.n Startup Service

5 Enter the following command to define that a Natural Runtime process with the Natural
parameters stored in the parameter template "exa_temp" is to be started when the Natural
Runtime startup service is started:

NATRTSVC SET exa_temp start=yes

The following information is shown:

110 Operations

Natural Runtime

ANATRTSVC-T: Natural Runtime n.n Startup Service
AZNATRTSVC-1: Configuration successfully set
ANATRTSVC-I: Natural Runtime n.n Startup Service

6 Enter the following command to store the contents of the Natural parameter file "myparm"
in the parameter template "exa_temp":

NATRTSVC SET exa_temp parm=myparm

The following information is shown:

ANATRTSVC-T: Natural Runtime n.n Startup Service
ANATRTSVC-1: Configuration successfully set
ANATRTSVC-T: Natural Runtime n.n Startup Service

7 Reboot your PC.

Since you have defined the automatic startup mode for the Natural Runtime startup service,
the defined Natural Runtime processes are started automatically after Windows has been
started.

8 Enter the following command to display the status of all parameter templates that are
currently defined:

NATRTSVC STATUS

The following information is shown:

BNATRTSVC-I: Natural Runtime n.n Startup Service

ANATRTSVC-1: Send request to Natural Runtime n.n Startup Service
ANATRTSVC-T: exa_temp is active

ANATRTSVC-I: Natural Runtime n.n Startup Service

Operations 1M1

12

12 Support of Different Character Sets with NATCONV.INI

= Why is the Support of Different Character Sets Important? ..., 114
= How to Use Different Character SIScoouuiiiiiiiiiii e 114

13

Support of Different Character Sets with NATCONV.INI

The settings in the configuration file NATCONV.INI apply to the A format. For the U format, the
ICU library is used.

This chapter describes how Natural supports different character sets.

Why is the Support of Different Character Sets Important?

The support of multiple languages with different character sets represents Natural's approach
towards internationalization. It can help you when using;:

" upper-/lower-case translation of language-specific characters;

® language-specific characters in Natural identifiers, object names and library names;

* language-specific characters in an operand compared with a mask definition (see MASK Option
in the Programming Guide).

How to Use Different Character Sets

All check, translation and classification tables used by Natural to support language-specific cha-
racters reside in the configuration file NATCONV.INI. By default, this file is located in Natural's
etc directory.

You can modify NATCONV.INI to support local or application-specific character sets.

In a standard application, NATCONV.INI need not and should not be modified, because this could
lead to serious inconsistencies, in particular if Natural objects and database data are already present.

Any modifications of NATCONV.INI should be well considered and carefully performed, other-
wise problems might occur that are difficult to locate.

NATCONVINI is subdivided in sections and subsections. The following sections are defined:

Section Description

CHARACTERSET-DEFINITION |This section defines the name of the internal character set. The default is
"ISO8859 _1".

If you choose a different character set, subsections for this character set
must be contained in the sections described below.

CASE-TRANSLATION This section contains the tables required for the conversion from upper-case
to lower-case which is performed when one of the following is specified:

® the terminal command %U,

114 Operations

Support of Different Character Sets with NATCONV.INI

Section

Description

= the field attribute AD=T,

= the statement EXAMINE TRANSLATE.

This conversion is done within the internal character set. If the internal
character set is, for example, "ISO8859_5", the following two subsections
must be contained in this section:

= [1S08859_5->UPPER]

® [1S08859_5->LOWER]

IDENTIFIER-VALIDATION This section contains the tables required for the validation of identifiers

(that is, user-defined variables in source programs), object names and
library names. It contains a subsection for each defined internal character
set.

The special characters "#" (for non-database variables), "+" (for
application-independent variables), "@" (for SQL and Adabas null or length
indicators) and "&" (for dynamic source generation) can be redefined in
this section. In addition, the set of valid first and subsequent characters for
identifiers, object names and library names can be modified.

Anmerkung: When extending the set of valid characters for object names

with values greater than "x7f" (decimal 127), the sorting sequence of the
objects (for example, duringa LIST * command) may not be in the
numerical order.

CHARACTER-CLASSIFICATION |This section contains the tables required for the classification of characters,

which, for example, are used when evaluating the MASK option. It contains
a subsection for each defined internal character set.

The section CHARACTERSET-DEFINITION and each subsection contain lines which describe how
characters are to be converted and which characters are related with which attributes. These lines
are represented as follows:

line

key
name_key
keyword

range_key
value

val
hexnum

key = value

name_key | range_key

keyword{ CHARS }

INTERNAL-CHARACTERSET | NON-DB-VARI | DYNAMIC-SOURCE |
GLOBAL-VARI | FIRST-CHAR | SUBSEQUENT-CHAR |
LIB-FIRST-CHAR | LIB-SUBSEQUENT-CHAR | ALTERNATE-CARET
ISASCIT | ISALPHA | ISALNUM | ISDIGIT | ISXDIGIT |
ISLOWER | ISUPPER | ISCNTRL | ISPRINT | ISPUNCT |
ISGRAPH | ISSPACE

hexnum | hexnum-hexnum

val {, val }

hexnum | hexnum-hexnum

xhexdigithexdigit | xhexdigithexdigit

Operations

15

Support of Different Character Sets with NATCONV.INI

Notes:

1. If the range_key variable is specified on the left-hand side, the number of values specified on
the right-hand side must correspond to the number of values specified in the key range, unless
only one value is specified on the right-hand side, which is then assigned to each element of
the key range.

2. When the name_key variable is specified on the left-hand side and the corresponding list of
character codes does not fit in one line, it can be continued on the next line by specifying
"name_key =" again. You must not start the lines with leading blanks or tabulators.

Examples of Valid Lines

x00-x1f = x00 All characters between "x00" and "x1f" are converted to "x00".
x00-x7f = x00-x7f All characters between "x00" and "x7f" are not converted.
x00-x08 = x00,x01-x07,x00 The characters "x00" and "x08" are converted to "x00" and

characters between "x01" and "x07" are not converted.

ISALPHA =x41-x5a,x61-x7a,xc0-xd6,xd8 | The attribute I SALPHA is assigned to all characters specified in
ISALPHA = xd9-xf6,xf8-xff these two lines.

Examples of Invalid Lines

x41="A All characters must be specified in hexadecimal format.

0x00-0x1f = 0x00 |Hexadecimal values have to be specified in either of the following ways:

xdigitdigit
Xdigitdigit

x00-x0f = x00,x01 | The number of specified values does not correspond to the number of elements in the
key range.

116 Operations

13 Natural Exit Codes

B NQLUFAl STAMUD EITOTS L.ttt e e e e e e et e e e e e e s st breeaeeea s 118

"7

Natural Exit Codes

There are two types of Natural exit codes:

® Startup errors, where exit codes 0 and 1 indicate success and all other exit codes indicate errors.

® Errors generated by the TERMINATE statement, where exit codes 0 to 255 are possible.

Natural Startup Errors

The following exit codes may occur when starting Natural Studio.

2 Terminal Control String (TCS) capability specified in SAGtermcap or Environment Variable
NATTCHARSET.

3 Failed to initialize character conversion table.

4 Error in character conversion file NATCONV.INL.

5 Unable to read database assignments from global configuration file NATCONFE.CFG.

6 Unable to find FNAT (dbid, fnr) or FUSER(dbid, fnr). Check your configuration files.

7 Cannot initialize LFILE table.

8 Obsolete.

9 Obsolete.

10 |Obsolete.

11 |Obsolete.

12 |Unable to read specified parameter file. Please verify the parameter file.

13 |Unable to read parameter file NATPARM.

14 |Storage manager initialization failed.

15 |End of file (EOF) encountered while reading from STDIN.

16 |Unable to open buffer pool; contact the Natural system administrator.

17 |Unable to read buffer pool assignments from NATURAL.INI file.

18 |Invalid FDIC assignment.

19 |Invalid FNAT assignment.

20 |Invalid FSEC assignment.

21 |Invalid FUSER assignment.

22 |Unable to load Natural login module.

23 |Unable to allocate memory for local data. Reduce USIZE and/or SSIZE parameter.

24 |Unable to load Natural display module.

25,26 |Error loading shareable image or DLL.

27 |Login cancelled. Natural terminates.

28 |Security violation during start of Natural. Natural terminates.

29 |Security violation during start of Natural. Login aborted due to too many login failures.

118 Operations

Natural Exit Codes

30 |Natural system error message raised.

31 |NATO0866 Your Natural nucleus is not a Natural Security nucleus.

32 |Password check failed.

33 |Lock manager cannot create/initialize semaphores.

34 |No library is accessible or present in specified FNAT/FUSER. Check system file assignments and file
attributes of FNAT and FUSER (directories and files).

35 |Internal wfc i/o terminal driver error.

36 |Internal XVT error.

37 |DCOM Startup error.

38 |Creation of runtime context failed.

39 Unable to find NATDIR and/or NATVERS environment variable. If you have set the NATD IR environment
variable, please check that it does not contain invalid or whitespace characters! NATVERS should only
contain the Natural version. The path must contain a valid drive ID.

40 |Natural zmodem error.

41 |Creation of TF table failed because there are entries with different database types from older parameter
module. Check parameter module with Natural Configuration Utility.

42 |Batch mode driver error.

43 |Screen window size is too small.

44 |Exit from SQL signal handler.

45 |Unable to load add-on product.

46 |Unable to access FNAT library SYSLIB. Insufficient privilege or file protection violation.

47 |Unable to read PARM_PATH entry from NATURAL.INI file or directory is not accessible.

48 |Unable to read CONFIG_NAME entry from NATURAL.INI file or file is not accessible.

50 |Unable to read NATCONV entry from NATURAL.INI file or file is not accessible.

51 Unable to process TMP_PATH entry from NATURAL.INI file. Path 'path' not accessible.

52 |Unable to read PROFILE_PATH entry from NATURAL.INI file or directory is not accessible.

53 |Unable to open local configuration file NATURAL.INI.NATOSDEP

54 |Unable to read NATCONF.CFG for .

55 |Unable to read NATURAL.INI for NATEXTLIB.

56 |Unable to read NATDIR entry in SAG.INI file.

57 |Not used.

58 |Unable to read NATINI entry in SAG.INI file.

59 |Unrecognized option 'opt7on' specified.

60 |Not enough memory to initalize internal tables.

61 |Batch error occurred, but processing continued due to CC=0N parameter.

62 |More than one Natural session with active repository not allowed.

63 |Natural session with active repository already running.

64 |Failed to open FNAT's LIBDIR.SAG. Check presence and access protection.

Operations 119

Natural Exit Codes

65 | The FNAT assigned to this Natural session is out of date.

66 |The port number is missing.

67 |The specified port number is already in use.

68 |Invalid syntax ... encountered.

69 |Initialization of Pal package failed.

70 |Invalid port number encountered.

71 |Listen on specified port failed.

72 |This is an evaluation copy of Natural ... It is valid until...

73 | The test period of this evaluation copy of Natural ... has expired. It was valid until...
74 |..Natural error message 'nnnn' received during startup...

75 |The port number is not specified.

76 |Wrong RPC version.

77 |Invalid FDDM assignment.

78 |The test period of this evaluation copy of Natural ... has expired. It was valid until...
79 |The port number ... exceeds upper limit (99999).

85 |Natural runtime startup error during context initialization.

86 |Invalid code page [name 1] specified.

88 |Conflicting buffer pool usage.

]

Note: In order to receive the return code, you must run nderun.exe (as opposed to naturalr.exe).

120

Operations

14 Setting Up the Entire System Server Interface

B PIEIBQUISIEES ...vvveiiii ettt ettt e ettt e e e e e ettt e e e e e e et e e e e e e e ettt e et e e e et e e e e e e e e e 122
B ACHVALION .ottt e e e e a e e e e e 122
= Changing the Database ID for the Entire System Server DDMSoooiiiiiiiiiiiiiieeeiieeeeeee e 123

121

Setting Up the Entire System Server Interface

The Entire System Server Interface is required if the product Entire System Server is to be used.
The Entire System Server Interface is part of Natural and no extra installation is needed.

Additionally, Natural provides the libraries SYSNPE and SYSNPR.

SYSNPE is the Entire System Server online tutorial which is provided as a starting help for Entire
System Server users. For more information about Entire System Server, see the Entire System
Server documentation.

The library SYSNPR contains the program CHANGEDB which is used to change the database ID of the
Entire System Server DDMs.

Prerequisites

The Entire System Server Interface provides access to Entire System Server on z/OS, z/VSE and
BS2000/OSD via Entire Net-Work. For full support of the Entire System Server Interface, Entire
Net-Work Version 5.8.1 or above is required on the mainframe platforms.

Activation

The Entire System Server Interface is not active if you use the standard Natural configuration
settings. The value of the Entire System Server Interface database (Natural profile parameter ESXDB)
is set to "0" by default. To use the Entire System Server Interface you have to set the value of the
parameter ESXDB to "148" using the Configuration Utility.

In the Configuration Utility, the parameter ESXDB is assigned in the parameter group Product
Configuration of a parameter file.

¢ Tip: Locate this parameter by searching for "ESXDB". See Finding a Parameter in the Configu-

ration Utility documentation for further information.

ESXDB specifies the database ID used for the DDMs of Entire System Server. This DBID does not
specify the target DBID of Entire System Server requests but tells Natural which DBID is used for
the cataloged Entire System Server DDMs. The effective Entire System Server target DBID will be
specified with the NODE field which is part of all Entire System Server DDMs.

/A Important: Change the value of ESXDB to "148" to run Natural with Entire System Server
Interface support. All Entire System Server DDMs are cataloged with DBID 148.

After starting Natural again, you may access Entire System Server nodes running on the mainframes
via Entire Net-Work.

122 Operations

Setting Up the Entire System Server Interface

The customization of Entire System Server Interface supports the modification of the Entire System
Server DDMs only.

Changing the Database ID for the Entire System Server DDMs

The library SYSNPR contains the program CHANGEDB which is used to modify the database ID of all
Entire System Server DDMs. You will find all Entire System Server DDMs in the library SYSNPE.
The database ID entered as a new DBID value in the program CHANGEDB must also be specified as
the value of the Entire System Server Interface database parameter (ESXDB) in the Configuration
Utility.

Operations 123

124

15 Administrating NaturalX Applications

On Windows platforms, an application consisting of NaturalX classes can be distributed across
several processes and machines using DCOM.

This part covers the following topics:

NaturalX Servers
Activation Policies
Registration

Type Information
Configuration Overview
Security with NaturalX

DCOM Configuration on Windows

C L L L L L L oL

NaturalX System Registry Entries

Using Statements and Commands in a NaturalX Server Environment

(¥

On Windows platforms, a sample application is provided in the library SYSEXNXX. For information
on how to run this application, see the text A- README in the library SYSEXNXX.

See also NaturalX in the Programming Guide.

125

126

16 NaturalX Servers

B COM ClaSSES @NU SEIVELSovivieiieee ettt et e e e ettt e e e e e e e e e e e e e e e eeeaaaaes 128
B NAtUrAIX ClasSeSs ANA SEIVELSiiieie e e e e e e e e 128
= NaturalX Servers and Natural Sessions under WindoWSccoovviiviiieiiiii e 128
B The ROIE OF the SEIVEI IDo 129
B Organizing SEIVET IDScciiiiiiiiiie e e e a e 130

127

NaturalX Servers

COM Classes and Servers

Each COM class must be hosted by a server process. The server process has a number of adminis-
trative and technical responsibilities, such as making the class and its interfaces available to DCOM
and maintaining the memory occupied by the objects created. Whenever a client requests a new
object of a certain class, DCOM checks whether the corresponding server process is already running.
If this is not the case, DCOM launches it and passes the request to the server. When the server
starts up, it makes its classes available to DCOM. While the server is running, it executes client
requests for creation and deletion of objects and execution of methods. When the last object
maintained by a server is deleted, the server shuts down automatically. For more detailed infor-
mation about DCOM classes and servers, please refer to the Microsoft DCOM specification.

NaturalX Classes and Servers

Classes implemented with Natural can be made accessible as DCOM classes. But with Natural, it
is not necessary to implement DCOM servers to host the classes. Instead, NaturalX itself performs
the tasks of a DCOM server. NaturalX acts as a generic DCOM server for all classes written in
Natural. The task that remains for a Natural class developer is just to implement the classes and
to assign them to a NaturalX server.

NaturalX Servers and Natural Sessions under Windows

Under Windows, each Natural session runs in its own exclusive NaturalX server process.

128 Operations

NaturalX Servers

Client calls object A,
object B and object C

MNatural
Session

PID 4711 PID 4712 PID 4713

The Role of the Server ID

One of the tasks of a DCOM server is to make its classes available to DCOM during startup. But
since NaturalX acts as a generic DCOM server, it has no built-in knowledge about the classes it
shall provide. Instead, it finds the list of these classes in the system registry under the key of its
server ID. The server ID is a Natural-owned key in the system registry, keeping together all classes
that belong to a given NaturalX server. It is an arbitrary alphanumeric string of 32 characters which
does not contain blanks and which is not case sensitive.

How does a NaturalX server know under which server ID it is running? The server ID is defined
with the Natural parameter COMSERVERID. This parameter is either passed to a NaturalX server as
a dynamic parameter, or it is defined in the Natural parameter file.

How are classes assigned to server IDs? Assume Natural has been started with a certain server
ID. Then every class that a user registers during this Natural session is entered into the system
registry under the current server ID.

Operations 129

NaturalX Servers

Server IDs provide a means of grouping classes created in Natural and assigning them to different
NaturalX server processes. The use of server IDs is, however, not compulsory: if Natural is started
without a server ID, all Natural classes are registered under the predefined server ID "Default".

Example

Consider the example Employees application consisting of the classes DepartmentList,
EmployeesList and Employee (this application is contained in the example library SYSEXCOM).
These three classes are to be hosted by a NaturalX server called Employees.

1. Start Natural with the desired server ID.
2. Logon to the library SYSEXCOM.

LOGON SYSEXCOM

3. Register the classes with the REGISTER command on the Natural command line.

REGISTER *

The three classes are now registered under the server ID "Employees".

Whenever an object of one of these classes is requested, DCOM will start a NaturalX server process
with the server ID "Employees", which will then provide the classes.

Organizing Server IDs

The server ID represents the set of all classes that are made available to DCOM when the corre-
sponding NaturalX server is started. It is recommended that you group under one server ID those
classes that form an application from the business point of view, or that otherwise belong together
logically. Similarly, classes that are never used in the same context should be registered under
different server IDs. Another criterion for the assignment of classes to server IDs is security (see
the section Security with NaturalX). From this aspect, it makes sense to group under the same
server ID those classes for which common authorizations will be defined.

130 Operations

17 Activation Policies

= Activation Policies on WIindows PIatformseooiiiiiiiiiiii e 132
B Setting ACHVALION PONICIESc.iiiieeiiei et 132
= When to Use Which ACtVation PONCYooiiiiiiiii e 133

131

Activation Policies

Activation Policies on Windows Platforms

If a client makes a request to create an object of a certain class, it is DCOM's task to start a server
process that provides the class and to direct the request to this process. For Natural classes, the
responsible server process is a NaturalX server. DCOM recognizes different options that control
when a new server process is started or when an object is created in a server process that is already
running. For further information, see the section Registration. While registering a Natural class
with the REGISTER command, you can control which activation options DCOM shall use for this
class. NaturalX combines the different options supported by DCOM in the form of the following
three activation policies:

® ExternalMultiple
If a Natural class is registered with the activation policy "ExternalMultiple", and a client requests
an object of that class, DCOM tries first to create the requested object in the current process.
Remember that the client itself might at the same time be a NaturalX server and might provide
the class itself. If the current process is not a server for the class, DCOM starts a new NaturalX
server process and creates the object in that process. If a second object of the same class is created
later, this object is also created in that server process. This means that the same server process
can contain several objects of the class.

® ExternalSingle
If a Natural class is registered with the activation policy "ExternalSingle", DCOM starts a new
NaturalX server process each time an object of this class is created. One server process can
contain only one object of the class.

* InternalMultiple
If a Natural class is registered with the activation policy "InternalMultiple", DCOM always
creates objects of this class in the current process. The same server process can contain several
objects of the class.

The default activation policy is "ExternalMultiple". This default is defined with the Natural para-
meter ACTPOLICY and can be changed with the Configuration Utility.

Setting Activation Policies

The activation policy of a class can be set in three different ways, in the following order of prece-
dence:

® Explicity as part of the REGISTER command.

® Inthe DEFINE CLASS statement.

® With the profile parameter ACTPOLICY.

132 Operations

Activation Policies

When to Use Which Activation Policy

Non-trivial DCOM applications will mostly deal with , persistent” objects, i.e. objects stored in
databases. For such applications, some considerations concerning database access, transaction
handling and user isolation must be made. Consider the following scenario: clients A and B both
create an object of a class that is provided by a certain NaturalX server process. Assume that the
NaturalX server uses a database to load and store its objects. If both clients were served by the
same server process, they would appear to the database as one single user. This would have the
consequence that a transaction started by a method call from Client A can be committed or backed
out by a method call from Client B. Such interferences are obviously to be avoided.

There are two approaches to avoid this interference: either the clients do not use persistent objects,
or each of them is served by its own NaturalX server process. Both approaches have their advan-
tages in different situations; for a class or application that does not access databases or other shared
resources, it is useful to serve several clients with a single server process. For classes that access
databases or other shared resources, it is necessary to isolate different clients in different server
processes. Hence both approaches should be possible. Activation policies give an administrator
the means to control the activation behavior for each class at registration time.

Example

This example illustrates how the various activation policies can be used. Let us consider parts of
an imaginary travel agency application. The application contains the business classes Trip, Skipper
and RoutePlanner. The Trip class represents a sailing trip to be planned; the Skipper class
represents the skippers available to lead the trips. RoutePlanner is a class that determines an
optimal route for a trip. Assume that the Trip and Skipper classes use a database to read and
store their objects. The RoutePlanner class just performs some calculations on a given Trip object
and does not use a database.

Since some of the business classes use transactional access to a database, and a transaction might
span several method calls, each active client needs to be served with its own NaturalX server
process. This can be done by defining an additional class SagTours, which represents an applica-
tion session. This class can be used, for example, to keep general information about the session
status, but the main task will be to create business objects on behalf of a client.

Operations 133

Activation Policies

Class SagTours

* Represents a SagTours application session.

*

define class SagTours
local using tour-ids
id clsid-sagtours

*
interface Create /* Used to create application objects. */

id iid-sagtours-create

method newTrip /* Creates a new Trip object. */
is trip-n
parameter
1 trip handle of object by value result
end-method

method newSkipper /* Creates a new Skipper object. */
is skip-n
parameter
1 skipper handle of object by value result

end-method

*

end-interface
*

end-class
end

This class will be registered as "ExternalSingle". This means that each creation of a SagTours object
starts a NaturalX server process for the client that requested the object. A client will create a
SagTours object only once and will use its methods later to create the business objects it needs. In
order to create a Trip object, the client will call the method newTr1ip, which is implemented as
follows.

Method newTrip

* This method creates a new Trip object.
*

define data parameter
1 trip handle of object by value result

end-define
*

create object trip of class "Trip"
*

end

The Trip class itself will be registered as "InternalMultiple". This ensures that the Trip objects
created by the method newTrip are created in the NaturalX server process just started for this client.

134 Operations

Activation Policies

Now let us look at the class RoutePlanner.

Class RoutePlanner

* Plans optimal routes for sailing trips.
*

define class RoutePlanner
local using tour-ids

id clsid-planner
*

interface routing
id iid-planner-routing

method plan /* Plans a sailing trip. */
is plan-n
parameter
1 trip handle of object by value
end-method

end-interface
*

end-class
end

Method plan

* This method plans a sailing trip.
*

define data parameter
1 trip handle of object by value

end-define
S

* Perform some operations on the given Trip object.
*

end

This class can be registered as "ExternalMultiple". In this case, all RoutePlanner objects created
by different clients would be created in the same NaturalX server process. This does not do any
harm if the methods of this class do not access databases, or if each database transaction is fully
contained in a method (i.e. if each method subprogram ends with either a BACKOUT TRANSACTION
statement or an END TRANSACTION statement).

Now let us look at a sample client program.

Operations 135

Activation Policies

Sample Client Program

define data Tlocal
saglours handle of object
trip handle of object
planner handle of object

end-define
*

* Start the application session.

create object sagTours of "SagTours"
*

* Create a Trip object.

send "newTrip" to sagTours return trip
* Create a RoutePlanner object.

create object planner of "RoutePlanner"
* Plan the trip.

send "plan" to planner with trip
*

end

The client first creates a SagTours object. This starts a new NaturalX server process exclusively
for this client. The client then uses the SagTours object to create a Trip object in the context of this
application session. Note that the client creates the RouteP1anner object directly. This is possible
because the class is registered as "ExternalMultiple”, but it is not necessary: the SagTours class
could also provide a method for the creation of RouteP1anner objects. Afterwards it lets the business
objects do their jobs. The objects are automatically released at program end. The deletion of the
SagTours object causes the NaturalX server to shut down.

Note: This example shows only the NaturalX techniques needed to illustrate the usage of

activation policies. A real-world application would require a lot more. The classes would
use object data areas and they would surely have globally unique IDs assigned. Also para-
meter data areas would be used instead of inline parameter declarations.

136 Operations

18 Registration

= Registration with Naturalccccooiiiiii
= Automatic Registrationoooiiiiiiiiii e
® Manual Registrationoouueiiriiiiaiiii e
= Registration Files and Type Libraryccooovviiiie
B Client Registrationcooviuviiiiiii i
m Registration HIintScoooiiiiiiiii

137

Registration

If a class is to be made accessible to DCOM clients, it is necessary to add some information about
the class to the system registry. DCOM clients will mostly address a class with a meaningful name,
the so-called programmatic identifier (ProglD) as in the following example:

CREATE OBJECT #01 OF CLASS "Employee"

For a Natural class, the class name defined in the DEFINE CLASS statement is written into the
registry as a ProglID.

System registry entries map this ProglID to the globally unique ID (GUID) of the class, allowing
DCOM to uniquely locate all information about the class. Further information that is stored in the
registry includes the path and name of the responsible DCOM server, the path and name of the
type library, and interface information.

Registration with Natural

Natural classes can be registered (or unregistered) manually with the system command REGISTER
(or UNREGISTER), automatically after the class is stowed (or deleted), or by running the .reg files,
which are generated every time a class is registered.

In order to register classes, you must have the rights to modify the system registry and your system
environment must be able to use COM.

It is usually not advisable to change the Natural entries in the system registry directly in the
registry editor because this can lead to inconsistent registry entries.

A class is always registered for the server ID under which Natural was started.

Automatic Registration

If the profile parameter AUTOREGISTER is set to "ON", a Natural class is automatically registered
when it is stowed (cataloged), and unregistered automatically when it is deleted. This means that
the user can test the class directly after stowing it.

Automatic registration uses the activation policy setting defined in the WITH ACTIVATION POLICY
clause of the DEFINE CLASS statement of the class. If this clause is not specified, the setting from
the profile parameter ACTPOLICY is used.

If automatic registration is set and a class is stowed (cataloged), the class is unregistered before it
is stowed and registered after the stow has finished so that all old registry entries are removed.

138 Operations

Registration

Manual Registration

The following topics are covered below:

= The REGISTER Command
= The UNREGISTER Command

The REGISTER Command

The system command REGISTER is used to register Natural classes. They are registered for the
server ID under which Natural was started.

ES

EM

This defines which class or classes are to be registered by specifying the appropriate Natural object
module name.

REGISTER

* *

c7a55-module-name] [‘ Iibrary—name]

class-module-name

library-name
This defines which library or libraries are to be searched for the class or classes.
ES, IMor EM

This defines the activation policy, which is registered for the class or classes.

You can set one of the following parameters:

Parameter | Description

ES Sets activation policy "ExternalSingle".
M Sets activation policy "InternalMultiple".
EM Sets activation policy "ExternalMultiple".

Operations 139

Registration

The following table shows which classes will be registered for all possible class/library combinations:

Class Module Name Library Name Specification

Specification

library-name * -

class-module-name|class with class module all classes with the class class with class module
name cl/ass-module-name|module name name

of library 7/7brary-name |class-module-name which |class-module-name
are found in the current step
libraries

all classes which are found |all classes which are found in |all classes of the current
inthelibrary /7brary-name|the current step libraries are |logon library are
are registered registered registered

If this parameter is not specified in the REGISTER command or the DEFINE CLASS statement, the
default activation policy defined in the parameter file is used.

The UNREGISTER Command

The system command UNREGISTER is used to unregister Natural classes.

class-module-name library-name
UNREGISTER{ } {

* *

} [server-id]]

class-module-name

This defines which class or classes are to be unregistered by specifying the appropriate Natural
object module name.

library-name
This defines the library or libraries which are to be searched for the class or classes.
server-ID

This defines the server ID of the class or classes.

140 Operations

Registration

The following table shows which classes will be unregistered for all possible class/library/server

ID combinations:

Class Name Specification

Library Name /Server ID Combination

library-name -

library-name

server-I1D

class-module-name|class with class with class with all classes with all
class-module-name|class-module-name|class-module-name|class-module-name|nar

in the current logon |of library of library found in the current |c/.

library if it is Iibrary-nameifitis|library-name ifitis |step libraries if they |fou

registered for the registered for the registered for the are registered for the |ste]

current server ID current server ID server server-I1D current server ID are

ser

* all classes of the all classes found in the |all classes found in the |all classes found in the |all
current logon library |library 77brary-name|library 17brary-name|current step libraries |cur

which are registered |which are registered |which are registered |which are registered |wh

for the current server |for the current server |for the server for the current server |for

1D 1D server-1D 1D se

A REGISTER or UNREGISTER system command will return an error message if c7ass-module-name
or class-module-name and 1ibrary-name are specified but either the class or library is not found.
If only an asterisk (¥) is given in the REGISTER or UNREGISTER system command, no error message
is returned if no class has been registered or unregistered.

If a class without class GUIDs or interface GUIDs is specified in the REGISTER system command,
an error message will be returned. Such a class can only be used in the local Natural session.

Note: Under Natural Security, this command can only be called for a single library. This

means the library name has either to be omitted or a specific library has to be used. It is not
possible to use an asterisk (*).

Registration Files and Type Library

Registration files (".reg" files) enter information in the system registry when they are executed.

Natural will automatically create registration files for the server and the client side when a class

is registered.

The server ".reg" file contains the same information that was entered in the system registry and
the client ".reg" file contains all information, which is generated for the client side. When a class
is unregistered, the .reg files will be deleted. If a ".reg" file is not to be deleted with the unregistra-
tion, the file has to be renamed before unregistering the class because Natural deletes only files
with the default ".reg" file names.

Operations

141

Registration

The ".reg" files will be named c7assmodule_name_S.reg (for the server) and c7assmodule_name_C.reg
(for the client) and, to activate a different version, classmodule_name_V.reg.

A type library is created automatically when a class is registered, and it is deleted when a class is
unregistered. A reference to the type library is also entered in the registry.

The default type library name is c7assmodule_name.tlb. A new name will be generated if a type
library with this name exists already.

The registration files and the type library are stored in the Natural etc directory as follows:

$NATDIR/$NATVERS/etc/serverid/classname/v<version-number>

Example

The files for version one of a class MY . TEST.CLASS registered for the server ID "SERVERO01" are
located as follows:

$NATDIR/$NATVERS/etc/SERVEROL/MY.TEST.CLASS/v1

Client Registration

Natural does not enter the registration information for the clients automatically in the system
registry, but creates a registration file for the client. The client registration file contains an entry
(RemoteServerName) that tells DCOM on which machine the DCOM server class can be found.
This entry is not filled from Natural. It can be entered in either of two ways:

1. The RemoteServerName can be entered in the registration files. In this case the line
"RemoteServerName"=
has to be changed to

"RemoteServerName"="server_machine_name"

After this, the registration file has to be executed on the client machine.

2. The registration file is executed first, and then the RemoteServerName is changed using the
DCOMCNFG tool or the Registry Editor (see the section DCOM Configuration on Windows).

142 Operations

Registration

Registration Hints

The following points should be taken into account when registering and unregistering classes:

® The class GUID should never be changed for an existing class: Natural displays an error message
if a class that is already found in the registry is registered again with another GUID. The old
class must first be unregistered in this case.

® The same class should never be registered for more than one server ID: there is a one-to-one
relationship between the server ID and the AppID, and a class has only one AppID defined,
which means that a registration for a second server ID overwrites the AppID. Furthermore, if
the class is unregistered for one server ID, all entries of the class are removed without checking
whether it is registered for a second server.

® Except for client registration, you should always use the Natural system commands REGISTER
and UNREGISTER to change registry entries for a class because they remove redundant registry
entries.

For example, if a client class has been registered for "serverl" and a server registration file with
a registration of the same class for "server2" is run, the AppID key of the class is changed and
all references to the old AppID key are lost. So this old AppID key can never be deleted. When
a class is registered with the system command REGISTER, a check is made to see whether the
AppID has been changed, and the old AppID is removed if no other class needs it.

= If Natural is not available on the client machine and registry entries for a Natural class are to
be removed from the system registry, you should do this with the registry editor. If Natural is
available on the client machine, it is easier to register the class first with the Natural system
command REGISTER and unregister it afterwards with the system command UNREGISTER.

® The registration information for a class is taken from the catalogued class object, so that it is not
possible to register or unregister a class that is only available in source format.

® If you want to register classes during a Natural session, the session must be started with the
parameters PARM and COMSERVERID only as shown below. This is because only these two parame-
ters are stored in the registry key "LocalServer32". If a class is tested with other parameter settings,
there is no guarantee that it will run later when it is started from a DCOM client.

NATURAL.EXE PARM=COMPARM COMSERVERID=SERVERI

® Usually only users with administrator rights can change the system registry. So if you receive
an error when trying to register a class, check to see whether you have the rights required to
change the registry.

® When a Natural class is registered, some additional information is entered in the registry that
is only needed by Natural (not by DCOM). The information which is stored in the additional
registry keys is the server ID (see section NaturalX Servers), the activation policy (see section
Activation Policies) and the location (Natural class module name and library of class) of the

Operations 143

Registration

class. This information is necessary, for example, if all classes of a specified server ID are to be
unregistered or to make the served classes available when Natural is started.

® There is a one-to-one relationship between the server ID and the AppID (under HKEY_CLAS-
SES_ROOT/AppID) of a class. When a class is registered for a new server ID, a new GUID - the
ApplD, is generated and assigned to this server ID. The AppID is used by DCOM to group the
DCOM classes. Security settings and (for client registrations) the remote machine name are
defined for an ApplID, i.e. all classes, which belong to one AppID, have the same security settings
(see the sections Configuration Overview and Security with NaturalX).

144 Operations

19 Type Information

B OVBIVIBW ..ttt e ettt e e e oottt et e e e e oo ettt e e et e e e ettt et e e e e oottt e e et e e e ettt e e e e e e e e e 146
= NaturalX and Type INformationcooiiiiiiiiiii e 146
m Using Type INFOMALION ... 146

145

Type Information

Overview

Type information is a means to completely describe a class along with all of its interfaces, down
to the names and types of the methods. It contains the necessary information about classes and
their interfaces, for example, which interfaces exist on which classes, which member functions
exist in those interfaces, and which argument those functions require.

This information is used by clients to find out details about a class and its methods, for example,
by type-information browsers to present available objects, interfaces, methods and properties to
an end user.

Another important area for using type information is the widely-used OLE automation technique
which is also used by NaturalX.

There are several ways to store type information. A common way is generating the type informa-
tion in type library (.TLB) files.

NaturalX and Type Information

Creating Type Information

For each Natural class, a type library file is created when the class is registered.

The type library is generated in the $NATDIR/$NATVERS/etc/<serverid>/<classname>/<version>
directory and connected to the class via an entry in the registry.

The name of the class module is used, and the ".tlb" extension is appended unless the type library
file name conflicts with an existing name. Then a number is attached to the class module name.

Using Type Information

Each interface defined in a Natural class is seen by clients as a dynamic interface (also called a
,dispatch interface”). Each method of an interface is seen by clients under the name defined in
the METHOD statement.

The first interface in a Natural class is marked as the default dispatch interface.

146 Operations

Type Information

The support of type information also makes it possible to define multiple interfaces with identical
method/property names. The Natural client simply addresses the corresponding method by using
the interface name (as defined in the Natural class) as the prefix of the method name, as shown
in the following example:

CREATE OBJECT #03 OF CLASS "DepartmentlList"
SEND "Iterate.PositionTo" TO #03 WITH "C" RETURN #DEPT

Natural clients use type information to find out to which interface a method or property belongs.

| Note: Natural clients do not use type information at catalog time to perform syntax checks.

Data Type Conversions

The following topics are covered below:

= Natural Data Formats to OLE Types
= OLE Types to Natural Data Formats

Natural Data Formats to OLE Types

In order to receive data from clients or to pass data to classes written in different programming
languages, the Natural data formats are converted to so-called OLE Automation-compatible types.
This table shows how COM clients see the method parameters or properties of a Natural class.
For example, if a Natural class has a method parameter or a property with the format A, this is
seen by a COM client as VT_BSTR.

Natural Data Format Automation-Compatible Type
A VT_BSTR

B1 VT_UI1

B2 VT_UI2

B4 VT_UT4
Bn(nl=1,2,4) SAFEARRAY of VT_UT1
C not supported

D VT_DATE

F4 VT_R4

F8 VT_RS8

11 VT_1I2

12 VT_1I2

14 VT_I4

HANDLE OF GUI not supported
HANDLE OF OBJECT|VT_DISPATCH

Operations 147

Type Information

Natural Data Format Automation-Compatible Type
L VT_BOOL

N154 VT_CY

Nn.m(n.m!=15.4) VT_R8

P15.4 VT_CY

Pn.m(n.m'=15.4) VT_R8

T VT_DATE

U VT_BSTR

An array of a given Natural data format is mapped to a SAFEARRAY of the corresponding "VT" type.
There are, however, some special cases:

" A variable of format Bn with fixed length, where nisnot 1, 2 or 4, or an array of such a variable,
is mapped to a one-dimensional SAFEARRAY of VT_UI1. This is for compatibility with previous
versions of Natural, where large and dynamic variables were not yet supported. Therefore,
large binary variables had to be simulated by arrays of variables of type B with fixed length.

® A dynamic variable of format B is mapped to a one-dimensional SAFEARRAY of VT_UI1.

® Anarray of dynamic variables of format B is mapped to a SAFEARRAY of variants, each containing
a one-dimensional SAFEARRAY of VT_UI1.

® Attribute control variables are not mapped. They have no meaning outside of Natural. Variables
of format HANDLE OF GUI are also not mapped. There is no corresponding Automation-compa-
tible type. Therefore properties of the formats Attribute control variable or HANDLE OF GUI
cannot be accessed by clients through COM/DCOM. Method parameters of these types should
be marked as optional in the parameter data area, so that clients can omit the parameters when
calling the method through COM/DCOM.

OLE Types to Natural Data Formats

This table shows how parameters or properties of an external class can be addressed by Natural.
For example, if an external class has a method parameter or property with type VT_R4, this para-
meter or property can be addressed in Natural as F4 or with a format that is MOVE-compatible to
F4.

Automation -Compatible Type |Natural Data Format
VT_BOOL L

VT_BSTR AorU

VT_CY P154

VT_DATE T

VT_DISPATCH HANDLE OF OBJECT
VT_UNKNOWN HANDLE OF OBJECT

148 Operations

Type Information

Automation -Compatible Type |Natural Data Format
VT_I1 11
VT_I? 12
VT_T4 14
VT_INT 14
VT_R4 F4
VT_RS8 F8
VT_U1 B1
VT_U2 B2
VT_U4 B4
VT_UINT B4

A SAFEARRAY of up to three dimensions is converted into a Natural array with the same dimension
count and the corresponding format. SAFEARRAYs with more than three dimensions cannot be used
from within Natural.

There are, however, some special cases:

" A VT_BSTR maps either to a Natural variable of format A or to a one-dimensional array of
Natural variables of format A with fixed length. The additional dimension is then used to store
strings longer than 253 characters. This is for compatibility with previous versions of Natural,
where large and dynamic variables were not yet supported. This mapping should no longer be
used. Instead, a dynamic variable of format A should be used.

" A SAFEARRAY of VT_BSTRs maps either to an array of Natural variables of format A with the same
dimension count, or to an array of Natural variables of format A with fixed length with one
more dimension. The additional dimension is then used to store strings longer than 253 characters.
This is for compatibility with previous versions of Natural, where large and dynamic variables
were not yet supported. This mapping should no longer be used. Instead an array of dynamic
variables of format A should be used.

" A SAFEARRAY of VT_UI1 can be mapped to an array of Natural variables of format B with fixed
length that has a matching total size. This is for compatibility with previous versions of Natural,
where large and dynamic variables were not yet supported. This mapping should no longer be
used. Instead a dynamic variable of format B should be used.

Operations 149

150

20 Configuration Overview

= Server Configuration - General SEINGScvvriiiiiiii i 152
= Server Configuration - Application-Specific SENGSooviiiiiiiiii e 153
= Client Configuration - General SEINGScoouviriiiiii e 153
= Client Configuration - Application-Specific SEtiNGScooiiiiiiiiie e 154

151

Configuration Overview

Once all classes of an application have been registered on the client and server machines, certain
aspects of the application's behavior can be controlled and configured with system registry settings.
This section summarizes the relevant registry entries and their meaning for NaturalX applications.
For detailed background information about the registry keys and their administration, please refer
to the specific DCOM registry documentation of the appropriate platform.

The registry keys relevant in this context are maintained with commonly-used tools like DCOMCNFG
or the Registry Editor (REGEDIT). These tools present the registry keys in a different way. Therefore
only the names of the registry keys are mentioned here. The section DCOM Configuration on
Windows describes how to set registry keys.

| Note: "HKLM"is the common short form of the registry key HKEY_LOCAL_MACHINE,
where "HKCR" stands for HKEY CLASSES ROQT.

Server Configuration - General Settings

This section discusses general server configuration settings.

® The registry entry HKLM\ Software\ Microsoft\ OLE \ EnableDCOM must be set to "Y" to enable
access to the server machine via DCOM.

= If guests (users who do not have their own account on the server machine) are to be able to
access applications on the server machine, the predefined account "Guest" must be enabled in
the User Manager (Windows 2000 only).

® The registry entries HKLM \ Software\ Microsoft \ OLE\ DefaultLaunchPermissions and
HKLM\ Software\ Microsoft \ OLE\ Default AccessPermissions define which users or groups are
allowed or not allowed to launch DCOM applications and to access their classes. The authoriza-
tions defined here apply for all applications for which no application-specific settings are defined.

® The registry entry HKLM\ Software\ Microsoft \ OLE\ LegacyAuthenticationLevel controls the level
of authentication that is performed for clients that access DCOM applications on this machine.
If a NaturalX server is to be able to pass the client's user ID to Natural Security, the setting should
be at least "Connect". Choose "None" if no authentication is to take place. In this case, the
NaturalX server does not retrieve the client's user ID. Instead it performs each request under
the user ID under which it was launched. If this entry is defined differently on the client side
and on the server side, the stricter setting applies.

*® The registry entry HKLM\ Software\ Microsoft\ OLE\ LegacylmpersonationLevel controls how much
information a server may retrieve about the client, or if it may even use this information to act
in the role of the client against other servers. If a NaturalX server is to be able to pass the client's
user ID to Natural Security, the setting should be at least "Identify". The settings "Impersonate”
or "Delegate” have the same effect for a NaturalX server. Choose "Anonymous", if the server is
not to be able to retrieve the client's user ID. In this case, the server performs each request under
the user ID under which it was launched. If this entry is defined differently on the client side
and on the server side, the stricter setting applies.

152 Operations

Configuration Overview

Server Configuration - Application-Specific Settings

The application-specific settings can be set up differently for each NaturalX application. But the
question is where to apply these settings. It is important to remember that all classes registered
under one NaturalX server ID form one application in the DCOM sense, and are thus assigned to
one ApplD key in the registry. This is why the application-specific settings are applied under the
AppID key.

® The registry entries HKCR\ AppID\ <APPI1D>\ LaunchPermission and
HKCR\ AppID\ <APPID>\ AccessPermission define which users or groups are allowed or not
allowed to launch the DCOM application with the specified AppID and to access its classes.

® Theregistry entry HKCR\ AppID\ <APPID>\ RunAs defines the user account this NaturalX server
will run when it is launched by DCOM. There are three options:

* Interactive user:
The NaturalX server is started under the account of the user that is interactively logged in on
the server machine. This is usually not desirable but can be useful for test reasons.

* Launching user:
The NaturalX server is started under the account of the client that creates the first object on
this server (remember that the first request for an object forces DCOM to launch the server).
This setting should be used if each client is to be served by its own server process. Obviously,
the client must have permission to launch the server.

* This user:
The server is started under the account of a given user. This setting should be used if all clients
are to be served by the same server process. The user entered here must have permission to
launch the server.

Client Configuration - General Settings

This section discusses general client configuration settings.

® The registry key HKLM\ Software\ Microsoft \ OLE\ Legacy AuthenticationLevel controls the degree
of authentication that is performed for clients running on this machine when they access DCOM
applications. For a client that accesses a NaturalX server, a similar consideration to that in the
section Server Configuration - General Settings applies: only if it specifies at least "Connect",
will the NaturalX server be able to use its user ID against Natural Security. If this entry is defined
differently on the client side and on the server side, the stricter setting applies.

® The registry key HKLM\ Software\ Microsoft \ OLE\ LegacyImpersonationLevel controls how much
information a server may retrieve about the client, or if it may even use this information to act
in the role of the client against other servers. For a client that accesses a NaturalX server, a
similar consideration to that in the section Server Configuration - General Settings applies: only

Operations 153

Configuration Overview

if it specifies at least "Identify", will the NaturalX server be able to retrieve its user ID and use
it against Natural Security. If this entry is defined differently on the client side and on the server
side, the stricter setting applies.

Client Configuration - Application-Specific Settings

The application-specific settings can be set up differently for each NaturalX application. But the
question is where to apply these settings. Remember that all classes registered under one NaturalX
server ID form one application in the DCOM sense, and are thus assigned to one AppID key in
the registry. This is why the application-specific settings are applied under the AppID key.

® The registry key HKCR\ AppID\ <APPI1D>\ RemoteServerName defines on which remote machine
DCOM should start the server when a class hosted by this server is requested. If the server is
to be started locally, "Run on this computer" and no RemoteServerName must be specified.

154 Operations

21 Security with NaturalX

B OVBIVIBW .ttt e ettt e et e e e 156
B ACHVALION SECUMIEY ...ttt e e e et e ettt e e e e n e e e e n e e e e nneeeas 156
Bl SBCUMIEY ..ttt e et e et e ettt e e e s 157

155

Security with NaturalX

Information on how to configure NaturalX is given in the section DCOM Configuration on Win-
dows.

Overview

In a distributed environment, security is an especially important topic. A server must be sure that
no unauthorized clients use the services it provides. A client must be sure that it is connected to
the server it expects, and that the server does not misuse its (the client's) authorizations.

In the context of DCOM, two levels of security can be distinguished:

" Activation security controls who is allowed to launch and access the server process that provides
the class.

® (all security controls who is allowed to use the individual methods a class provides.
In many cases, activation security may be sufficient to define authorizations. This security level

is supported by DCOM itself on the basis of Windows Security. The necessary authorizations are
maintained in the system registry. This is described in the section Activation Security.

In other cases it may be necessary to control authorizations in more detail at the level of individual
methods. This security level cannot be maintained with registry definitions. It is, therefore, provided
by NaturalX with the help of Natural Security. This is described in the section Call Security.

Activation Security

This section covers the following topics:

= Applications
= Authorizations using the Registry

Applications

Activation security controls who is allowed to launch and access a server process. In principle,
this could be done by defining authorizations for each individual class. For practical reasons,
however, and to reduce administration efforts, authorizations are normally maintained at the
application level. In the system registry, each application is defined by an AppID. The AppID is
the key under which the authorizations for an application are maintained. To maintain these aut-
horizations, each DCOM enabled platform provides the tool DCOMCNFG. This tool can be used for
NaturalX applications as well as for other DCOM applications.

In order to understand the meaning of AppIDs in NaturalX, recall for a moment how NaturalX
organizes classes to applications (see the section Organizing Server IDs). With the Natural para-

156 Operations

Security with NaturalX

meter COMSERVERID, a name can be given to a certain NaturalX server. When Natural is started
with a given value of COMSERVERID, all Natural classes that are registered during this Natural ses-
sion are registered under this server ID. At the same time, they are all registered under the same
AppID key in the system registry. This means that each different value of server-ID corresponds
to a different AppID key in the system registry.

As an example, assume Natural is running with the server ID "Employees". All classes registered
during this Natural session will then form the "Employees" application. The REGISTER command
registers them all under one AppID key - the one that corresponds to the "Employees" application.

Authorizations using the Registry

When configuring Activation Security, the following registry keys are of interest: LaunchPermissions,
AccessPermissions, DefaultLaunchPermissions and DefaultAccessPermissions. The keys DefaultLaunch-
Permissions and DefaultAccessPermissions exist only once in the registry and define authorizations
for all applications for which no individual authorizations have been defined. The keys LaunchPer-
missions and AccessPermissions exist for each application (i.e. for each AppID) and define the aut-
horizations for an individual application.

Call Security

This section covers the following topics:

= Authorizations using Natural Security
= Security Hints and Suggestions

Authorizations using Natural Security

Call security is used to control who is allowed to use the individual methods that a class provides.
Authorizations on this level cannot be maintained by registry definitions. Call security is therefore
provided by NaturalX with the help of Natural Security.

In order to understand how call security is achieved with Natural Security, consider how a class
in NaturalX is implemented: each class is a Natural module of type class, each method is a Natural
module of type subprogram. For all Natural modules, the execution can be controlled by authori-
zations defined in Natural Security. Please refer to the Natural Security documentation for further
information about how to do this.

The authorizations defined for class modules and method subprograms are evaluated whenever
a class module is used to create objects and whenever a method subprogram is executed in
response to a method call. The following rule applies: a user who is allowed to execute the class
module is allowed to create objects of that class, and a user who is allowed to execute a method
subprogram is allowed to use the corresponding method.

Operations 157

Security with NaturalX

In order to perform the necessary authorization checks, a NaturalX server must know the client's
user ID. It must also be sure that the user ID is authentic. Therefore the following requirements
must be met to use call security:

® The client must have identified itself with a logon on its local machine or on a Windows domain
server.

® Authentication level must be set to at least "Connect" (either on the client or on the server machine).

= Impersonation level must be set to at least "Identify" (either on the client or on the server machine).

If the above requirements are met, a NaturalX server that is going to process a request takes the
client's user ID and places it into the Natural system variable *USER. The request is then performed
under this user ID, including all necessary Natural Security authorization checks. After having
processed the request, the Natural system variable *USER reverts to the value that it had at the
startup of the NaturalX server.

If one of the requirements is not met, *USER remains unchanged during execution of the request.
The request is then executed under the user ID under which the NaturalX server was started.

In addition to *USER, also the system variable *NET-USER is filled during execution of a request. It
contains the user ID qualified with the domain name for clients belonging to a Windows domain
and can be used for additional application-specific security checks.

Security Hints and Suggestions

The following points should be taken into consideration when using NaturalX with Natural
Security:

® Ina Natural Security environment, a NaturalX server must be started with the Natural parameter
AUTO=0N. This is because the authentication already takes place on the client side. The setting
should be entered in the Natural parameter file.

® In a Natural Security environment, it is a good idea to let a NaturalX server always start under
a specific user ID. This user ID is then automatically used for all requests of unauthenticated
users, and it is up to the Natural Security administrator to define minimal authorizations for
this user ID.

® Remember that Natural and Natural Security cannot handle user IDs which are longer than 8
characters or which contain blanks.

158 Operations

22 DCOM Configuration on Windows

= Configuring NaTUFAIX SEIVELS ...t 160
m Configuring NatUFralX ClIENESvviiie i e 171

159

DCOM Configuration on Windows

This chapter describes how to configure NaturalX applications on Windows. All settings are
applied with the tool DCOMCNFG.EXE or Component Services. The dialog examples shown in
the following sections appear as with Component Services under Windows XP.

Configuring NaturalX Servers

» To configure NaturalX servers

1 Invoke Component Services.

"% Component Services BE|B|

@ Fle Action View Window Help - =
cs @ XFRE D R a8
23 Console Root My Complter < object{s)
- & Component Services MNarme
=03 Computers Cacom+ Applications
SR8 1y Compuiter LIDCOM Config
& COM+ Applications | (Distributed Transaction Coordinator
=21 DCOM Config OIRUNAing Processes

- Distributed Transact
-] Running Processes
#- g1 Event Viewer (Local)
-4 Services (Local)

2 Inthe Properties dialog of My Computer, select the Default Properties tab and activate the
check box Enable Distributed COM on this computer.

160 Operations

DCOM Configuration on Windows

3 Set Default Authentication Level to Default and Default Impersonation Level to Identify.

My Computer Properties ?”XI
Default Protocols | MSDTC Default COM Security
General Cptions Default Properties |

e SA A A R

v Enahle Distributed COM an this computer

[Enahle COM Internet Services an this computer

-Default Distributed COM Communication Froperties
The Authentication Level specifies security atthe packet level.

Default Authentication Lewvel:

Default L]

The impersonation level specifies whether applications can determine who
i5 calling them, and whether the application can do operations using the
client's identity.

Default Impersonatian Lewel:

security for reference tracking can be provided if authentication is used and
that the detault impersanation lewvel is not anonymous.

| Provide additional security for reference tracking

I, | | Cancel | | Apphy

This allows NaturalX servers to retrieve the client's user ID. Before executing a request, the
server will then move the client's user ID into the Natural system variable *USER in order to
let Natural Security checks run against this user ID.

Operations 161

DCOM Configuration on Windows

4 Now set up the default security configuration.

My Computer Properties ?”XI
General _ Options _ Default Properties
Default Pratocals MSDTC | Default COM Security

-Access Permissions

“'ou may editwhao is allowed to access applications that do nat provide
their own settings.

Edit Default...

| -Launch Fermissions -

Y'ou may editwho is allowed to launch applications that do not provide
their own settings.

Edit Default...

I, | | Cancel | | Apphy

In the Default COM Security tab, choose Edit Default in the Access Permissions group box.

The Access Permission dialog box appears.

5 Use the Add button to define which users and groups may access NaturalX servers.

J Note: You must allow access at least to the account "SYSTEM".

162 Operations

DCOM Configuration on Windows

In most cases you will define a group of all users to whom you want to allow access and enter
this group here. In the example, the built-in group "Everyone" is entered. This allows access
to every user that is defined on the server machine. If the built-in account "Guest" is enabled

in the User Manager, this setting allows access to users not defined on the server machine
(guests) as well.

Access Permission

Default Security ‘

Sraoup or user names:

i Everyone

5 SvSTEM

Add. l Femove |
Fermissions for Evensone Allowy Deny
Access Fermission | 4
CIE. Cancel

6 Inthe Default COM Security tab, choose Edit Default in the Launch Permission group box.

Operations 163

DCOM Configuration on Windows

The Launch Permissions dialog box appears.

Launch Permission

Diefault Security ‘

GI’I:ILJFI or User names:

€5 Administrators (PCTSH2ADministrators)
£ INTERACTIVE

SYSTEM

Add.. l Femowe |
Fermissions for 3v'STEM Allowy Dleny
Launch Permissian | 4
K, Cancel

D Note: You must allow launch at least to the accounts "SYSTEM" and "INTERACTIVE"

and the group "Administrators".

7 Now set up the configuration for a specific NaturalX server. Select the node DCOM Config
and locate your NaturalX server in the DCOM Config list box (in the example "Natural classes

for Employees server").

164 Operations

DCOM Configuration on Windows

8 Select your server and choose Properties.

"% Component Services

@ Fle Action View Window Help

e~ @@ X EE R

|1 Console Root
-1 @ Comporent Services
=0 Computers
=& My Computer

+-[[1 COM+ Applications
-3 DCOM Config
+-[] Distributed Transact
- RUMning Processes

#-{g] Event Yiewer (Local)

+ 4 Services (Local)

DizOM Config

- OX
N

Mame

@& Natural Classes for Caga server
Fnatural Classes for class? server

@ ratral Classes for doomsery server
@ Matural Classes for Default server

@& Natural Classes for dynarr server

at LIF: or Emiplony V=]
@ atiral Classes for esidyn server

@& Natural Classes for natmini server
@ Natural Classes for natthis server
BEnatural Classes for natcerr server
@ ratral Classes for natford server
@& nNatural Classes for natxfors server
BEynatural Classes for natxfors server
FNatral Classes for p 180863 server
@& Natural Classes for P 185432 server

@& Natural Classes for p187274 server
£

{BA3IBBEAF-7R16-%

Application 1D A
17 16E4590-0900:
{EEBF933F-BCCE-
{199AF3BB4-0012-
193sB0D501-BFCD
{GEFF 10BB- 1360
15CADSEEE-BE0A
1A 36EE 1EB-EAZD:
{OFEQCC 25-BEEE-
1DEDEB2337-2EAR
{FoE26B 3C-984E-
13493255 54FE-
164047 123-80E 1
1B83A45408-FF& 2-
13EDeRE T 1-4 1ED:
{1BDB0DEFE3-FC70

b

9 Inthe Location tab, activate the check box Run application on this computer.

Operations

165

DCOM Configuration on Windows

10

Natural Classes for Employees server Properties 2”3|

. Genera!_! Location Eéecuriw | Endpaints | Idantity |

The following settings allow DCOM to locate the correct computer for this
application. lfwou make more than one selection, then DCOM uses the first
applicable one. Client applications may owveride your selections.

[Run application on the computer where the data is located.
v Run application on this computer.

[Run application on the fallowing computer:

0] 4 | | Cancel

In the Security tab, make sure that Access Permissions is set to Use Default and Launch
Permissions is set to Customize.

166

Operations

DCOM Configuration on Windows

11 Choose Edit in the Launch Permissions group box to modify the application-specific launch
permissions.

Natural Classes for Employees server Properties

".General I LI:II:EI.tiDri_E SECUHTy IEndpDints__ Identityf_

Launch Fermissions

(" Lse Default

‘@ Customize Edit...

Access Permissions

(@ Llse Default

(" Custamize

— Configuration Permissions

m Lse Default

(" Customize it |

84 | | Cancel ‘ | Apphy ‘

The list LaunchPermission will contain at least the accounts "SYSTEM" and "INTERACTIVE"
and the group "Administrators".

12 Add the users and groups to be allowed to launch your NaturalX server. In most cases, you
will define a group of all users to whom you want to allow launch and enter this group here.
In the example, the built-in group "Everyone" is entered. This allows launch to every user
that is defined on the server machine. If the built-in account "Guest" is enabled in the User
Manager, this setting allows launch to users not defined on the server machine (guests) as
well.

Operations 167

DCOM Configuration on Windows

Launch Permission

SE Uty l

GI’I:ILJFI or lser nameas:

€% Everyone
€5 INTERACTIVE

5 SYSTEM

€5 Administratars (PCTSHZAdministrators)

Add.. Femowve |
Fermissions for Everyone Allowy Dieny
Launch Permission |
K, Cancel

13 In the Identity tab, define the account under which the NaturalX server will be launched.

= If you select The launching user, a server process will be launched for each client. The

server process will be launched under the account of the client user.

= If you select The interactive user, only one server process will be launched for all clients.

168

Operations

DCOM Configuration on Windows

| Note: Thisis true only for classes that have been registered in Natural as "External-

Multiple". If a class is registered as "ExternalSingle", a server process is created for
each object of this class that is created.

The server process will be launched under the account of the user that is interactively logged
in on the server machine. If no user is currently logged in on the server machine, this setting
behaves like The launching user.

* If you select This user and select a specific user account, only one server process will be

launched for all clients.

| Note: Thisis true only for classes that have been registered in Natural as "External-

Multiple". If a class is registered as "ExternalSingle", a server process is created for
each object of this class that is created.

The server process will be launched under the specified user account.

Operations 169

DCOM Configuration on Windows

Natural Classes for Employees server Properties

' General | Location | Security | Endpoints | dentity |

Which user account do wou want to use to run this application?

(" The interactive uset.

@ The launching user.

" This user.

I | | Cancel Apply

170 Operations

DCOM Configuration on Windows

Configuring NaturalX Clients

» To configure NaturalX clients

1 Invoke Component Services.

- OX]

'* Component Services
@ File Action Wiew Wlndow Help

- BEXEED @ 0% EE
My Computer 4 object(s)

==l x|

|20 Console Root

- @& Component Services Name
=-@ Compuers CacoM+ Apphcahons
RNy Computer LADCOM Config
-1 COM+ Applications | CDistributed Transacton Coordinator
=11 DCoM Config CARunning Processes

- Distributed Transact
- RURning Processes
[g] Event Viewer (Local)
+ 4y Services (Local)

|A
|

In the Properties dialog of My Computer, select the Default Properties tab and activate the

2
check box Enable Distributed COM on this computer.

171

Operations

DCOM Configuration on Windows

Set Default Authentication Level to Default and Default Impersonation Level to Identify.

My Computer Properties ?IRI
Default Frotocols | MWSOTC Default COM Security .
General Cptions Default Properties

v Enahle Distributed COM an this computer

[Enahle COM Internet Services an this computer

Default Distributed COM Communication Properies
The Authentication Level specifies security atthe packet level.

Default Authentication Lewvel:

Default L]

The impersonation level specifies whether applications can determine who
i5 calling them, and whether the application can do operations using the
client's identity.

Default Impersonatian Lewel:

security for reference tracking can be provided if authentication is used and
that the detault impersanation lewvel is not anonymous.

| Provide additional security for reference tracking

I, | | Cancel | | Apphy

This allows NaturalX servers to retrieve the client's user ID. Before executing a request, the
server will then move the client's user ID into the Natural system variable *USER in order to
let Natural Security checks run against this user ID.

3 Now set up the configuration to access a specific NaturalX server.
Select the node DCOM Config and locate your NaturalX server in the DCOM Config list
box (in the example Natural classes for Employees server).

172

Operations

DCOM Configuration on Windows

Select your server and choose Properties.

"% Component Services

@ Fle Action View Window Help

e~ @@ X EE R

|1 Console Root
-1 @ Comporent Services
=0 Computers
=& My Computer

+-[[1 COM+ Applications
-3 DCOM Config
+-[] Distributed Transact
- RUMning Processes

#-{g] Event Yiewer (Local)

+ 4 Services (Local)

DizOM Config

- OX
N

Mame

@& Natural Classes for Caga server
Fnatural Classes for class? server

@ ratral Classes for doomsery server
@ Matural Classes for Default server

@& Natural Classes for dynarr server

at LIF: or Emiplony V=]
@ atiral Classes for esidyn server

@& Natural Classes for natmini server
@ Natural Classes for natthis server
BEnatural Classes for natcerr server
@ ratral Classes for natford server
@& nNatural Classes for natxfors server
BEynatural Classes for natxfors server
FNatral Classes for p 180863 server
@& Natural Classes for P 185432 server

@& Natural Classes for p187274 server
£

{BA3IBBEAF-7R16-%

Application 1D A
17 16E4590-0900:
{EEBF933F-BCCE-
{199AF3BB4-0012-
193sB0D501-BFCD
{GEFF 10BB- 1360
15CADSEEE-BE0A
1A 36EE 1EB-EAZD:
{OFEQCC 25-BEEE-
1DEDEB2337-2EAR
{FoE26B 3C-984E-
13493255 54FE-
164047 123-80E 1
1B83A45408-FF& 2-
13EDeRE T 1-4 1ED:
{1BDB0DEFE3-FC70

b

4 Inthe Location tab, activate the check box Run application on the following computer. Enter
the name of the remote machine on which the NaturalX server is installed.

Operations

173

DCOM Configuration on Windows

Natural Classes for Employees server Properties EHZ|

.General_g Location i.Security Endpaoints | ldentity

The following settings allow DCOM to locate the correct computer for this
application. lfwou make more than one selection, then DCOM uses the first
applicable one. Client applications may owveride your selections.

[Run application an the computer where the data is located.
[Run application an this computer.

[v Fun application on the fallowing computer:

1vc||c:an|:|.i|::eland.n:c|m| Brovwse. .

CIK, | | Cancel ‘ | Apphy

174

Operations

23 NaturalX System Registry Entries

B RegiStry ENHES fOr SEIVEIS ..ot 176
m Registry ENtries fOr CHENESoveiiiii e 177

175

NaturalX System Registry Entries

Registry Entries for Servers

The following tables show a summary of the keys and values that are added in the system registry
of the server when a new class is registered.

The column , parent key” shows under which key the new key is created. The key which is added
is listed in the column , subkey”, and the columns , value name” and ,, value” show the value of
the new entry.

| Note: <class_name>and <class_ID> are the name and the class GUID of the class respec-
tively. They are defined in the DEFINE CLASS statement of the class module.

The following topics are covered below:

= Keys Needed by DCOM
= Keys Needed by Natural

Keys Needed by DCOM
subkey value value
parent key (HKEY_CLASSES_ROOT...)
name
<ProglID> - <class_name> "1.0"
(<class_name>.1)
.. \<ProgID> CLSID - <class_GUID>
<VersldProgID> - <class name>"1.0"
(<class_name>)
.. \<VersldProgID> CLSID - <class GUID>
. \Appld <APPID> - "Natural classes for"
<server_ID> "server"
.. \CLSID <CLSID> - <class_name> "1.0"
.. \CLSID <CLSID> Appld |<GUID for server>
.. \CLSID \<CLSID> LocalServer32 - <Natural path>
.. \CLSID \<CLSID> ProgID - <ProglD>
.. \CLSID \<CLSID> TypeLib - <GUID for type library>
.. \CLSID \<CLSID> Version - "1.0"
.. \CLSID \<CLSID> VersionIndependentProglID |- <VersIDProglID>
.. \CLSID \<CLSID> (applies for |Programmable - -
Vers1on 4.1.2 and all subsequent
releases)
.. \TypeLib <TLID> - -
.. \TypeLib\<TLID> 1.0 <version> - "Natural" <class_name> "class"

176 Operations

NaturalX System Registry Entries

subke alue alue
parent key (HKEY_CLASSES_ROOT..) |*" > Y vale - valu
name
... \TypeLib\<TLID>\1.0 0 (langcode) - -
... \TypeLib\<TLID>\1.0\0 win32 (platform) <type library path>
For every interface:
... \Interface <IID> - <interface name>
... \Interface\<IID> ProxyStubClsid32 - <GUID of proxy dll for
IDispatch>

... \Interface\<IID> Baselnterface - <GUID of IDispatch>
Keys Needed by Natural

subke alue name |value
parent key (HKEY_LOCAL_MACHINE\ — vau vai
SOFTWARE\SoftwareAG\ Natural\Servers...)

<server_ID> |Appld <GUID for server>
... \<server_ID>\ CLSID - -
... \<server_ID>\CLSID <CLSID> NatMember |<Natural class module name>

(<class_ID>)
... \<server_ID>\CLSID <CLSID> NatLibrary |<Natural library of class module>
... \<server_ID>\CLSID <CLSID> NatContext |"ExternalSingle" or "InternalMultiple" or

"ExternalMultiple” (see Activation
Policies)

Registry Entries for Clients

The following table shows the keys which are added in the client system registry when the client
registration file is executed:

parent key subkey value name value

(HKEY_CLASSES ROOT...)
<ProglID> - <class_name>"1.0"
(<class_name>.1)

... \<ProgID> CLSID - <class GUID>
<VersldProgID> - <class_name>"1.0"
(<class_name>)

... \<VersldProglID> CLSID - <class GUID>

... \<VersldProglID> CurVer - <ProglD>

Operations 177

NaturalX System Registry Entries

parent key subkey value name value
(HKEY_CLASSES_ROOT...)
.. \Appld <APPID> - "Natural classes for server"
<server_ ID> "server"
.. \Appld <APPID> RemoteServerName |has to be entered by user
.. \CLSID <CLSID> - <class_name>"1.0"
.. \CLSID <CLSID> Appld <GUID for server>
.. \CLSID \<CLSID> ProgID - <ProglD>
.. \CLSID \<CLSID> Version - "1.0"
.. \CLSID \<CLSID> VersionIndependent - <VersProgID>
ProgID
... \CLSID \<CLSID> (applies|Programmable - -
for Version 4.1.2 and all
subsequent releases)
For every interface:
... \Interface <[1D> - <interface name>
... \Interface\<IID> ProxyStubClsid32 - <GUID of proxy dll for
IDispatch>
... \Interface\<IID> Baselnterface - <GUID of IDispatch>
178 Operations

24 Using Statements and Commands in a NaturalX Server

Environment
B N IUTAl S A EMENES ..o e 180
m Natural SyStem COMMEANGSvvviiiiiiiieii i e e e e e e s e e e e 181

179

Using Statements and Commands in a NaturalX Server Environment

The behavior of some Natural statements and Natural system commands changes in a server
environment.

Natural Statements

This section covers the following statements:

= DISPLAY, INPUT, PRINT, REINPUT and WRITE Statements
= \WWRITE WORK FILE and READ WORK FILE Statements
= STOP and TERMINATE Statements

DISPLAY, INPUT, PRINT, REINPUT and WRITE Statements

® Output to a screen (output to Report 0) is not appropriate in a server environment, and in some
cases is not possible. Therefore, in the case of an interactive I/O in the server environment, the
error NAT0723 is returned to the client. Redirecting the I/O by using the MAINPR parameter is,
of course, possible and is fully supported.

® When output is written to a report by a method, the report is opened at the start of the method
and closed at the end. The report is not kept open between method calls to avoid interference
between clients.

WRITE WORK FILE and READ WORK FILE Statements

When you access a work file in a method, the file is opened at the start of the method and closed
at the end. The file is not kept open between method calls to avoid interference between clients.

STOP and TERMINATE Statements

® The behavior of the TERMINATE statement matches that of the STOP statement. Processing of
return values is not supported.

® The STOP and TERMINATE statements behave in the same way as the ESCAPE ROUTINE statement
during method execution. Method execution is terminated immediately without producing any
return value.

180 Operations

Using Statements and Commands in a NaturalX Server Environment

Natural System Commands

Only the following Natural commands are allowed in the server environment:

= CATALOG
= CLEAR

= EXECUTE
® LOGOFF
= LOGON

= READ

" RETURN
= RUN

= SAVE

= SETUP

= STOW

From this list, the commands CATALOG, CLEAR, READ, RUN, SAVE and STOW are only allowed if the
server is running under a development Natural (natural.exe).

All commands that are not allowed will be rejected with the error NAT0082.

Operations 181

182

	Operations
	Inhaltsverzeichnis
	1 Operations
	2 Configuring the Microsoft Windows Personal Firewall to Run Natural
	Method 1 - Allow a Specific Executable to Open a Port
	Method 2 - Allow a Specific Port to be used on your PC
	Overview of Executables and Port Numbers

	3 Profile Parameter Usage
	Parameter Hierarchy
	Static Assignment of Parameter Values
	Dynamic Assignment of Parameter Values
	Runtime Assignment of Parameter Values

	4 System Files
	System File Structure
	System Files FNAT and FUSER
	System File FDDM
	Activating FDDM Mode
	Migrating DDMs to the System File FDDM
	Checking whether the System File FDDM is Used

	Important Information and Warnings
	The File FILEDIR.SAG
	Portable Natural System Files
	Language-dependent Objects
	Migrating an Old FILEDIR.SAG File

	Using NFS to Store Natural Libraries

	5 Work Files
	Defining Work Files
	Defining Work File Names with the Configuration Utility
	Defining Work File Names with Environment Variables
	General Information
	Delimiters of Environment Variables
	Dollar Sign ($) in the File Name

	Defining Work File Names with an Application Programming Interface

	Work File Formats
	Binary Format
	ASCII Format
	Entire Connection Format
	Portable Format
	Unformatted Format
	CSV Format

	Special Considerations for Work Files with the Extension NCD

	6 Natural Buffer Pool
	General Information
	Objects in the Buffer Pool
	Resource Handling
	Multiple Buffer Pools
	Storing Objects in the Buffer Pool
	Read-Only Buffer Pool
	Secondary Read/Write Buffer Pool
	Alternate Read-Only Buffer Pool
	Creating a Preload List Using the CRTPRL Utility

	Restrictions

	Setting up a Buffer Pool
	Using the Natural Buffer Pool Service
	Buffer Pool Service Commands
	Example: Starting Natural with Your Own Buffer Pool

	Using the Utility NATBPSRV for Creating the Buffer Pool
	Monitoring the Buffer Pool
	Trouble Shooting
	Problem

	The Natural Client Buffer Pool Service

	7 Using the GUI Version of the Buffer Pool Monitor
	Starting and Terminating the Buffer Pool Monitor
	Elements of the Natural Buffer Pool Monitor Window
	Menu Bar
	Toolbar
	Tree
	Status Bar

	Disconnecting and Connecting a Buffer Pool
	Shutting Down a Buffer Pool Server
	Starting a Buffer Pool Server
	Changing the Properties of the Buffer Pool Monitor
	Global Information
	Statistics
	Parameters

	Buffer Pool Content
	Directory Entries
	Corpses
	Users

	Graphic Analyzer
	Line Graph
	Bar Chart
	Memory Usage

	Reports
	Simple Report
	Logging
	Advanced Analysis

	8 Using the Command Line Version of the Buffer Pool Monitor (NATBPMON)
	Invoking the NATBPMON Utility
	NATBPMON Commands
	Displaying the Objects in the Buffer Pool
	Specifying a Pattern
	Displaying the Buffer Pool Settings
	Statistical Information About the Buffer Pool

	9 Natural in Batch Mode
	What is Batch Mode?
	Starting a Natural Session in Batch Mode
	Terminating a Natural Session in Batch Mode
	Using Natural in Batch Mode
	Input and Output Channels
	Code Pages for the Input and Output Files

	Sample Session for Batch Mode
	Batch Mode Detection
	Batch Mode Restrictions
	Hints for Using Natural Maps and Dialogs in Batch Mode

	10 Output Window
	About the Output Window
	Working in the Output Window
	Changing the Output Window Profile
	Using Your Own Icon for the Output Window

	11 Natural Runtime
	What is not Supported by Natural Runtime?
	System Commands
	Editors
	Utilities

	Porting Procedure Overview
	Step 1: Packaging the Application on the Development Workstation
	Creating a Collecting Directory
	Customizing and Copying the Global Configuration File
	Customizing and Copying the Natural Parameter File
	Copying or Unloading the Objects
	Copying the Collecting Directory to a Transfer Medium

	Step 2: Installing Natural Runtime
	Step 3: Installing the Application on the Runtime Workstation
	Copying the Global Configuration File
	Copying the Natural Parameter File
	Copying or Loading the Objects

	Step 4: Starting the Application on the Runtime Workstation
	Using the Natural Runtime Startup Service
	Natural Runtime Startup Service Commands
	Example: Starting a Natural Process Automatically

	12 Support of Different Character Sets with NATCONV.INI
	Why is the Support of Different Character Sets Important?
	How to Use Different Character Sets

	13 Natural Exit Codes
	Natural Startup Errors

	14 Setting Up the Entire System Server Interface
	Prerequisites
	Activation
	Changing the Database ID for the Entire System Server DDMs

	15 Administrating NaturalX Applications
	16 NaturalX Servers
	COM Classes and Servers
	NaturalX Classes and Servers
	NaturalX Servers and Natural Sessions under Windows
	The Role of the Server ID
	Organizing Server IDs

	17 Activation Policies
	Activation Policies on Windows Platforms
	Setting Activation Policies
	When to Use Which Activation Policy
	Example
	Class SagTours
	Method newTrip
	Class RoutePlanner
	Method plan
	Sample Client Program

	18 Registration
	Registration with Natural
	Automatic Registration
	Manual Registration
	The REGISTER Command
	class-module-name
	library-name
	ES, IM or EM

	The UNREGISTER Command
	class-module-name
	library-name
	server-ID

	Registration Files and Type Library
	Client Registration
	Registration Hints

	19 Type Information
	Overview
	NaturalX and Type Information
	Creating Type Information

	Using Type Information
	Data Type Conversions
	Natural Data Formats to OLE Types
	OLE Types to Natural Data Formats

	20 Configuration Overview
	Server Configuration - General Settings
	Server Configuration - Application-Specific Settings
	Client Configuration - General Settings
	Client Configuration - Application-Specific Settings

	21 Security with NaturalX
	Overview
	Activation Security
	Applications
	Authorizations using the Registry

	Call Security
	Authorizations using Natural Security
	Security Hints and Suggestions

	22 DCOM Configuration on Windows
	Configuring NaturalX Servers
	Configuring NaturalX Clients

	23 NaturalX System Registry Entries
	Registry Entries for Servers
	Keys Needed by DCOM
	Keys Needed by Natural

	Registry Entries for Clients

	24 Using Statements and Commands in a NaturalX Server Environment
	Natural Statements
	DISPLAY, INPUT, PRINT, REINPUT and WRITE Statements
	WRITE WORK FILE and READ WORK FILE Statements
	STOP and TERMINATE Statements

	Natural System Commands

