Web Interface Plug-In Web Interface Plug-In

Web Interface Plug-In

This section covers the following topics:
e Before You Start
® Invoking Web Interface Plug-In Commands

® Web Interface Plug-In Functions

Before You Start

The Web Interface Plug-In is an optional plug-in unit for Natural Studio. Therefore, before any action can
be taken, the Web Interface Plug-In must be activated in your Plug-In Manager. For detailed information
on the activation procedure, see the sed®ioig-In Manager

Web Interface Plug-In Interface

Once the Web Interface Plug-In is activated, your Natural Studio interface will be changed in the
following way:

e the Tools menu will display the relevant Web Interface Plug-In commands,
e a toolbar will be available for the commands most frequently used.

The commands available depend on your working context.

| nvoking Web Interface Plug-ln Commands
» Toinvoke Program Generation commands from the main menu

e From the main menu, choo$eols > Development Tools > "=l Web Interface Program
Generation...

The available commands are described in detail in the séttignam Generation
» Toinvoke Class Generation commands from the main menu
® From the main menu, choo$eols > Development Tools > (74 Web Interface Class Generation...
The available commands are described in detail in the s€ciiss Generation
» Toinvoke Test Utility commands from the main menu

® From the main menu, choo$eols > Development Tools > g Web Interface Test Utility...

The available commands are described in detail in the sé€atiime Test Utility

Web Interface Plug-In Web Interface Plug-In Functions

» Toinvoke Web Interface options from the main menu

® From the main menu, choo$eols > Development Tools > @ Web Interface Options...

The available commands are described in detail in the sé€gfitions
¥ Toinvoke Web Interface Plug-ln commands, use the following toolbar buttons
1. For the Generation Wizards:

[<F Selects the HTML page that should be used for the generation process.
é@ Starts the external editor for the selected HTML file.

Or:
For the Test Utility:

ﬁ? Starts the editor.

It is disabled as long as you have not executed the program and if you have not changed the
subprogram library or name.

You can choose the editor within t@gptionsdialog.
g& Starts the browser..

It is disabled as long as you have not executed the program and if you have not changed the
subprogram library or name.

You can choose the browser in tBptionsdialog.

Web Interface Plug-In Functions
Program Generation

Note:
The Program Generation Wizard is not applicable to mainframe systems.

This section describes the use of the Program Generation Wizard, a plug-in that enables you to generate
basic web Interface programs and programs that use HTML templates with the Natural Web Interface.

The basic generation can be used to generate necessary parts for a subprogram called from the internet
with the web interface. Then your specific coding can be added.

The template generation works with ready designed HTML pages. These HTML pages will be loaded

from the resource directory. Then specific parts can be replaced with your individual parts. The program
generator reads these HTML pages, searches for the parts to be replaced (marked with special characters)
and then generates an external subroutine that can be used equal to output only maps.

This section covers the following topics:

Using the Conversion Program

Using the Conversion Program

Inserting Replacement Strings

Options
® View

Class Generation

® Online Test Utility

Using the Conversion Program

Web Interface Plug-In

If your basic web pages are designed with editing tools, it takes some effort to include such a page in a

Natural subprogram that can be called from the web.

The Web Wizard is a dialog that uses an HTML page as input and generates a Natural subprogram, which
can be called by the Natural Web Server Extensions using the Natural Web Interface, or a subroutine

which can be called to generate the output.

With the basic generation of the Web Wizard, a standalone Natural subprogram that can be called by the
Natural Web Server Extensions using the Natural Web Interface can be produced.

ﬂé Matural Web Interface - Program Generation =]

— Type af Generation

" Basic (" Stand-alone % Transformation ¢ Template

[T Usze local file
~ lnput File

Library E stenzion File Mame

I SYSPLWEE j I Relevant Files [7.htmls~. azp) j I j
— Generated Matural object

Libram Object ype Object name Subrouting name

ISYSPLWEBj ISu]:urnut.ine j I j I

[Fenerate | Carcel Help

Generating a Basic Subprogram to be Called Directly from the Web

» To gener ate a subprogram/subroutine to be called directly from the Web:

1. Select Type of generation: Basic.

2. Select your Generated Natural object.

Web Interface Plug-In Using the Conversion Program

3. Start the generation.

4. If you generated this subprogram the first time and you want to call the generated subprogram via
DCOM, regenerate the DCOM class (s€kass Generatign

5. After the generation, this page can be called from the internet, but because this page does not set any
data, the page will be empty.

Example of a basic generation

Generated Natural subprogram, to be called directly from the internet:

0010 * ----- GENERATED BY NATURAL WEB INTERFACE
* Library SYSPLWEB

* Source Name .: BASIC

DEFINE DATA

PARAMETER USING W3PARM

LOCAL USING W3CONST

*oeeeee PRIVATE VARIABLES -----

* LOCAL

*1 W3VALUE (A250)
END-DEFINE

* .- ERROR HANDLER -----
ON ERROR

PERFORM W3ERROR ##W3ERROR
PERFORM W3END ##RPC

ESCAPE ROUTINE

END-ERROR

* oo INITIALISE HTTP API -----

PERFORM WBSINIT ##RPC

* --- READ ENVIRONMENT ---

* PERFORM W3READ-ENVIRONMENT-DYNAMIC 'varname’ ' ' W3VALUE
* set default value

* |F *length(W3VALUE) = 0 THEN

* W3VALUE = ??

* END-IF

* oo HEADER FOR SERVER -----

* PERFORM W3CONTENT-TYPE 'text/html’

*

*

* Add your individual coding using W3* subroutines or
* call your own subroutines.

* e END HTTP -
PERFORM W3END ##RPC
* - END MAIN PROGRAM -----

Generating a Standalone Subprogram to be Called Directly from the Web

» To generate a subprogram to be called directly from the Web:

1. Select Type of generation: Standalone.

Using the Conversion Program Web Interface Plug-In

2. Select your Generated Natural object.
3. Start the generation.

4. If you generated this subprogram for the first time and you want to call the generated subprogram via
DCOM, regenerate the DCOM class (sekass Generatign

5. After the generation, you can call the Natural Web Interface to show the page.
Example of a standalone generation

Generated Natural subprogram, to be called directly from the internet:

* e GENERATED BY NATURAL WEB INTERFACE
* Library SYSPLWEB

* Source Name .. ALONE

DEFINE DATA

PARAMETER USING W3PARM

LOCAL USING W3CONST

* e PRIVATE VARIABLES -----

LOCAL

1W3VALUE (A250)
END-DEFINE

% .- ERROR HANDLER -----
ON ERROR

PERFORM W3ERROR ##W3ERROR
PERFORM W3END ##RPC

ESCAPE ROUTINE

END-ERROR

*omeen INITIALISE HTTP API -----

PERFORM W3INIT ##RPC

*omeen HEADER FOR SERVER -----

PERFORM W3CONTENT-TYPE 'text/html’

*

* - READ ENVIRONMENT ---

* PERFORM W3READ-ENVIRONMENT-DYNAMIC 'varname’ ' ' W3VALUE
* set default value

* |F *length(W3VALUE) = 0 THEN

* W3VALUE :=??

* END-IF

* - WRITE THE HEAD OF THE DOCUMENT ---
PERFORM W3TEXT "<IDOCTYPE 'HTML PUBLIC-//W3C//DTD HTML 3.2//[EN’>"-
'<html>’-

'<head>'-

"<meta http-equiv="Content-Type’ content=""-
"text/html; charset=is0-8859-1'>"-
'<title>SYSPLWEB/TEST</title>'-

'</head>’

* - WRITE THE BODY OF THE DOCUMENT ---
PERFORM W3TEXT '<body>'-
'<h2>SYSPLWEB/TEST</h2>'-

<hr>’

*

PERFORM W3TEXT '<p>This is your output</p>’

*

COMPRESS ’'<hr>generated:’ *DATE *TIME INTO W3VALUE
PERFORM W3TEXT W3VALUE

* - END THE BODY OF THE DOCUMENT ---

PERFORM W3TEXT '</body>'-

</html>’

Web Interface Plug-In Using the Conversion Program

* e END HTTP -
PERFORM W3END ##RPC
* .- END MAIN PROGRAM -----

Generating a Subprogram/Subroutine using Natural Tags

» To generate a subprogram/subroutineto be called directly from the Web:
1. Select Type of generation: Transformation.
2. Select your input file of type HTML.
3. You can view your selected HTML page with an editor/browser.
4. Choose the Natural library you want to generate to.
5. Select the object type you want to generate.
6. Select your Generated Natural object.
7. Start the generation.

8. If you generated this subprogram for the first time and you want to call the generated subprogram via
DCOM, regenerate the DCOM class (s€kass Generatign

9. After the generation, you can call the Natural Web Interface to show the page.
Inserting a Natural Tag

It is possible to specify Natural coding directly in the HTML page. After generation, the program needs no
additional changes.

The HTML2NAT dialog can recognizesdNATURAL>tag. All lines betweerNATURAL>and
</NATURAL> will be copied, as they are, to the generated Natural source object.

Appearance

<NATURAL> </NATURAL>

Below is information on:
® Attributes DATA, LDA, GDA, SUB, NOT
e Comment Tag
® ASP-like Script Commands

® Additional Script Directives

Using the Conversion Program Web Interface Plug-In

e Example of a Simple Generation
® Example of a Simple Generation with a Natural Tag
AttributesDATA, LDA, GDA, SUB, NOT

Listed below are attributes provided to define coding sections that are to be moved within the program or
excluded from the program.

Attribute| Explanation

DATA | <NATURAL DATA>or <NATURAL LDA>moves the defined section to the DEFINE

LDA DATA LOCAL part of your program.

GDA <NATURAL GDA>moves the defined section to the DEFINE DATA GLOBAL part of
your program.

SUB <NATURAL SUB>moves the defined section to the end of the program. This enablgs you
to specify inline subroutines.

NOT <NATURAL NOT>excludes the defined section from the program. This enables you|to
specify the design of part of a page that will be generated by a program.

Comment Tag

Use the comment tag-- --> to hide the display of defined sections of your coding. If you use the
comment tag andNATURAL NOT> you can display the predefined page with a normal browser. This
helps you to specify your page and replace parts of the page dynamically.

ASP-like Script Commands

Not only<NATURAL>and</NATURAL> can be used, but also ASP-like (Active Server Pages) script
commands which are differentiated from the text by using#and%>delimiters.

Additional Script Directives
The following Natural-specific directives must be used when writing a Natural subprogram:
Output directive: <%= ... %>
Short form for<% PERFORM W3HTML ... %> tag
Subprogram directive: <%SUB ... %>
equal to the<NATURAL SUB> ... </NATURAL> tag
Global Data Area directive: <%GDA ... %>
equal to the<NATURAL GDA> ... </[NATURAL> tag

directive: <%LDA ... %>

Web Interface Plug-In

equal to the<NATURAL LDA> ... </INATURAL> tag
Not directive: <%NOT ... %>

equal to the<NATURAL NOT> ... </NATURAL> tag
Processing directive <% @ LANGUAGE=NATURAL %>

indicates that the used language is Natural.
Example 1 of a Simple Generation

HTML document:

<HTML><HEAD><TITLE>
Examplel genNat
</TITLE></HEAD><BODY><H2>
Examplel genNat

</H2><HR>

<P>This is for your output
</BODY></HTML>

Generated Natural subprogram:

E:\\SAG\Natural\6.2\Fnat\SY SWEB\RES\examplel.html
*Library SYSWEB
* Source Name EXAMPLE1
* Crunch Lines...: 1
* Save Source....: 1
* Line Length....: 128
* Long Constants.: 1
DEFINE DATA
PARAMETER USING W3PARM
LOCAL USING W3CONST
LOCAL
*oeeee PRIVATE VARIABLES -----
1 W3VALUE (A250)
END-DEFINE
*

* oo ERROR HANDLER -----
ON ERROR
PERFORM W3ERROR ##W3ERROR
PERFORM W3END ##RPC
ESCAPE ROUTINE
END-ERROR
* oo INITIALIZE HTTP API -----
PERFORM WSINIT ##RPC
* oo HEADER FOR SERVER -----
PERFORM W3CONTENT-TYPE 'text/html’
*

*oeeee MAIN PROGRAM -----

PERFORM
W3TEXTLINE'<HTML><HEAD><TITLE>’

PERFORM W3TEXTLINE 'Example genNat’

PERFORM
W3TEXTLINE'</TITLE></HEAD><BODY><H2>’

PERFORM W3TEXTLINE 'Example genNat’

Using the Conversion Program

Using the Conversion Program

PERFORM W3TEXTLINE '</H2><HR>’

PERFORM W3TEXTLINE '<P>This is for your output’
PERFORM W3TEXTLINE '</BODY></HTML>"’

* oo END HTTP API -----

PERFORM W3END ##RPC

* oo END MAIN PROGRAM -----

Example 2 of a Simple Generation with a Natural Tag

HTML document:;

<HTML><HEAD><TITLE>
Example2 genNat
</TITLE></HEAD><BODY><H2>
Example2 genNat

</H2><HR>

<P>This is for your output

<HR>

<P>generated at:

<NATURAL NOT>

Time/Date

</NATURAL>

<NATURAL><!--

PERFORM DOTIME
--></NATURAL>

<NATURAL SUB><!--

DEFINE SUBROUTINE DOTIME
COMPRESS *TIME *DATE INTO #VALUE
PERFORM W3TEXTLINE #VALUE
END-SUBROUTINE
--></NATURAL>

<NATURAL DATA><!--

1 #VALUE (A30)
--></NATURAL>
</BODY></HTML>

Generated Natural subprogram:

*File EASAG\Natural\6.2\Fnat\SY SWEB\RES\example2.html
* Library SYSWEB

* Source Name EXAMPLE2

* Crunch Lines...: 1

* Save Source....: 1

* Line Length....: 128

* Long Constants.: 1

DEFINE DATA

PARAMETER USING W3PARM
LOCAL USING W3CONST

1 #VALUE (A30)

* e PRIVATE VARIABLES -----
1 W3VALUE (A250)
END-DEFINE

* .- ERROR HANDLER -----
ON ERROR
PERFORM W3ERROR ##W3ERROR

Web Interface Plug-In

Web Interface Plug-In

PERFORM W3END ##RPC

ESCAPE ROUTINE
END-ERROR
* oo INITIALIZE HTTP API -----
PERFORM W3INIT ##RPC
* oo HEADER FOR SERVER -----
PERFORM W3CONTENT-TYPE 'text/html’

* e MAIN PROGRAM -----
PERFORM W3TEXTLINE'<HTML><HEAD><TITLE>’
PERFORM W3TEXTLINE 'Example2 genNat’

PERFORM W3TEXTLINE'</TITLE></HEAD><BODY><H2>’

PERFORM W3TEXTLINE 'Example2 genNat’
PERFORM W3TEXTLINE '</H2><HR>’

PERFORM W3TEXTLINE '<P>This is for your output’
PERFORM W3TEXTLINE '<HR>’

PERFORM W3TEXTLINE '<P>generated at:’
PERFORM DOTIME

PERFORM W3TEXTLINE '</BODY></HTML>’

* e END HTTP API -----

PERFORM W3END ##RPC

* e END MAIN PROGRAM -----

* oo SUBROUTINES -----

DEFINE SUBROUTINE DOTIME
COMPRESS *TIME *DATE INTO #VALUE
PERFORM W3TEXTLINE #VALUE
END-SUBROUTINE

END

Note:

Using the Conversion Program

The syntax of the Natural program will not be checked during conversion.

Generating a Subprogram/Subroutine using a Templatethat is Called Directly from the

Web

¥ To generate a subprogram/subroutine using a templatethat is called directly from the Web:

1. Select type of generation: Template.

2. Select your input file of type HTML.

3. You can view your selected HTML page with an editor/browser.

4. Select the object type you want to generate.
5. Select your Generated Natural object.

6. Start the generation.

7. If you generated this subprogram the first time and you want to call the generated subprogram via
DCOM, regenerate the DCOM class (s€kass Generatign

8. After generation, you can call the Natural Web Interface to show the page.

10

Inserting Replacement Strings Web Interface Plug-In

I nserting Replacement Strings

It is neccesary to specify the replacement strings directly in the HTML page. The replacement strings have
to start and end with an specific character, e.g. $3@gtieny. The name (content) of a string has to
comply with the Natural rules for variable names. If not, subroutines may not stow.

If the name of the replacement string is prefixed with "HTML", unsaved characters as "<" or ">" will be
replaced during replacement at runtime.

The following prefixes for automatic conversion at runtime are implemented:
e HTML
e URL
e XML
For more information, see the documentation of the subroatBREPLACE-AT-OUTPUT

Example of Template Generation

HTML document:;

<HTML>
<HEAD>

<TITLE>Template Processing</TITLE>
</HEAD>
<BODY>
<H2>

Template Processing
</H2>
<p>

<HR>
<TABLE BORDER="0">
<TR><TD>Log-Time:</TD><TD> log <TD></TR>
<TR><TD>HTTPs Extension:</TD><TD> $html-ext$ <TD></TR>
<TR><TD>Web Interface:</TD><TD> $html-ver$ <TD></TR>
</TABLE>
<p>
<TABLE BORDER="0" WIDTH="100%’ CELLSPACING="0' CELLPADDING=5>

<TR BGCOLOR="#00cc66>

<TD> $prog$ - log </TD>
<TD ALIGN='RIGHT">Natural</TD>

</TR>
</TABLE>
</BODY></HTML>

Generated Natural subroutine, that has to be called from a subprogram that is called from the internet:

* Library SYSWEB
* Source Name .. TEMPL
* Delimiter ...: $

DEFINE DATA PARAMETER

1log (A) DYNAMIC BY VALUE
1 html-ext (A) DYNAMIC BY VALUE
1 html-ver (A) DYNAMIC BY VALUE

11

Web Interface Plug-In

1 prog (A) DYNAMIC BY VALUE
END-DEFINE

*

*

DEFINE SUBROUTINE e3templm

* - HEADER FOR SERVER -----

PERFORM W3CLEAR

PERFORM W3CONTENT-TYPE "text/htm/’

* - MAIN PROGRAM -----

* - LOAD THE HTML TEMPLATE ---

PERFORM W3LOAD-RESOURCE '’ ’e3templ.html’

*

* ... REPLACE PLACEHOLDER ---

PERFORM W3REPLACE-AT-OUTPUT ’’ 'log’ log
PERFORM W3REPLACE-AT-OUTPUT 'HTML' "ext’ ext
PERFORM W3REPLACE-AT-OUTPUT "HTML' "ver’ ver
PERFORM W3REPLACE-AT-OUTPUT ’’ "$prog$’ prog

* - END MAIN PROGRAM -----

*

END-SUBROUTINE

*

END

Inserting Replacement Strings

Generated Natural subprogram, to be called directly from the internet:

*File EASAG\Natural\6.2\Fnat\SY SWEB\RES\templ.html
* Library SYSWEB

* Source Name .: TEMPL

* Delimiter ...: $

DEFINE DATA

PARAMETER USING W3PARM
LOCAL USING W3CONST
LOCAL

*oeeee PRIVATE VARIABLES -----
1 W3VALUE (A250)
END-DEFINE

*

* - ERROR HANDLER -----
ON ERROR

PERFORM W3ERROR ##W3ERROR
PERFORM W3END ##RPC

ESCAPE ROUTINE

END-ERROR

* - INITIALISE HTTP APJ ----
PERFORM W3INIT ##RPC

* - HEADER FOR SERVER -----
PERFORM W3CONTENT-TYPE ‘text/html
*

* - MAIN PROGRAM -----

* - LOAD THE HTML TEMPLATE ---

PERFORM W3LOAD-RESOURCE 'SYSWEB' ‘e3templ.htmr’
*

* --- REPLACE PLACEHOLDER ---

PERFORM W3REPLACE-AT-OUTPUT ’’ "log’ 'replace-string-1’
PERFORM W3REPLACE-AT-OUTPUT 'HTML’ 'ext’ 'replace-string-2’
PERFORM W3REPLACE-AT-OUTPUT 'HTML’ 'ver’ 'replace-string-3’
PERFORM W3REPLACE-AT-OUTPUT '’ "$prog$’ 'replace-string-4’
— END HTTP -----

12

Options

PERFORM W3END ##RPC

* oo END MAIN

Options

PROGRAM -----

@Hatural Web Interface - Options - User: HNO

[Generation | Wigw |

—HTHML File
[~ Delete

unheceszan white space

[T Save <MATURAL MOT: ... </MATURAL: at source

— Generated Source
[+ Stow after generation

[v Usze long test constants

Matural line length: |128

— Templates
Drelirmiter:

O

ak.

Cancel

Al

I nput/Output Fields

Web Interface Plug-In

13

Web Interface Plug-In

View

Field

Explanation

Delete unnecessary
white space

If checked, multiple white-space characters such as blank, new line,
will be reduced to a single white space. For special HTML tags such
<PRE><TEXTAREA>0r <SCRIPT>, the white space will not be
collapsed.

Default value: unchecked

ab,

Save<NATURAL NOT>
... <NATURAL> at
source

If checked, the content e@NATURAL NOT>tags will not usually be
generated into the Natural source. This option generates the content
<NATURAL NOT=>as comment into the Natural source.

Default value: unchecked

of

Stow after generation

If checked, the generated program will be stowed if the generation ha
been successful.

Default value: checked

1S

Use long text constants

Generate text constants longer than 253 characters for better perforn

Default value: checked

hance.

Natural line length

The length of the generated Natural source lines: the minimum value
the maximum 246.

Default value: platform dependant

is 20,

Delimiter

Delimiter string for replacement strings.

Default value: $

View

14

View

@Hatural ¥Web Interface - Options - User: HNO

Generation iew

— HTHL Editor

|NDTEP&D

— HTHL Browser

v Use internal broveser

— Termparary wark: file

Id: YprojtnathB31 hnats 31 Shnihnatappsh FMATYWSY SWEBSARE _I

ok

Cancel

Apply

Below is information on:

® |nput/Output Fields
e Buttons

I nput/Output Fields

Web Interface Plug-In

15

Web Interface Plug-In Class Generation

Field Explanation

HTML Editor The external program that is used to edit the source of the HTML page.

Default Value: NOTEPAD
HTML Browser The external program that is used to display the HTML page.

Default: Microsoft Web browser ActiveX Control

Use internal browse| The external program that is used to display the HTML page.
To select your own browser, uncheck this box.

Default value: checked

Temporary work file| The default output file to be used for displaying data in the HTML-browser.

Default valueC:\Temp\web-out

Buttons

OK Leaves the dialog and saves the changes.
Cancel Leaves the dialog without saving your changes.
Apply Saves the current input.

Class Generation

If the Natural Web Interface subprograms should be called using DCOM instead of RPC, a DCOM class
is needed. This class contains as methods all relevant Natural subprograms for the Natural Web Interface.

The program HTML to Natural automatically generates the specified class. To stow the generated class, a
Local Data Area (LDA) is needed to specify the Global Unique IDs (GUIDs) of the DCOM objects. The
name of the LDA starts with L followed by the first seven characters dfilbhary.

Below is information on:

Input/Output Fields

Radio Buttons

Buttons

Example for Library SYSWEB
Example for Library SYSWEB3

16

Class Generation

o

£1 Natural Web Interface - Class Generation M=] B3

— Generate Matural clazs
Library

Clazz source Clazz name LD name

|sverem x| [inones ¥ |inone I |

" 5YSWER o SYSWEEBS

Set Default Yalues |] | Cancel Help

I nput/Output Fields

Web Interface Plug-In

e of the

of the

Field Explanation

Library | The name of the library to be scanned.

Class The name of the class source.

source | We recommend that the name you choose for Class source is identical to the nam
library.

Class The name of the class that can be called later from the Internet.

name We recommend that the name you choose for Class name is identical to the name
library for which the class is generated.

LDA The name of the LDA containing the GUIDs for the class ID and the Natural Web

name Interface ID.
For the naming conventions that apply, Egample for Library SYSWEBelow.

Radio Buttons

Radio Button | Explanation

VEB.

VEB3.

SYSWEB Choose this option if you want to generate a class to be used with library SYSV
SYSWEB3 | Choose this option if you want to generate a class to be used with library SYSV
Buttons

Button Explanation

OK Generates the class and leaves the dialog.

Cancel Leaves the dialog without generation.

Values

Set Default | This button is enabled if no relevant class is found for the library. The defaults fo

source and Class name are given. The required LDA has to be generated in adv

Class
Ance.

Examplefor Library SYSWEB

The LDA name is LSYSWEB. Name the first GUID CLSID- followed by the library name and the second
GUID IID-NATWEB.

17

Web Interface Plug-In Online Test Utility

T Comment
*** Top of Data Area ***
X) 1 CLSID- SYSWEB A 36
X U 1 IID-NATWEB A 36

*** End of Data Area ***

A Warning:
Do not copy and rename or move an LDA in order to get new GUIDs
for your classes. If an LDA is copied and renamed or moved, the
preset GUID isnot changed. This may cause major problems

Examplefor Library SYSWEB3

The LDA name is LSYSWEB3. Name the first GUID CLSID- followed by the library name and the
second GUID IID-NATWEBS.

T Comment
*** Top of Data Area ***
X U 1 CLSID- SYSWEB3 A 36
X U 1 IID-NATWEB3 A 36

*** End of Data Area ***

A Warning:
Do not copy and rename or move an LDA in order to get new GUIDs
for your classes. If an LDA is copied and renamed or moved, the
preset GUID isnot changed. This may cause major problems

Online Test Utility

This test utility is a component of the Natural Web Interface. You can check your subprogram locally
without involving an HTTP server. The transfer parameters for your web page are transferred into the test
utility and are posted directly to the business logic.

As communication platform, you can choose either RPC or DCOM as in real remote communications.
The result is either the web page expected or an error message. The web page can be viewed with the
browser or a viewer of your choice. If you receive an error message, you can easily debug your business
logic locally without writing an extra test routine. No remote debugging is necessary.

Features:
® | ocal application checking.

® No need for remote debugging.

18

Online Test Utility Web Interface Plug-In

e Simplified error checking.
e Comfortable operation by user friendly interface.

® No need to write an extra test routine.

{" Natural Web Interface - Test Ukillity

— Subprogram

Library I arne

ISYSTEH j Il:nnne:l j Interface: ¢ pCOM ¢ RPC

— Parameters

I ame WYalue

I - I x| T Server
Aydd
fd mddifiy
[elete

HTTP method

IF'EIST vI

Browse. .. |

[Binany

Ewecute Cancel Help

Below is information on:

Prerequisites

Running the Application
Supported Content Types
Input/Output Fields
Buttons:

Prerequisites

® Web browser which supports different content types, for example, Microsoft Internet Explorer
Version 5.0 or higher.

19

Web Interface Plug-In Online Test Utility

® Any available text editor.
Running the Application
¥ To define path adjustments
1. Start the main dialog.

2. Select a browser and viewer of your choiceldals > Development Tools > Web Interface
Options...

3. Set the browser, viewer and work file path.

4. Press the OK button.
¥ Tostart the application

1. Start the dialog WEB-ONL for SYSWEB or WEB-ONL3 for SYSWEBS3.

2. Select a library and subprogram name.

3. Optional: add parameters.

4. Choose RPC or DCOM.

5. Press the Execute button.

6. View the result by pressing either the Result... or the Browse button.
Supported Content Types

The following Content Types are supported by the Test Utility:

Content Type Extension
"application/rtf" "rtf"
"application/powerpoint" "ppt"
"application/msword" "doc”
"application/excel" "xIs"
"text/html" "htm"
"text/plain” "txt"
"text/xml" "xml"
"text/richtext" "rtf"

If you need further Content Types, change the subroutine HTML2CONTENT-TYPE
(SYSWEB/W3COZ2EXT or SYSWEB3/W3CO2EXT) and extend the translation table to suit your own
needs.

20

Online Test Utility

I nput/Output Fields

before you add the parameter to the parameter list.

In the parameter list, all name-value-pairs are displayed. &, =, % are substituted
delete a pair, select the item and press the Delete button. Every selected item w

Web Interface Plug-In

space

Field Explanation
Subprogram Enables you to specify the library and the name of the required subprogram. The
Library available libraries and subprograms are automatically taken from the library work
Name and listed in selection boxes.
Interface Can be selected with either DCOM or RPC as communication form. For DCOM, [you
have to register your classes first.
Default: RPC
Parameters; Here you can enter the name-value-pairs needed from the subprogram. To take them
Name over into the parameter list, press the Add button. To modify the entries, use the
Value Modify button. You do not have to substitute &, =, %; this will be done by the
Server WEB-ONL program. If you use server parameters, check the Server toggle buttg

>

To
Il be

inserted into the Name and Value fields. If you wish to modify a pair, select the item,

change it in the Name and Value fields and press the Modify button.

Server:

If any of the name-value-pairs are server variables, you need to check this toggle

button. Note that any status will last until you change it again.

174

21

Web Interface Plug-In Online Test Utility
Field Explanation
HTTP In this drop-down list you can select the HTTP request/submit method to be useg:
Method
e HEAD
Identical to a GET request, but without the response body. This is useful for
retrieving meta-information written in response headers, without having to
transport the entire content.
e GET
Requests a representation of the specified resource.
® POST
Submits data from the identified resource. The data is included in the body of the
request.
You can use this method to submit data with a different content type, for example
XML files or binary data (such as graphics).
If you specify this method an additiordowse... button and th&inary
checkbox are available on the screen.
Use theBrowse... button to choose a file and tBenary checkbox, if you want tg
submit binary data.
If you specify this method without an input file, the default mime type
"application/x-www-form-urlencoded" is set. If you use an input file, the content
type of that file will be used, for example with an XML file, the content type wiill
automatically be set to "text/xml". You can specify a different mime type in tihe
input field manually.
Note:
A mime type which has been set manually will always override the default nmime
type.
e PUT
Uploads a representation of the specified resource.
You can use this method to submit data with a different content type, for example
XML files or binary data (such as graphics).
If you specify this method, an additiorBdowse... button and th&inary
checkbox are available on the screen.
Use theBrowse... button to choose a file and tBenary checkbox, if you want tg
submit binary data.
Buttons:

22

Online Test Utility Web Interface Plug-In

JB Runs the process of receiving the output from the requested subprogram. The status of the
process can be seen in the status bar at the bottom of the WEB-ONL or WEB-ONL3 dialog
window.

¥ Starts the editor. It is disabled as long as you have not executed the program and if you have
not changed the subprogram library or name. You can choose the editor with the Options dialog.

g& Starts the browser chosen with the Options dialog. It is disabled as long as you have not executed
the program.

23

	Web Interface Plug-In
	Before You Start
	Web Interface Plug-In Interface

	Invoking Web Interface Plug-In Commands
	Web Interface Plug-In Functions
	
	Program Generation

	Using the Conversion Program
	Generating a Basic Subprogram to be Called Directly from the Web
	Generating a Standalone Subprogram to be Called Directly from the Web
	Generating a Subprogram/Subroutine using Natural Tags
	Inserting a Natural Tag
	Attributes DATA, LDA, GDA, SUB, NOT
	Comment Tag
	ASP-like Script Commands
	Additional Script Directives
	Example 1 of a Simple Generation
	Example 2 of a Simple Generation with a Natural Tag
	Generating a Subprogram/Subroutine using a Template that is Called Directly from the Web

	Inserting Replacement Strings
	Example of Template Generation

	Options
	Input/Output Fields

	View
	Input/Output Fields
	Buttons

	Class Generation
	Input/Output Fields
	Radio Buttons
	Buttons
	Example for Library SYSWEB
	Example for Library SYSWEB3

	Online Test Utility
	Features:
	Prerequisites
	Running the Application
	Supported Content Types
	Input/Output Fields
	Buttons:

