SYSNCP Utility SYSNCP Utility

SYSNCP Utility

The utility SYSNCP is used to define command-driven navigation systems for Natural applications.

The Natural Command Processor (NCP) consists of two components: maintenance and runtime. The
utility SYSNCP is the maintenance part which comprises all facilities used to define and control
navigation within an application. TRROCESS COMMANDstatement (see tt&atements

documentation) is the runtime part used to invoke Natural programs.

The SYSNCP Utility documentation covers the following topics:
® Prerequisites for Windows
® [ntroducing the SYSNCP Utility
® Invoking SYSNCP
® Processor Selection
® Header Records
o Keyword Maintenance
® Function Maintenance
® Runtime Actions
® Processor Cataloging
® Administrator Services

® Session Profile

Prerequisites for Windows
This section lists the prerequisites required for installing the command processor under Windows:
e Adabas for Windows.

® | ogical file (LFILE) 190 (NCP Command Proc); this file is set as default in the Natural parameter
file, do not modify it.

® FDT "SYSTEM-NCP"; see the README file in the folder "demodb".

® Depending on the size of the command processor, the values of the Adabas parameters LP and NH
may have to be adjusted. If these values are too small, you receive error NAT3145 (see the Adabas
documentation). With Adabas for Windows Version 5.1, the parameters LP and NH have become
obsolete.

SYSNCP Utility Introducing the SYSNCP Utility

Introducing the SYSNCP Utility

Applications which enable users to move from one activity to another activity by using direct commands
far exceed in usability the ones which force the user to navigate through menu hierarchies to a desired
activity.

SYSNCP Utility Main Menu
f) ™
Document File
Maintenance Maintenance
= I 2= = 7 =
File Delate Display Delats
Documeant Document Fila File
A
Display L i,
DR, DELETE FILE

The figure above illustrates the advantage of using direct commands. In an application in which menu
hierarchies form the basis for navigation, a user wishing to advance from the Display Document facility to
the Delete File facility would have to return to the Main Menu via the document branch and then enter the
file branch. This is clearly less efficient than accessing the Delete File facility directly from the Display
Document facility.

Below is information on:

Object-Oriented Data Processing

® [eatures of the Command Processor

Components of the Command Processor

What is a Command?

Creating a Command Processor

Object-Oriented Data Processing SYSNCP Utility

Object-Oriented Data Processing

The Natural command processor is used to define and control navigation within an application. It could be
used, for example, to define a command DISPLAY DOCUMENT to provide direct access to the Display
Document facility. When a user enters this command string in the Command line of a screen (for which
this command is allowed), the Natural command processor processes the input and executes the action(s)
assigned to the command.

In contrast to menu-driven applications, the command-driven applications implemented with the Natural
command processor take a major step toward object-oriented data processing. This approach has the
following advantages:

® The design of an application need not depend on the way in which a certain result can be reached, but
only on the desired result itself. Thus, the design of an application is no longer influenced by the
process flow within its components.

® The processing units of an application become independent of one another, making application
maintenance easier, faster and much more efficient.

® Applications can be easily expanded by adding independent processing units. The resulting
applications are, therefore, not only easy to use from an end-user’s view, but also easier to create
from a programmer’s view.

The Natural command processor has the following additional benefits:

® |ess Coding
Instead of having to repeatedly program lengthy and identically structured statement blocks to handle
the processing of commands, you only have to spediR@CESS COMMANDstatement that
invokes the command processor; the actual command handling need no longer be specified in the
source code. This considerably reduces the amount of coding required.

® More Efficient Command Handling
As the command handling is defined in a standardized way and in one central place, the work
involved in creating and maintaining the command-processing part of an application can be done
much faster and much more efficiently.

® Improved Performance
The Natural command processor has been designed with particular regard to performance aspects: it
enables Natural to process commands as fast as possible and thus contributes to improving the
performance of your Natural applications.

Features of the Command Processor

The Natural command processor provides numerous features for efficient and user-friendly command
handling:

® Flexible Handling of Commands
You can define aliases (that is, synonyms for keywords), and abbreviations for frequently used
commands.

SYSNCP Utility Features of the Command Processor

e Automatic Check for Uniqueness of Abbreviated Keywords
The command processor automatically compares every keyword you specify in SYSNCP with all
other keywords and determines the minimum number of characters in each keyword required to uniquely
identify the keyword. This means that, when entering commands in an application, users can shorten each
keyword to the minimum length required by the command processor to distinguish it from other
keywords.

e | ocal and Global Validity of Commands
You can specify in SYSNCP whether the action to be performed in response to a specific command
is to be the same under all conditions or situation-dependent. For example, you can make the action
dependent on which program was previously issued. In addition, you can define a command to be valid
under one condition but invalid under another.

e Error Handling for Invalid Commands
You can attach your own error-handling routines to commands or have error input handled by
Natural.

® Functional Security
With Natural Security, library-specific and user-specific conditions of use can be defined for the
tables generated with SYSNCP. Thus, for your Natural applications you can allow or disallow specific
functions or keywords for a specific user. This is known as functional security. See also the section
Functional Security in theNatural Security documentation.

e Help Text
In SYSNCP, you can attach help text to a keyword or a command. Then, by specPRQCESS
COMMAND ACTION TEXT statement, you can return command-specific help text to the program.

® Online Testing of Command Processing
If the execution of a command does not produce the intended result, you can find out why the
command was not processed correctly by usinPBR@CESS COMMANDstatement (see the
Satements documentation) and the EXAM* sample test programs (source form) provided in the
Library SYSNCP. The endings of the EXAM-* program names appear as abbreviations at the top border
line of the relevant action windows (for example, EXAM-C appeaf?)as

¥ To test a command processor at runtime

1. Enter the direct command EXAM to list all test programs.Oémonstrate PROCESS
COMMAND Statement window is displayed.

2. Enter Function Cod® to open a processor.
3. Enter the name of the processor.

4. Choose any of the Functions Codes listed (for example, C for CHECK) to apply command
actions.

5. Enter Function Cod® to close the processor.

Components of the Command Processor SYSNCP Utility

Components of the Command Processor
The Natural command processor consists of two parts: a development part and a runtime part:

® The development part is the utility SYSNCP, which is described in this section. With the utility
SYSNCP you define commands (as described below) and the actions to be performed in response to
the execution of these commands. From your definitions, SYSNCP generates decision tables which
determine what happens when a user enters a command. These tables are contained in a Natural
member of type Processor.

® The runtime part is the statem&ROCESS COMMANDwhich is described in thgatements
documentation. This statement is used to invoke the command processor within a Natural program.
In the statement, you specify the name of the processor to be used to handle the command input by a
user at this point.

What is a Command?

A command is any sequence of values entered in the Command line which is recognized and processed by
an application. Commands can contain up to three elements:

® Function:
One or more valid keywords. For example, MENU or DISPLAY DOCUMENT.

® Parameter Indicator:
Optional. A keyword which introduces command data.

e Command Data:
Information to be sent to a function. Command data can be alphanumeric or numeric, for example,
the name or the number of the file to be displayed.

Display Document Murnber 49
F'y
A A
l T T
Keyword (or its synonym) Farameter Data
Indicator

Function: a valid combination of keywords

Command. a sequence of values enterad in the command line

Commands are always executed from a situation within an application; the position where this situation is
reached is referred to as a location. Commands take the user from one location to another location; thus,
each command can be viewed as a vector:

SYSNCP Utility Creating a Command Processor

DISPLAY DOCUMEMT
Menu B Display Document

Oid Location Command Mew Location

The location from which a certain command can be issued can be restricted on a system-wide or
user-specific basis. On a system-wide basis, for example, the functions specified within commands can be
local or global. A global function can be issued framg location while a local function can only be

issued from specified locations. Restrictions can be placed on keywords and functions, however, if
Natural Security is active in your environment.

Creating a Command Processor

The utility SYSNCP is used to create and maintain command processors. A command processor contains
decision tables which determine what happens when a user enters a valid command.

The creation of a command processor is a cumulative operation involving several steps, from header
definition, which establishes general defaults for the processor, to keyword definition, function definition
and the linking of actions to functions. Special editors are provided by SYSNCP for the purpose of
specifying keywords, functions and actions.

Matural Utility SYSNCP

Command Processor

Source
Header
Kaywords
Matural Object
Processor
Functions

Runtime Actions

The end product of command processor development is a complex command processor source, which,
when cataloged, generates a Natural object of type Processor. Whenever this object is referenced by the
Natural statement PROCESS COMMAND, the runtime system of the Natural command processor is

Invoking SYSNCP SYSNCP Utility

triggered.

The following is a summary of the steps necessary to create a command processor.

» To create a command processor

1.

Verify/Modify the Session Profile.

SYSNCP itself uses a Session Profile which contains various parameters which control how
SYSNCP is to perform certain actions and how information is to be displayed. Desired modifications
can be made and the resulting profile can be saved with a given user ID. See thé&assiztion

Profile.

. Initialize the Command Processor.

The name of the command processor and the library into which it is to be stored are specified.

. Define Global Settings (Header).

Various global settings for the command processor are defined. For example, descriptive text for
keywords during editing, minimum and maximum length for keywords, in which sequence keywords
are to be processed at runtime, runtime error-handling, and whether PF keys can be used at runtime
to invoke functions. See the sectideader Records.

. Define Keywords.

Each keyword which is to be processed by the command processor is defined together with an
indication as to whether the keyword is to be entered as the first, second or third entry of a command.
Keyword synonyms can also be defined as well as parameter indicators. User text can be defined for
each keyword. This text can subsequently be read at runtime using the PROCESS COMMAND
ACTION TEXT statement. See the sectibeyword Maintenance.

Define Functions.

Functions are defined by validating keyword combinations. A function can be defined as local (can
only be invoked from a specific location within an application) and/or global (can be invoked from
anywhere within an application). See the sedtanction Maintenance.

. Define Runtime Actions.

The actions to be taken by the command processor when a command is issued at runtime are
specified. Example actions are: fetch a Natural program, place a command at the top of the Natural
stack, place data at the top of the Natural stack, change contents of the Command line. See the
sectionRuntime Actions.

. Catalog Command Processor.

The resulting source is cataloged as a Natural object (type Processor) in the designated Natural
library. The command processor can now be invoked by a Natural program udhiRPEESS
COMVAND statement. See the sectrocessor Cataloging.

Invoking SYSNCP

¥ To invoke the SYSNCP utility

Enter the system command SYSNCP.

SYSNCP Utility Processor Selection

The Processor Source Maintenance menu is displayed:

18:22:53 **xxx NATURAL SYSNCP UTI LI TY **x** 2000- 05- 22
User SAG - Processor Source Mintenance -

Code Function

Sel ect Processor
Create New Processor
Modi fy Header

Def i ne Keywor ds

Define Functions
Define Runtine Actions
Cat al og Processor

Adm ni strator Services
Hel p

Exi t

NI>OAOTMXRXIZOW

Code .. _ Narme .. SAGTEST_ Library .. SYSNCP__

Logon to SYSNCP accept ed.

Command ===>

Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
Help Cmd Exit Last List Flip Canc

From this menu, you can invoke all functions necessary to create and maintain a command processor.
To invoke a function, enter the code letter in the Code field.

Note:

When you invoke the SYSNCP utility or restart SYSNCP, the user exit NCP-USRL1 is invoked for
dynamic customization purposes: see the program NCP-USR1 delivered in the Natural system library
SYSNCP.

Help
For help on individual input fields (and also on some output fields) in SYSNCP, place the cursor on the
field and press PF1.

Processor Selection

The Select Processor function results in a list of all existing command processor sources with related
information. If Natural Security is installed, only those sources are listed which can be cataloged to a
library to which you are allowed to log on. These restrictions do not apply to those users who have
administrator status.

» To invoke the Select Processor function
1. In the Processor Source Maintenance menu, enter FunctiorsCode

2. Press ENTER.

Header Records SYSNCP Utility

The following information is provided for each processor:

Name | The name of the command processor.

Library | The name of the Natural library for which a processor is created. When the procesdor is
cataloged, it is stored in this library.

User ID| The ID of the user who created the processor.

Date |The date the processor was created.

Status | The stage of development of the processor. For possible status values,reaeSatus
in the sectiorHeader Records.

Cat Indicates if the processor has been cataloged.

Note:
With the user exit NCP-SELX (delivered in the Natural system library SYSNCP), you can limit the
display to certain processors.

3. In theAc field, enter any character to select a processor.

The Processor Source Maintenance menu is displayed, where the name of the selected processor is
automatically placed in the Name field.

If you enter a question mark (?) in the Ac field, a window is be displayed, listing other possible
options.

The name and library name of a command processor can be one to eight characters long. It can consist of
upper-case alphabetical characters (A - Z), numeric characters (0 - 9) and the special characters: "-", "/ ",
"$ &S, HY, " and M

Header Records

The header maintenance facility defines various global settings for a command processor. These
definitions are collectively referred to as a header. Seven header maintenance screens are provided for
creating and modifying headers. Header settings for a command processor can be updated at any stage of
development (see the following section). After the settings have been modified, the status of a command
processor is always set to Header (see@isoent Status).

Below is information on:
® Create New Processor
® Modify Header - General Explanations
e Keyword Runtime Options - Header 1
o Keyword Editor Options - Header 2

® Miscellaneous Options - Header 3

SYSNCP Utility Create New Processor

e Command Data Handling - Header 4
® Runtime Error Handling - Header 5
e Statistics - Header 6

® Status - Header 7

Create New Processor

» To create a new command processor

1. In the Processor Source Maintenance menu, enter FunctiorNGQuaeate New Processor),
the name of the command processor to be created, and
the name of the Natural library in which the command processor is to be later cataloged.

2. Press ENTER.
The first header maintenance screen is displayed.

The first header maintenance screen and the following ones are filled with default values that can be
edited.

Modify Header - General Explanations

The Modify Header function is used to maintain an existing header; that is, to modify the various header
settings for a given command processor.

» To modify an existing header

1. Inthe Processor Source Maintenance menu, enter FunctioHQbttedify Header),
the name of the corresponding command processor, and
the name of the library into which this command processor has been cataloged.

2. Press ENTER.

The first header maintenance screen is displayed.
3. Modify any input field in the header maintenance screens described below.
4. Press ENTER to confirm modifications.

Seven different screens are available for the definition and maintenance of a processor header (for the
definition of a header, see the previous section).

¥ To navigate between the header maintenance screens
® Use PF8 (forward) or PF7 (backward).

Each of the screens contains the following information:

10

Keyword Runtime Options - Header 1 SYSNCP Utility

1%

Name The name of the command processor.

Library The name of the library into which the resulting command processor objectis to b
placed after being cataloged.

DBID, FNR |The database ID and file in which the specified library is located.

Created by |The user ID of the Natural user who initialized this command processor.

Date The date the command processor was initially created.

Current Statu

The command processor status:

Init
Header
Keysave
Keystow
Function
Action
Object
Frozen
Copied

Error

The command processor has been initialized.

The header for the command processor has been created/modified.
Keywords have been defined and saved.

Keywords have been checked and stowed.

Keyword combinations have been defined.

Runtime actions have been defined.

An object form of the command processor has been created.

The command processor has been frozen.

The command processor has been copied.

An error has been detected.

Keyword Runtime Options - Header 1

When you select the Modify Header function (as described abovérdhessor Header Maintenance
1 screen is displayed:

11

SYSNCP Utility Keyword Runtime Options - Header 1

16: 40: 19 *xxxx NATURAL SYSNCP UTI LI TY ***x* 2000- 05- 04
User SAG - Processor Header Mintenance 1 -

Modi fy Processor Name SAGTEST Library SYSNCP DBID 10 FNR 32
Created by SAG Dat e 2000- 04- 29 Current Status Init

Keyword Runtine Options:

First Entry used as Action____

Second Entry used as oject

Third Entry used as Addition____

M ni mum Length 1

Maxi mum Length 16

Dynanmi ¢ Length Adjustnent .. -

Keyword Sequence 123__

Al'ternative Sequence __

Local / d obal Sequence LG
Processor Header with nane SAGTEST for |ibrary SYSNCP has been added.
Command ===>
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -

Help Cnmd Exit Last List Flip - + Canc

Various attributes which are to apply for the keywords defined for the command processor are entered on
this screen.

Field Explanation

First Entry used as | A descriptive text which is to be associated with all keywords which are entered
as the first entry (entry type 1) when defining a keyword sequence.

For example, if the first keyword of a keyword sequence is to represent the|action
to be performed (DISPLAY, DELETE, etc.), the descriptive text "Action" coyld
be entered in this field.

The first four characters of the text entered in this field appear under the cojJumn
headingUsein the Keyword Editor as described in the secKeyword
Maintenance.

Second Entry used & A descriptive text which is to be associated with all keywords which are entered
as the second entry (entry type 2) when defining a keyword sequence.

If, for example, the second keyword of a keyword sequence is to represent|the
object to be used (DOCUMENT, FILE, etc.), the descriptive text "Object" cquld
be entered in this field.

The first four characters of the text entered in this field appear under the cojJumn
headingUsein the Keyword Editor as described in the secKeypword
Maintenance.

12

Keyword Editor Options - Header 2 SYSNCP Utility

Field

Explanation

Third Entry used as

A descriptive text (TITLE, PARAGRAPH, etc.) which is to be associated with all

keywords which are entered as the third entry (entry type 3) when defining
keyword sequence.

The first four characters of the text entered in this field appear under the co
headingUsein the Keyword Editor as described in the secHeyword
Maintenance.

Al

umn

Minimum Length

The minimum length permitted when defining a keyword. Valid values are 1
characters. The default is one character.

-16

Maximum Length

The maximum length permitted when defining a keyword. Valid values are
characters. The default is 16 characters.

L - 16

Dynamic Length
Adjustment

The following values are permitted:

+ At runtime, each keyword must be entered in its entirety.

- Atruntime, each keyword can be abbreviated provided that it retains
uniqueness with respect to other keywords.

S The number of characters which must be entered for a given keyword i
be specified during keyword definition in tML field of the Keyword
Editor as described in the sectigayword Maintenance.

Keyword Sequence

The sequence in which keyword entries are to be processed at runtime. Pg
values are 1, 2, 3 and P (for parameter indicator); the default sequence is 1
which means first the first keyword entry and then the second keyword entr
also thefield E as described in the sectiBreyword Maintenance.

Ssible
2,
V. See

Alternative Sequenc

An alternative sequence in which keywords are to be processed at runtime
event that the default sequence (specified above) results in an error during
runtime.

in the

Local/Global
Sequence

This option specifies the order of command validation to be performed at
runtime. Possible values are:

L Command is to be validated as a local command.

G Command is to be validated as a global command.

The default validation sequence is LG, which means that the command is t
validated first as a local command and then (if necessary) as a global one.

D be

Keyword Editor Options - Header 2

Further keyword attributes can be entered orPitoeessor Header Maintenance &creen:

13

SYSNCP Utility

Miscellaneous Options - Header 3

Field

Explanation

Header 1 for User Tex

Header 2 for User Tex

These two fields are used to enter a descriptive text which appears in the
Keyword Editor above the column reserved for user text. This text is also
@uring runtime when the TEXT option is specified with BROCESS
COMMAND statement as described in tiatements documentation.

putput

Prefix Character 1

This field and the next three are used to attach a hexadecimal prefix to
keywords. This enables the processing of internal keywords which cannot
represented by a normal keyboard. When the command processor is cata
all prefix characters in keywords are replaced by the hexadecimal values
specified.

If a non-blank character is entered in one of the Prefix Character fields, th
specified character is replaced by the hexadecimal value specified in the
Hexadecimal Replacement field.

be
loged,

Hex. Replacement 1

The value specified in this field replaces the character specified in the fiel
Prefix Character and is used as a prefix for a keyword at runtime.

Prefix Character 2

See above Prefix Character 1.

Hex. Replacement 2

See above Hex. Replacement 1.

Keywords in Upper
Case

This option specifies whether keywords are to be translated to upper casg
Keyword Editor and the application:

Y Keywords entered in the Keyword Editor are automatically converted
upper case. In the application, end-users can enter the keywords in u
or lower case.

N Keywords entered in the Keyword Editor are not converted to upper ¢
In the application, end-users must enter the keywexasly as they
appear in the Keyword Editor.

in the

pper

ase.

Unique Keywords

This option specifies whether keywords within the processor must be unid

Y Each keyword defined must be unique within this processor, regardl
its type.

N Each keyword defined for a given keyword type (1, 2, 3 or P) must b
unique.

ue.

pss of

D

Miscellaneous Options - Header 3

Miscellaneous options

14

can be entered orPteeessor Header Maintenance 3creen:

Miscellaneous Options - Header 3 SYSNCP Utility

Field

Explanation

Invoke Action Editor

This option specifies whether the Runtime Action Editor is to be activated
the Function Editor (see the sectidhsitime Action Editor andDefine
Functions).

Y The Runtime Action Editor is invoked whenever a valid keyword
combination is defined in the Function Editor.

N The Runtime Action Editor is suppressed in the Function Editor.

Note:

If you use the user exit NCP-REDM (delivered in the Natural system librafry

SYSNCP), you should set this option to Y; otherwise, invalid runtime acti
values cannot be detected in time and can lead to runtime errors.

from

DN

Catalog User Texts

This option specifies whether user texts are to be cataloged with the com
processor.

Y Text portions of the edit line (Keyword Editor; see the sediiefine
Keywords) and the user text portion of the action line (Runtime Actior]
Editor) are bound to the associated keyword or function when the

mand

command processor is cataloged. This text can then be read at runtime

using the TEXT option of the PROCESS COMMAND statement.

N Texts are not cataloged with the command processor and cannot be
at runtime.

read

Security Prefetch

This option specifies whether security checking is to be performed when
command processor is initially invoked during runtime or at each comma
evaluation.

Y If Natural Security is installed, security checking is performed for all
keywords when the processor is invoked.

N If Natural Security is installed, security checking is performed with th
evaluation of each keyword.

If option Y is selected, security checking is performed only once for all
keywords when the command processor is invoked. Since the checking
procedure takes time, evaluation of the first command is comparatively s|
runtime, while the evaluation of all remaining commands is comparatively
Conversely, if option N is selected, the evaluation time for each comman
always the same because security is checked for each keyword individug
before it is evaluated.

he
nd

[(]

ow at
fast.
] is
lly

15

SYSNCP Utility Miscellaneous Options - Header 3

Field Explanation

Command Log Size |Commands processed at runtime can be stored in a command log area Ijy the
command processor. Specify in the input field the number of KBs storage
space allocated to command logging:

0 No storage space is allocated to command logging. Command loggir{g is
inactive.

1 1 KB of storage space is allocated to command logging. Command
logging is active.

Implicit Keyword Entry| This option specifies whether a keyword of type 1 is to be retained as an
implicit keyword for all subsequent commands.

1 If a command is entered which only contains a keyword of type 2, thg
command processor assumes the most recently entered keyword of fype 1
as implicit keyword.

N Option is disabled.

Command Delimiter | This option specifies the character used to separate commands if more than one
command is specified in the Command line. At runtime, only the first
command will be executed.

For example:

DISPLAY CUSTOMER; MODIFY CUSTOMER; PRINT.

PF-Key may be This option specifies whether commands can be allocated to PF keys: if the
Command command processor receives at runtime a command line which contains jall
blanks, it checks if a PF key has been pressed by the user.

Possible values are:

A The identifier for this PF key (system variable *PF-NAME) is used aq the
command.

K The content of the *PF-KEY system variable is used as the comman(.

If *PF-NAME is empty, the content of the *PF-KEY system variable i
used instead.

\"Z

N PF keys cannot be used as command, Natural error NAT6913 is issuied
with message "Command line not accepted".

For more information on the system variabieE-NAME and*PF-KEY see
the System Variables documentation.

16

Command Data Handling - Header 4 SYSNCP Utility

Command Data Handling - Header 4

The attributes to be entered on Brecessor Header Maintenance 4creen specify how command data
are handled for a function; command data are optional.

Options are:

Field

Explanation

Data Delimiter

Specifies the character to be used to precede data. Default data delimiter i

Example: ADD CUSTOMER #123

5 II#II.

Data Allowed

Specifies if data input is allowed at runtime.

N A runtime error occurs if data is found.
D Datais dropped if present.

S Data is placed at the top of the Natural stack. No verification is perforn

hed.

Y Data is checked and keyword entries of type P (parameter indicator) gre

evaluated.

Example of Y: DISPLAY CUSTOMER NAME=SMITH

More than one Item
Allowed

Only applies if the option Data Allowed is set to Y. Specifies whether more
one data string is permitted.

N A runtime error occurs if more than one data string is found.

D All data after the first data string are dropped.

Y More than one data string is permitted.

Example: ADD ARTICLE #111 #222

As long as uniqueness is guaranteed, the data delimiter can be omitted.

Example: ADD ARTICLE 123

than

Maximum Length

Only applies if the option Data Allowed is setto Y.

e

of one Item Specifies the maximum number of characters allowed for a data string. If th

specified maximum is exceeded, a runtime error occurs. Valid range: 1 - 99.
Item Must be Only applies if the option Data Allowed is set to Y. Specifies whether each
Numeric value must be an integer value.

data

Y Data input must be a positive integer value. If not, a runtime error occyrs.

N Data can be of any type.

17

SYSNCP Utility Runtime Error Handling - Header 5

Field Explanation

Put to Top of Stack | Only applies if the option Data Allowed is set to Y. Specifies where data is to be
placed.

Y Datais placed at the top of the Natural stack.

1-9 Data is placed in theth occurrence of the DDM field RESULT-FIELD.
If the occurrence has already been filled as a result of a runtime actign, it
is overwritten.

If Error, Drop all Date Only applies if the option Data Allowed is set to Y or N. Specifies the reaction to
a data evaluation error:

Y If an error occurs during evaluation of the data, data is discarded and
processing continues.

N If an error occurs during data evaluation, control is given to the error
handler as described below.

Runtime Error Handling - Header 5

The attributes to be entered on Br@cessor Header Maintenance Screen specify how to handle
runtime errors:

18

Statistics - Header 6

SYSNCP Utility

Field

Explanation

General Error Prograr|

The name of the program which is to receive control when an error is dete
during runtime processing by the command processor. The Natural stack
contains the following information when this program is invoked:

Error Number (N4)
(N4)
(A1)
Program Nami (A8)
(N2)

Line Number

Status

Level

If no error program and no specific error handling is specified (see below)
program with the name as contained in the Natural system variable
*ERROR-TA is invoked; otherwise, a Natural system error message is iss

cted

the

ued.

Keyword not found

Indicates whether an action has been specified that is to be performed if g
keyword could not be found.

Keyword missing

Indicates whether an action has been specified that is to be performed if t
keyword type is missing.

Keyword Sequence
Error

Indicates whether an action has been specified that is to be performed in
case of a keyword sequence error.

the

Command not defined

Indicates whether an action has been specified that is to be performed in
case of an undefined command.

the

Data disallowed

Indicates whether an action has been specified that is to be performed in
case of disallowed data.

the

Data Format/Length
Error

Indicates whether an action has been specified that is to be performed in
case of a format/length error.

the

General Security Erro

Indicates whether an action has been specified that is to be performed if
is detected during a general security check.

N error

Keyword Security
Error

Indicates whether an action has been specified that is to be performed if g
is detected during a keyword security check.

N error

Command Security
Error

Indicates whether an action has been specified that is to be performed if

N error

is detected during a command security check.

Statistics - Header 6

TheProcessor Header Maintenance 6creen contains only output fields which report statistical data
about the keywords specified for a command processor.

The following statistical information is provided:

19

SYSNCP Utility Keyword Maintenance

Field Explanation

Entry n Keywords The number of keywords of typedefined in the command processof
(not including synonyms).

Entry n Keywords + Synonym The sum of keywords of typeand their assigned synonyms.

Highest IKN for Entryn The largest Internal Keyword Number for the keyword of type
Possible Combinations The number of possible combinations for keywords defined.
Cataloged Functions The number of keyword combinations currently cataloged.

Status - Header 7

TheProcessor Header Maintenance gcreen contains only output fields which report the time and the
date when parts of the command processor were executed or modified.

Keyword Maintenance

Keywords are the basic components for defining functions. Before it is possible to define keywords, the
header maintenance records must be created (see the beiilen Records).

® Define Keywords
e Editor Commands
® Positioning Commands

® Line Commands

Define Keywords

Keywords used in commands are created with the Define Keywords function and the Keyword Editor.
The Keyword Editor is similar to existing Natural editors except that lines of the editor are broken up into
separate fields. Most of thlelitor commandgsee the relevant section) and lihe commandgsee the

relevant section) which are used in the Natural program editor can also be used in the Keyword Editor.

¥ To invoke the Keyword Editor
1. In the Processor Source Maintenance menu, enter FunctiorkQ@uadine Keywords).
2. Press ENTER.
The Keyword Editor screen is displayed.

The Keyword Editor screen is shown below. Several keywords have already been defined to serve as
examples for this section.

20

Define Keywords SYSNCP Utility

09: 42: 39 - SYSNCP Keyword Editor - 2000- 05- 04
Modi fy Keywords Name SAGTEST Library SYSNCP DBID 10 FNR 32
| Line E Use Keyword IKN M Conment
11 Acti MENU 1004 1
2 1 Acti DI SPLAY 1002 2
3 S Syno SHOW 1002 1
4 1 Acti DELETE 1001 2
5 S Syno PURGE 1001 1
6 S Syno ERASE 1001 1
7 1 Acti FILE 1003 4
8 P Parm NAME 4002 2
9 2 Obje FILE 2001 4
10 P Par m NUMBER 4001 2
11 2 Cbj e DOCUMENT 2003 2
12 1 Acti | NFORMATI ON 1005 1
13
14
U
Command ===>
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
Help Omd Exit Last List Flip -1 +1 Top Bot Info Canc

Enter in the Keyword Editor all the keywords which you want to have in your command language. These
can be entered in any order desired, except synonyms, which must immediately follow the keywords they
are related to. To each keyword you assign a type which specifies to which part of command syntax the
keyword belongs. Rules of command syntax for a command processor are specified in the processor
header; seBeyword Runtime Options - Header 1 in the sectiotHeader Records. For example, you can

specify whether a keyword is to be of type 1 (entered in first position in a command), type 2, type 3, a
synonym for another keyword or a parameter indicator.

Note:

A command language requires a strict syntax because, to date, no computer is capable of understanding
semantics. Word type is, therefore, the only practical way to communicate meaning in a command
language.

In the example above, the keywords DELETE and DISPLAY are defined as keywords of type 1. As
specified in the processor header, these keywords denote actions. The keyword DOCUMENT is defined
as a keyword of type 2 and it denotes an object. The keyword FILE, however, is defined as both type 1
and 2, and it can, therefore, denote an action or an object, depending on where it is positioned in the
command. It is possible to compose the two keyword types to make commands, such as DELETE FILE
and FILE DOCUMENT.

You can save the keywords you have entered by issuing the SAVE or STOW command from the
Command line. In addition to saving the keyword definitions in source form, the STOW command
performs a consistency check on them. Once a keyword is stowed successfully, it is given an internal
keyword number (IKN) which is used at runtime to evaluate a command. Synonyms are always linked to a
master keyword and always take the IKN of their master.

Each line in the Keyword Editor contains the following fields:

21

SYSNCP Utility Define Keywords

Field

Explanation

Output field. An information field which can contain the following values:

E Indicates that a definition error has been detected.
X Line is marked with X.

Y Line is marked with Y.

Z Line is marked with both X and Y.

S Scan value found in this line.

Line

Output field. The line number of the editor.

Specifies the entry type for a keyword; that is, the position the keyword is to be entere
command: first, second or third position, synonym or parameter indicator.

For instance, in thKeyword Editor screeexample above the keyword DELETE is of ent
type 1 and DOCUMENT of type 2. Using these keywords, the command DELETE
DOCUMENT can be defined.

The field takes any of the following characters as input:

i ina

>]

y

1 The keyword defined in this line is to be used as the first titem in a command seqgyence.

2 The keyword defined in this line is to be used as the second titem in a command
sequence.

3 The keyword defined in this line is to be used as the third titem in a command seq

uence.

S The keyword defined in this line is to be used as a synonym for the preceding keyword

with titem type 1, 2, 3 or P.

P The keyword defined in this line is to be used as a parameter indicator in a command

sequence.

* No keyword is to be defined in this line. Instead, the line is to be used solely as a
comment line.

? This symbol is an output value which indicates an invalid keyword specification.

Use

Output field. The value displayed is determined by the value entered in the preceding

field E:

1-3 The first four characters of the user text specified in the processor header for the first,

second and third keyword entries respectively are displayed. Se¢egpgard Editor
Options - Header 2 in the sectiorHeader Records.

SYNO, the abbreviation for synonym, is displayed.

P PARM, the abbreviation for parameter indicator, is displayed.

22

Editor Commands SYSNCP Utility

Field

Explanation

Keyword

Enter the keyword to be defined. Embedded blanks are not permitted. If you have spegified in

the processor header that keywords can only be upper case, then keywords are alway
translated to upper case, regardless of how they are entered. Otherwise, the case ren
entered.

S
ains as

The maximum and minimum length of keywords depends on the settings specified in the

header (default: 1 - 16 characters). Keywords must be unique unless specified otherw
the header. Keyword prefixes can be used as descrilesword Editor Options - Header 2
in the sectiorHeader Records.

IKN

Output field. The Internal Keyword Number (IKN) is an identifier assigned to each validl

sein

keyword. IKNs are useful for testing and debugging. They are allocated only when a kpyword

is successfully stowed (see also 8F&OW command unddiditor Commands). Each
keyword is assigned a unique IKN, except synonyms, which take the IKN of their mas{
term (see th&eyword Editor screeexample above: DISPLAY and SHOW).

ML

Input and output field indicating the minimum length of a keyword. The field is an input

er

field

if Sis specified in th®ynamic Length Adjustmerfteld of the processor header as descriped

in Keyword Runtime Options - Header 1, Header Records. In this case, you must specify the

number of characters which must be entered for the keyword. For all other input, this fi
contains the minimum number of characters of a keyword a user must specify to avoid
ambiguity with other keywords.

For instance, in th&eyword Editor screeexample above, keyword MENU requires only
input ofM while keyword DISPLAY requires input &l to avoid ambiguity with keyword
DELETE.

Commenlt

Enter free text for a keyword. There are no input restrictions. The user text is included
cataloged command processor if the fieltalog User Texts set to Y in the header

definition as described in "Miscellaneous Options - Header 3", Header Records. It can
at runtime using the TEXT option of the PROCESS COMMAND statement. The headsd

appearing at the top of this column is controlled by the header definition fields "Headef

eld

in the

be read
I text
for

User Text 1" and "Header for User Text 2".

Editor Commands

In the Command line of the Keyword Editor, you can enter the following commands:

23

SYSNCP Utility

Positioning Commands

Command | Function

ADD Adds ten empty lines to the end of the editor.

CANCEL |Returns to Processor Maintenance Menu.

CHECK | Tests the keyword source for consistency.

EXIT Returns to Processor Maintenance Menu.

HELP Displays valid escape characters and other useful processor settings.

INFO Displays information on the keyword on which your cursor is positioned.

LET Undoes all modifications made to the current screen since the last time ENTER was
pressed.

POINT Positions the line in which a line commaiis entered to the top of the current screen

RECOVER Returns keyword source that existed before last SAVE/STOW.

RESET Deletes the current X and Y line markers.

SAVE Keyword source is saved.

SCAN Scans for the next occurrence of the scan value.

STOW Keyword source is stowed and Internal Keyword Numbers (IKNs) are generated for

keywords.

Positioning Commands

alid

Editor positioning commands are the same as the ones provided for the Natural program editor. For more

information,

see the description of the program editorprogram editor Editegs documentation.

The last line of the editor contains an output field which informs you of where your display is located in
the editor. The following output values are displayed:

Top

Editor is currently positioned at the top of the keyword sourceg.

Mid

Editor is currently positioned at the center of the keyword sou

rce.

Bot

Editor is currently positioned at the bottom of the keyword so

Lirce.

Emp

Editor is currently empty.

All

The entire source is contained on the current screen.

Line Commands

Line commands in the Keyword Editor are the same as in the Natural program editor with the exception of
the commands .J and .S, which cannot be used.

Each command is entered beginning inEngeld; the remaining part of the command is entered in the
Keyword field, as illustrated in the screen below:

24

Function Maintenance SYSNCP Utility

09: 42: 39 - SYSNCP Keyword Editor - 2000- 05- 04
Modi fy Keywords Name SAGTEST Library SYSNCP DBID 10 FNR 32
| Line E Use Keyword IKN M Conment
11 Acti MENU 1004 1
2 1 Acti DI SPLAY 1002 2
3 S Syno SHOW 1002 1
4 . Acti i(3) TE 1001 2
5 S Syno PURGE 1001 1
Caution:

When you move (.M) or copy (.C) lines, ensure that individual keywords are always moved or copied
together with their synonyms.

When you delete (.D) lines, the corresponding keywords and any functions containing these keywords will
not be deleted from the database until you issue the STOW editor command. As long as you do not issue
the STOW command, these functions will still be displayed within the Function Editor.

Function Maintenance

Functions are composed of the keywords entered in the Keyword Editor. Before it is possible to define
functions, the keywords must be successfully stowed (see the deefisord Maintenance).

® Define Functions

e Editor Commands

® Direct Command QUICK-EDIT
® [ocal and Global Functions

® Procedure for Validating Functions

Define Functions

Use the Define Functions function and the Function Editor to specify functions and compose valid
commands which can be accessed from a specific location.

¥ To invoke the Function Editor
1. Inthe Processor Source Maintenance menu, enter Functior@bééne Functions).
2. Press ENTER.
The Function Editor screen is displayed.
The Function Editor displays all possible combinations of the keywords stowed in the Keyword Editor.

The screen below, shows the Function Editor with keywords used as examplesegloed Editor
screenn the sectiorKeyword Maintenance:

25

SYSNCP Utility Define Functions

09: 45: 53 *xkx% NATURAL SYSNCP UTI LI TY ***** 2000- 05- 04
User SAG - Function Editor -
Edit d obal Conbinations Name SAGTEST Library SYSNCP DBl D 10 FNR 32
d obal
| Ac Acti on hj ect Addi tion d obal Local Any Loc
DELETE
DELETE DOCUMENT Yes
DELETE FI LE Yes
DI SPLAY
DI SPLAY DOCUMENT Yes
DI SPLAY FI LE Yes
FI LE
FI LE DOCUMENT Yes
FI LE FI LE Yes
| NFORMATI ON Yes
| NFORMATI ON DOCUMENT
| NFORMATI ON FI LE
rRepos: __ e e e emeee e
Command ===>
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
Help Omd Exit Last List Flip + Top Loc Loc+ Canc

You have to validate each keyword combination that you want to designate as a valid function in your
application. A keyword combination can be validated as a global function, local function or both. A global
function can be invoked from anywhere in an application, whereas a local function can only be invoked
from a specific location within an application.

Two fields in the upper left corner of this screen indicate the current validation mode (local or global) and
the location for which keyword combinations can currently be validated. In the screen above, the text
"Edit Global Combinations" indicates that global mode is active. If the local mode were active, the text
"Edit Local Combinations" would appear here. In the screen above, the text "Global" appears below this
text. This indicates that global validation can be performed for all of the combinations listed. In local
mode, in this field the name of the location appears for which local validation can be performed (for
example, "Local DISPLAY FILE").

The Function Editor contains the following columns:

26

Editor Commands

SYSNCP Utility

I this

urrent

Column | Explanation
| Output field. The following values are output as a result of function editing.
E Runtime action edited.
D Referenced locations displayed.
V Validation issued.
R Validation removed.
Ac Action to be taken. The following values can be entered:
VG Validate as global function.
VL Validate as local function.
RG Remove validation as global function.
RL Remove validation as local function.
DL Display all functions which reference the specified function as a local function.
EG Invoke the Runtime Action Editor for a global function (&eetime Action Editor in
the sectiorRuntime Actions).
EL Invoke the Runtime Action Editor for a local function (§emtime Action Editor in
the sectiorRuntime Actions).
+G Invoke global mode, so that you can maintain any global functions.
+L Invoke local mode for the current line, so that you can maintain local functions fo
line.
IN Information about keywords in this line.
Action |These three columns are used to display all possible combinations of currently defined
keywords.
Object _ _ _
The text which appears at the top of each keyword column is controlled by thé-iietds
Addition Entry used as Second Entry used asndThird Entry used as as specified in the processor
header (seBeyword Runtime Options - Header 1 in the sectiorHeader Records).
Global |If the function has been defined as a global command, Yes appears in this field.
Local |If the function has been defined as a local command, Yes appears in this field for the ¢
location (only displayed in local mode).
Any Loc | Any Location. If the function has been defined as a local command anywhere else with

processor, Yes appears in this field for any other location.

n the

Editor Commands

In the Command line of the Function Editor, you can enter the following commands:

27

SYSNCP Utility

Direct Command QUICK-EDIT

Command |Function

ANY ON Enable the column Any Loc.

ANY OFF Disable the column Any Loc (the column will be filled with question marks). This aljows
for faster scrolling in the Function Editor. Moreover, the third repositioning field is
available. Also, processing-in-progress information windows will not be displayed.

FIELD Display keyword-specific combinations.

GLOBAL Activate global mode.

LOC Position to next location group.

LOC+ Position forward by one location.

SINGLE ON | Display only single-word functions.

SINGLE OFH Display all possible combinations.

TOP Position to top of list.

Direct Command QUICK-EDIT

The direct command QUICK-EDIT enables you to quickly define local/global functions, as well as the
corresponding runtime actions, by entering keywords or IKNs directly. This may be helpful for extremely
large command processors. Note, however, that the location from which the command can be issued is

not verified and navigation may not function correctly at runtime.

Local and Global Functions

To understand the concept of local and global functions, you have to picture each valid keyword

combination as a location in your application (for example, a location called Display File). In the Function
Editor, you specify the commands which can be issued from this location, as well as from which locations

this location can be reached using the command DISPLAY FILE.

Local and Global Connections within a Sample Application:

28

Procedure for Validating Functions SYSNCP Utility

— Global Connection ‘o il v > s
; X ‘//
-- t
= | ocal Connection Men [AfaRmaleR
F ¥] ¥ § 4
¢ ! Y LS
" % f' "" » L1
' 5
I-’ \‘\. =
] f b &
: j r " 1 LY
e File Delete e
W Documeant File H
I ;xj". h ‘ & £y
7 y F ._" x,__ : 3
& & ¢ F '\\ ‘ " : " LY
b K < Ci o
Display - > Delate Display
Document Diocument File

In the sample application above, the Menu and Information locations are the only locations which have
been designated as global. Thus, they can be accessed directly from all of the remaining locations in the
application. All locations have been designated as local to the location Menu, except Information. The
only way to get from the location Display File to Display Document is via Menu.

Procedure for Validating Functions

The Function Editor operates in two modes: global and local. From global mode you can validate global
functions and from local mode you can validate global and local functions. Global mode is the default
mode. You can determine whether the editor is in global or local mode by the output field above the
field in the editor. If the editor is in global mode, then Global is displayed. If the editor is in local mode,
then the location for which local functions are to be validated is displayed. Below is a general procedure
for validating global and local functions for an application.

» To validate global and local functions

1. With the Function Editor in global mode, eri¥&® (validate global) in the Ac field next to the
corresponding action to validate all global functions.

Press ENTER.
TheRuntime Action Definition screen appears.

2. Press PF3 to return to the Function Editor.

29

SYSNCP Utility Runtime Actions

Yes appears under the column heading Global beside the validated functions.

Enter+L in the Ac field for each global function validated in the previous step, to switch to local
mode.

Press ENTER.

EnteVL (validate local) in théc field for each function that is to serve as a location for this global
function.

Press ENTER.

The Runtime Action Definition screen appears.

. Press PF3 to return to the Function Editor.

Yes appears under the column heading Local beside the validated functions.

. To validate local functions forlacal location: EnterL (invoke local mode) in thac field for each

location validated in the previous step, to validate all local functions which are to be used from this
location.

Press ENTER.

. Ente’VL (validate local) in théc field for each function that is to serve as a local function for the

current location.

. Press PF3 to return to the Function Editor.

Yes appears under the column heading Local beside the validated functions.

Note:

If in the command processor header (Processor Header Maintenance 3) the field Invoke Action Editor is
set toY, in addition, the window Runtime Action Definition (seeantime Action Editor in the section

Runtime Actions) is displayed for each action.

Runtime Actions

Once valid keyword combinations have been identified as either local or global functions in the Function
Editor, it is possible to link each function with one or more runtime actions. Runtime actions consist of
one or more steps which are to be carried out whenever a function is issued.

Below is information on:

® Define Runtime Actions

® Runtime Action Editor

30

Define Runtime Actions SYSNCP Utility

Define Runtime Actions

There are two different locations in SYSNCP from which you can define runtime actions: the Function
Editor (see the sectidrunction Maintenance) and the Result Editor. The Result Editor is explained in this
section, including how to specify runtime actions for a function.

» To invoke the Result Editor
1. IntheProcessor Source Maintenancenenu, enter Function Coée(Define Runtime Actions).
2. Press ENTER.

The Result Editor screen is displayed:

09: 47: 03 *xxxx NATURAL SYSNCP UTI LI TY ****x*
User SAG - Result Editor -
Li st defined conbinations Narme SAGTEST Library SYSNCP DBID 10 FNR 32

2000- 05-04

| Ac Location Conmand Resul t
< dobal > MENU KR
< dobal > I NFORVATI ON SF
DELETE FI LE DI SPLAY FI LE SF
DELETE DOCUMENT DI SPLAY DOCUNMENT SF
DI SPLAY FI LE DELETE FI LE SF
DI SPLAY DOCUVENT DELETE DOCUMENT SF
DI SPLAY DOCUVENT FI LE DOCUNMENT SF
FI LE DOCUVENT DELETE DOCUMENT SF
FI LE DOCUMENT DI SPLAY DOCUMENT SF
MENU DELETE FI LE KCS
MENU DELETE DOCUMENT KCCS
MENU DI SPLAY FI LE KRCS
Repo e
Conmmand ===>
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
Help Cmd Exit Last List Flip + Top Loc-- Loc+ Canc

The Result Editor contains all of the local and global functions specified in the Function Editor. Each line
in the editor represents the location from which a command can be issued (Location field), the command
itself (Command field) and an abbreviated summary of the action to be carried out when the command is
issued (Result field).

The fields of the screen are explained in detail in the table below:

31

SYSNCP Utility Runtime Action Editor

Field Explanation

| Output field. Information on the last action carried out on this line.

Ac Action to be taken. The following values can be entered:

DI Display the runtime action definitions for this function.
ED Edit the runtime action definitions for this function.

PU Purge this function.

Location |Output field.

The location within the application from which the command (see Command field belgw)
can be issued. If the function is global, then < Global > appears in this field (the comnjand
can be issued from any location).

Commang Output field. The command.

The contents of the Location and Command fields may be truncated if very long keywords
are used.

Result Output field.

Contains an abbreviated summary of the action to be performed when the command {s
issued. The first character representsktbep Locatiorinformation (see the following
section); for all other characters, seeRumtime Action Definitiontable below.

Runtime Action Editor

The Runtime Action Editor is used to define the actions to be taken when a command is issued from a
specific location. The editor can only be invoked for functions which have been defined as global or local
functions. The editor can be invoked either from the Function Editor or the Result Editor.

» To invoke the Runtime Action Editor from the Function Editor
1. In theAc field, enterEG (edit global) for global functions.

Or:
In theAc field, enterEL (edit local) for local functions.

2. Press ENTER.

» To invoke the Runtime Action Editor from the Result Editor
1. In theAc field, enterED.
2. Press ENTER.

TheRuntime Action Definition window is displayed:

32

Runtime Action Editor SYSNCP Utility

Runtinme Action Definition

Location DI SPLAY DOCUMENT

Command DELETE DOCUMENT

Keep Location S

Data al l owed Y Mre than one N Max. Length 99
Numeric N TOP of STACK Y FError: Drop Y

A Runtinme Action Definition

Actions are always associated with an origin and a destination. The origin is the location from which the
command is issued, and the destination is the command itself. Thus, it is possible to link different actions
to a command based on the context in which it is used.

In the Runtime Action Editor, you also specify whether the location is to remain the same after the actions
have been carried out, or whether the command itself is to become the new current location.

Actions are specified by entering a single-letter code in the left column of the editor. Enter any parameters
accompanying an action in the field next to the code. If the characters "/*" are entered in this field, all
subsequent input is considered a comment. If you omit a required parameter, you will be prompted for
input.

The sequence in which actions are performed at runtime is determined by the order of entry in the editor
(from top to bottom). Thus, if a FETCH is specified, all of the actions specified below it are not to be
performed.

The Runtime Action Editor contains the following fields:

33

SYSNCP Utility Runtime Action Editor

Field Explanation

Location Output field. The location from which the command is issued. If the function is defijned
as global, the field shows < Global >.

Command Output field. Command for which actions are to be specified.

Keep Location Specifies whether the current or a new location is to be active once the actions hgve been
performed. A value in this field only affects commands with a specified EXEC optipn.

Possible values are:

K Keep current location. The actions to be performed affect the current location pnly.

S Set new location (global/local). Once the actions are performed, the command
processor makes the command the new current location. Every command entgered
subsequently has to be either a local command of this new location or a global

command.

Note:
The defined actions themselves have no influence on the location; that is, any action

performed doenot cause the current location to be changed.

Other Optiong All other options are related to the handling of parameters provided with this comiand
sequence. For further information, $e@mmand Data Handling - Header 4 in the

sectionHeader Records.

To activate the header defaults of these options, enter an asterisk (*).

» To define runtime actions
1. Invoke theRuntime Action Definition window as described earlier.

2. Inthe fieldA, enter an action code and the corresponding action in the field opposite to it:

34

Processor Cataloging SYSNCP Utility

Code| Runtime Action Definition

V | Default value. No runtime action is specified.

T | Text which can be read at runtime using the TEXT or GET option of[the
PROCESS COMMAND statement.

M | Modify command line. The data are placed in the command line.

C |Command. This command is placed at the top of the Natural stack. If an
asterisk (*) is specified here, the name of the program which issued [this
PROCESS COMMAND statement is put on top of the stack (STACK
TOP COMMAND *PROGRAM’). (*)

D |Data. These data are placed on top of the Natural stack. (*)

F | Natural program name. The program is invoked with a FETCH statement.
(*)

Natural STOP statement. The statement is executed at runtime. (*)

The value specified in this line is to be moved immediately into the
system variable *ERROR-NR.

R | Areturn code is entered in the DDM field RETURN-CODE as descriped
in PROCESS COMMANDnN theSatements documentation.

1 to | A text string. This value is entered into the multiple DDM field
9 |RESULT-FIELD as described PROCESS COMMANDN the
Satements documentation.

* Comment line.

* These actions are only performed with the EXEC option of the PROCESS COMMAND statement.
3. Press PF3 to leave tRantime Action Definition window.

Note:

The user exit NCP-REAM allows you to use some or all of the above codes. The user exit NCP-REEM
allows you to modify the line that follows the heading of the Runtime Action Definition table. The user
exit NCP-REDM allows you to define default values for runtime action definitions (if you use this user
exit, see alstnvoke Action Editor in the sectiotHeader Records). All user exits mentioned above are
delivered in the Natural system library SYSNCP.

Processor Cataloging

Once you have specified runtime actions for all of the functions you want to use in your command
processor, you should catalog the command processor. Cataloging a command processor generates a
Natural object of type Processor.

¥ To catalog a command processor

1. In the Processor Maintenance menu, enter Function C¢Qatalog Processor),
the name of the command processor to be cataloged,
and the name of the Natural library in which the command processor is to be cataloged.

35

SYSNCP Utility Administrator Services

2. Press ENTER.

Note:
If you have Natural Security installed, you have to allow the use of your command processor as described
in theNatural Security documentation in the sectidunctional Security.

Note for Windows, UNIX and OpenVMS:
Unlike on mainframes, SYSNCP does not create a report when cataloging a command processor.

Administrator Services

SYSNCP provides facilities for the administration of command processors. Only system administrators, as
defined inNatural Security, are authorized to access these services.

¥ To access the administrative services
1. In theProcessor Source Maintenancenenu, enter Function Code(Administrator Services).
2. Press ENTER.

The Administrator Services screen is displayed:

09:49: 11 *xxkx NATURAL SYSNCP UTI LI TY ***** 2000- 05- 04
User SAG - Adm nistrator Services -

Code Functi on

Sel ect Processor

Copy Processor Source

Del et e Processor Source

Print Source/ Cbj ect/ NCP-Buffer
Unl oad Processor to Work File 3
Load Processor fromWrk File 3
Freeze Processor Source

Ref erences from Natural Security
Hel p

Exi t

NI M- CTOoOOWm

Code .. Narme .. SAGITEST_ Library .. SYSNCP_

Command ===>
Ent er - PF1- - - PF2- - - PF3- - - PF4- - - PF5- - - PF6- - - PF7- - - PF8- - - PF9- - - PF10- - PF11- - PF12- - -
Help Ond Exit Last List Flip Canc

Note:
If you do not have Natural Security installed, be aware that all other users have administrator status.

Below is information on:

® Select Processor

36

Select Processor SYSNCP Utility

Copy Processor Source

® Delete Processor Source

® Print Source/Object/NCP Buffer
® Unload Processor

® | oad Processor

® Freeze Processor Source

o References from Natural Security

Select Processor

See the sectioRrocessor Selection.

Copy Processor Source

In copying processor sources, you have the choice of copying the entire processor or only selected sources
(header, keywords, functions, runtime action definitions).

¥ To copy a command processor
1. In the Administrator Services menu, enter Function @de
2. Press ENTER.

The Copy Processor Source window is displayed to provide source and target information:

Copy Processor Source
Sour ce Tar get
Name SAGTEST_ o
Library SYSNCP__ SYSNCP__
DBID 10__ 10__
FNR 32__ 32
Password
C pher Key ..
Repl ace NO_

3. In the Source fields, enter the name of the processor to be copied, and the library, database 1D
(DBID) and file number (FNR) in which the processor is stored. The default values correspond to
the processor specified on tAdministrator Services menu.

In theTarget fields, enter the name of the processor to be copied to, and the library, database ID
(DBID) and file number (FNR) into which the processor is to be copied.

37

SYSNCP Utility Delete Processor Source

In theCipher Key field, enter the appropriate password and/or cipher key if the source and/or target
file is protected by a password and/or cipher key.

In theReplacefield, enterYES if you want to overwrite a processor in the target environment. The
default for this field iNO.

4. Press ENTER.

The following window is displayed to select sources:

Copy Processor Source

Mark Copy Source Target

_ Header yes no

_ Keywords yes no

_ Functions yes no

Runtime Action Definitions .. no no

Sour ce Name SAGTEST Li brary SYSNCP DBI D 10 FNR 32
Target Nanme TEST2 Li brary SYSNCP DBI D 10 FNR 32
Replace ... NO

5. In the appropriat®lark fields, enter any character to select the sources you want to copy.

6. Press ENTER.

Delete Processor Source

This function is used to delete processor sources.

¥ To delete a command processor
1. In theAdministrator Services menu, enter Function Codke
2. Press ENTER.
TheDelete Processor Sourcerindow is displayed.

3. Specify the name of the processor to be deleted, and the library, database ID and file number in
which the processor is stored. If the file is protected by a password and/or cipher key, you also have
to enter the appropriate password and/or cipher key.

4. Press ENTER.

The following window is displayed to select the sources to be deleted:

38

Print Source/Object/NCP Buffer SYSNCP Utility

Del ete Processor Source
Mark Del ete Avai |l abl e
_ Header yes
_ Keywords yes
_ Functions yes
_ Runtime Action Definitions .. yes
Name SAGTEST Library SYSNCP DBI D 10 FNR 32

To the right of each processor source (header, keywords, functions, runtime action definitions) is a
field which indicates whether the source exists. As command processor creation is a cumulative
activity, you cannot delete a source without deleting all sources which are based on it. Thus, for
example, in the screen above, you cannot delete the source of the functions without also deleting the
source of the runtime action definitions.

5. In the appropriat™ark fields, enter any character to select each source indicaradhéable.
6. Press ENTER.

Print Source/Object/NCP Buffer

In addition to processor sources, you can also print the processor object and the NCP.

¥ To print a command processor item

1. In theAdministrator Services menu, enter Function Coéke

2. Press ENTER.
ThePrint Source/Object/NCP-Buffer window is displayed.
3. Specify the name of the processor to be printed, and the library, database ID and file number in

which the processor is stored. If the file is protected by a password and/or cipher key, you also have
to enter the appropriate password and/or cipher key.

4. Press ENTER.

5. The following window is displayed to select items for printing:

39

SYSNCP Utility Unload Processor

Print Source/ Obj ect/ NCP-Buffer
Mark Print Avai |l abl e
_ Header yes
_ Keywords yes
_ Functions yes
_ Runtime Action Definitions .. yes
_ Processor hject yes
NCP-Buffer no
Printer
Name SAGTEST Library SYSNCP DBI D 10 FNR 32

To the right of each processor source (header, keywords, functions, runtime action definitions) is a
field which indicates whether the item exists.

Possible input values for tiirinter field are the logical printer ID, VIDEO or SOURCE; see also
DEFINE PRINTERIn theSatements documentation.

6. In the appropriat®ark fields, enter any character to select the items you want to have printed and
enter the logical printer name or the value VIDEO or SOURCE in the Printer field.

7. Press ENTER.

Unload Processor
¥ To unload a command processor

1. In theAdministrator Services menu, enter Function Codle

2. Press ENTER. THenload Processor to Work File 3window is displayed:

Unl oad Processor to Wirk File 3
Sour ce Tar get
Nane SAGTEST _
Library SYSNCP__ SYSNCP__
DBID........ 10
FNR 32_
Password
Ci pher Key ..
Report NO_

3. In theSourcefields, enter the name of the processor to be unloaded, the library, database ID, and file
number in which the processor can be found; the default value is the processor specified in the
Administrator Services menu. Enter the appropriate password and/or cipher key if the file is
protected by a password and/or cipher key.

40

Load Processor SYSNCP Utility

4. In theReport field, enterYES if you want a report to be produced. Defaulti@ You do not have to
use a file extension. If you wish to use an extension, you must use the file extension ".sag".

5. Press ENTER.

When the processor is unloaded, all processor sources (header, keywords, functions, runtime action
definitions) are written to Work File 3.

Note:
Use theObject Handleto transfer command processors from one hardware platform to another.

Load Processor

» To load a command processor
1. In theAdministrator Services menu, enter Function Codle
2. Press ENTER.

ThelLoad Processor from Work File 3window is displayed for loading processors from Work File
3 to a Natural library:

Load Processor fromWrk File 3

Repl ace existing processors .. N
Produce load report NO

3. In theReplace existing processorkeld, enterY or N (default is N) to specify whether existing
processors with the same name are to be replaced by the processor to be loaded.

4. In theProduce load reportfield, enterYES (default isNO) if you want a report to be produced.
5. Press ENTER.

Note:
Input for the processor name and the library into which the processor is to be loaded is taken from the

work file.

Freeze Processor Source

You can freeze a processor in its current state to prevent users from modifying it further.

» To freeze a command processor
1. In theAdministrator Services menu, enter Function Codfe
2. Press ENTER. THereeze Processor Sourceindow is displayed.

3. Specify the name of the processor to be frozen, and the library, database ID and file number in which
the processor is stored. If the file is protected by a password and/or cipher key, you also have to enter
the appropriate password and/or cipher key.

41

SYSNCP Utility Session Profile

4. Press ENTER.

5. In the following window, specify with or N whether modification of the processor sources is to be
allowed or not. Default i¥'.

6. Press ENTER.

References from Natural Security

This function is only available if Natural Security is active in your environment. It is used to delete
functional security references from Natural Security.

If functional security is defined for a processor in Natural Security, references are created automatically.
These references are stored in the FNAT/FUSER system files along with the processor sources, not in
FSEC.

¥ To invoke References from Natural Security function
1. In theAdministrator Services menu, enter Function CodRe
2. Press ENTER.
TheDelete Referencesvindow appears.

3. Specify the name of the processor, and the library, database ID and file number in which the
processor is stored. If the file is protected by a password and/or cipher key, you also have to enter the
appropriate password and/or cipher key.

4. Press ENTER.

5. In the following window, you can delete main references, function references and auxiliary
references.

For further information on functional security for command processors, refer to the $eriitional
Security in theNatural Security documentation.

Session Profile

A session profile is a collection of user-definable defaults which determine how the SYSNCP screens
appear or how SYSNCP reacts to input. In a session profile, for example, you can determine which
command processor you want as default for a session or which colors you want assigned to screen
attributes. In SYSNCP, there is a standard session profile called STANDARD which is issued to all new
users. You can create several different session profiles and activate them as required.

Administrators for SYSNCP can access and modify any session profile in SYSNCP. Other users can
access all session profiles, but can modify only those session profiles which are created under their user
ID or which have the same name as their user ID.

¥ To define or modify a session profile

42

Session Profile Name SYSNCP Utility

® |ssue thé®?ROFI LE command from the Command line of fRmcessor Source Maintenancenenu.
The first of three session profile maintenance screens is displayed.
Below is information on:
® Session Profile Name
® Session Parameters - Profile 1
e Color Attributes - Profile 2

® Miscellaneous Attributes - Profile 3

Session Profile Name

The standard profile STANDARD or the value of the system variable *USER is taken as default for the
profile name.

If you are defining a new session profile, the parameters/attributes are defaults. You can modify these
defaults as required and save them by entering the new name and pressing PF5.

The field Session Profile Name on each profile screen is both an input and output field. Thus, it is possible
to define, read or save another profile from any of these screens by entering its name in the Profile Name
field and pressing PF5 or PF4, respectively.

Session Parameters - Profile 1

On the first profile maintenance screen, you can modify the following fields:

43

SYSNCP Utility Color Attributes - Profile 2

Field Explanation

Apply Terminal Control 1 | These fields can be used to enter the parameters of a SET CONTROL
statement to be issued by SYSNCP at startup.

Apply Terminal Control 2 | For example, when you entgrin any of the fields, SYSNCP issues the
statemenSET CONTRCL ' Z' .

Default Processor Name | The default command processor name to be used for this session.

Default Processor Library| The Natural library to be used to store a command processor.

Cancel Reaction Specifies whether a warning is to be issued whenever the requested
modification is not completed and the CANCEL command is issued.

W Issue warning.

B Back out and cancel without issuing warning.

Clear Key Allowed Specifies whether clear key is allowed.

N Clear key disallowed.

Y Clear key active and has same effect as CANCEL.

Default Cursor Position | Specifies placement of the cursor.

1 Cursor to be positioned in first field of the screen.

C Cursor to be positioned in command line.

Exec/Display Last Specifies action to be taken as a result of the LAST command:
Command

E Execute last command issued in command line.

D Display last command issued in command line.

Color Attributes - Profile 2

On the second profile maintenance screen, you can assign colors to various screen attributes, or overwrite
existing color assignments.

By specifying the following color codes, you can assign the following colors:

44

Miscellaneous Attributes - Profile 3 SYSNCP Utility

Code| Color

BL |Blue

GR |Green

NE |Neutral

Pl Pink

RE |Red

TU | Turquoisg
YE |Yellow

For color assignments to screen attributes, see also the terminal cofbmanthe Terminal Commands
documentation.

Miscellaneous Attributes - Profile 3

The following attributes can be specified on the third profile maintenance screen:

Field Explanation

Message Line Positiol The line on which messages are to be displayed. The value 21 is recommended.
See also the terminal comma¥tdV in theTerminal Commands documentation
for more information.

Text for PF5 Key The PF5 function key is reserved for global (session-wide) use. The text tp be
displayed on the PF-key line for PF5 can be entered in this field.

Command for PF5 Ke The PF5 function key is reserved for global (session-wide) use. The command
to be executed when PF5 is pressed can be entered in this field.

In addition, the screen displays when and by which user this profile was last modified.

45

	 SYSNCP Utility
	Prerequisites for Windows
	Introducing the SYSNCP Utility
	Object-Oriented Data Processing
	Features of the Command Processor
	Components of the Command Processor
	What is a Command?
	Creating a Command Processor

	Invoking SYSNCP
	Help

	Processor Selection
	Header Records
	Create New Processor
	Modify Header - General Explanations
	Keyword Runtime Options - Header 1
	Keyword Editor Options - Header 2
	Miscellaneous Options - Header 3
	Command Data Handling - Header 4
	Runtime Error Handling - Header 5
	Statistics - Header 6
	Status - Header 7

	Keyword Maintenance
	Define Keywords
	Editor Commands
	Positioning Commands
	Line Commands

	Function Maintenance
	Define Functions
	Editor Commands
	Direct Command QUICK-EDIT
	Local and Global Functions
	Local and Global Connections within a Sample Application:

	Procedure for Validating Functions

	Runtime Actions
	Define Runtime Actions
	Runtime Action Editor

	Processor Cataloging
	Administrator Services
	Select Processor
	Copy Processor Source
	Delete Processor Source
	Print Source/Object/NCP Buffer
	Unload Processor
	Load Processor
	Freeze Processor Source
	References from Natural Security

	Session Profile
	Session Profile Name
	Session Parameters - Profile 1
	Color Attributes - Profile 2
	Miscellaneous Attributes - Profile 3

