Operating a Natural RPC Environment Operating a Natural RPC Environment

Operating a Natural RPC Environment

This section mainly describes the tasks required to operate a Natural RPC environment.

Some of these tasks are performed with the SYSRPC utility. For information about the functions the
SYSRPAQutility provides, refer to the Natur&vSRPC Utility documentation.

This section covers the following topics:

Specifying RPC Server Addresses

Stubs and Automatic RPC Execution
Modifying RPC Profile Parameters during a Natural Session
Executing Server Commands

Logon to a Server Library

Using the Logon Option

Using Compression

Using Secure Socket Layer

Monitoring the Status of an RPC Session
Retrieving Runtime Settings of a Server
Setting/Getting Parameters for EntireX
Handling Errors

User Exits before and after Service Execution

Specifying RPC Server Addresses

To each remot€ALLNATrequest, a server must be assigned (identifieselsyw er nanme and
nodenane) on which theCALLNATis to be executed. Therefore, all subprograms to be accessed
remotely must be defined

in a local service directory on the client side,
or in a remote directory accessed via a remote directory server,
or by way of default server addressing with the profile pararbdi&y

or within the client application itself by way of default server addressing.

In addition to the methods mentioned above, you can specify alternative servers.

Operating a Natural RPC Environment Using Local Directory Entries

If EntireX Broker is used, it is also possible to define servers using the EntireX Location Transparency,
seeUsing EntireX Location Transparency.

Below is information on:
® Using Local Directory Entries
® Using Remote Directory Entries
e Specifying a Default Server Address at Natural Startup
e Specifying a Default Server Address within a Natural Session
e Using an Alternative Server

® Using EntireX Location Transparency

Using Local Directory Entries

All data of a client’s local service directory is stored in the subproffAfCLTGSALt execution time,
this subprogram is used to retrieve the target server. As a consedU&mcd, TGSnust be available in
the client application or in one of the Natural steplibs defined for the application.

If NATCLTGShas not been generated into a steplib or resides on another machine, use the appropriate
Natural utility (SYSMAINor theNatural Object Handl¢to moveNATCLTGSnto one of the steplibs
defined for the application.

If you are using ATCLTGSor joint usage, you must make it available to all client environments, for
example by copying it to the libra§YSTEMor, if an individual copy is used for a client, it must be
maintained for this client using tl8ervice Directory Maintenandanction of theSYSRPQutility.

To define and edit RPC service entries, see the sediwite Directory Maintenance in the SYSRPC
Utility documentation.

Using Remote Directory Entries

A remote directory contains service entries that can be made available to several Natural clients. The
Natural clients can retrieve these service entries from remote directory servers. For information on the
purpose and on the installation of remote directory serversjsiega Remote Directory Server.

Specifying a Default Server Address at Natural Startup

Instead of addressing a server by using a local or remote service directory, you can preset a default server
with the profile parametddFS as described in your Natu@perations documentation. This server
address is used if the subprogram can be found in neither the local nor the remote service directory.

TheDFSsetting determines the default server for the whole session or until it is overwritten dynamically.

If no DFSsetting exists and the server address of a given remote procedure call could not be found in the
service directory, a Natural error message is returned.

Specifying a Default Server Address within a Natural Session

Operating a Natural RPC Environment

A default server address defined within a client application remains active even if you log on to another
library or if a Natural error occurs.

Specifying a Default Server Address within a Natural Session

The client application itself may dynamically specify a default server address at runtime. For this purpose,
Natural provides the application programming interfd&R2007N This interface enables you to
determine a default server address that is to be used each time a remote program cannot be addressed via
the service directory.

¥ To make use ofUSR2007N

1. Copy the subprograt’SR2007Nfrom the librarySYSEXTto the librarySYSTEMor to the steplib
library, or to any application in the server environment.

2. Using theDEFINE DATA statement in structured mode or REESETstatement in reporting mode,
specify the following parameters:

Parameter

Format

Description

function

Al

Function; possible values are:

P Determines that the server address (composed of the para
(Put) |nodenane andser ver namne, see below) is the default

the service directory.

To remove a default server address, specify a blank for
nodenane andser ver nane.

meters

address for all subsequent remote procedure calls not defiped in

G Retrieves the current default server address as set by the
(Get) |function P.

nodename

A192

Specifies/returns the name of the server node to be addressed.

The node name may have up to 32 characters for physical node n
and up to 192 characters for logical node namesUSeg EntireX
Location Transparency.

Note:

For compatibility reasons,er ver namne is defined with the optioBY
VALUEorBY VALUE RESULT (see the section
parameter-data-definitioim the description of thBEFINE DATA
statement) to support existing callers which pass an A8 field for th
servernane.

The samplé&JSR2007P provided in librarySYSEXTsupports up to 32

AMmes

19%

characters.

Operating a Natural RPC Environment Using an Alternative Server

Parameter |Format | Description

servernanme | A192 |Specifies/returns the server name to be addressed.

The server name may have up to 32 characters for physical serve
names and up to 192 characters for logical service namebsi®ge
EntireX Location Transparency.

Note:

For compatibility reasonsiodenarne is defined with the optioBY
VALUEor BY VALUE RESULT (see the section
parameter-data-definitioim the description of thBEFINE DATA
statement) to support existing callers which pass an A8 field for th
nodenane.

19%

The samplé&JSR2007P provided in librarySYSEXTsupports up to 32
characters.

| ogon Al Specifies/returns the Logon option, $éng the Logon Option.

pr ot ocol Al Specifies/returns the transport protocol.
Valid value:B (=EntireX Broker).

noservdir |Al Specifies/returns the service directory option, see profile parametg
DFS

=

Y Service directory must not be present

N Service directory must be present

3. Inthe calling program on the client side, specify the following statement:

CALLNAT 'USR2007N’ functi on nodenane servernane | ogon protocol [noservdir]

Note:
The Natural subprogralATCLTPSIn the librarySYSRPds only maintained for compatibility reasons.

Using an Alternative Server

To avoid connection failures, you may want to define several alternative servers for aGAnlokeAT
If you specify such alternative servers, Natural proceeds as follows:

® The client makes a first attempt to establish the connection.

e |[f this attempt fails, instead of providing an error message, a second attempt is made, however, this
time not on the same server. Instead, the service directory is searched again starting at the current
entry to find out whether or not another server is available which offers the desired service.

e |f a second entry is found, Natural tries to establish the connection to this server. If the remote
procedure call is performed successfully, the client application keeps on running. The user does not
notice whether the connection to the first server or to the alternative server produced the result.

e If no further entry is found or if the connection to alternative servers fail, Natural issues a
corresponding error message.

Using EntireX Location Transparency Operating a Natural RPC Environment

» To enable the use of an alternative server
1. Define more than one server in the service directory for the same service.
2. Set the profile parametERYALTto ONto give permission to use an alternative server.

This parameter can also be set dynamically for the current session with the Natural system command
GLOBALYdescribed in th&ystem Commands documentation.

Using EntireX Location Transparency

Using EntireX Location Transparency, you can change physical node and server names without having to
configure anything or to change client and/or server programs. Now, instead of using a physical node and
physical server name, a server can be addressed by a logical name. The logical name is mapped to the
physical node and server names using directory services.

To take advantage of Location Transparency, the Natural RPC has been enabled to accept a logical name
wherever only a node and server name could be specified before. The logical name is passed to the
EntireX Broker before it is used the first time.

The maximum length of a logical name is 192 characters. To avoid new Natural profile parameters, a
logical name is specified in the server name part of the already existing parameters. There are two kinds of
logical names:

® | ogical node names
With a logical node name you specify a logical name for the node only in conjunction with a real
server name. A logical node name can be used in all places where you can also use a real node name.
To define a logical node name the keywb@GBROKERIuSst be used.

Example:
SRVNVODE='LOGBROKERsgi cal _node_nane, ny_set’

® | ogical services
With a logical service, you specify a logical name for both the node and the server. A logical service
can be used in all places where you can also use a real node and server name. To define a logical
service, an asterisk (*) must be specified as node name (intentionally left empty), and the server
name contains the logical service name.

Example:
SRVNVODE=" SRVNAME='| ogi cal _servi ce_nane, ny_set’

If the Natural Application Programming Interfad&R2071Nis used, you cabhOGONo a logical
service name by using the keywdr@GSERVICRogether with the logical service name in the field
br oker-id.

For further information abountireX Location Transparency, refer to the EntireX documentation.

The following components refer to node and server names:

Operating a Natural RPC Environment Stubs and Automatic RPC Execution

e Natural profile parameteSRVNODESRVNAMEDFSandRDS

® Service Directory Maintenandanction of theSYSRPQutility

® Service directorfNATCLTGS

e Natural Application Programming Interfacd$SR2007N USR2071N

See alsd.ocation Transparency in Service Directory Maintenance function of theSYSRPC Utility
documentation.

Stubs and Automatic RPC Execution

Stubs are no longer required if automatic Natural RPC execution is used, as desthibddnig with
Automatic Natural RPC Execution below.

However, generating stubs provides the advantage of controllif@AhENATS) executed remotely and
facilitates error diagnoses. Should a remote call fail due to an incGa&tiNATname, the Natural error
message issued then helps to immediately identify the problem cause. Without a stub, for an incorrect
CALLNATyou may receive follow-up errors returned from the transport layer or the Natural server.

If you want to call an EntireX RPC server with a renfofd_ LNATexecution, it is strongly recommended

to use a stub subprograimtérface objedt A stub subprogram is required if the IDL (Interface Definition
Language) definition of the subprogram you want to call on an EntireX RPC server contains a group
structure. In this case, you must define the same group structure during the stub generation on the Stub
Generation screen or generate the stub subprogram frdemtineX IDL file (Windows only).

Below is information on:
® (Creating Stub Subprograms

e Working with Automatic Natural RPC Execution

Creating Stub Subprograms

With the Stub Generation function of t8& SRPQutility, you can generate the Natural stub subprograms
used to connect the client’s calling program to a subprogram on a server. The stub consists of a parameter
data areaRDA) and of the server call logic; s8ib Generation in the SYSRPC Utility documentation.

The PDA contains the same parameters as used @AbENATstatement of the calling program and

must be defined in the Stub Generation screen of the Stub Generation function. If a compiled Natural
subprogram with the same name already exists, the PDA used by this subprogram is used to preset the
screen. The server call logic is generated automatically by the Stub Generation function after the PDA has
been defined.

At execution time, the Natural application program containing>heLNATstatement and the stub
subprogram must exist on the client side. The Natural application subprogram must exist on the server
side. Both the stub and server subprograms must have the same name.

Modifying RPC Profile Parameters during a Natural Session Operating a Natural RPC Environment

Working with Automatic Natural RPC Execution

You are not required to generate Natural RPC stubs, but you can work with automatic Natural RPC
execution (that is, without using Natural stubs). To work with automatic Natural RPC execution, set the
profile parameteAUTORPGs follows:

AUTORPC=0ON

In that case, you can omit the generation of the client stub during your preparations for RPC usage. When
the automatic Natural RPC execution is enabfddTTORPC=0ONNatural behaves as follows:

e if a subprogram cannot be found locally, Natural tries to execute it remotely (a stub subprogram is
not needed),

e the parameter data area will then be generated dynamically during runtime.
As stubs only exist for client programs, this feature has no effect @AheNATprogram on the server.

If profile parameteAUTORPGs set toON and a Natural stub exists, it will still be used.

Modifying RPC Profile Parameters during a Natural Session

With the Natural system comma@lL.OBALSyou can dynamically modify some of the RPC profile
parameters set in the Natural profile parameter module for the current session.

Caution:
These modifications are retained as long as the user session is active; they are lost when the session is
terminated. Static settings are only made using Natural profile parameters.

Executing Server Commands

Active servers that have been defined in the service directorgieaéying RPC Server Addresses) can

be controlled with th&YSRPGerver command execution functiaa described in the relevant section in
the SYSRPC Utility documentation.

Logon to a Server Library

The server library on which th@ALLNATIs executed depends on the RR&gon Option on the client
side and a couple of parameters on the server side.

The following table shows which the relevant parameters are and how they influence the library setting:

Operating a Natural RPC Environment Using the Logon Option

Client Server
1 2 3 4 5 6 7
*library-id |RPC LOGONRQ |Server NSC NSC: Server
LOGON set? started with | or RPC Logon| *library-id
flag for STACK= native option in
server entry Natural? library
set? profile
1|Libl no no logon libl No influence |N/-- Libl
2|Libl no no logon lib2 No influence |N/-- Lib2
3|Libl no yes (ClientLOGONlag = NO) and (LOGONRQ=YES
is not possible.
4| Libl yes No influence | No influence| NSC AUTO Libl
5|Libl yes No influence|No influence | NSC N Libl
6|Libl yes No influence | No influence | Native Natural | -- Libl

Explanation of the table columns:

1. The library ID of the client application where thALLNATIs initiated.

2. The value of the RPBOGONIag. Can be set for a whole node or a server.
The flag can be set by using
the Service Directory Maintenandanction of theSYSRPQutility,
or the profile parametd®FS
or the application programming interfad&R2007N

3. TheLOGONR@rofile parameter can be set at server startup.

4. The library ID to which the server is positioned at its startup.

5. Does the server run under Natural Security (NSC)sieg Natural RPC with Natural Security) or
not?

6. The setting of the Logon option in the NB@rary Profile Items (Session options > Natural RPC
Restrictions) of the NSC server application. If the N&6gon Option is set toA (AUTQ, only library
and user ID are taken. If sethiddefault), the library, user ID and password parameters are
evaluated.

7. The library on the server where tBALLNATprogram is finally executed.

Using the Logon Option

The Logon option defines on which library the remote subprogram is to be executed. $eganiso a
Server Library.

Logging on to a Different Library Operating a Natural RPC Environment

Note:

When you do not use the Logon option, @&LLNATiIs executed on the library to which the server is
currently logged on. This server logon is defined with the Natural profile paragiet&«k=(LOGON

I'i brary). The server will search for tteALLNAT to be executed ini br ar y (and all associated
steplibs defined fori br ary).

A client application can be enabled to execute a subprogram on a different library by setting the Logon
option for this subprogram. This causes the client to pass the name of its current library to the server,
together with this Logon option. The server will then logon to this library, searching it for the desired
subprogram and, if the latter is found, it will execute it. After that, it will logoff from the previous library.

Logging on to a Different Library

If the server should logon to a library other than the client’s current libray, the client has to call the
application programming interfa¢ééSR4008Nbefore the remot€ALLNATIs executed. With

USR4008Nthe client specifies an alternate name of a library to which the server will logon. The name of
this library will be used for all subsequent calls to remote subprograms for which the Logon option
applies. If blank is specified for the library name, the name of the current client library will be used again.

» To make use ofUSR4008N

1. Copy the subprograt’SR4008Nfrom the librarySYSEXTto the librarySYSTEMbr to the steplib
library, or to any application in the server environment.

2. Using theDEFINE DATA statement, specify the following parameters:

Parameter|1/O | Format | Description

P-FUNC |I |AO1 Function code; possible values are:
P Specify a new library for remo@ALLNATexecution.
(Put)
G Retrieve previously specified library for rem@@aLLNAT
(Get) |execution.

P-LIB I |A8 Library on server for remot€ ALLNATexecution.

3. In the calling program on the client side, specify the following statement:

CALLNAT 'USR4008N’ P-FUNC P-LIB

Note:
The calling program must be executed before the Natural RPC client invokes aC&hbieAT

Settings Required on the Client Side

To set the Logon option, you can use eithel3MERPCService Directory maintenan@enction (see the
relevant section in th8YSRPQUJtility documentation) or - when using a default server - the profile
parameteDFSor the application programming interfdd8R2007N

Operating a Natural RPC Environment Using Compression

Settings Required on the Server Side

No setting is required on the server side.

Using Compression

Compression types may l&:1 or 2. Stubs generated witbOMPRL or 2 can help reduce the data
transfer rate.

Compression | Description
Type

COMPR=0 |All CALLNATparameter values are sent to and returned from the server, i.e. np
compression is performed.

COMPR=1 |M-type parameters are sent to and returned from the server, whereas O-type
parameters are only transferred in the send buffer. A-type parameters are only|
included in the reply buffer. The reply buffer does not contain the Format desctiption.

This is the default setting.

COMPR=2 |Same as foCOMP=1except that the server reply message still contains the format
description of theCALLNATparameters. This might be useful if you want to use
certain options for data conversion by EntireX Broker (for more information, seg the
description of Translation Services in the EntireX Broker documentation).

Using Secure Socket Layer

The Natural RPC supports Secure Socket Layer (SSL) for the TCP/IP communication to the EntireX
Broker.

To enable the EntireX Broker to recognize that the TCP/IP communication should use SSL, you must use
one of the following methods:

® Append the stringSSL to the node name. If the node name has already been postfixed by the string
:TCP, :TCP must be replaced h$SL .

® Prefix the node name with the strii§SL.:
Example:
SRVNODE="157.189.160.95:1971:SSL’

Before you access an EntireX Broker using SSL, you must first invoke the application programming
interfaceUSR2035Nto set the required SSL parameter string.

» To make use otUSR2035N

1. Copy the subprograth$SR2035Nfrom the librarySYSEXTto the librarySYSTEMor to the steplib
library, or to any application in the server environment.

10

Monitoring the Status of an RPC Session

2. Using thdDEFINE DATA statement, specify the following parameters:

3.

Operating a Natural RPC Environment

Parameter

I/0

Format

Description

FUNCTI ON

A01

Function code; possible values are:

P
(Put)

Specify a new SSL parameter string.

The SSL parameter string is internally saved and passed to Entire
time an EntireX Broker using SSL communication is referenced th
first time. You may use different SSL parameter strings for several
EntireX Broker connections by calling application programming
interfaceUSR2035Neach time before you access the EntireX Brok
the first time.

Example:
FUNCTION :="P’

SSLPARMS :="TRUST_STORE=FILE://DDN:CACERT&VERIFY_SERVER=N’
CALLNAT 'USR2035N’ USING FUNCTION SSLPARMS

To set SSL parameters in case of a Natural RPC server, put the n

the calling program onto the Natural stack when starting the servef.

Example:

STACK=(LOGONSser ver-1Iibrary; set - SSL- par rs)

Whereset-S3_-parms is a Natural program that invokes the applicat
programming interfacelSR2035Nto set the SSL parameter string.

X each

v

C

U
—

hme of

(Get)

Retrieve previously specified SSL parameter string.
The previously put SSL parameter string is returned to the caller.

For more information about the SSL parameter string, refer to the
EntireX documentation.

SSLPARMS

Al128

SSL parameter string as required by the EntireX Broker

In the calling program on the client side, specify the following statement:

CALLNAT 'USR2035N’

FUNCTI ON SSLPARMS

Monitoring the Status of an RPC Session

This part is organized in the following sections:

Using the RPCERR Program

Using the RPCINFO Subprogram

Using the Server Trace Facility

Defining the Trace File

11

Operating a Natural RPC Environment Using the RPCERR Program

Using the RPCERR Program

You can run th& PCERRprogram from the Command line or invoke it by usirlgEa CHstatement from
within a Natural progranRPCERRIisplays the following information:

® The last Natural error number and message if it was RPC related.
® The last EntireX Broker message associated with this error.

® The last EntireX RPC server error message if the Natural error error number is related to the EntireX
RPC server error.

In addition, the node and server name from the last EntireX Broker call can be retrieved.

Example of an RPC Error Display: RPCERROR

Natural error number: NAT6972
Natural error text :
Directory error on Client, reason 3.

RPC error information:
No additional information available.

Server Node: Library: SYSTEM
Server Name: Program: NATCLT3
Line No: 1010

Using the RPCINFO Subprogram

You can use the subprogra®CINFOin your application program to retrieve information on the state of
the current RPC session. This also enables you to handle errors more appropriately by reacting to a
specific error class.

The subprograrRPCINFOis included in the librar$sY STEMand can be called by any user application.

A sample prografTESTINFOis included in the librargY SRPQGogether with the parameter data area
RPCINFOLfor callingRPCINFQ

Example:

DEFINE DATA LOCAL USING RPCINFOL
LOCAL
1PARM (Al)
1 TEXT (A80)
1 REDEFINE TEXT
2 CLASS (A4)
2 REASON (A4)
END-DEFINE

OPEN CONVERSATION USING SUBPROGRAM "APPLSUB1’
CALLNAT 'APPLSUB1' PARM
CLOSE CONVERSATION *CONVID

ON ERROR

CALLNAT 'RPCINFO’ SERVER-PARMS CLIENT-PARMS
ASSIGN TEXT=C-ERROR-TEXT

12

Using the RPCINFO Subprogram

DISPLAY CLASS REASON
END-ERROR

END

Parameters of RPC Info

Operating a Natural RPC Environm

RPCINFOhas the following parameters which are provided in the parameter daRPLZE4FOL

Parameter

Format

Description

SERVER-PARMS

Contains information about the Natural session
when acting as a server.

The SERVER-PARMS®NIly apply if you execute
RPCINFOremotely on an RPC server.

ent

hen

Ver.

S-BIKE Al Transport protocol used; possible value:
B EntireX Broker

S-NODE A32 The node name of the server.

S-NAME A32 The name of the server.

S-ERROR-TEXT A80 Contains the message text returned from the
transport layer.

S-CON-ID 14 Current conversation ID. Note that this is the
physical ID from EntireX Broker, not the logical
Natural ID.
This parameter always contains a value as Entin
Broker generates IDs for both conversational an
non-conversational calls.
If the physical conversation ID is either
non-numeric or greater than I14;4 is returned.

S-CON-OPEN L Indicates whether there is an open conversation
This parameter contains the valliRUEIf a
conversation is open, otherwise it contdiid. SE

CLIENT-PARMS Contain information about the Natural session w
acting as a client.

C-BIKE Al Transport protocol used; possible value:
B EntireX Broker

C-NODE A32 The node name of the previously addressed ser

C-NAME A32 The name of the previously addressed server.

C-ERROR-TEXT A80 Contains the message text returned from the

transport layer.

13

Operating a Natural RPC Environment Using the Server Trace Facility

Parameter Format | Description

C-CON-ID 14 Conversation ID of the last server call. Note that
this is the physical ID from EntireX Broker, not the
logical Natural ID.

If no conversation is open, the value of this
parameter is less than or equaltdf the physical
conversation ID is either non-numeric or greater
than 14, a1 is returned.

C-CON-OPEN L Indicates whether there is an open conversation
This parameter contains the valliRUEIf a
conversation is open, otherwise it contdidd SE

C-ENTIREX-RPC-ERROR-MESSAG| A Contains the message text returned from an EntireX
RPC server.

Using the Server Trace Facility

Natural RPC includes a trace facility that enables you to monitor server activities and trace possible error
situations.

Activating/Deactivating the Server Trace Facility

To activate/deactivate the server trace facility, start the server with the option

TRACE™"

The integer value represents the desired trace level; that is, the level of detail in which you want your
server to be traced. The following values are possible:

Value | Trace Level

0 |No trace is performed (default).

1 |All client requests and corresponding server responses are traced and documented.

2 | All client requests and corresponding server responses are traced and documented; in| addition,
all RPC data are written to the trace file.

The RPC trace facility writes the trace data to the Natural Report Number 10.

In case of a conversion error which is reported with Natural error number NAT6974 and reason codes 2
and 3, the position of the erroneous data in the buffer is indicated.

Support of TS=ON for RPC Server Trace
The following information applies to Mainframe environments only:

All messages in the Natural RPC server trace are translated into upperf&s@Mis specified in the
Natural RPC server session. The trace of the data from/to the client is not affe€&eyand remains
unchanged.

14

Defining the Trace File Operating a Natural RPC Environment

Defining the Trace File
The trace file definition depends on the environment:

Trace File Handling for Mainframe Environments - General Information
Trace File Handling in z/OS Batch Mode

Trace File Handling under CICS

Trace File Handling in z/VSE Batch Mode

Trace File Handling in BS2000/0SD Batch Mode

Trace File Handling for UNIX and OpenVMS Environments

Trace File Handling for Windows

Trace File Handling for Mainframe Environments - General Information

On the mainframe, define the trace file appropriate to your environment, see aFPRENT macro (in
the Parameter Reference documentation).

Trace File Handling in z/OS Batch Mode
a) Running A Server As Single Task

In the server start job, assign a z/OS dataset to the Natural additional QBRI 10

Example:

/INATRPC JOB CLASS=K,MSGCLASS=X
/INATSTEP EXEC PGM=NATOS

/ISTEPLIB DD DISP=SHR,DSN=SAG.NAT.LOAD

Il DD DISP=SHR,DSN=SAG.EXX.LOAD

/ICMPRMIN DD *
IM=D,MADIO=0,MT=0,0BJIN=R,AUTO=0FF,MAXCL=0,ID=",",INTENS=1,
PRINT=((10),AM=STD)

/*

/ISYSUDUMP DD SYSOUT=X

/ICMPRT10 DD SYSOUT=X

/ICMPRINT DD SYSOUT=X

/*

b) Running a Server With Replicas
1. Setthe RPC parametdTASKSto a value greater than 1.
2. AssignCMPRMINo a dataset witBISP=SHRor to* .
3. As each task writes on a sepaf@iPRINTdataset, define the following DD card names:
CMPRINTfor the main task;
CMPRINT1to CMPRINT9for the first nine subtasks;
CMPRIN10to CMPRINnN for the next two-digit numbers of subtagk=NTASKS-1.

4. If the keyword subparamefERACEof profile parameteRPCor parameter macfdTRPOs set, the
trace facility writes to Printer 10.

15

Operating a Natural RPC Environment

You must define the following DD card names:
CMPRT1(or the main task;
CMPRT101to CMPRThn for all subtaskshn=NTASKS-1;

Example:

/INATRPC JOB CLASS=K,MSGCLASS=X
/INATSTEP EXEC PGM=NATOS,REGION=8M
/isteplib DD DISP=SHR,DSN=SAG.NAT.LOAD
Il DD DISP=SHR,DSN=SAG.EXX.LOAD
/ICMPRMIN DD *
IM=D,MADIO=0,MT=0,0BJIN=R,AUTO=0OFF, MAXCL=0,ID="," INTENS=1,
PRINT=((10),AM=STD)

/*

/ISYSUDUMP DD SYSOUT=X

/ICMPRT10 DD SYSOUT=X

/ICMPRT101 DD SYSOUT=X

/ICMPRT102 DD SYSOUT=X

/ICMPRT103 DD SYSOUT=X

/ICMPRINT DD SYSOUT=X

/ICMPRINT1 DD SYSOUT=X

/ICMPRINT2 DD SYSOUT=X

/ICMPRINT3 DD SYSOUT=X

/*

Trace File Handling under CICS

Defining the Trace File

Under CICS, assign Print File 10 to a CICS extra-partitioned transient data queue.

Examples:

Natural dynamic profile definition:

PRINT=((10),AM=CICS,DEST=RPCT,TYPE=TD)

CICS definition:

RPCTRAC DFHDCT TYPE=SDSCI, X
BLKSIZE=136, X
BUFNO=1, X
DSCNAME=RPCTRACE, X
RECFORM=VARUNSB, X
RECSIZE=132, X
TYPEFLE=OUTPUT

SPACE

RPCT DFHDCT TYPE=EXTRA, X
DSCNAME=RPCTRACE, X
DESTID=RPCT, X
OPEN=INITIAL

CICS Startup JCL:

RPCTRACE DD SYSOUT=*

16

Defining the Trace File Operating a Natural RPC Environment

Trace File Handling in z/VSE Batch Mode

In z/VSE batch mode, assign a trace file to the Printer Number 10.

Example:

/I LIBDEF PHASE,SEARCH=(SAGLIB.NAT vrs,SAGLIB.ETB vrs) TEMP
/I ASSGN SYS000,READER

/I ASSGN SYSLST,FEE

/I ASSGN SYS050,FEF

/I EXEC NATVSE,SIZE=AUTO,PARM="SYSRDR’
IM=D,MADIO=0,MT=0,0BJIN=R,AUTO=0OFF, MAXCL=0,ID=","INTENS=1,
PRINT=((10),AM=STD,SYSNR=50)

/*

wherevr s stands for version, release, system maintenance level.
Trace File Handling in BS2000/0OSD Batch Mode
In BS2000/0SD batch mode, assign a trace file to Printer Number 10.

Example:

[.NATRPC LOGON

SYSFILE SYSOUT= output-file

SYSFILE SYSDTA=(SYSCMD)

SYSFILE SYSIPT=(SYSCMD)

FILE trace-fil e LINK=P10,0PEN=EXTEND */server trace file
STEP

SETSW ON=2

EXEC NATBS2

MADIO=0,IM=D,ID=",",PRINT=((10),AM=STD)

e e

Trace File Handling for UNIX and OpenVMS Environments

It is recommended that you use a different file name (that is, a diffdAerPARNparameter file) for each
server so that you can trace them individually. The trace file is defined NAIhRRARNbarameter file of
the Natural server:

1. Report Assignments
Assign the logical device LPT10 to your Report Number 10.

2. Device Parameter Assignments

Instead of selecting a physical printer specification for LPT10, specify a file name that represents the

name of your trace file.

Example for UNIX:

/bin/sh -c cat>>/ filename

wherefilename represents the name of the trace file.

17

Operating a Natural RPC Environment Retrieving Runtime Settings of a Server

Example for OpenVMS:

nattmp: fil enane
wherefilename represents the name of the trace file.
Trace File Handling for Windows

It is recommended that you use a different file name (that is, a difféfeFPARNparameter file) for each
server so that you can trace them individually. The trace file is defined NAIRRARNbarameter file of
the Natural server (sd@evice/Report Assignmenis the Configuration Utility):

1. Reports
Assign the logical device LPT10 to your Report Number 10.

2. Devices

Instead of selecting a physical printer specification for LPT10, specify a file name that represents the
name of your trace file. As default, old trace files are deleted when a new file with the same name is

created.
If you wish to append the new log to the existing one, specify:

>>filename

Retrieving Runtime Settings of a Server

The Natural application programming interface (AP§R4010Nenables you to retrieve the runtime
settings of a server:

® the system file assignments FBUSER FNAT, andFSEC
® the steplib chain.
¥ To make use ofUSR4010N

1. Copy the subprogramiSR4010Nfrom libray SYSEXTto the librarySYSTEMor to the steplib
library or to any application in the server environment.

2. Using EDEFINE DATA statement, specify the following parameters:

18

Setting/Getting Parameters for EntireX

Operating a Natural RPC Environment

Parameter Format Description

FUSER-DBID N5 Database ID of system filEUSER
FUSER-FNR N5 File number of system filEUSER
FNAT-DBID N5 Database ID of system fileNAT.
FNAT-FNR N5 File number of system fiIENAT.
FSEC-DBID N5 Database ID of system fileSEC
FSEC-FNR N5 File number of system filIESEC
STEP-NAME A8/15 Name of steplib.

STEP-DBID N5/15 Database ID of steplib.
STEP-FNR N5/15 File number of steplib.

3. In the calling program on the client side, specify the following statement:

CALLNAT 'USR4010’ USR4010-PARM

See also th8yntax Descriptiomof the CALLNATSstatement.

4. If RPC parameteAUTORPC=0FFopy the stubdSR4010X to the client environment.

If RPC parameteAUTORPC=QNhe API| must not be available to the client environment, otherwise

the API would be called locally.

WhenUSR4010Nis called, the values of the parameter specified above are output in the group of fields

USR4010-PARM

Setting/Getting Parameters for EntireX

The Application Programming Interface (ARISR4009Nenables you to set or to get the EntireX

parameters that are currently supported by the Natural RPC. These are:

® Compression level

® Encryption level

¥ To make use ofUSR4009N

1. Copy the subprogratiSR4009Nfrom libray SYSEXTto the librarySYSTEMor to the steplib

library or to any application in the server environment.

2. Using eDEFINE DATA statement, specify the following parameters:

19

Operating a Natural RPC Environment

Setting/Getting Parameters for EntireX

Parameter Format | I/0 | Description
FUNCTION A01 | |Function; possible values are:
G The values already set for the EntireX paramet
(Get) |are returned.
If no PUThas been called before in the Natural
session, all values are zero or blank.
P The values specified for the EntireX parameter$
(Put) |are saved and used in all subsequent calls to
EntireX.
ENVIRONMENT AO01 [Environment; possible values are:
S Server
C Client
B Both
COMPRESSLEVEL |A01 I/O | Compression level.
ENCRYPTION-LEVEL 101 I/O | Encryption level.
ACIVERS BO2 O | ACI version used.
RC BO1 O |Return code, unless equal to zero. Contains the ACI

version required to set the requested parameter:

0 Function successful.
6 Encryption level requires ACI version 6.
7 Compression level requires ACI version 7.

3. The interface can be called in two ways:

1. From within a program:

CALLNAT 'USR4009N’
COMPRESSLEVEL

ENCRYPTION-LEVEL
ACIVERS RC

FUNCTI ON ENVI RONMVENT

2. From the command prompt or by using the state@EACKwith values for the above

parameters.

Examples:

USR4009P P,C,ENCRYPTION-LEVEL=1

USR4009P P,C,,2

USR4009P P,C,ENCRYPTION-LEVEL=1,COMPRESSLEVEL=6

In command mode, you may use keywor d=val ue notation to set only a subset of the EntireX
parameters. The values for parameters that are not referenced remain unchanged.

20

Handling Errors Operating a Natural RPC Environment

Notes:

® The request is rejected and no values are saved if the ACI version used by the current Natural session
is not high enough to support the requested EntireX parameter. In this case the RC contains the
required ACI version.

® The EntireX parameters are only honored by the Natural RPC.

Handling Errors
® Remote Error Handling
® Avoiding Error Message NAT3009 from Server Program

o User Exit NATRPCO1

Remote Error Handling

Any Natural error on the server side is returned to the client as follows:
o Natural RPC moves the appropriate error number tSEREROR-NRsystem variable.
® Natural reacts as if the error had occurred locally.

Note:

If profile parameteAUTORP@s set taONand a subprogram cannot be found in the local environment,
Natural will interpret this as a remote procedure call. It will then try to find this subprogram in the service
directory. If it is not found there, a NAT6972 error will be issued. As a consequence, no NAT0082 error
will be issued if a subprogram cannot be found.

See alsdJsing the RPCERR Program.

Avoiding Error Message NAT3009 from Server Program

If a server application program does not issue a database call during a longer period of time, the next
database call might return a NAT3009 error message.

To avoid this problem, proceed as follows:
1. Add aFIND FIRST or HISTOGRAMtatement in progratldATRPC39 library SYSRPC
2. Copy the updated program to libr&YSTEMN FUSER

The steplib concatenation of the library to which the server currently is logged on is not evaluated.

User Exit NATRPCO1

The user exiNATRPCO1is called when a Natural error has occurred, actually after the error has been
handled by the Natural RPC runtime and immediately before the response is sent back to the client. This
means, the exit is called at the same logical point as an error transaction, that is, at the end of the Natural
error handling, after alDN ERRORstatement blocks have been processed.

21

Operating a Natural RPC Environment User Exits before and after Service Execution

In contrast to an error transaction, this exit is called witiAaLNATstatement and must therefore be a
subprogram which must return to its caller.

The interface to this exit is similar to the interface of an error transaction. In addition, the exit can pass
back up to 10 lines of information which will be traced by the Natural RPC runtime. Only lines which
begin with a non-blank character will be traced.

Important Notes:

1. NATRPCOImust be located in libraiY STEMon FUSER The steplib concatenation of the library
to which the server currently is logged omas evaluated.

2. TheDEFINE DATA PARAMETERstatement block must not be changed.

User Exits before and after Service Execution

To give administrators more control over the execution of services (remote CALLNATS), two optional
user exits are called on the Natural RPC server side.

User Exit |Purpose

NATRPCO0Z The optional before-service-execution éx&ATRPCO02is called immediately before th
service is executed. At this point in time, the request has already passed all secutlity
checks and the data is unmarshalled.

1%

NATRPCO0J The optional after-service-execution e\ TRPCO03s called immediately after
successful return from the service. At this point in time, the data is not yet marshglled.
The exit is not called if an unhandled error has occurred.

These exits are independent of each other and can be used separately.
For both exits, the following rules apply:

® The exit must be located in libra8Y STEMon theFUSERsystem file.

If the exit is found during startup of the Natural RPC server, a message is written to the Natural RPC

server trace to indicate the activation of the exit. The exit is afterwards called unconditionally. If the
exit is removed during the lifetime of the server session, a permanent NAT0082 error will occur.

If the exit is not found during startup of the Natural RPC server, the exit is never called during the
lifetime of the server session. The exit cannot be enabled dynamically.

® The exit must be implemented by the user as a subprogram. The exit is called with a single dynamic

variable as parameter. The content of the dynamic variable is the eight character long name of the
remote subprogram.

The use of the dynamic variable allows us to implement future extensions of the passed information

without causing problems with existing user written exits.

® The exit is also called inside a conversation.

22

User Exits before and after Service Execution Operating a Natural RPC Environment

e The Natural RPC server does not intercept unhandled errors in the exit. If an unhandled error occurs
in the exit, the error is propagated to the client.

The exits may be used for auditing or tracing purpd$A3.RPC02may also be used for addional
security checks.

Example for NATRPCO2:

DEFINE DATA PARAMETER

1 SUBPROGRAM (A8) BY VALUE

END-DEFINE

IF *USER <> 'DBA’ AND SUBPROGRAM = PRIVATE’
*ERROR-NR := 999

END-IF

END

23

	Operating a Natural RPC Environment
	Specifying RPC Server Addresses
	Using Local Directory Entries
	Using Remote Directory Entries
	Specifying a Default Server Address at Natural Startup
	Specifying a Default Server Address within a Natural Session
	Using an Alternative Server
	Using EntireX Location Transparency

	Stubs and Automatic RPC Execution
	Creating Stub Subprograms
	Working with Automatic Natural RPC Execution

	Modifying RPC Profile Parameters during a Natural Session
	Executing Server Commands
	Logon to a Server Library
	Using the Logon Option
	Logging on to a Different Library
	Settings Required on the Client Side
	Settings Required on the Server Side

	Using Compression
	Using Secure Socket Layer
	Monitoring the Status of an RPC Session
	Using the RPCERR Program
	Example of an RPC Error Display: RPCERROR

	Using the RPCINFO Subprogram
	Example:
	Parameters of RPC Info

	Using the Server Trace Facility
	Activating/Deactivating the Server Trace Facility
	Support of TS=ON for RPC Server Trace

	Defining the Trace File
	Trace File Handling for Mainframe Environments - General Information
	Trace File Handling in z/OS Batch Mode
	a) Running A Server As Single Task
	Example:
	b) Running a Server With Replicas
	Example:
	Trace File Handling under CICS
	Examples:
	Trace File Handling in z/VSE Batch Mode
	Example:
	Trace File Handling in BS2000/OSD Batch Mode
	Example:
	Trace File Handling for UNIX and OpenVMS Environments
	Example for UNIX:
	Example for OpenVMS:
	Trace File Handling for Windows

	Retrieving Runtime Settings of a Server
	Setting/Getting Parameters for EntireX
	
	Notes:

	Handling Errors
	Remote Error Handling
	Avoiding Error Message NAT3009 from Server Program
	User Exit NATRPC01
	Important Notes:

	User Exits before and after Service Execution
	
	Example for NATRPC02:

