Quick Start Quick Start

Quick Start

In order to understand the structure of a Natural Studio plug-in and its interaction with Natural Studio, it is
instructive to create and explore a minimal, but fully operational plug-in. Later this plug-in will be
extended. Perform the steps described in the topics below.

® Prerequisites

® Creating a Minimal Plug-in

Installing and Activating the Minimal Plug-in

Exploring the Minimal Plug-in

Extending the Minimal Plug-in

Deactivating and Uninstalling the Minimal Plug-in

Prerequisites

In order to develop a plug-in, you need the example lIBASEXPLG as a basis. This library contains
the plug-in example and some central definitions and modules that are common to all plug-ins.

Plug-ins are always executed under the Natural paramet8IAfiIBARM While developing a plug-in, you
need the same Natural environment during editing, cataloging, debugging and execution of your plug-in.

¥ To check the prerequisites

1. Make sure that the libraBYSEXPLG has been installed. If it has not been installed during the
Natural Studio installation, install it now.

2. Invoke theConfiguration Utilityand make sure that the librar®@$SEXPLG andSYSEXT are
defined asteplibsin the Natural parameter fiATPARM

3. Make sure that you start Natural Studio either under the Natural parameét@TflaRMor under a
Natural parameter file that has the same system file assignments as the Natural parameter file
NATPARM In a typical Natural installation this will be the case by default.

Creating a Minimal Plug-in
Plug-ins are created using the Plug-in Manager.
» Tocreateaplug-in

1. Make sure that plug-in activation has been enabled\8eepace Options in the documentation
Using Natural Sudio.

2. Invoke the Plug-in Manager as describebhimking the Plug-in Manager in the documentation
Using Natural Sudio.

Quick Start Creating a Minimal Plug-in

3.

4.

Select an arbitrary plug-in in the Plug-in Manager.
Invoke the context menu and choblssy.
The following dialog box appears.

Ereate Plug-in E3

— ldentification
Librany: MNaTURaSL

Clazz module: |MSTPLG-E

Clasz name: CSAGMNATUSERMATURALPLUGIM

Dizplap name: |Uzer HATURAL Plug-in

YWerzion; 3 ¥ Single server

Qk Cancel Help

The entries that are proposed in the different text boxes contain your user ID.
Specify all the following information:
Library

Enter the Natural library into which the plug-in shall be generated. You should ideally use a new
library for each plug-in project. If the library is not empty, you will receive a warning. If you
generate the plug-in anyway, existing modules will be replaced without further warnings.

Class module

The plug-in consists basically of a Natural class. Choose an eight character name for the class
module and enter it here.

Class name

This name will be used as class name irOBElI NE CLASS statement. Choose a 32 character
class name and enter it here. This class name combined with the version number will be used as
ProglID in the system registry when the plug-in is installed. Therefore you must use a name that
is unique among all ActiveX components that are installed on the machine. It is good and
common practice to prefix the name with an abbreviation of your company. For instance the
class names of the plug-ins delivered with Natural Studio all start with "CSAGNAT".

Display name

This name will be used to display the plug-in in the Plug-in Manager.

Installing and Activating the Minimal Plug-in Quick Start

Version

The version number specified here is combined with the class name specified above to form the
ProgID of the plug-in, for example "CSAGNATUSERNATURALPLUGIN.3". Different
plug-ins with the same class name and different version numbers can coexist in one installation.

Single server

If this check box is selected, the new plug-in will run in an own Natural server process, distinct
from all other plug-ins. This is required only if the plug-in ugeseric document windows

If this check box is not selected, the plug-in will run in the same server process as the Plug-in
Manager. This saves an extra Natural server process during execution of the plug-in. However,
it does not allow the usage of generic document windows.

6. Choose th®K button to generate the plug-in into the specified library. This is a minimal plug-in
which you can extend with your own code (this is explained later in this section).

If an error occurs during the generation process, check the generation log. A common reason for
errors is that the example libra®YSEXPLG s not available, is not set as a steplib or was manually
modified. In such a case, you have to reinstall the example library and check the steplib assignment.

|nstalling and Activating the Minimal Plug-in

When the minimal plug-in has been created as described above, it can be installed. When it has been
installed, it can be activated.

The advantage of an activated plug-in is that you can immediately test whether your own code that you
add to the plug-in works as intended.

¥ Toingtall aplug-in

1. Execute the prograhNSTALL that was created in the library specified during the creation of the
plug-in.

2. Restart Natural Studio to make the new plug-in visible in the Plug-in Manager.

Note:
The next time you execute the prograMSTALL, the plug-in is uninstalled.

» Toactivateaplug-in
1. Invoke thePlug-in Manager

2. Activate the new plug-in as describedhativating and Deactivating a Plug-in in the documentation
Using Natural Sudio.

Note:

When you define automatic activation mode for this plug-in, the plug-in will be activated each time
you start Natural Studio. S@&fining Automatic or Manual Activation Mode for a Plug-in in the
documentatiotJsing Natural Studio.

Quick Start Exploring the Minimal Plug-in

Exploring the Minimal Plug-in

Log on to the library into which the plug-in was generated and open the generated cla€daasthe
Builder. You will notice that the plug-in is just a Natural class that implements two specific interfaces,
namelyl Nat ur al St udi oPl ugl n andl Nat ur al St udi oPl ugl nTr ee. These interfaces are
specified in the interface modules (copycoddS)JPLG- | andNSTPLT- | , which are contained in the
example librarySYSEXPLG and are shared by all plug-ins.

The minimal plug-in leaves most of the methods of these interfaces empty. In fact it really implements
only two methodsOnAct i vat e andOnDeact i vat e of the interface Nat ur al St udi oPI ugl n.
These methods are of specific interest: Natural Studio calls the m@tiad i vat e, when the user
chooses the commaricttivate in the Plug-in ManageOnDeact i vat e is called when the user chooses
the commandDeactivate in the Plug-in Manager.

If you open the method bodies@hAct i vat e andOnDeact i vat e in the Class Builder, you will

notice that the minimal plug-in does nothing other than indicating its activation and deactivation by
opening a message box. A real plug-in will of course use these methods to prepare itself for operation and
to initialize and uninitialize its state. In the following section, we will see what this can mean.

Extending the Minimal Plug-in
The following topics are covered below:

e Adding a Command

e Enabling the Command

e Handling the Command

Adding a Command

In order to interact with the user, the plug-in must define commands and present them to the user in menus
or toolbars. Usually this will be done in the metl@tiAct i vat e. Natural Studio passes a handle to the
Natural Studio interfaceNat Aut oSt udi o to the plug-in. The plug-in will store this handle and use it

to access Natural Studio during further method calls.

» Toadd acommand

® As an example, add the code which is indicated in bold to the m@thaxt i vat e:

define data

par anet er using nstact-a

obj ect using nsttnp-o

| ocal

1 #control bars handl e of object

1 #commands handl e of obj ect

1 #command handl e of obj ect

1 #tool bars handl e of object

1 #t ool bar handl e of object
end-define

*

* Keep the Natural Studio Automation interface in mnd.
#studi o : = nstact-a.i Nat Aut oSt udi o
* Show that we are comi ng up

Enabling the Command Quick Start

send "MessageBox" to #studio

with "Activating plug-in!'" "Natural Studio Plug-in"
*

* Add a command.

#control bars : = #studio. Control Bars
#conmmands : = #control bars. Commands
send "Add" to #commands

with 100 "My Command" 1

return #commuand

*

* Select a tool bar.

#t ool bars : = #control bars. Tool bars
send "ltenm to #tool bars

with "Tool s"

return #tool bar

*

* | nsert the command.

send "l nsert Cormand" to #t ool bar

wi th #conmand

*

end

This code sequence creates a command with the internal identifier "100" and inserts it into the Tools
toolbar. Whenever the user chooses the new toolbar button, Natural Studio sends the command
identifier "100" to the metho@ Command of the interfacé Nat ur al St udi oPl ugl n.

Enabling the Command

Initially, Natural Studio shows the new command disabled. In order to make the command available to the
user, the plug-in must implement a command status handler. In the command status handler, the plug-in
can check any condition necessary to enable the command. In particular, it has access to the interface

| Nat Aut oSt udi o to perform operations in Natural Studio. In the simplest case, the plug-in enables the
command without any condition.

» Toenablethe command

® As an example, add the code which is indicated in bold to the métt@ehmandSt at us of your
plug-in:

define data
paranmet er using nstcst-a
obj ect using nsttnp-o
end- defi ne
*
decide on first nstcst-a. Command
val ue 100
nstcst-a. Enabled : = True
none
i gnore
end- deci de

*

end

Quick Start Deactivating and Uninstalling the Minimal Plug-in

Handling the Command

In order to react to the command, the plug-in must implement a command handler. In the command
handler, the plug-in can do anything necessary to implement the command. In particular, it has access to
the interfacd Nat Aut oSt udi o to perform operations in Natural Studio.

» To handlethe command
® As an example, add the code which is indicated in bold to the mét@mhmand of your plug-in:

define data

paramet er using nstcnd-a
obj ect using nsttnp-o

| ocal

1 #obj ects handl e of object
1 #progs handl e of object
end- define

*

decide on first nstcnd-a. Conmand

val ue 100
#obj ects : = #studi 0. Obj ects
#progs : = #obj ects. Prograns
send "Add" to #progs with 1009
none
i gnore
end- deci de
*
end

Now when the user chooses the new toolbar button, the plug-in opens the program editor with an
untitled program.

Deactivating and Uninstalling the Minimal Plug-in

If you do not want to work with your minimal plug-in any longer, you can deactivate it. If you want to
remove your minimal plug-in from the Plug-in Manager, you have to uninstall it.

» Todeactivateaplug-in
1. Invoke thePlug-in Manager

2. Deactivate your minimal plug-in as describeddtivating and Deactivating a Plug-in in the
documentatiotJsing Natural Studio.

Note:

When automatic activation mode has been defined for this plug-in, the plug-in will be activated again
the next time you start Natural Studio. $aining Automatic or Manual Activation Mode for a

Plug-in in the documentatiobdsing Natural Sudio.

» Touninstall aplug-in

1. Execute the prograhNSTALL that was created in the library specified during the creation of the
plug-in.

Deactivating and Uninstalling the Minimal Plug-in Quick Start

2. Restart Natural Studio to remove the plug-in from the Plug-in Manager.

Note:
The next time you execute the prograMSTALL, the plug-in is installed again.

	Quick Start
	Prerequisites
	Creating a Minimal Plug-in
	Installing and Activating the Minimal Plug-in
	Exploring the Minimal Plug-in
	Extending the Minimal Plug-in
	Adding a Command
	Enabling the Command
	Handling the Command

	Deactivating and Uninstalling the Minimal Plug-in

