
Working with List Box Controls and
Selection Box Controls
List box controls and selection box controls contain a number of items. Both the controls and the items are
dialog elements; the controls are the parents of the items.

There are two ways of creating list box items and selection box items:

Use Natural code to create individual and multiple list box items dynamically; or

use the dialog editor (to add single or arrays of list box items and selection box items).

In Natural code, this may look like this:

#AMOUNT := 5
ITEM (1) := ’BERLIN’
ITEM (2) := ’PARIS’
ITEM (3) := ’LONDON’
ITEM (4) := ’MILAN’
ITEM (5) := ’MADRID’
PROCESS GUI ACTION ADD-ITEMS WITH #LB-1 #AMOUNT #ITEM (1:5) GIVING #RESPONSE

You first specify the number of items you want to create, name the items, and use the PROCESS GUI
statement action ADD-ITEMS.

If you want to go through all items of a list box control to find out which ones are selected, it is advisable
to use the SELECTED-SUCCESSOR attribute because if a list box control contains a large number of
items (100, for example), this helps improve performance. If you use SELECTED-SUCCESSOR, you
have one query instead of 100 individual queries if you use the attributes SELECTED and SUCCESSOR.

Example:

/* Displays the STRING attribute of every SELECTED list-box item
MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
REPEAT UNTIL #LBITEM = NULL-HANDLE
 .../* STRING display logic

 MOVE #LBITEM.SELECTED-SUCCESSOR TO #LBITEM
END-REPEAT

For performance reasons, you should not use the SELECTED-SUCCESSOR attribute to refer to the same
dialog element handle twice, because Natural goes through the list of item handles twice:

/* Displays the STRING attribute of every SELECTED list-box item,
/* but may be slow
MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
REPEAT UNTIL #LBITEM = NULL-HANDLE
 IF #LBITEM.SELECTED-SUCCESSOR = NULL-HANDLE /* Searches in the list of items
 IGNORE
 END-IF
 .../* STRING display logic
 MOVE #LBITEM.SELECTED-SUCCESSOR TO #LBITEM /* Searches in the list of items
END-REPEAT /* for the second time

1

Working with List Box Controls and Selection Box Controls Working with List Box Controls and Selection Box Controls

To avoid this problem, you use a second variable #OLDITEM besides #LBITEM:

/* Displays the STRING attribute of every SELECTED list-box item
MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
REPEAT UNTIL #LBITEM = NULL-HANDLE
 #OLDITEM = #LBITEM
 #LBITEM = #LBITEM.SELECTED-SUCCESSOR/* Searches in the list of items (once)
 IF #LBITEM = NULL-HANDLE
 IGNORE
 END-IF
 .../* Display logic using #OLDITEM.STRING
END-REPEAT

If you retrieve the handle values of the selected items, a value other than NULL-HANDLE would normally
be returned by selected items. Such a handle value can also be returned by non-selected items if you
assign SELECTED-SUCCESSOR a value immediately before retrieving the SELECTED-SUCCESSOR
value of a non-selected item, as shown in the following example:

...
PTR := #LB-1.SELECTED-SUCCESSOR
PTR := NOT_SELECTEDHANDLE.SELECTED-SUCCESSOR
IF NOT_SELECTEDHANDLE.SELECTED-SUCCESSOR = NULL-HANDLE THEN
 #DLG$WINDOW.STATUS-TEXT := ’NULL-HANDLE’
ELSE
 COMPRESS ’NEXT SELECTION: ’ PTR.STRING TO #DLG$WINDOW.STATUS-TEXT
END-IF
...

If you want to query whether a particular item in a list box control is selected, you get the best
performance by using the SELECTED attribute:

#DLG$WINDOW.STRING:= #LB-1-ITEMS.SELECTED(3)

Protecting Selection Box Controls and Input Field Controls

To prevent an end user from typing in input data in a selection box control or input field control, you have
several possiblities, for example:

setting the MODIFIABLE attribute to FALSE for the dialog element, or

setting session parameter AD=P, or

using a control variable (CV).

If a selection box control is protected, it is still possible to select items; only values from the item list will
be displayed in its input field. If the STRING attribute is set to a value (dynamically or by initialisation)
which is not in the item list, the value will not be visible to the end user.

2

 Working with List Box Controls and Selection Box ControlsWorking with List Box Controls and Selection Box Controls

	 Working with List Box Controls and Selection Box Controls
	
	
	Protecting Selection Box Controls and Input Field Controls

