
Working with Dialog Bar Controls
This document covers the following topics:

Introduction

Creating a Dialog Bar Control

Types of Dialog Bar Control

UI Transparency

Client-Size Event

Close Button

Sample Code

Introduction
A dialog bar is similar to a tool bar control in that it can either docked to one of the interior sides of the
dialog’s frame or (optionally) floated in its own separate window. Unlike tool bar controls, however,
dialog bar controls are conceived general-purpose container controls and are not dedicated to containing
primarily tool bar items. Furthermore, there are a number of other visual and behavioral differences
between tool bar controls and dialog bars, some of which are discussed below.

A good example of a dialog bar control is the library workspace window in Natural Studio.

Creating a Dialog Bar Control
Dialog bar controls are created in the dialog editor in the same way as other standard controls (such as list
boxes or push buttons) are. That is, they are either created statically in the dialog editor via the Insert
menu or by drag and drop from the Insert tool bar, or dynamically at run-time by using a PROCESS GUI
ACTION ADD statement with the TYPE attribute set to DIALOGBAR.

Types of Dialog Bar Control
A dialog bar control can exist in one of the following three basic forms (in order of complexity):

1. Neither dockable nor sizeable.

2. Dockable, but not sizeable.

3. Dockable and sizeable.

The dialog bar control is dockable if its DRAGGABLE attribute is set. It is sizeable if the "Dynamic (Y)"
STYLE flag is set.

1

Working with Dialog Bar Controls Working with Dialog Bar Controls

The following example shows an example of a non-dockable, non-sizeable dialog bar. The edit area on the
right fills the entire client area of the dialog. The dialog bar cannot be dragged by the user and extends to
fill the entire length of the side on which it is positioned:

Setting the "dockable" state in the Dialog Bar Attributes window in the dialog editor causes the window to
be draggable by the user. Note also that the dialog bar no longer extends to occupy the full length of the
side to which it is docked (another dialog bar control or tool bar control could be docked underneath it):

The user can drag the dialog bar control and re-dock it to another side of the owner dialog, or float it in its
own separate window, as shown below:

2

Types of Dialog Bar ControlWorking with Dialog Bar Controls

If the dialog bar control is made sizeable (by checking the "Dynamic (Y)" style flag in the Attributes
window), a longitudinal splitter bar appears, allowing the dialog bar control to be resized. Note that
sizeable dialog bar controls expand to fill the entire length of the side they are docked to that is not
occupied by non-sizeable bars:

If a gripper bar, zoom and close button are added (by setting the "Gripper (g)", "Zoom button (z)" and
"Close button (x)" style flags in the Attributes window), the dialog bar control takes on the familiar
appearance of the control used to display the library workspace in Natural Studio. Note that the zoom
button is disabled, because there is no other sizeable dialog bar control on the same row:

3

Working with Dialog Bar ControlsTypes of Dialog Bar Control

If a second sizeable dialog bar control is added, and docked alongside the first on the same row, a
transverse splitter bar appears allowing the relative sizes of the two dialog bar controls to be changed.
Note that the zoom button is now enabled:

Clicking on the zoom button toggles between the maximized and restored states of a sizeable dialog bar
control. Maximizing a dialog bar control causes the other sizeable dialog bar controls on the same row to
be minimized, and the released space to be taken up by the maximized bar, as shown below:

4

Types of Dialog Bar ControlWorking with Dialog Bar Controls

Note that the direction of the arrow is displayed by the zoom button on the maximized bar has changed
direction in order to indicate that the next time this button is pressed, the bar will be restored, rather than
maximized. When a bar is restored, all sizeable dialog bars on the row revert to their normalized sizes.
These are usually the sizes prior to the maximize operation, unless there has been a change in the visible
bars on the row in the meantime (e.g., visible bar hidden or hidden bar shown, new bar docked on row,
etc.).

Note that if the length of a bar on a row is changed via a tranverse splitter bar, all visible bars on the row
are automatically restored.

UI Transparency
A dockable dialog bar control may normally be dragged via either its gripper bar (if any) or its
background. If the "UI transparent (T)" style is set, however, the bar may only be dragged via its gripper
bar (if any). If such a (sizeable) bar does not have a gripper bar, resizing of the control is only possible via
the splitter bar(s), which may be a desirable feature in some situations. Additionally, only allowing
dragging via the gripper bar helps prevent unintentional initiation of drag operations.

Client-Size Event
The dialog’s client window is reduced in size to exclude the areas occupied by tool bar, status bar and
dialog bar controls. If a dockable window (tool bar or dialog bar control) is floated, re-docked to another
side of the owner window, or is shown or hidden, the size of the client window can change, even though
the exterior dimensions of the window have not altered. Because the SIZE event is reserved for changes
in a dialog’s exterior size, applications which need to keep track of the size of the client window should
instead use the CLIENT-SIZE event for this purpose. The actual size of the dialog client window can
then be determined within this event by means of the INQ-INNER-RECT action.

Close Button
The close button (if present) hides a dialog bar control rather than closing it, as is also the case for the
close button on floated tool bar controls. It is up to the application to provide a method of re-showing the
bar. The next section provides some code for doing this (amongst other things).

5

Working with Dialog Bar ControlsUI Transparency

Sample Code
Below is a full listing of an external subroutine that can, in most cases, be used "as-is" in order to allow
user control over the display of tool bars and dialog bars. The code is designed to be powerful enough to
cope with MDI applications, but also works with non-MDI (i.e., SDI) applications.

The subroutine appends the tool and dialog bar captions (STRING attribute) to the dialog’s context menu.
If the dialog does not have a context menu, one is created and assigned to the dialog automatically. It
assumes that, in an MDI application, there are some tool bars and dialog bars that are global (i.e., relevant
for all types of MDI child dialogs) and some which are private (i.e., relevant only for one type of MDI
child dialog). For example, in Natural Studio, the Object tool bar is an example of a global tool bar,
whereas the dialog editor options tool bar is private to the dialog editor. When the user switches between
MDI child dialogs, the context menu is changed to only show the global tool bars plus any private tool
bars relevant to the currently active dialog. Furthermore, the same private bars are displayed as the last
time this dialog was displayed (if the Save layout check box in the Dialog Attributes window is checked,
the subset of bars shown is even retained between sessions).

The subroutine should be called in the AFTER-ANY event handler of the main dialog (i.e., the MDI frame
dialog for MDI applications), as follows (assuming the main dialog’s handle variable name is set to the
default value of #DLG$WINDOW):

PERFORM PROCESS-BAR-COMMANDS #DLG$WINDOW

In addition, the following steps are optional:

1. The bars are listed in the context menu in the order in which they appear in the control sequence.
Therefore, you may wish to re-sequence the tool and dialog bars (e.g., to ensure that the global tool
bars are displayed before the private ones in MDI applications).

2. The code does not insert a separator before the list of available bars on the context menu. Therefore,
if you are already using a context menu for the dialog, you would probably want to ensure that your
context menu ends with a separator.

3. For MDI applications, for each private bar, you should enter the name of the dialog (e.g. "CHILD" if
the dialog’s file name is CHILD.NS3) to which the tool bar "belongs" into the Control ID field of the
Attributes window for the bar in the dialog editor. For each global bar, leave this field empty. If you
wish the bar to be displayed only when no MDI child dialog is active, enter the name of the MDI
frame dialog here.

4. For MDI applications, you should uncheck the Enabled check box in the Attributes window for each
bar that should not be displayed by default.

DEFINE DATA
PARAMETER
 1 #DIALOG HANDLE OF GUI
LOCAL
 1 #CONTROL HANDLE OF GUI
 1 #ACTIVE-DLG HANDLE OF GUI
 1 #CTXMENU HANDLE OF CONTEXTMENU
 1 #MITEM-DYN HANDLE OF MENUITEM
LOCAL USING NGULKEY1
END-DEFINE
*
DEFINE SUBROUTINE PROCESS-BAR-COMMANDS
 DECIDE ON FIRST *EVENT

6

Sample CodeWorking with Dialog Bar Controls

 VALUE ’COMMAND-STATUS’
 PERFORM COMMAND-STATUS
 VALUE ’IDLE’
 PERFORM IDLE
 VALUE ’CLICK’
 PERFORM CLICK
 VALUE ’BEFORE-OPEN’
 PERFORM BEFORE-OPEN
 VALUE ’AFTER-OPEN’
 PERFORM AFTER-OPEN
 NONE
 IGNORE
 END-DECIDE
*
 DEFINE SUBROUTINE COMMAND-STATUS
 /* Must enable our commands, otherwise they’re automatically disabled!
 #CTXMENU := #DIALOG.CONTEXT-MENU
 #MITEM-DYN := #CTXMENU.FIRST-CHILD
 REPEAT WHILE #MITEM-DYN <> NULL-HANDLE
 IF #MITEM-DYN.CLIENT-HANDLE <> NULL-HANDLE
 #MITEM-DYN.ENABLED := TRUE
 END-IF
 #MITEM-DYN := #MITEM-DYN.SUCCESSOR
 END-REPEAT
 END-SUBROUTINE
*
 DEFINE SUBROUTINE IDLE
 PERFORM SWITCH-BARS
 END-SUBROUTINE
*
 DEFINE SUBROUTINE CLICK
 #CONTROL := *CONTROL
 IF #CONTROL.TYPE = MENUITEM AND #CONTROL.PARENT = #DIALOG.CONTEXT-MENU
 #MITEM-DYN := #CONTROL
 #CONTROL := #MITEM-DYN.CLIENT-HANDLE
 IF #CONTROL <> NULL-HANDLE
 IF #MITEM-DYN.CHECKED = CHECKED
 #CONTROL.ENABLED := FALSE
 #CONTROL.VISIBLE := FALSE
 ELSE
 #CONTROL.ENABLED := TRUE
 #CONTROL.VISIBLE := TRUE
 END-IF
 END-IF
 END-IF
 END-SUBROUTINE
*
 DEFINE SUBROUTINE BEFORE-OPEN
 #CTXMENU := #DIALOG.CONTEXT-MENU
 #MITEM-DYN := #CTXMENU.FIRST-CHILD
 REPEAT WHILE #MITEM-DYN <> NULL-HANDLE
 IF #MITEM-DYN.CLIENT-HANDLE <> NULL-HANDLE
 #CONTROL := #MITEM-DYN.CLIENT-HANDLE
 IF #CONTROL.VISIBLE
 #MITEM-DYN.CHECKED := CHECKED
 ELSE
 #MITEM-DYN.CHECKED := UNCHECKED
 END-IF
 END-IF
 #MITEM-DYN := #MITEM-DYN.SUCCESSOR
 END-REPEAT
 END-SUBROUTINE

7

Working with Dialog Bar ControlsSample Code

*
 DEFINE SUBROUTINE AFTER-OPEN
 /* for MDI frames, unsuppress IDLE event to track active child change
 IF #DIALOG.TYPE = MDIFRAME
 #DIALOG.SUPPRESS-IDLE-EVENT := NOT-SUPPRESSED
 END-IF
 /* if dialog has no context menu, create one
 #CTXMENU := #DIALOG.CONTEXT-MENU
 IF #CTXMENU = NULL-HANDLE
 PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #CTXMENU
 TYPE = CONTEXTMENU
 PARENT = #DIALOG
 END-PARAMETERS GIVING *ERROR
 #DIALOG.CONTEXT-MENU := #CTXMENU
 END-IF
 /* unsuppress context menu’s BEFORE-OPEN event for item update
 #CTXMENU.SUPPRESS-BEFORE-OPEN-EVENT := NOT-SUPPRESSED
 /* display bars according to context
 PERFORM SWITCH-BARS
 END-SUBROUTINE
*
 DEFINE SUBROUTINE SWITCH-BARS
 IF #DIALOG.TYPE = MDIFRAME
 #ACTIVE-DLG := #DIALOG.ACTIVE-CHILD
 END-IF
 IF #ACTIVE-DLG = NULL-HANDLE
 #ACTIVE-DLG := #DIALOG
 END-IF
 IF #ACTIVE-DLG <> #DIALOG.CLIENT-HANDLE
 #CTXMENU := #DIALOG.CONTEXT-MENU
 IF #CTXMENU <> NULL-HANDLE
 /* Remove any dynamic menu items previously created
 #CONTROL := #CTXMENU.FIRST-CHILD
 REPEAT WHILE #CONTROL <> NULL-HANDLE
 #MITEM-DYN := #CONTROL.SUCCESSOR
 IF #CONTROL.CLIENT-HANDLE <> NULL-HANDLE
 PROCESS GUI ACTION DELETE WITH #CONTROL
 END-IF
 #CONTROL := #MITEM-DYN
 END-REPEAT
 /* Search for all tool bar and dialog bar controls
 #CONTROL := #DIALOG.FOLLOWS
 REPEAT WHILE #CONTROL <> #DIALOG
 IF #CONTROL.TYPE = TOOLBARCTRL OR
 #CONTROL.TYPE = DIALOGBAR
 #CONTROL.CLIENT-KEY := ’CONTROL-ID’
 IF #CONTROL.CLIENT-VALUE = ’ ’ OR
 #CONTROL.CLIENT-VALUE = #ACTIVE-DLG.NAME
 #CONTROL.VISIBLE := #CONTROL.ENABLED
 /* Create menu entry for bar
 PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #MITEM-DYN
 TYPE = MENUITEM
 PARENT = #CTXMENU
 STRING = #CONTROL.STRING
 SUCCESSOR = #MITEM-DYN
 CLIENT-HANDLE = #CONTROL
 END-PARAMETERS GIVING *ERROR
 ELSE
 #CONTROL.VISIBLE := FALSE
 END-IF

8

Sample CodeWorking with Dialog Bar Controls

 END-IF
 #CONTROL := #CONTROL.FOLLOWS
 END-REPEAT
 END-IF
 /* Save handle of currently active dialog
 #DIALOG.CLIENT-HANDLE := #ACTIVE-DLG
 END-IF
 END-SUBROUTINE
END-SUBROUTINE
END

9

Working with Dialog Bar ControlsSample Code

	 Working with Dialog Bar Controls
	Introduction
	Creating a Dialog Bar Control
	Types of Dialog Bar Control
	UI Transparency
	Client-Size Event
	Close Button
	Sample Code

