
Working with ActiveX Controls
ActiveX controls are third-party custom controls that you can integrate in a Natural dialog.

This document covers the following topics:

Terminology

How To Define an ActiveX Control

How To Create an ActiveX Control

Accessing Simple Properties

Colors

Pictures

Fonts

Variants

Arrays

Using the PROCESS GUI Statement

Terminology
ActiveX controls and Natural use different terminology in two cases:

ActiveX Control Natural

Property Attribute

Method PROCESS GUI Statement Action

How To Define an ActiveX Control
The handle of an ActiveX control is defined similar as a built-in dialog element, but its individual aspects
are coded in double angle brackets.

Example:

01 #OCX-1 HANDLE OF <<OCX-Table.TableCtrl.1 [Table Control]>>

In the above example, "Table.TableCtrl.1" is the program ID (ProgID) under which the ActiveX control is
registered in the system registry. The prefix "OCX-" identifies the control as an ActiveX control. "[Table
Control]" is an optional part of the definition and provides a readable name.

1

Working with ActiveX Controls Working with ActiveX Controls

How To Create an ActiveX Control
You create an instance of an ActiveX control by using the PROCESS GUI statement action ADD. To do
so, the value of the TYPE attribute must be the ActiveX control’s ProgID prefixed with the string "OCX-"
and put in double angle brackets. The ProgID is the name under which the control is registered in the
system registry. You can additionally provide a readable name in square brackets. In addition to that, you
can set Natural attributes such as RECTANGLE-X as well as the ActiveX control’s properties. The
property name must be preceded by the string "PROPERTY-" and this combination must be put in double
angle brackets. Furthermore, you can suppress the ActiveX control’s events. To do this, the event name
must be preceded by the string "SUPPRESS-EVENT" this combination must be delimited by double angle
brackets. The value of the SUPPRESS-EVENT property is either the Natural keyword "SUPPRESSED"
or "NOT-SUPPRESSED".

Example:

PROCESS GUI ACTION ADD
 WITH PARAMETERS
 HANDLE-VARIABLE = #OCX-1
 TYPE = <<OCX-Table.TableCtrl.1 [Table Control]>>
 PARENT = #DLG$WINDOW
 RECTANGLE-X = 44
 RECTANGLE-Y = 31
 RECTANGLE-W = 103
 RECTANGLE-H = 46
 <<PROPERTY-HeaderColor>> = H’FF0080’
 <<PROPERTY-Rows>> = 16
 <<PROPERTY-Columns>> = 4
 <<SUPPRESS-EVENT-RowMoved>> = SUPPRESSED
 <<SUPPRESS-EVENT-ColMoved>> = SUPPRESSED
 END-PARAMETERS

Accessing Simple Properties
Simple properties are properties that do not have parameters. Simple properties of an ActiveX control are
addressed like attributes of built-in controls. The attribute name is built by prefixing the property name
with "PROPERTY-" and enclosing it in angle brackets.The properties of an ActiveX control are displayed
in the Component Browser. The following examples assume that the ActiveX control #OCX-1 has the
simple properties CurrentRow and CurrentCol .

Example:

* Get the value of a property.
#MYROW := #OCX-1.<<PROPERTY-CurrentRow>>
* Put the value of a property.
#OCX-1.<<PROPERTY-CurrentCol>> := 17

The data types of ActiveX control properties are those defined by OLE Automation. In Natural, each of
these data types is mapped to a corresponding Natural data type. The following table shows which OLE
Automation data type is mapped to which Natural data type.

2

How To Create an ActiveX ControlWorking with ActiveX Controls

OLE Automation data type NATURAL data type

VT_BOOL L

VT_BSTR A dynamic

VT_CY P15.4

VT_DATE T

VT_DECIMAL Pn.m

VT_DISPATCH HANDLE OF OBJECT

VT_ERROR I4

VT_I1 I2

VT_I2 I2

VT_I4 I4

VT_INT I4

VT_R4 F4

VT_R8 F8

VT_U1 B1

VT_U2 B2

VT_U4 B4

VT_UINT B4

VT_UNKNOWN HANDLE OF OBJECT

VT_VARIANT (any Natural data type)

OLE_COLOR (VT_UI4) B3

VT_FONT (VT_DISPATCH IFontDisp*) HANDLE OF FONT
HANDLE OF OBJECT (IFontDisp*)
A dynamic

VT_PICTURE (VT_DISPATCH IPictureDisp*) HANDLE OF OBJECT (IPictureDisp*)
A dynamic

Read the table in the following way: Assume an ActiveX control #OCX-1 has a property named "Size",
which is of type VT_R8. Then the expression #OCX-1.<<PROPERTY-SIZE>> has the type F8 in
Natural.

Anmerkung:
The Component Browser displays the corresponding Natural data types directly.

Some special data types are considered individually in the following:

3

Working with ActiveX ControlsAccessing Simple Properties

Colors
A property of type Color appears in Natural as a B3 value. The B3 value is interpreted as an RGB color
value. The three bytes contain the red, green and blue elements of the color, respectively. Thus for
example H’FF0000’ corresponds to red, H’00FF00’ corresponds to green, H’0000FF’ corresponds to blue
and so on.

Example:

...
 01 #COLOR-RED (B3)
...
 #COLOR-RED := H’FF0000’
 #OCX-1.<<PROPERTY-BackColor>> := #COLOR-RED
...

Pictures
A property of type Picture appears in Natural as HANDLE OF OBJECT. Alternatively you can assign an
Alpha value to a Picture property. The Alpha value must then contain the file name of a Bitmap (.bmp)
file.

Example (usage of Picture properties):

...
 01 #MYPICTURE HANDLE OF OBJECT
...
 * Assign a Bitmap file name to a Picture property.
 #OCX-1.<<PROPERTY-Picture>>:= ’11100102.bmp’
 *
 * Get it back as an object handle.
 #MYPICTURE := #OCX-1.<<PROPERTY-Picture>>
 *
 * Assign the object handle to a Picture property of another control.
 #OCX-2.<<PROPERTY-Picture>>:= #MYPICTURE
...

Fonts
A property of type Font appears in Natural as HANDLE OF OBJECT. You can alternatively assign a
HANDLE OF FONT to a Font property. Additionally you can assign an Alpha value to a Font property.
The Alpha value must then contain a font specification in the form that is returned by the STRING
attribute of a HANDLE OF FONT.

Example 1 (using HANDLE OF OBJECT):

4

ColorsWorking with ActiveX Controls

...
01 #MYFONT HANDLE OF OBJECT
...
* Create a Font object.
CREATE OBJECT #MYFONT OF CLASS ’StdFont’
#MYFONT.Name := ’Wingdings’
#MYFONT.Size := 20
#MYFONT.Bold := TRUE
*
* Assign the Font object as value to a Font property.
#OCX-1.<<PROPERTY-TitleFont>> := #MYFONT
...

Example 2 (using HANDLE OF FONT):

...
01 #FONT-TAHOMA-BOLD-2 HANDLE OF FONT
...
* Create a Font handle.
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #FONT-TAHOMA-BOLD-2
 TYPE = FONT
 PARENT = #DLG$WINDOW
 STRING = ’/Tahoma/Bold/0 x -27/ANSI VARIABLE SWISS DRAFT/W/2/3/’
END-PARAMETERS GIVING *ERROR
...
* Assign the Font handle as value to a Font property.
#OCX-1.<<PROPERTY-TitleFont>> := #FONT-TAHOMA-BOLD-2
...

Example 3 (using a font specification string):

...
01 #FONT-TAHOMA-BOLD-2 HANDLE OF FONT
...
* Create a Font handle.
PROCESS GUI ACTION ADD WITH PARAMETERS
 HANDLE-VARIABLE = #FONT-TAHOMA-BOLD-2
 TYPE = FONT
 PARENT = #DLG$WINDOW
 STRING = ’/Tahoma/Bold/0 x -27/ANSI VARIABLE SWISS DRAFT/W/2/3/’
END-PARAMETERS GIVING *ERROR
...
* Assign the font specification as value to a Font property.
#OCX-1.<<PROPERTY-TitleFont>> := #FONT-TAHOMA-BOLD-2.STRING
...

Variants
A property of type Variant is compatible with any Natural data type. This means that the type of the
expression #OCX-1.<<PROPERTY-Value>> is not checked by the compiler, if "Value" is a property
of type Variant. So the assignments #OCX-1.<<PROPERTY-Value >> := #MYVAL and #MYVAL
:= #OCX-1.<<PROPERTY-Value >> are allowed independently of the type of the variable
#MYVAL. It is however up to the ActiveX control to accept or reject a particular property value at runtime,
or to deliver the value in the requested format. If it does not, the ActiveX control will usually raise an
exception. This exception is returned as a Natural error code to the Natural program. Here it can be
handled in the usual way in an ON ERROR block. You should check the documentation of the ActiveX
control to find out which data formats are actually allowed for a particular property of type Variant.

5

Working with ActiveX ControlsVariants

An expression like #OCX-1.<<PROPERTY-Value>> (where "Value" is a Variant property) can occur
as source operand in any statement. However, it can be used as target operand only in assignment
statements.

Examples (usage of Variant properties):

(Assume that "Value" is a property of type Variant of the ActiveX control #OCX-1)

...
01 #STR1 (A100)
01 #STR2 (A100)
...
* These statements are allowed, because the Variant property is used
* as source operand (its value is read).
#STR1 := #OCX-1.<<PROPERTY-Value>>
COMPRESS #OCX-1.<<PROPERTY-Value>> ’XYZ’ to #STR2
...
* This leads to an error at compiletime, because the Variant
* property is used as target operand (its value is modified) in
* a statement other than an assignment.
COMPRESS #STR1 "XYZ" to #OCX-1.<<PROPERTY-Value>>
...
* This statement is allowed, because the Variant property is used
* as target operand in an assignment.
COMPRESS #STR1 ’XYZ’ to #STR2
#OCX-1.<<PROPERTY-Value>> := #STR2
...

Arrays
A property of type SAFEARRAY of up to three dimensions appears in a Natural program as an array with
the same dimension count, occurrence count per dimension and the corresponding format. (Properties of
type SAFEARRAY with more than three dimensions cannot be used in Natural programs.) The dimension
and occurrence count of an array property is not determined at compiletime but only at runtime. This is
because this information is variable and is not defined at compiletime. The format however is checked at
compiletime.

Array properties are always accessed as a whole. So no index notation is necessary and allowed with an
array property.

Examples (usage of Array properties):

(Assume that "Values" is a property of the ActiveX control #OCX-1 an has the type SAFEARRAY of
VT_I4)

...
01 #VAL-L (L/1:10)
01 #VAL-I (I4/1:10)
...
* This statement is allowed, because the format of the property
* is data transfer compatible with the format of the receiving array.
* However, if it turns out at runtime that the dimension count or
* occurrence count per dimension do not match, a runtime error will
* occur.
VAL-I(*) := #OCX-1.<<PROPERTY-Values>>
...
* This statement leads to an error at compiletime, because

6

ArraysWorking with ActiveX Controls

* the format of the property is not data transfer compatible with
* the format of the receiving array.
VAL-L(*) := #OCX-1.<<PROPERTY-Values>>
...

Using the PROCESS GUI Statement
The methods of ActiveX controls are called as actions in a PROCESS GUI statement. The same is the
case with the complex properties of ActiveX controls (i. e. properties that have parameters). The methods
and properties of an ActiveX control are displayed in the Component Browser.

This section covers the following topics:

Performing Methods

Getting Property Values

Putting Property Values

Optional Parameters

Error Handling

Using Events With Parameters

Suppressing Events At Runtime

Performing Methods

To perform a method of an ActiveX control the PROCESS GUI statement is used. The name of the
corresponding PROCESS GUI action is built by prefixing the method name with "METHOD-" and
enclosing it in angle brackets. The ActiveX control handle and the method parameters (if any) are passed
in the WITH clause of the PROCESS GUI statement. The return value of the method (if any) is received
in the variable specified in the USING clause of the PROCESS GUI statement.

This means: To perform a method, you enter a statement

PROCESS GUI ACTION <<METHOD-methodname>> WITHhandlename [parameter]...

[USING method-return-operand]..

Examples:

* Performing a method without parameters:
PROCESS GUI ACTION <<METHOD-AboutBox>> WITH #OCX-1
* Performing a method with parameters:
PROCESS GUI ACTION <<METHOD-CreateItem>> WITH #OCX-1 #ROW #COL #TEXT
* Performing a method with parameters and a return value:
PROCESS GUI ACTION <<METHOD-RemoveItem>> WITH #OCX-1 #ROW #COL USING #RETURN

Formats and length of the method parameters and the return value are checked at compiletime against the
definition of the method, as it is displayed in the Component Browser.

7

Working with ActiveX ControlsUsing the PROCESS GUI Statement

Getting Property Values

To get the value of a property that has parameters, the name of the corresponding PROCESS GUI action
is built by prefixing the property name with "GET-PROPERTY-" and enclosing it in angle brackets. The
ActiveX control handle and the property parameters (if any) are passed in the WITH clause of the
PROCESS GUI statement. The property value is received in the USING clause of the PROCESS GUI
statement.

This means: To get the value of a property that has parameters, you enter a statement

PROCESS GUI ACTION <<GET-PROPERTY-propertyname>> WITHhandlename [parameter]

... USING get-property-operand

Example:

PROCESS GUI ACTION <<GET-PROPERTY-ItemHeight>> WITH #OCX-1 #ROW #COL USING #ITEMHEIGHT

Formats and length of the property parameters and the property value are checked at compiletime against
the definition of the method, as it is displayed in the Component Browser.

Putting Property Values

To put the value of a property that has parameters, the name of the corresponding PROCESS GUI action
is built by prefixing the property name with "PUT-PROPERTY-" and enclosing it in angle brackets. The
ActiveX control handle and the property parameters (if any) are passed in the WITH clause of the
PROCESS GUI statement. The property value is passed in the USING clause of the PROCESS GUI
statement.

This means: To put the value of a property that has parameters, you enter a statement

PROCESS GUI ACTION <<PUT-PROPERTY-propertyname>> WITHhandlename [parameter]

... USING put-property-operand

Example:

PROCESS GUI ACTION <<PUT-PROPERTY-ItemHeight>> WITH #OCX-1 #ROW #COL USING #ITEMHEIGHT

Formats and length of the property parameters and the property value are checked at compiletime against
the definition of the method, as it is displayed in the Component Browser.

Optional Parameters

Methods of ActiveX controls can have optional parameters. This is also true for parameterized properties.
Optional parameters need not to be specified when the method is called. To omit an optional parameter,
use the placeholder 1X in the PROCESS GUI statement. To omit n optional parameters, use the
placeholder nX.

8

Getting Property ValuesWorking with ActiveX Controls

In the following example it is assumed that the method SetAddress of the ActiveX control #OCX-1
has the parameters FirstName , MiddleInitial , LastName , Street and City , where
MiddleInitial , Street and City are optional. Then the following statements are correct:

* Specifying all parameters.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName MiddleInitial LastName Street City
* Omitting one optional parameter.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName 1X LastName Street City
* Omitting the optional parameters at end explicitly.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName MiddleInitial LastName 2X
* Omitting the optional parameters at end implicitly.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName MiddleInitial LastName

Omitting a non-optional (mandatory) parameter results in a syntax error.

Error Handling

The GIVING clause of the PROCESS GUI statement can be used as usual to handle error conditions. The
error code can either be caught in a user variable and then be handled, or the normal Natural error
handling can be triggered and the error condition be handled in an ON ERROR block.

Example:

DEFINE DATA LOCAL
1 #RESULT-CODE (N7)
...
END-DEFINE
...
* Catching the error code in a user variable:
PROCESS GUI ACTION <<METHOD-RemoveItem>> WITH #OCX-1 #ROW #COL USING #RETURN GIVING #RESULT-CODE
*
* Triggering the Natural error handling:
PROCESS GUI ACTION <<METHOD-RemoveItem>> WITH #OCX-1 #ROW #COL USING #RETURN GIVING *ERROR-NR
...

Special error conditions that can occur during the execution of ActiveX control methods are:

A method parameter, method return value or property value could not be converted to the data format
expected by the ActiveX control. (These format checks are normally already done at compiletime. In
these cases no runtime error can be expected. However, note that method parameters, method return
values or property values defined as Variant are not checked at compiletime. This applies also for
arrays and for those data types that can be mapped to several possible Natural data types.)

A COM or Automation error occurs while locating and executing a method.

The ActiveX control raises an exception during the execution of a method.

In these cases the error message contains further information provided by the ActiveX control, which can
be used to determine the reason of the error with the help of the documentation of the ActiveX control.

9

Working with ActiveX ControlsError Handling

Using Events With Parameters

Events sent by ActiveX controls can have parameters. In the controls event-handler sections, these
parameters can be queried. Parameters passed by reference can also be modified. The events of an
ActiveX control, the names and data types of the parameters and the fact if a parameter is passed by value
or by reference is all displayed in the Component Browser.

Event parameters of an ActiveX control are addressed like attributes of built-in controls. The attribute
name is built by prefixing the parameter name with "PARAMETER-" and enclosing it in angle brackets.
Alternatively, parameters can be addressed by position. This means the attribute name is built by prefixing
the number of the parameter with "PARAMETER-" and enclosing it in angle brackets. The first parameter
of an event has the number 1, the second the number 2 and so on. These attribute names are only valid
inside the event handler of that particular event.

In the following examples it is assumed that a particular event of the ActiveX control #OCX-1 has the
parameters KeyCode and Cancel . Then the event handler of that event might contain the following
statements:

* Querying a parameter by name:
#PRESSEDKEY := #OCX-1.<<PARAMETER-KeyCode>>
* Querying a parameter by position:
#PRESSEDKEY := #OCX-1.<<PARAMETER-1>>

Parameters that are passed by reference can be modified in the event handler. In the following example it
is assumed that the Cancel parameter is passed by reference and is thus modifiable. Then the event
handler might contain the following statements:

* Modifying a parameter by name:
#OCX-1.<<PARAMETER-Cancel>>:= TRUE
* Modifying a parameter by position:
#OCX-1.<<PARAMETER-2>>:= TRUE

Suppressing Events At Runtime

To suppress or unsuppress an event of an ActiveX control at runtime, modify the corresponding suppress
event attribute of the control. The name of the suppress event attribute is built by prefixing the event name
with "SUPPRESS-EVENT-" and enclosing it in angle brackets. The events of an ActiveX control are
displayed in the Component Browser.

The following example assumes that the ActiveX control #OCX-1 has the event ColMoved .

* Suppress the event.
#OCX-1.<<SUPPRESS-EVENT-ColMoved>> := SUPPRESSED
* Unsuppress the event.
#OCX-1.<<SUPPRESS-EVENT-ColMoved>> := NOT-SUPPRESSED

10

Using Events With ParametersWorking with ActiveX Controls

	 Working with ActiveX Controls
	Terminology
	How To Define an ActiveX Control
	How To Create an ActiveX Control
	Accessing Simple Properties
	Colors
	Pictures
	Fonts
	Variants
	Arrays
	Using the PROCESS GUI Statement
	Performing Methods
	Getting Property Values
	Putting Property Values
	Optional Parameters
	Error Handling
	Using Events With Parameters
	Suppressing Events At Runtime

