Threading Issues Threading Issues

Threading I ssues

A Natural process on Windows and UNIX always contains only one thread that executes Natural code.
Thusin aninteractively started Natural session, it can hever occur that several threadstry to execute
Natural codein parallel. The situation is different when a client program that runs several threadsin
paralel usesthe Natural Native Interface.

The Natura Native Interface can be used by multithreaded applications. The interface functions are thread
safe. Aslong asagiven thread T is executing one of the interface functions, other threads of the same
process that call one of the interface functions are blocked until T has |eft the interface function.
Effectively the parallel executing threads of the process are serialized as far as the usage of the interface
functionsis concerned. It is not necessary to serialize interface access among the threads of different
processes, because each different process that uses the NNI runsits own Natural session.

The calling application can aso control the multithreaded access to the NNI explicitly. This can make
sense if athread wants to execute a series of NNI calls without being interrupted by another thread. To
achievethis, thethread callsnni _ent er, which lets the thread wait until all other threads have left the
NNI. Then the thread does its work and calls NNI functions at will. After having finished its work, the
thread callsnni _| eave to alow other threads to access the NNI.

A multithreaded application that uses the NNI must follow these rules:

e Thefunctionsnni _initializeandnni _uninitialize mustbecalledatleast once per
process.

e Thefunctionnni _uni ni ti al i ze must be called on the same thread as the corresponding call to
nni _initialize.

e Thefunctionnni _uni ni ti al i ze must not be called before the last thread that uses the NNI has
terminated.



	 Threading Issues

