
Accessing Data in a Tamino Database
This document describes the different aspects of accessing a Tamino database with the Natural data
manipulation language (DML).

The following topics are covered:

Prerequisite

DDM and View Definitions with Natural for Tamino

Natural Statements for Tamino Database Access

Natural for Tamino Restrictions

For information about how to configure Natural to work with Tamino, see Natural for Tamino in the
Database Management System Interfaces documentation.

Prerequisite
Tamino stores structured data-oriented XML documents in containers called doctypes. The doctypes are
grouped logically together in so-called collections. Collections are stored in a Tamino database, which is
the physical container of data.

The kind of data that can be stored in Tamino and that is to be accessed by Natural for Tamino must be
defined in a Tamino XML Schema.

DDM and View Definitions with Natural for Tamino
This section describes the basic concepts of the Tamino XML schema language, Natural DDMs and view
definitions and how they interact with Natural for Tamino.

The following topics are covered:

Introducing Tamino XML Schema Language

DDMs from Tamino

Arrays in DDMs from Tamino

Example of a DDM

Definition of Views

Introducing Tamino XML Schema Language

The Tamino XML schema language is used to define a data type-oriented description of the structure of
XML documents. In Tamino, a doctype represents a container for XML documents with the same root
element and the same structure within a collection.

1

Accessing Data in a Tamino Database Accessing Data in a Tamino Database

In Tamino, a collection is a container for a set of varying doctypes, so that a collection can be seen as the
logical grouping of doctypes that belong together.

In a Tamino XML schema definition, a doctype is defined together with the collection in which it is
contained. One Tamino XML schema can define more than one doctype and it can also define doctypes
for more than one collection.

For more information on the Tamino XML schema language, refer to the Tamino documentation.

DDMs from Tamino

For Natural to be able to access a Tamino database, a logical connection between a Tamino doctype and
the Natural data structures must be provided. Such a logical connection is called a DDM (data definition
module).

A Natural DDM generated from a Tamino database is a representation of one doctype defined in one
schema. The DDM contains information about the type of each data field and all the necessary structural
information as defined in the corresponding Tamino XML schema. To generate a new DDM, the doctype
must be selected from a list of all doctypes available in a given collection. Since one collection is bound to
one Natural database ID (DBID), it is necessary to use a second DBID if a doctype from another
collection is to be accessed.

A Tamino XML schema describes data and data structures in a very different way than with Natural data
definitions. Therefore, specific mappings are introduced to derive a Natural data format from a Tamino
XML schema data type.

You define DDMs with the Natural DDM editor. For more information about Tamino XML schema
mapping, refer to Data Conversion for Tamino in the DDM Editor section of the Editors documentation.

For the field attributes defined in a DDM, refer to the DDM Editor, Using the DDM Editor Window
section in the Editors documentation.

2

DDMs from TaminoAccessing Data in a Tamino Database

Arrays in DDMs from Tamino

If you define an XML element with a maxOccurs value greater than one in the Tamino XML Schema,
then this element can occur as often as this value indicates. Such a construction is mapped either on a
Natural static array definition or on a Natural X-Array definition. Depending on the type of the XML
element you are dealing with, the following situations may occur:

If the XML element is a complexType with complexContent (i.e. it is an element containing
other elements) then the generated corresponding Natural group will be an indexed group.

If the XML element is a simpleType (i.e. the element is holding data only) or a complexType
with simpleContent (i.e. the element has only data and attributes but no other elements) then the
generated Natural data field will be an array.

For further information about mapping maxOccurs definitions onto Natural arrays, see Data Conversion
for Tamino in the DDM Editor section of the Editors documentation. The array boundaries or the kind of
the array (static array or X-Array) can be adapted in a corresponding view definition as usual.

Example of a DDM

This is an example of an EMPLOYEES DDM generated from a Tamino XML Schema definition.

The schema can, for example, be defined with the Natural demo application SYSEXINS:

DB: 00250 FILE: 00001 - EMPLOYEES-XML
TYPE: XML
COLLECTION: NATDemoData
SCHEMA: Employee
DOCTYPE: Employee
NAMESPACE-PREFIX: xs
NAMESPACE-URI: http://www.w3.org/2001/XMLSchema
T L Name F Leng D Remark
- -- -------------------------------- - ---------- - -----------
G 1 EMPLOYEE
 FLAGS=MULT_REQUIRED,MULT_ONCE
 TAG=Employee
 XPATH=/Employee
G 2 GROUP$1
 FLAGS=GROUP_ATTRIBUTES
 3 PERSONNEL-ID A 8 D xs:string
 FLAGS=ATTR_REQUIRED
 TAG=@Personnel-ID
 XPATH=/Employee/@Personnel-ID
G 2 GROUP$2
 FLAGS=GROUP_SEQUENCE,MULT_REQUIRED,MULT_ONCE
G 3 FULL-NAME
 FLAGS=MULT_OPTIONAL
 TAG=Full-Name
 XPATH=/Employee/Full-Name
G 4 GROUP$3
 FLAGS=GROUP_SEQUENCE,MULT_REQUIRED,MULT_ONCE
 5 FIRST-NAME A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=First-Name
 XPATH=/Employee/Full-Name/First-Name
 5 MIDDLE-NAME A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=Middle-Name

3

Accessing Data in a Tamino DatabaseArrays in DDMs from Tamino

 XPATH=/Employee/Full-Name/Middle-Name
 5 MIDDLE-I A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=Middle-I
 XPATH=/Employee/Full-Name/Middle-I
 5 NAME A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=Name
 XPATH=/Employee/Full-Name/Name
 . . .
 3 LANG A 3 xs:string
 FLAGS=ARRAY,MULT_OPTIONAL
 OCC=1:4
 TAG=Lang
 XPATH=/Employee/Lang

Definition of Views

In order to work with Tamino database fields in a Natural program, you must specify the required fields of
the DDM in a Natural view-definition (see the DEFINE DATA statement). Normally, a view is a special
subset of the complete data structure as defined in the DDM.

Tamino XML Schema->Natural for Tamino DDM->Natural view-definition

If the view is used to store XML objects, it has to contain all fields that are required to a generate
documents that are valid according to the corresponding Tamino XML schema definition.

A view for the EMPLOYEES-XML DDM, where one of the view fields is a static array, might look like
this:

DEFINE DATA LOCAL
01 VW VIEW OF EMPLOYEES-XML
02 NAME
02 CITY
02 LANG (1:4)
END-DEFINE

Natural Statements for Tamino Database Access
The Natural DML statements which are provided for Tamino access can be subdivided into two
categories:

pure retrieval statements;

database modification statements.

The Natural system variable *ISN is mapped on the Tamino ino:id .

Natural for Tamino Retrieval Statements

The following Natural statements can be used for database retrieval:

FIND

4

Natural Statements for Tamino Database AccessAccessing Data in a Tamino Database

This statement is used to select those records from a database which meet a specified search criterion.

GET

This statement is used to select one special record with its unique id from the database.

READ

This statement is used to select a range of records from a database in a specified sequence.

Not all of the possible options and all of the possible clauses of the retrieval statements can be used for
Tamino access. Please read the appropriate section in the Statements documentation for a detailed
description.

All statements are internally realized with the Tamino _xquery command verb. Statement clauses are
mapped to corresponding Tamino XQuery expressions, e.g. search criteria are mapped to Tamino XQuery
comparison expressions, sequence specifications are mapped to Tamino XQuery ordering expressions
with sort direction.

The result set for the FIND and READ statements is determined at start of the loop and remains unchanged
throughout the loop.

The following is an example of reading a set of employee records from a Tamino database where one
view field is an array:

* READ 5 RECORDS DESCENDING CONTAINING A
* STATIC ARRAY IN THE VIEW DEFINE DATA LOCAL
01 VW VIEW OF EMPLOYEES-TAMINO
02 NAME
02 CITY
02 LANG (1:4)
END-DEFINE
*
READ(5) VW DESCENDING BY NAME = ’MAYER’
 DISPLAY NAME CITY LANG(*)
END-READ
*
END

Natural for Tamino Database Modification Statements

The following database modification statements are provided for use with Natural for Tamino:

STORE

This statement is used for inserting a new XML document into the database.

DELETE

This statement is used for deleting a document from the database. The DELETE statement
implements a positioned delete.

For a detailed description of the statements, see the appropriate sections of the Statements documentation.

5

Accessing Data in a Tamino DatabaseNatural for Tamino Database Modification Statements

The DELETE statement is internally realized with the Tamino _delete command verb using the current
ino:id , and the STORE statement is implemented with the _process command verb.

Example:

The following example program stores a new employee record with some data in the database:

* STORE NEW EMPLOYEE
DEFINE DATA LOCAL
01 VW VIEW OF EMPLOYEES-TAMINO
02 PERSONNEL-ID
02 NAME
02 CITY
02 LANG (1:3)
END-DEFINE
*
* FILL VIEW
PERSONNEL-ID := ’1230815’
NAME := ’KENT’
CITY := ’ROME’
LANG(1) := ’ENG’
LANG(2) := ’GER’
LANG(3) := ’SPA’
*
* STORE VIEW
STORE RECORD IN VW
*
COMMIT
*
END

If the Tamino XML Schema defines data structures for a doctype as being mandatory, then these data
structures must also be filled in the view before a STORE statement is issued, otherwise this will result in
a Tamino error.

Natural for Tamino Logical Transaction Handling

Natural performs database modification operations based on transactions, which means that all database
modification requests are processed in logical transaction units. A logical transaction is the smallest unit
of work (as defined by you) which must be performed in its entirety to ensure that the information
contained in the database is logically consistent.

A logical transaction may consist of one or more modification statements (DELETE, STORE) involving
one or more doctypes in the database. A logical transaction may also span multiple Natural programs.

A logical transaction begins when a database modification statement is issued. Natural does this
automatically. For example, if a FIND loop contains a DELETE statement. The end of a logical
transaction is determined by an END TRANSACTION statement in the program. This statement ensures
that all modifications within the transaction have been successfully applied.

Natural for Tamino Error Handling

In addition to Natural’s standard error messages there are two special error codes which provide additional
information via a sub-error code.

6

Natural for Tamino Logical Transaction HandlingAccessing Data in a Tamino Database

NAT8400 Tamino error ... occurred

Erläuterung For this special error an additional sub-code number is shown. This number refers to a Tamino
error message. Please see the Tamino Messages and Codes documentation. The user exit USR6007
in library SYSEXT is provided for obtaining diagnostic information in case a NAT8400 error
occurs. Here is an example of usage:

DEFINE DATA LOCAL
 01 VW VIEW OF EMPLOYEES-TAMINO
 02 NAME
 02 CITY
 01 TAMINO_PARMS
 02 TAMINO_ERROR_NUM (I4) /* Error number of Tamino error
 02 TAMINO_ERROR_TEXT (A70) /* Tamino error text
 02 TAMINO_ERROR_LINE (A253) /* Tamino error message line
END-DEFINE
*
NAME := ’MEYER’
CITY := ’BOSTON’
STORE VW
*
ON ERROR
 IF *ERROR EQ 8400 /* in case of error 8400 obtain diagnostic information
 CALLNAT ’USR6007N’ TAMINO_PARMS
 PRINT ’Error 8400 occurred:’
 PRINT ’Error Number:’ TAMINO_ERROR_NUM
 PRINT ’Error Text :’ TAMINO_ERROR_TEXT
 PRINT ’Error Line :’ TAMINO_ERROR_LINE
 END-IF
END-ERROR
*
END

NAT8411 HTTP request failed with response code...

Erläuterung The error code from the HTTP server is delivered as additional information. Siehe auch
REQUEST DOCUMENT statement, Overview of Response Numbers for HTTP/HTTPs
Requests.

Example of Natural for Tamino Interacting with a SQL Database

This is a more sophisticated example of Natural for Tamino interacting with an SQL database; it retrieves
data from a Tamino database and inserts or updates the corresponding row in an appropriate table in a
SQL database.

*
* TAMINO DB --> SQL RDBMS EXAMPLE
*
DEFINE DATA LOCAL
* DEFINE VIEW FOR TAMINO
01 VW-TAMINO VIEW OF EMPLOYEES-TAMINO
02 PERSONNEL-ID
02 NAME
02 CITY
* DEFINE VIEW FOR SQL DATABASE
01 VW-SQL VIEW OF EMPLOYEES-SQL
02 PERSONNEL_ID
02 NAME
02 CITY
END-DEFINE

7

Accessing Data in a Tamino DatabaseExample of Natural for Tamino Interacting with a SQL Database

*
* OPEN A TAMINO LOGICAL READ LOOP
*
TAMINO. READ VW-TAMINO BY NAME
*
* SEARCH RECORD IN SQL DATABASE AND
* INSERT A NEW RECORD IF NOT FOUND OR
* UPDATE THE EXISTING ONE WITH THE DATA
* FROM TAMINO DB
SQL. FIND(1) VW-SQL WITH PERSONNEL_ID = PERSONNEL-ID (TAMINO.)
 IF NO RECORDS FOUND
 PERSONNEL_ID := PERSONNEL-ID (TAMINO.)
 NAME := NAME (TAMINO.)
 CITY := CITY (TAMINO.)
 STORE VW-SQL
 ESCAPE BOTTOM
 END-NOREC
 PERSONNEL_ID := PERSONNEL-ID (TAMINO.)
 NAME := NAME (TAMINO.)
 CITY := CITY (TAMINO.)
 UPDATE
 END-FIND
*
END-READ
*
END TRANSACTION
*
END

Natural for Tamino Restrictions
There are restrictions concerning the scope of the Tamino XML Schema language that can be used for
creating schemas for Natural for Tamino DDM generation:

Only Tamino XML Schema language constructors and attributes (as mentioned in Tamino XML
Schema Constructors in the DDM Editor section of the Editors documentation) are supported by
Natural for Tamino. Other constructors such as xs:any , xs:anyAttribute cannot be applied in
Tamino XML Schemas if you wish to use them together with Natural for Tamino.

The functionality of xs:import is not supported by Natural for Tamino. This means that external
schema components must not be referenced in a Tamino XML Schema suitable for usage together
with Natural. In other words, a doctype definition in a Tamino XML Schema must resolve all
references within this Tamino XML Schema itself if you are planning to use it together with Natural
for Tamino.

The attribute mixed of the constructor xs:complexType is only supported with its default value
"false". Natural for Tamino does not support mixed-content document definitions (as set with the
specification mixed="true"). Using mixed="true" will result in an error during DDM
generation.

The level of nested structures in a Natural for Tamino DDM is limited to 99. A new DDM level is
generated whenever one of the following constructors occurs in the Tamino XML Schema:

xs:element
xs:attribute
xs:choice

8

Natural for Tamino RestrictionsAccessing Data in a Tamino Database

xs:all
xs:sequence

Recursively defined structures in a Tamino XML Schema cannot be used together with Natural for
Tamino.

The Tamino XML Schema language constructor xs:choice is mapped on a Natural group
containing all alternatives of the choice. To restrict processing to one particular choice, an appropriate
view with the required choice has to be created.

Natural for Tamino only supports "closed content validation mode". Tamino XML Schemas with
"open content validation mode" cannot be used together with Natural for Tamino.

For the Tamino XML Schema language constructors xs:choice , xs:sequence and xs:all , a
value greater than 1 of the attribute maxOccurs cannot be handled in the Natural data structures.
Hence a value greater than 1 will always lead to an error during DDM generation.

Natural for Tamino can handle only Tamino objects that are defined with a Tamino XML Schema as
a subset of the W3C schema. Especially Natural for Tamino does not support non-XML
(tsd:nonXML) data or instances without a defined schema (ino:etc).

9

Accessing Data in a Tamino DatabaseNatural for Tamino Restrictions

	 Accessing Data in a Tamino Database
	Prerequisite
	 DDM and View Definitions with Natural for Tamino
	Introducing Tamino XML Schema Language
	DDMs from Tamino
	Arrays in DDMs from Tamino
	Example of a DDM
	Definition of Views

	Natural Statements for Tamino Database Access
	Natural for Tamino Retrieval Statements
	Natural for Tamino Database Modification Statements
	Example:

	Natural for Tamino Logical Transaction Handling
	Natural for Tamino Error Handling
	Example of Natural for Tamino Interacting with a SQL Database

	Natural for Tamino Restrictions

