
Positioning of Controls inside a Container
Containers internally build an HTML table in which you place rows. Inside each row you place the
controls - or again container(s).

This chapter covers the following topics:

Row Types - TR and ITR

Some More Details on ITR

TR Properties

ITR Properties

Row Types - TR and ITR
There are two types of rows:

The TR row is a normal table row. If you place more table rows - one under the other - inside one
container, the columns inside the table row are all synchronized. See the example below in order to
understand what "synchronized" means.

Since controls are placed into columns, all controls are positioned in a synchronized way.

The ITR row is a special table row. If you place more ITR table rows - one under the other - inside
one container, each row has an independent set of columns; i.e. columns are not synchronized.

Have a look at the following XML layout description:

<rowarea name="With TR">
 <tr>
 <label name="First Name" width="100">
 </label>
 <field valueprop="fname" width="200">
 </field>
 </tr>
 <tr>
 <label name="Last Name" width="200">
 </label>
 <field valueprop="lname" width="200">
 </field>
 </tr>
</rowarea>
<rowarea name="With ITR">
 <itr takefullwidth="true">
 <label name="First Name" width="100px">
 </label>
 <field valueprop="fname" width="200">
 </field>
 </itr>
 <itr takefullwidth="true">
 <label name="Last Name" width="200">
 </label>

1

Positioning of Controls inside a ContainerPositioning of Controls inside a Container

 <field valueprop="lname" width="200" length="20">
 </field>
 </itr>
</rowarea>

Note that each control (label, button, fields, etc.) is placed into one column of its own. If you have many
controls inside one row - and have several rows one below the other - synchronized columns (using TR
rows) sometimes cause funny results.

What is better, TR or ITR? Of course, it depends. The recommendation is:

Use ITR as default. Using ITR, each row is defined independently from other rows that are
positioned in the same container. You can change the number of controls (i.e. you internally change
the number of managed columns) in one row without interdependencies to other rows.

Only use TR if you really want to synchronize columns. A typical area of usage is inside the grid
management (ROWTABLEAREA2 control): in a grid you explicitly desire to have synchronized
columns inside the grid’s table.

Some More Details on ITR
There are two ROWAREA containers. The first one uses TR rows, the second one uses ITR rows. The
label for First Name has a width of 100 pixels, the label for Last Name has a width of 200 pixels. Now
look at the result:

Inside the TR rows, all columns are synchronized - while in the ITR rows, each row is individually
arranged.

How does the ITR control work internally? For each row, an individual table is opened with one row.
Example: you define the following area in the XML layout definition:

<area>
 <itr>
 ...
 ...
 </itr>
 <itr>
 ...
 ...
 </itr>
</area>

2

Some More Details on ITRPositioning of Controls inside a Container

The generated HTML looks like this:

<table>
 <tr>
 <td colspan="100">
 <table>
 <tr>
 ...
 ...
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan="100">
 <table>
 <tr>
 ...
 ...
 </tr>
 </table>
 </td>
 </tr>
</table>

Inside each row there is a table definition of its own, holding exactly one row.

You can define a takefullwidth property with the ITR definition, defining the width of the internal
table of an ITR tag. If the takefullwidth property is set to "true", this means that the internal table
that is kept per row is internally opened to use 100% of the available width. Without any definition, the
table will be as big as it is required by its content.

TR Properties

Basic

visibleprop Name of the adapter parameter that provides the
information if this control is displayed or not. As
consequence you can control the visibility of the
control dynamically.

Optional

3

Positioning of Controls inside a ContainerTR Properties

height Height of the control.

There are three possibilities to define the height:

(A) You do not define a height at all. As
consequence the height of the control will follow
the height of its content.

(B) Pixel sizing: just input a number value (e.g.
"20"). Please note: the row content may overrule
this setting. The height setting "100px" of an
embedded textbox will beat a row height of
"50px".

(C) Percentage sizing: input a percantage value
(e.g. "50%"). Pay attention: percentage sizing will
only bring up correct results if the parent element
of the control properly defines a height this control
can reference. If you specify this control to have a
height of 50% then the parent element may itself
define a height of "100%". If the parent element
does not specify a width then the rendering result
may not represent what you expect.

Optional 100

150

200

250

300

250

400

50%

100%

withalterbackgroundFlag that indicates if the grid line shows
alternating background color (like rows within a
textgrids). Default is false. Please note: controls
inside the row must have transparent background.
In case of the FIELD control simply set property
TRANSPARENTBACKGROUND to true.

Optional true

false

trstyle CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where
direct style definitions are applied. Press right
mouse-button in your browser and select the
"View source" or "View frame’s source" function.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

4

TR PropertiesPositioning of Controls inside a Container

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

ITR Properties

Basic

takefullwidth If set to "true" then the control takes all available
horizontal width as its width. If set to "false" then the
control does not have a predefined width but grows with
its content.

Optional true

false

height Height of the control.

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence the
control will be rendered with its default height. If the
control is a container control (containing) other controls
then the height of the control will follow the height of its
content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only bring
up correct results if the parent element of the control
properly defines a height this control can reference. If you
specify this control to have a height of 50% then the
parent element (e.g. an ITR-row) may itself define a
height of "100%". If the parent element does not specify a
width then the rendering result may not represent what
you expect.

Optional 100

150

200

250

300

250

400

50%

100%

align Alignment of the content of the ITR row.

Background: the ITR as independent table row renders a
table into its content area. Inside this table a row is
opened in which the controls are placed.

This table normally is starting on the left of the ITR row.
With this ALIGN property you can explicitly define the
alignement of the table.

Optional left

center

right

valign Vertical alignment of control in its column.

Each control is "packaged" into a column. The column
itself is part of a row (e.g. ITR or TR). Sometimtes the
size of the column is bigger than the size of the control. In
this case the "align" property specify the position of the
control inside the column.

Optional top

middle

bottom

5

Positioning of Controls inside a ContainerITR Properties

fixlayout The fixlayout property is important for saving rendering
performance inside your browser. To become effective it
requires to have specified the height and the width (if
available as property) of the control.

If setting fixlayout to "true" then the control’s area is
defined as area which is not sized dependent on its
content (as normally done with table rendering). Instead
the size is predefined from outside without letting the
browser "look" into the content of the area. If the content
is not fitting into the area then it is cut.

You typically use this control if the content of the
control’s area is flexibly sizable. E.g. if the content (e.g. a
TEXTGRID control) is following the size of the
container.

When using vertical percentage based sizing you should
pay attention to set the fixlayout-property to "true" as
often as possible. - The browser as consequence will be
much faster in doing its rendering because a screen
consists out of "building blocks" with simple to calculate
sizes.

Optional true

false

comment Comment without any effect on rendering and behaviour.
The comment is shown in the layout editor’s tree view.

Optional

Visibility

visibleprop Name of the adapter parameter that provides the
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.

Optional

Appearance

6

ITR PropertiesPositioning of Controls inside a Container

itrstyle CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame’s
source" function.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

itrclass CSS style class definition that is directly passed into this
control.

The style class can be either one which is part of the
"normal" CIS style sheet files (i.e. the ones that you
maintain with the style sheet editor) - or it can be one of
an other style sheet file that you may reference via the
ADDSTYLESHEET property of the PAGE tag.

Optional

tablestyle CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style sheet
expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the generated
HTML code in order to know where direct style
definitions are applied. Press right mouse-button in your
browser and select the "View source" or "View frame’s
source" function.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

Binding

itrstyleprop $en/popupwizard/njx__attr_itrstyleprop$ Optional

7

Positioning of Controls inside a ContainerITR Properties

	Positioning of Controls inside a Container
	Row Types - TR and ITR
	Some More Details on ITR
	TR Properties
	ITR Properties

