
Natural

System Commands

Version 6.3.13 for Windows

October 2012



This document applies to Natural Version 6.3.13 for Windows.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2012 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: NATWIN-NNATSYSCOM-6313-20121005



Table of Contents

Preface .............................................................................................................................. vii
1 Issuing System Commands ............................................................................................. 1

Command Input ......................................................................................................... 2
Command Line .......................................................................................................... 2
NEXT Prompt ............................................................................................................. 2
MORE Prompt ............................................................................................................ 2

2 System Command Syntax ............................................................................................... 3
Syntax Elements ......................................................................................................... 4
Example of Command Syntax ................................................................................... 5

3 System Commands Grouped by Function ...................................................................... 7
Navigating within Natural ........................................................................................ 8
Environment Settings ................................................................................................. 8
Editing and Storing Programming Objects ................................................................ 9
Executing Programs ................................................................................................... 9
Maintenance Utilities ............................................................................................... 10
Transfer of Programming Objects ............................................................................ 10
Monitoring and Debugging ..................................................................................... 10
Commands Used with NaturalX .............................................................................. 10
Miscellaneous ........................................................................................................... 11

4 CATALL ......................................................................................................................... 13
CATALL in Interactive Mode ................................................................................... 14
CATALL in Batch Mode ........................................................................................... 15

5 CATALOG ..................................................................................................................... 17
6 CHECK .......................................................................................................................... 19
7 CLEAR ........................................................................................................................... 21
8 COMPOPT ..................................................................................................................... 23

Syntax Explanation .................................................................................................. 24
Compiler Options ..................................................................................................... 24
Specifying Compiler Parameters .............................................................................. 24
COMPOPT in a Remote Mainframe Environment .................................................. 25
Specifying Compiler Keyword Parameters (Remote Mainframe
Environment) ........................................................................................................... 26
General Compilation Options (Remote Mainframe Environment) ......................... 26
Compilation Options for Ensuring Version Compatibility (Remote Mainframe
Environment) ........................................................................................................... 40

9 DEBUG .......................................................................................................................... 49
10 EDIT ............................................................................................................................. 51

Syntax 1 .................................................................................................................... 52
Syntax 2 .................................................................................................................... 54
Syntax 3 .................................................................................................................... 54

11 EXECUTE ..................................................................................................................... 55
Syntax Explanation .................................................................................................. 56
Examples of EXECUTE Command .......................................................................... 57

iii



12 FIN ............................................................................................................................... 59
13 GLOBALS .................................................................................................................... 61

Syntax Explanation .................................................................................................. 62
List of Parameters ..................................................................................................... 62
Interaction with SET GLOBALS and Other Statements .......................................... 64

14 HELP ............................................................................................................................ 65
15 INPL ............................................................................................................................. 67
16 LAST ............................................................................................................................ 69
17 LASTMSG .................................................................................................................... 71
18 LIST .............................................................................................................................. 73

Syntax Overview ...................................................................................................... 74
Displaying an Individual Source ............................................................................. 75
Displaying a List of Objects ...................................................................................... 76
Displaying Directory Information ........................................................................... 77
Displaying Views ..................................................................................................... 77
Displaying File Information of Resource Objects .................................................... 78
Displaying File Information of Error Message Containers ...................................... 78

19 LIST COUNT ............................................................................................................... 79
20 LIST XREF .................................................................................................................... 81
21 LOGOFF ....................................................................................................................... 83
22 LOGON ........................................................................................................................ 85
23 MAIL ............................................................................................................................ 87
24 MAP ............................................................................................................................. 89

Establish a Connection to a Natural Development Server Environment ................ 90
Establish a Connection to a Natural Application .................................................... 91

25 PROFILE ...................................................................................................................... 93
26 PURGE ......................................................................................................................... 95
27 READ ........................................................................................................................... 97
28 REGISTER .................................................................................................................... 99
29 RENAME ................................................................................................................... 101
30 RENUMBER ............................................................................................................... 103
31 RETURN .................................................................................................................... 105
32 RPCERR ..................................................................................................................... 107
33 RUN ........................................................................................................................... 109
34 SAVE .......................................................................................................................... 111
35 SCAN ......................................................................................................................... 113
36 SCRATCH .................................................................................................................. 115
37 SETUP ........................................................................................................................ 117

Syntax Explanation ................................................................................................. 118
SETUP/RETURN Example ..................................................................................... 119

38 STOW ......................................................................................................................... 121
39 STRUCT ..................................................................................................................... 123

Indentation of Source Code Lines .......................................................................... 124
40 SYSAPI ....................................................................................................................... 127
41 SYSCP ........................................................................................................................ 129

System Commandsiv

System Commands



42 SYSERR ...................................................................................................................... 131
43 SYSEXT ...................................................................................................................... 133
44 SYSEXV ...................................................................................................................... 135
45 SYSFILE ...................................................................................................................... 137

SYSFILE in a Remote Mainframe Environment ..................................................... 138
46 SYSINST ..................................................................................................................... 139
47 SYSMAIN ................................................................................................................... 141
48 SYSMN ....................................................................................................................... 143
49 SYSNCP ..................................................................................................................... 145
50 SYSOBJH .................................................................................................................... 147
51 SYSPROD ................................................................................................................... 149
52 SYSPROF .................................................................................................................... 151
53 SYSRPC ...................................................................................................................... 153
54 SYSWIZDB ................................................................................................................. 155
55 SYSWIZDW ............................................................................................................... 157
56 TECH ......................................................................................................................... 159
57 UNCATALOG ............................................................................................................ 161
58 UNLOCK ................................................................................................................... 163

Unlocking Natural Objects ..................................................................................... 164
Unlocking Documentation Objects ........................................................................ 165
Parameter Descriptions .......................................................................................... 165
Parameter Processing and Display of Objects Found ............................................ 167

59 UNMAP ..................................................................................................................... 169
Unmapping the Currently Active Environment/Application ................................ 170
Unmapping a Natural Development Server Environment .................................... 170
Unmapping a Natural Application ........................................................................ 170

60 UNREGISTER ............................................................................................................ 171
61 UPDATE ..................................................................................................................... 173
62 XREF .......................................................................................................................... 175

vSystem Commands

System Commands



vi



Preface

This documentation describes the Natural system commands.

Natural system commands perform functions you need to create, maintain or execute Natural
programming objects. In addition, Natural system commands are used tomonitor and administer
your Natural environment.

This documentation is organized under the following headings:

Describes the general rules that apply when you enter a Natural
system command.

Issuing System Commands

Explains the symbols that are usedwithin the syntax descriptions
of Natural system commands.

System Command Syntax

Provides an overview of theNatural system commands grouped
according to their functions.

System Commands Grouped by
Function

Descriptions of the system commands in alphabetical order.SystemCommands inAlphabeticalOrder

Notation vrs or vr

When used in this documentation, the notation vrs or vr represents the relevant product version
(see also Version in the Glossary).

vii



viii



1 Issuing System Commands

■ Command Input ................................................................................................................................ 2
■ Command Line ................................................................................................................................. 2
■ NEXT Prompt ................................................................................................................................... 2
■ MORE Prompt .................................................................................................................................. 2

1



Command Input

You can issue a system command by entering it in one of the following ways:

■ In the command line;
■ At the Natural NEXT or MORE prompt.

The following rules apply:

■ Command input is not case-sensitive.
■ Commands are context-sensitive.
■ Some Natural commands affect objects other than the currently active object.

For an explanation of the symbols that are used within the syntax descriptions, see System Com-
mand Syntax.

Command Line

The functionality of system commands is available via various menus. You can also enter system
commands in the command line. See Issuing Commands in the Command Line inUsingNatural Studio.

NEXT Prompt

The NEXT prompt appears in a Natural application or program when no more output is pending.

MORE Prompt

The MORE prompt is displayed at the bottom of an output screen to signal that more output is
pending. When a system command is entered in response to a MORE prompt, program execution
is interrupted and the system command is executed.

System Commands2

Issuing System Commands



2 System Command Syntax

■ Syntax Elements ............................................................................................................................... 4
■ Example of Command Syntax ............................................................................................................. 5

3



Syntax Elements

The following symbols are used within the syntax descriptions of system commands:

ExplanationElement

Upper-case letters indicate that the term is either aNatural keyword or aNatural reserved
word that must be entered exactly as specified.

ABCDEF

If an optional term in upper-case letters is completely underlined (not a hyperlink!), this
indicates that the term is the default value. If you omit the term, the underlined value
applies.

ABCDEF

If a term in upper-case letters is partially underlined (not a hyperlink!), this indicates
that the underlined portion is an acceptable abbreviation of the term.

ABCDEF

Letters in italics are used to represent variable information. You must supply a valid
value when specifying this term.

abcdef

Elements contained within square brackets are optional.

If the square brackets contain several lines stacked one above the other, each line is an
optional alternative. You may choose at most one of the alternatives.

[ ]

If the braces contain several lines stacked one above the other, each line is an alternative.
You must choose exactly one of the alternatives.

{ }

The vertical bar separates alternatives.|

A term preceding an ellipsis may optionally be repeated. A number after the ellipsis
indicates how many times the term may be repeated.

If the term preceding the ellipsis is an expression enclosed in square brackets or braces,
the ellipsis applies to entire bracketed expression.

...

A term preceding a comma-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by commas. A number after the comma-ellipsis indicates
how many times the term may be repeated.

If the term preceding the comma-ellipsis is an expression enclosed in square brackets or
braces, the comma-ellipsis applies to entire bracketed expression.

,...

A term preceding a colon-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by colons. A number after the colon-ellipsis indicates how
many times the term may be repeated.

If the term preceding the colon-ellipsis is an expression enclosed in square brackets or
braces, the colon-ellipsis applies to entire bracketed expression.

:...

All other symbols except those defined in this table must be entered exactly as specified.Other symbols
(except [ ] { } | ...
,... :...) Exception:

The SQL scalar concatenation operator is represented by two vertical bars that must be
entered literally as they appear in the syntax definition.

System Commands4

System Command Syntax



Example of Command Syntax

CATALOG [object-name [library-id]]

■ CATALOG is a Natural keyword which you must enter as specified. The underlining indicates
that you may also enter it in abbreviated form as CAT.

■ object-name and library-id are user-supplied operands for which you specify the name of
the program youwish to deal with and the ID of the library in which that program is contained.

■ The square brackets indicate that object-name and library-id are optional elements which
you can, but need not, specify. The grouping of the brackets indicate that you can specify CATALOG
alone, or CATALOG followed either by a program name only or by a program name and a library
ID; however, you cannot specify a library ID if you do not also specify a program name.

5System Commands

System Command Syntax



6



3 System Commands Grouped by Function

■ Navigating within Natural .................................................................................................................... 8
■ Environment Settings ......................................................................................................................... 8
■ Editing and Storing Programming Objects .............................................................................................. 9
■ Executing Programs .......................................................................................................................... 9
■ Maintenance Utilities ........................................................................................................................ 10
■ Transfer of Programming Objects ....................................................................................................... 10
■ Monitoring and Debugging ................................................................................................................ 10
■ Commands Used with NaturalX .......................................................................................................... 10
■ Miscellaneous ................................................................................................................................. 11

7



This chapter provides an overview of the Natural system commands grouped according to their
functions.

Navigating within Natural

FunctionCommand

Terminates a Natural session.FIN

Causes the library ID to be set to SYSTEM and the Adabas password to be set to blanks. The
contents of the source program work area are not affected by this command.

LOGOFF

Establishes a library ID for the user. In the specified library, all source or object programs saved
during the session will be stored (unless you explicitly specify another library ID in a SAVE,
CATALOG or STOW command).

LOGON

Returns to a return point set by a SETUP command.RETURN

Establishes a return point towhich control can be returned using a RETURN command. This allows
you to easily transfer from one application to another during a Natural session.

SETUP

Environment Settings

FunctionCommand

Sets various compilation options that affect the way in which Natural programming objects are
compiled.

COMPOPT

Changes the settings of various Natural session parameters.GLOBALS

Establishes a connection to a remote development server.MAP

Only available if Natural Security has been installed.

Displays the security profile currently in effect. This profile informs you of the conditions of use
in effect for you in your current Natural environment.

PROFILE

Displays a list of the products installed at your site, and some information on these products.SYSPROD

Displays the current definitions of the Natural system files.SYSPROF

Disconnects the currently active remote environment.UNMAP

System Commands8

System Commands Grouped by Function



Editing and Storing Programming Objects

FunctionCommand

Catalogs all objects or selected objects in the current library.CATALL

Compiles the Natural programming object currently in the source work area of an editor, and
if the syntax has been found to be correct, stores the resulting object module in the Natural
system file.

CATALOG

Checks that the source code of a programming object does not contain any syntax errors. The
checking process varies according to the type of object being checked.

Syntax checking is also performed as part of the system commands RUN, CATALL, CATALOG and
STOW.

CHECK

Closes the currently active object and opens a new editorwindowwithout content andwithout
a name. The type of editor is the same as for the currently active object. If the currently active
object has been modified since the last save, you are prompted to save any changes.

CLEAR

Edits the source form of a programming object.EDIT

Lists one or more objects which are contained in the current library.LIST

Transfers an object in source form from the Natural system file to the source work area.READ

Renumbers the source code which is currently held in the source work area.RENUMBER

Stores the source form of the programming object currently in the work area of the editor in the
Natural system file.

SAVE

Searches for a string of characters within an object, with an option to replace the string with
another string.

SCAN

Compiles and stores a Natural programming object (in both source and object form) in the
Natural system file.

STOW

Invokes theNatural DialogWizard, a tool for creating dialogs for specific purposes. The defined
dialogs can have several layouts that adapt to desired requirements.

SYSWIZDW

Executing Programs

FunctionCommand

Executes a program that has been compiled and stored in object form. You can EXECUTE a
program only if it has been stored in compiled form.

EXECUTE

Compiles and executes the source program currently in the work area of the editor.RUN

9System Commands

System Commands Grouped by Function



Maintenance Utilities

FunctionCommand

Creates and maintains the messages you wish your Natural applications to display to the users.SYSERR

Creates and maintains the command processors to be used in your Natural applications.SYSNCP

Creates and maintains remote procedure calls, that is, provides the settings necessary to execute
a subprogram located on a remote server.

SYSRPC

Transfer of Programming Objects

FunctionCommand

Transfers objects within the Natural system from one library to another.SYSMAIN

Processes Natural and non-Natural objects for distribution in Natural environments.SYSOBJH

Monitoring and Debugging

FunctionCommand

This command is used to invoke the Natural debugger.DEBUG

Displays the last Natural error number and message if related to Remote Procedure Call (RPC),
and the last Broker reason code and associated message.

RPCERR

Displays technical and other information on your Natural session.TECH

Commands Used with NaturalX

FunctionCommand

Registers Natural classes. They are registered for the server ID under which Natural was
started.

REGISTER

Unregisters Natural classes.UNREGISTER

System Commands10

System Commands Grouped by Function



Miscellaneous

FunctionCommand

Invokes the Natural help system.HELP

Invokes the INPL utility. It is only used for the loading of Software AG installation datasets
into the system files.

INPL

Displays the system commands thatwere last executed, and allows you to execute them again.LAST

Displays additional information on the error situation which occurred last.LASTMSG

Only available if Predict has been installed.

Displays all active cross-reference data for the current library.

LIST XREF

Only available if Natural Security has been installed.

Invokes a mailbox to modify its contents and/or expiration date. A mailbox is used as a notice
board to broadcast messages to Natural users.

MAIL

Invokes the SYSAPI utility, which is used to locateApplication Programming Interfaces (APIs)
provided by Natural add-on products.

SYSAPI

Invokes the library SYSEXT, which contains various Natural user application interfaces.SYSEXT

Invokes the SYSEXV application with examples of the new features of the current Natural
versions.

SYSEXV

Invokes the function Natural Print/Work Files of the SYSFILE utility. This utility provides
information on the work files and print files available.

SYSFILE

Invokes theNatural Data Browser, a development toolwizardwithinNatural Studio. It enables
you to display and print or store file structures.

SYSWIZDB

Enables you to view locked objects and unlock them if required.UNLOCK

Prevents database updating being carried out by a program.UPDATE

Only available if Predict has been installed.

Controls the usage of the Predict function “active cross-references”. This function automatically
creates documentation in Predict about the objects which a program/data area references.

XREF

11System Commands

System Commands Grouped by Function



12



4 CATALL

■ CATALL in Interactive Mode .............................................................................................................. 14
■ CATALL in Batch Mode ..................................................................................................................... 15

13



This command is used to catalog, check, save or stow all objects or selected objects in the current
library.

CATALL in Interactive Mode

CATALL

When you issue this command, the Catalog Objects in Library dialog box appears. In this dialog
box, you specify which types of objects are to be processed. Objects are processes in the order in
which the object types are listed in the dialog box. Additionally, you can choose which action is
to be performed and which objects are to be processed.

See also Cataloging the Objects in a Library in Using Natural Studio.

You can make the following specifications in the dialog box:

Enter an asterisk (*) if you want to process all objects of the selected types in the
current library.

If youwant to restrict the number of objects to a certain range, you can use asterisk
notation for the name.

Starting from

If you mark this option, only those objects for which object modules already exist
in the current library will be cataloged again; objects that exist only in source form
will not be processed.

Apply action only to
existing modules

If you mark this option, all selected objects will be processed.Apply action to all
sources

You can select one of the following actions to be applied to the selected objects:Action

■ Catalog
■ Check
■ Save
■ Stow

These actions correspond to the system commands of the same names.

Note: Under Natural Security, certain actions may be disallowed.

By default, the source-code lines of sources that were saved or stowed are also
renumbered.

If you wish no automatic renumbering of lines, deactivate this checkbox.

Renumber source lines

System Commands14

CATALL



By default, CATALL applies to objects of all types in the current library (all object
types are activated). If you wish objects of a certain type not to be affected by
CATALL, deactivate the corresponding option.

In addition, command buttons are available to select all options or to clear all check
boxes.

Object types

Note: When you are working in a remote mainframe development environment
using SPoD, the optionsDDMs andGenerate new map source cannot be used
and will be dimmed.

Maps created with previous Natural versions are not necessarily compatible with
Natural Version 3.1 and above.Mark this option to ensure thatmaps are converted

Generate new map
source

during the catalog operation. This option converts and stores maps in source and
object form.

When you are working in a remote mainframe development environment using
SPoD, this option cannot be used and will be dimmed.

CATALL in Batch Mode

[options ...][TYPES types]CATALL object-name

CATALOG
RECAT CHECK
ALL SAVE

STOW

For the various specifications you can make in the Catalog Objects in Library dialog box, there
are also corresponding options which you can specify directly with the system command CATALL:

The name of the object to be cataloged.object-name

Enter an asterisk (*) if you want to catalog all objects of the specified types in the current
library.

If youwant to restrict the number of objects to a certain range, you can use asterisk notation
for the name.

Corresponds to the optionsApply action only to existingmodules, orApply action to all
sources of the Catalog Objects in Library dialog box. RECAT is the default.

RECAT / ALL

Corresponds to the object types marked in the Catalog Objects in Library dialog box.
Possible types are:

TYPES types

Global data areasG

Parameter data areasA

Local data areasL

15System Commands

CATALL



DDMD

SubroutineS

SubprogramN

HelproutineH

MapM

ProgramP

Dialog3

Class4

Function7

Adapter8

All types (this is the default)*

The types have to be specified as one character string, for example, LAG for local, parameter
and global data areas. By default, CATALL applies to objects of all types in the current
library.

Corresponds to the actions of the same names on the Catalog Objects in Library dialog.
CATALOG is the default.

CATALOG /
CHECK / SAVE
/ STOW

No automatic renumbering of
source-code lines of source
objects.

NORENoptions

Note: The individual command components must be separated from one another either by
a blank or by the input delimiter character (as defined with the session parameter ID).

System Commands16

CATALL



5 CATALOG

CATALOG [object-name [library-id]]

Related commands: SAVE | STOW | UNCATALOG.

This command is used to compile the Natural programming object currently in the source work
area of an editor and (if the syntax has been found to be correct) store the resulting object module
in the Natural system file.

See also:

Cataloging Objects in Using Natural Studio
Object Naming Conventions in Using Natural Studio

Important: The CATALOG command cannot be used if the profile parameter RECAT has been
set to ON; in this case, use the STOW command to compile and store the object.

If you do not specify an object-name, the object is cataloged in the library
under the name of the object last read into the sourcework area (for example,
with EDIT or READ).

CATALOG

Anewobject is created. As object-name, you specify the name underwhich
the new object is to be cataloged. It is stored in the current library. If the
object exists, the command is rejected.

CATALOG object-name

If you want the new object to be cataloged into another library, you must
specify the library-id of that library. If the object exists, the command is
rejected.

CATALOG object-name
library-id

Note: If an FDIC system file is specified in the parameter file which is not valid, Natural will
display an appropriate error message when the CATALOG command is issued.

17



18



6 CHECK

CHECK

This command is used to check if the syntax of the source code currently in the editor work area
contains any errors.

If a syntax error is detected, syntax checking is suspended and the line containing the error is
displayed. You can then either correct the line (whereupon verification continues) or press ENTER

without modifying the line displayed. This stops the verification procedure and opens the editor.

Note: Syntax checking is also performed as part of the RUN, STOW, CATALOG and CATALL

commands.

See also Checking Objects in Using Natural Studio.

19



20



7 CLEAR

CLEAR

This command is used to close the currently active object and to open a new editorwindowwithout
content and without a name. The type of editor is the same as for the currently active object.

If the currently active object has been modified since the last save, you are prompted to save any
changes.

See also Clearing Editor Windows in Using Natural Studio.

21



22



8 COMPOPT

■ Syntax Explanation .......................................................................................................................... 24
■ Compiler Options ............................................................................................................................ 24
■ Specifying Compiler Parameters ........................................................................................................ 24
■ COMPOPT in a Remote Mainframe Environment ................................................................................... 25
■ Specifying Compiler Keyword Parameters (Remote Mainframe Environment) .............................................. 26
■ General Compilation Options (Remote Mainframe Environment) ............................................................... 26
■ Compilation Options for Ensuring Version Compatibility (Remote Mainframe Environment) ............................ 40

23



COMPOPT [option=value ...]

This system command is used to set various compilation options. The options are evaluatedwhen
a Natural programming object is compiled.

If you enter the COMPOPT commandwithout any options, a screen is displayedwhere you can enable
or disable the options described below.

The default settings of the individual options are set with the corresponding profile parameters
in the Natural parameter file.

Syntax Explanation

If you issue the COMPOPT system command without options, a dialog box
appears. The keywords available there are described below.

See also Compiler Options in Using Natural Studio.

COMPOPT

Instead of changing an option in the dialog box, you can also specify it directly
with the COMPOPT command.

COMPOPT option=value

Example:

COMPOPT DBSHORT=ON

Compiler Options

The following compiler options are available. For details on the purpose of these options and the
possible settings, see the description of the corresponding Natural profile parameter:

DBSHORT | GFID | KCHECK | MASKCME | PCHECK | PSIGNF | THSEP | TQMARK

Specifying Compiler Parameters

You can specify compiler parameters on different levels:

1. As Default Settings

The default settings of the individual compiler parameters are specified using the Compiler
Options category of the Configuration Utility and are stored in the Natural parameter file
NATPARM.

System Commands24

COMPOPT



2. At Session Start

At session start, you can override the compiler option settings by specifying the corresponding
profile parameters.

3. During an Active Natural Session

During an active Natural session, there are two ways to change the compiler parameter values
with the COMPOPT system command: either directly using command assignment (COMPOPT
option=value) or by issuing the COMPOPT commandwithout optionswhichdisplays theCompiler
Options dialog box. The settings assigned to a compiler option are in effect until you issue the
next LOGON command to another library. At LOGON to a different libary, the default settings (see
item 1 above) will be resumed. Example:

OPTIONS KCHECK=ON
DEFINE DATA LOCAL
1 #A (A25) INIT <'Hello World'>
END-DEFINE
WRITE #A
END

4. In a Natural Programming Object

In a Natural programming object (for example: program, subprogram), you can set compiler
parameters with the OPTIONS statement. Example:

OPTIONS KCHECK=ON
WRITE 'Hello World'
END

The compiler options defined in an OPTIONS statement will only affect the compilation of this
programming object, but do not update settings set with the command COMPOPT.

COMPOPT in a Remote Mainframe Environment

The topics provided below applywhen using the COMPOPT command in a remotemainframe envir-
onment.

25System Commands

COMPOPT



Specifying Compiler Keyword Parameters (RemoteMainframe Environment)

You can specify compiler keyword parameters on different levels:

1. The default settings of the individual keyword parameters are specified in the macro NTCMPO
in the Natural parameter module NATPARM.

2. At session start, you can override the compiler keyword parameters with the profile parameter
CMPO.

3. During an activeNatural session, there are twoways to change the compiler keywordparameters
with the COMPOPT system command: either directly using command assignment (COMPOPT
option=value) or by issuing the COMPOPT commandwithout keywordparameterswhich displays
the Compilation Options screen. The settings assigned to a compiler option are in effect until
you issue the next LOGON command to another library. At LOGON, the default settings set with
the macro NTCMPO and/or the profile parameter CMPO (see above) will be resumed. Example:

OPTIONS KCHECK=ON
DEFINE DATA LOCAL
1 #A (A25) INIT <'Hello World'>
END-DEFINE
WRITE #A
END

4. In a Natural programming object (for example: program, subprogram), you can set compiler
parameters (options) with the OPTIONS statement. Example:

OPTIONS KCHECK=ON
WRITE 'Hello World'
END

The compiler options defined in an OPTIONS statement will only affect the compilation of this
programming object, but do not update settings set with the command COMPOPT.

General Compilation Options (Remote Mainframe Environment)

■ CHKRULE - Validate INCDIR Statements in Maps
■ CPAGE - Code Page Support for Alphanumeric Constants
■ DBSHORT - Interpretation of Database Short Field Names
■ DB2ARRY - Support DB2 Arrays in SQL SELECT and INSERT Statements
■ DB2BIN – Generate SQL Binary Data Types for Natural Binary Fields
■ DB2TSTI – Generate SQL TIMESTAMP Data Type for Natural TIME Fields

System Commands26

COMPOPT



■ ECHECK - Existence Check for Object Calling Statements
■ GDASC - GDA Signature Check
■ GFID - Generation of Global Format IDs
■ KCHECK - Keyword Checking
■ LOWSRCE - Allow Lower-Case Source
■ MAXPREC – Maximum Number of Digits after Decimal Point
■ MEMOPT - Memory Optimization for Locally Declared Variables
■ PCHECK - Parameter Check for Object Calling Statements
■ PSIGNF - Internal Representation of Positive Sign of Packed Numbers
■ THSEP - Dynamic Thousands Separator
■ TQMARK - Translate Quotation Mark
■ TSENABL - Applicability of TS Profile Parameter

These options correspond to the keyword subparameters of the CMPO profile parameter and/or the
NTCMPO parameter macro.

CHKRULE - Validate INCDIR Statements in Maps

The CHKRULE option can be used to enable or disable a validation check during the catalog process
for maps.

INCDIR validation is enabled. If the file (DDM) or field referenced in the INCDIR control statement
does not exist, syntax error NAT0721 is raised at compile time.

ON

When a Natural map is created, you may include fields which are already defined inside another
existing programming object. This works with nearly all kinds of objects which allow you to define
variables and also with DDMs. When the included field is a database variable, it is a map editor
built-in behavior to automatically add (besides the included field) an additional INCDIR statement
in themap statement body to trigger a Predict rule upload and incorporationwhen themap is compiled
(STOW).

The function is similar to what is happening when an INCLUDE statement is processed. However,
instead of getting the source lines from a copycode object, they are received from Predict. The search
key to find the rule(s) are the DDM name (which is regarded as the file name) and the field name.
Both are indicated in the INCDIR statement. An INCDIR rule requested at compile time has not got
to be found on Predict, as there is absolutely no requirement for its existence. That implies, it is by
no means an error situation if a searched rule is not found.

When fields are incorporated from a DDM into a map, the corresponding INCDIR statements are
created, including the current DDM and field name as “search key” to request existent rules from
Predict. However, if the DDM is renamed after the copy process, the old DDM name (which is not
valid anymore) still continues to be used in the INCDIR statement. This causes that no rule is loaded
and the programmer is not informed about this. Moreover, it is not only a DDM rename causing this
situation. The more likely situation effecting this consequence is to have a wrong FDIC file assigned,
by any mistake. In this case, the DDM name is valid, but it cannot be found on the current Predict
system file. Then the result is same as when the DDM does not exist at all; the processing rules
supposed to be added from Predict are not included.

27System Commands

COMPOPT



INCDIR validation is disabled. This is the default value.OFF

CPAGE - Code Page Support for Alphanumeric Constants

The CPAGE option can be used to activate a conversion routine which translates all alphanumeric
constants (from the code page that was active at compilation time into the code page that is active
at runtime) when the object is started at runtime.

Code page support for alpha strings is enabled.ON

Code page support for alpha strings is disabled. This is the default value.OFF

DBSHORT - Interpretation of Database Short Field Names

A database field defined in a DDM is described by two names:

■ the short namewith a length of 2 characters, used byNatural to communicate with the database
(especially with Adabas);

■ the long name with a length of 3-32 characters (1-32 characters, if the underlying database type
accessed is DB2/SQL), which is supposed to be used to reference the field in the Natural pro-
gramming code.

Under special conditions, you may reference a database field in a Natural program with its short
name instead of the long name. This applies if running in ReportingModewithoutNatural Security
and if the database access statement contains a reference to a DDM instead of a view.

The decision if a field name is regarded as a short-name reference depends on the name length.
When the field identifier consists of two characters, a short-name reference is assumed; a field
name with another length is considered as a long-name reference. This standard interpretation
rule for database fields can additionally be influenced and controlled by setting the compiler option
DBSHORT to ON or OFF:

The usage of a short name is allowed for referencing a database field.ON

However, a data base short name is not permitted in general (even if DBSHORT=ON)

■ for the definition of a field when a view is created;
■ when a DEFINE DATA LOCAL statement was specified;
■ when running under Natural Security.

This is the default value.

A database fieldmay only be referenced via its long name. Every database field identifier is considered
as a long-name reference, regardless of its length.

OFF

If a two character name is supplied which can only be found as a short name but not as a long name,
syntax error NAT0981 is raised at compile time.

System Commands28

COMPOPT



This makes it possible to use long names defined in a DDMwith 2-byte identifier length. This option
is essential if the underlying database you access with this DDM is SQL (DB2) and table columns with
a two character name exist. For all other database types (for example, Adabas), however, any attempt
to define a long-field with a 2-byte name length will be rejected at DDM generation.

Moreover, if no short-name references are used (what can be enforced via DBSHORT=OFF), the program
becomes independent of whether it is compiled under Natural Security or not.

Examples:

Assume the following data base field definition in the DDM EMPLOYEES:

Long NameShort Name

PERSONNEL-IDAA

Example 1:

OPTIONS DBSHORT=ON
READ EMPLOYEES

DISPLAY AA /* data base short name AA is allowed
END

Example 2:

OPTIONS DBSHORT=OFF
READ EMPLOYEES

DISPLAY AA /* syntax error NAT0981, because DBSHORT=OFF
END

Example 3:

OPTIONS DBSHORT=ON
DEFINE DATA LOCAL
1 V1 VIEW OF EMPLOYEES

2 PERSONNEL-ID
END-DEFINE
READ V1 BY PERSONNEL-ID

DISPLAY AA /* syntax error NAT0981, because PERSONNEL-ID is defined in view;
/* (even if DBSHORT=ON)

END-READ
END

29System Commands

COMPOPT



DB2ARRY - Support DB2 Arrays in SQL SELECT and INSERT Statements

The DB2ARRY option can be used to activate retrieval and/or insertion of multiple rows from/into
DB2 by a single SQL SELECT or INSERT statement execution. This allows the specification of arrays
as receiving fields in the SQL SELECT and as source fields in the SQL INSERT statement. If DB2ARRY
is ON, it is no longer possible to use Natural alphanumeric arrays for DB2 VARCHAR/GRAPHIC
columns. Instead of these, long alphanumeric Natural variables have to be used.

DB2 array support is enabled.ON

DB2 array support is not enabled. This is the default value.OFF

DB2BIN – Generate SQL Binary Data Types for Natural Binary Fields

The DB2BIN option can be used to support the DB2 data types BINARY and VARBINARY.

If DB2BIN is set to OFF, Natural binary fields (format B(n)) are generated as SQL data type CHAR
(n<= 253) or VARCHAR (253<n<=32767) like it was in previous releases. DB2BIN=OFF is good for
those who used Natural binary fields like SQL CHAR fields. B2 and B4 are treated as SQL
SMALLINT and INTEGER.

If DB2BIN is set to ON, Natural binary fields (format B(n)) are generated as SQL data type BINARY
(n<=255) or VARBIN (255<n<=32767). DB2BIN=ON is good for those who want to use SQL binary
columns. B2 and B4 are also treated as SQL BINARY(2) and BINARY(4).

Note: The setting of DB2BIN at the end of the compilation is used for the complete Natural
object. It cannot be changed for parts of a Natural object.

SQL types BINARY and VARBIN are generated for Natural binary fields.ON

SQL types CHAR andVARCHAR are generated for Natural binary fields, except B2 and B4. The latter
are treated as SQL data types SMALLINT and INTEGER.

This is the default value.

OFF

DB2TSTI – Generate SQL TIMESTAMP Data Type for Natural TIME Fields

This option is used to map Natural TIME variables to the SQL TIMESTAMP data type instead of
the default SQL TIME data type.

System Commands30

COMPOPT



SQL type TIMESTAMP is generated for Natural TIME fields of Natural data format T.

This applies to the entire Natural object. You cannot generate only part of an object with the DB2TSTI
setting.

ON

SQL type TIME is generated for Natural TIME fields of Natural data format T.

This is the default value.

OFF

Note: A Natural TIME field only contains tenth of seconds as precision while a SQL
TIMESTAMP column can contain a much greater precision. Thus, the TIMESTAMP value
read from the SQL database may be truncated if DB2TSTI=ON is set.

ECHECK - Existence Check for Object Calling Statements

The compiler checks for the existence of a programming object that is specified in an object calling
statement, such as FETCH [RETURN/REPEAT], RUN [REPEAT], CALLNAT, PERFORM, INPUT USING
MAP, PROCESS PAGE USING, function call, helproutine call.

The existence check is based on a search for the cataloged object or for the source of the object when
it is invoked by a RUN [REPEAT] statement.

ON

It requires that the name of the object to be called/run is defined as an alphanumeric constant (not as
an alphanumeric variable).

Otherwise, ECHECK=ONwill have no effect.

Error Control for ECHECK=ON

The existence check is executed onlywhen the object does not contain any syntax errors. The existence
check is executed for every object calling statement.

The existence check is controlled by the PECK profile parameter (see the Parameter Reference
documentation).

Problems in Using the CATALL Command with ECHECK=ON

When a CATALL system command is used in conjunction with ECHECK=ON, you should consider the
following:

If a CATALL process is invoked, the order in which the programming objects are compiled depends
primarily on the type of the object and secondarily on the alphabetical name of the object. The object
type sequence used is:

GDAs, LDAs, PDAs, functions, subprograms, external subroutines, help routines, maps, adapters,
programs, classes.

Within objects of the same type, the alphabetical order of the name determines the sequence in which
they are cataloged.

31System Commands

COMPOPT



As mentioned above, the success of the object calling statement is checked against the compiled form
of the called object. If the calling object (the onewhich is being compiled and includes the object calling
statement) is cataloged before the invoked object, the ECHECK result may be wrong if the called object
was not cataloged beforehand. In this case, the object image of the called object has not yet been
produced by the CATALL command.

Solution:

■ Set compiler option ECHECK to OFF.
■ Perform a general compile with CATALL on the complete library, or if just one or a few objects were
changed, perform a separate compile on these objects.

■ Set compiler option ECHECK=ON.
■ On the complete library, perform a general compile with CATALL, selecting function CHECK.

No existence check is performed. This is the default setting.OFF

GDASC - GDA Signature Check

This option is used to store information on the structure of a GDA (global data area) to determine
whether a Natural error is to be issued when an unchanged GDA is cataloged.

TheGDA information (GDA signature) only changeswhen aGDA ismodified. TheGDA signature
does not change when a GDA is (accidentally) cataloged but was not modified.

The signature of the GDA and the GDA signatures stored in all Natural objects referencing this
GDA are compared at execution time, in addition to the time stamps of the objects.

GDA signatures are stored and compared during execution. Natural only issues an error message if
the signatures are not identical.

ON

GDA signatures are not stored. This is the default value.OFF

GFID - Generation of Global Format IDs

This option allows you to controlNatural's internal generation of global format IDs so as to influence
Adabas's performance concerning the re-usability of format buffer translations.

Global format IDs are generated for all views. This is the default value.ON

Global format IDs are generated only for views in local/global data areas, but not for views defined
within programs.

VID

No global format IDs are generated.OFF

For details on global format IDs, see the Adabas documentation.

System Commands32

COMPOPT



Rules for Generating GLOBAL FORMAT-IDs in Natural

■ For Natural nucleus internal system-file calls:

GFID=abccddee

equalswhere

x'F9'a

x'22' or x'21' depending on DB statementb

physical database number (2 bytes)cc

physical file number (2 bytes)dd

number created by runtime (2 bytes)ee

■ For user programs or Natural utilities:
■ GFID=abbbbbbc for file number less than or equal to 255 and Adabas Version lower than 6.2
(see NTDBmacro).

equalswhere

x'F8' or x'F7' or x'F6'a

bytes 1-6 of STOD valuebbbbbb

physical file numberc

■ GFID=axbbbbbc for file number greater than 255 and Adabas Version lower than 6.2.

equalswhere

x'F8' or x'F7' or x'F6'a

physical file number - high order bytex

Bytes 2-6 of STOD valuebbbbb

physical file number - low order bytec

■ GFID=abbbbbb for Adabas Version 6.2 or higher.

equalswhere

x'F8' or x'F7' or x'F6'

where:

a

F6=UPDATE SAME
F7=HISTOGRAM
F8=all others

bytes 1-7 of STOD valuebbbbbbb

33System Commands

COMPOPT



Note: STOD is the return value of the store clock machine instruction (STCK).

KCHECK - Keyword Checking

Field declarations in a programming object will be checked against a set of critical Natural keywords.
If a variable name defined matches one of these keywords, a syntax error is reported when the
programming object is checked or cataloged.

ON

No keyword check is performed. This is the default value.OFF

The section Performing a Keyword Check (in the Programming Guide) contains a list of the keywords
that are checked by the KCHECK option.

The section Alphabetical List of Natural Reserved Keywords (in the Programming Guide) contains an
overview of all Natural keywords and reserved words.

LOWSRCE - Allow Lower-Case Source

This option supports the use of lower or mixed-case program sources on mainframe platforms. It
facilitates the transfer of programs written in mixed/lower-case characters from other platforms
to a mainframe environment.

Allows any kind of lower/upper-case characters in the program source.ON

Allows upper-case mode only. This requires keywords, variable names and identifiers to be defined
in upper case. This is the default value.

OFF

When you use lower-case characters with LOWSRCE=ON, consider the following:

■ The syntax rules for variable names allow lower-case characters in subsequent positions.
Therefore, you can define two variables, one written with lower-case characters and the other
with upper-case characters.

Example:

DEFINE DATA LOCAL
1 #Vari (A20)
1 #VARI (A20)

With LOWSRCE=OFF, these variables are treated as different variables.

With LOWSRCE=ON, the compiler is not case sensitive and does not make a distinction between
lower/upper-case characters. This will lead to a syntax error because a duplicate definition of a
variable is not allowed.

System Commands34

COMPOPT



■ Using the session parameter EM (Edit Mask) in an I/O statement or in a MOVE EDITED statement,
there are characters which influence the layout of the data setting assigned to a variable (EM
control characters), and characters which insert text fragments into the data setting.

Example:

#VARI :='1234567890'
WRITE #VARI (EM=XXXXXxxXXXXX)

With LOWSRCE=OFF, the output is "12345xx67890", because for alpha-format variables only upper-
case X, H and circumflex accent (ˆ) sign can be used.

With LOWSRCE=ON, the output is "1234567890", because an x character is treated like an upper-
case X and, therefore, interpreted as an EM control character for that field format. To avoid this
problem, enclose constant text fragments in apostrophes (').

Example:

WRITE #VARI(EM=XXXXX'xx'XXXXX)

The text fragment is not considered an EM control character, regardless of the LOWSRCE settings.
■ Since all variable names are converted to upper-case characters with LOWSRCE=ON, the display
of variable names in I/O statements (INPUT, WRITE or DISPLAY) differs.

Example:

MOVE 'ABC' to #Vari
DISPLAY #Vari

With LOWSRCE=OFF, the output is:

#Vari
--------------------

ABC

With LOWSRCE=ON, the output is:

35System Commands

COMPOPT



#VARI
--------------------

ABC

MAXPREC – Maximum Number of Digits after Decimal Point

This option determines the maximum number of digits after the decimal point that the Natural
compiler generates for results of arithmetic operations.

The value denotes themaximumnumber of digits after the decimal point that theNatural compiler
generates for results of arithmetic operations.

The default value 7 provides upwards compatibility for existing applications. If such applications
are catalogedwith MAXPREC=7, theywill deliver the same results as before. Objects catalogedwith

7,…,29

aNatural version that did not support the MAXPREC option are executed as if MAXPREC=7 had been
set.

If higher precision is desired for intermediate results, the value should be increased.

The setting of MAXPREC does not limit the number of digits after the decimal point that can be
specified for user defined fields and constants. However, the precision of such fields and constants
influences the precision of results of arithmetic operations. This makes it possible to benefit from
enhanced precision in selected computations without having the need to set the compiler option
MAXPREC to a value that unintentionally affects other computations. So even if MAXPREC=7 is in
effect, the following example program can be cataloged and executed:

DEFINE DATA LOCAL
1 P (P1.15)
END-DEFINE
P := P + 0.1234567890123456
END

See also Precision of Results of Arithmetic Operations in the Programming Guide.

Caution: Changing the value of the MAXPREC option that is being used to catalog a Natural
object may lead to different results, even if the object source has not been changed. See ex-
ample below.

Example:

System Commands36

COMPOPT



DEFINE DATA LOCAL
1 #R (P1.7)
END-DEFINE
#R := 1.0008 * 1.0008 * 1.0008
IF #R = 1.0024018 THEN ... ELSE ... END-IF

The value of #R after the computation and the execution of the IF statement depend on the setting
of MAXPREC:

Executed Clause of IF StatementValue of #RSetting of MAXPREC Effective at Compile Time

THEN clause1.0024018MAXPREC=7

ELSE clause1.0024019MAXPREC=12

MEMOPT - Memory Optimization for Locally Declared Variables

This option determines whether or not memory is allocated for unused level-1 fields or groups
defined locally (DEFINE DATA LOCAL).

Storage is allocated only forON

■ level-1 field, if the field or a redefinition thereof is accessed;
■ group, if the group or at least a group-field is accessed.

Data storage is allocated for all groups and fields declared locally. This is the default setting.OFF

PCHECK - Parameter Check for Object Calling Statements

The compiler checks the number, format, length and array index bounds of the parameters that are
specified in an object calling statement, such as CALLNAT, PERFORM, INPUT USING MAP, PROCESS

ON

PAGE USING, function call, helproutine call. Also, the OPTIONAL feature of the DEFINE DATA
PARAMETER statement is considered in the parameter check.

The parameter check is based on a comparison of the parameters of the object calling statement with
the DEFINE DATA PARAMETER definitions for the object to be invoked.

It requires that

■ the name of the object to be called is defined as an alphanumeric constant (not as an alphanumeric
variable),

■ the object to be called is available as a cataloged object.

Otherwise, PCHECK=ONwill have no effect.

Error Control for PCHECK=ON

The parameter check is executed only when the object does not contain any syntax errors. The
parameter check is executed for every object calling statement.

37System Commands

COMPOPT



The parameter check is controlled by the PECK profile parameter (see the Parameter Reference
documentation).

Problems in Using the CATALL Command with PCHECK=ON

When a CATALL command is used in conjunctionwith PCHECK=ON, you should consider the following:

If a CATALL process is invoked, the order in which the programming objects are compiled depends
primarily on the type of the object and secondarily on the alphabetical name of the object. The object
type sequence used is:

GDAs, LDAs, PDAs, functions, subprograms, external subroutines, help routines, maps, adapters,
programs, classes.

Within objects of the same type, the alphabetical order of the name determines the sequence in which
they are cataloged.

As mentioned above, the parameters of the object calling statement are checked against the compiled
form of the called object. If the calling object (the one which is being compiled and includes the object
calling statement) is cataloged before the invoked object, the PCHECK result may be wrong if the
parameters in the invoking statement and in the called object were changed. In this case, the new
object image of the called object has not yet been produced by the CATALL command. This causes the
new parameter layout in the object calling statement to be compared with the old parameter layout of
the DEFINE DATA PARAMETER statement of the called subprogram.

Solution:

■ Set compiler option PCHECK to OFF.
■ Perform a general compile with CATALL on the complete library, or if just one or a few objects were
changed, perform a separate compile on these objects.

■ Set compiler option PCHECK=ON.
■ On the complete library, perform a general compile with CATALL, selecting function CHECK.

No parameter check is performed. This is the default setting.OFF

PSIGNF - Internal Representation of Positive Sign of Packed Numbers

The positive sign of a packed number is represented internally as H'F'. This is the default value.ON

The positive sign of a packed number is represented internally as H'C'.OFF

System Commands38

COMPOPT



THSEP - Dynamic Thousands Separator

This option can be used to enable or disable the use of thousands separators at compilation time.
See also the profile parameter THSEP and the profile and session parameter THSEPCH and the section
Customizing Separator Character Displays (in the Programming Guide).

Thousands separator used. Every thousands separator character that is not part of a string literal is
replaced internally with a control character.

ON

Thousands separator not used, i.e. no thousands separator control character is generated by the
compiler. This is the compatibility setting.

OFF

TQMARK - Translate Quotation Mark

Each double quotationmark within a text constant is output as a single apostrophe. This is the default
value.

ON

Double quotationmarks within a text constant are not translated; they are output as double quotation
marks.

OFF

Example:

RESET A(A5)
A:= 'AB"CD'
WRITE '12"34' / A / A (EM=H(5))
END

With TQMARK ON, the output is:

12'34
AB'CD
C1C27DC3C4

With TQMARK OFF, the output is:

12"34
AB"CD
C1C27FC3C4

39System Commands

COMPOPT



TSENABL - Applicability of TS Profile Parameter

This option determines whether the profile parameter TS (translate output for locations with non-
standard lower-case usage) is to apply only to Natural system libraries (that is, libraries whose
names begin with "SYS", except SYSTEM) or to all user libraries as well.

Natural objects cataloged with TSENABL=ON determine the TS parameter even if they are located
in a non-system library.

The profile parameter TS applies to all libraries.ON

The profile parameter TS only applies to Natural system libraries. This is the default value.OFF

Compilation Options for Ensuring Version Compatibility (Remote Mainframe
Environment)

■ FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements
■ MASKCME - MASK Compatible with MOVE EDITED
■ NMOVE22 - Assignment of Numeric Variables of Same Length and Precision
■ V41COMP - Disable Version 4.2 and 8.2 Syntax
■ V42COMP - Disable Version 8.2 Syntax

These options correspond to the keyword subparameters of the CMPO profile parameter and/or the
NTCMPO parameter macro.

FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements

This option can be used to detect FIND statements containing a WITH clause that uses a multiple-
value field in a search criterion forwhich the evaluation differs, depending onwhether theNatural
object has been cataloged with Natural Version 2.2, or with Natural Version 2.3 or above.

With Natural Version 2.3, the evaluation of search criteria for multiple-value fields in the WITH
clause of the FIND statement has been changed.

As a consequence, if a Natural object cataloged with Natural Version 2.2 is recataloged with Nat-
ural Version 2.3 or above, execution of the Natural object may lead to different results if it contains
a FIND statement using a WITH clause that uses a multiple-value field.

System Commands40

COMPOPT



Error NAT0998 will be returned for every FIND statement for which the evaluation of the search
criterion has been changed.

ON

No search for such FIND statements will be performed. This is the default value.OFF

The evaluation of search criteria usingmultiple-value fields in the WITH clause of the FIND statement
has been changed with Natural Version 2.3 so as to comply with the comparison evaluation in
other statements (e.g. IF).

Four different variants of the search criterion in the WITH clause of a FIND statement can be distin-
guished (the field MU in the following examples is assumed to be a multiple-value field):

1. FIND XYZ-VIEW WITH MU = 'A'

This statement returns records in which at least one occurrence of MU has the value "A".

2. FIND XYZ-VIEW WITH MU NOT EQUAL 'A'

With Natural Version 2.2, this statement returns records in which no occurrence of field MU has
the value "A" (same as 4.). With Natural Version 2.3 or above, this statement returns records in
which at least one occurrence of field MU does not have the value "A".

3. FIND XYZ-VIEW WITH NOT MU NOT EQUAL 'A'

With Natural Version 2.2, this statement returns records in which at least one occurrence of field
MU has the value "A" (same as 1.). With Natural Version 2.3 or above, this statement returns re-
cords in which every occurrence of field MU has the value "A".

4. FIND XYZ-VIEW WITH NOT MU = 'A'

This statement returns records in which no occurrence of MU has the value "A".

If you recatalog aNatural object that has been catalogedwithNatural Version 2.2 and that contains
FIND statements of variants 2. and 3. with Natural Version 2.3 or above, it will return different
results.

If you specify FINDMUN=ON, error NAT0998 will be returned for every FIND statement of variants
2. or 3. detected at compilation.

In order to obtain the same results as with Natural Version 2.2, you have to change the statements
as follows:

41System Commands

COMPOPT



In Form 2:

FIND XYZ-VIEW WITH MU NOT EQUAL 'A'

into

FIND XYZ-VIEW WITH NOT MU = 'A'

In Form 3:

FIND XYZ-VIEW WITH NOT MU NOT EQUAL 'A'

into

FIND XYZ-VIEW WITH MU = 'A'

MASKCME - MASK Compatible with MOVE EDITED

The range of valid year values that match the YYYY mask characters is 1582 - 2699 to make the MASK
option compatible with MOVE EDITED. If the profile parameter MAXYEAR is set to 9999, the range of
valid year values is 1582 - 9999.

ON

The range of valid year values that match the YYYYmask characters is 0000 - 2699. This is the default
value. If the profile parameter MAXYEAR is set to 9999, the range of valid year values is 0000 - 9999.

OFF

NMOVE22 - Assignment of Numeric Variables of Same Length and Precision

Assignments of numeric variables where source and target have the same length and precision is
performed as with Natural Version 2.2.

ON

Assignments of numeric variables where source and target have the same length and precision is
performed as with Natural Version 2.3 and above, that is they are processed as if source and target
would have different length or precision. This is the default value.

OFF

V41COMP - Disable Version 4.2 and 8.2 Syntax

Important: This compiler option will be available only with Natural Version 8.2 to allow a
smooth transition. It will be removed again with a subsequent release of Natural after
Version 8.2.

The compiler option V41COMP allows only functions andprogramming featureswhich are compatible
with Natural Version 4.1.

A number of functions and programming features introduced with Natural Version 4.2 or 8.2
would give rise to problems when a program developed and compiled with Version 4.2 or 8.2 is
to be recompiled for putting into operation in a Version 4.1 environment. The relevant functions
or features are listed below.

System Commands42

COMPOPT



The V41COMP option has been provided to detect such incompatibilities and trigger an errormessage
that supplies a reason code for why the recompilation failed. The following values are possible:

When a program is compiled under Version 4.2 or 8.2, every attempt to use a syntax construction that
is supported by Version 4.2, but not by Version 4.1, is rejected and a NAT0647 syntax error and a
corresponding reason code (see below) will be output.

Note: V41COMP=ON automatically implies V42COMP=ON. Functions and programming features newly
introducedwithNatural Version 8.2 are controlled by V42COMP. If such version 8.2 features are found,
the syntax error NAT0599 will be indicated.

ON

A test for Version 4.1 compatibility is not performed. This is the default value.OFF

Compilation Relevant Differences between Version 4.2 and 4.1

The following table gives an overview of the features newly introduced with Version 4.2 (see also
V42COMPwith the new features in Version 8.2), and indicates the reason code that will be supplied
when incompatible syntax is detected:

Reason
Code

Version 4.1Version 4.2Function or Feature

001unknownpossibleNew format U (Unicode)

002unknownpossibleArray with variable number of occurences

X-array, for example:

DEFINE DATA LOCAL
1 #ARR (A10/1:*)

0031 byte - 253 bytes
(NAT0264)

1 byte - 1 GBPossible length of alpha and literals (constants)

004unknownpossibleNew compiler parameters:

THSEP - Thousands separator character in edit mask

CPAGE -Make alphunmeric constants sensitive for code
page translation

005unknownpossibleNew statements:

MOVE NORMALIZED
MOVE ENCODED
PARSE
REQUEST DOCUMENT
EXPAND / REDUCE / RESIZE ARRAY

006unknownpossibleStatement SET GLOBALS:

■ session parameter CPCVERR=ON/OFF

43System Commands

COMPOPT



Reason
Code

Version 4.1Version 4.2Function or Feature

■ allowed when in structured mode (SM=ON)

007unknownpossibleNew system variables:

*PARSE-COL
*PARSE-LEVEL
*PARSE-NAMESPACE-URI
*PARSE-ROW
*PARSE-TYPE
*CODEPAGE
*LOCALE
*TYPE
*CURRENT-UNIT
*UBOUND
*LBOUND

008--Not used

009only alpha with a
length of max. 80
bytes

any length and
format U
(Unicode) allowed

Length and type of source parameters supplied with
INCLUDE

Example:

INCLUDE COPY01 'WRITE *LINE'
'WRITE *PROGRAM'

010unknownpossibleDefinition of an Adabas LA-field in a data view

■ with a size greater than 253 bytes or
■ of type DYNAMIC

V42COMP - Disable Version 8.2 Syntax

Important: This compiler option will be available only with Natural Version 8.2 to allow a
smooth transition. It will be removed again with a subsequent release of Natural after
Version 8.2.

A number of functions and programming features introduced with Natural Version 8.2 would
give rise to problemswhen a programdeveloped and compiledwithVersion 8.2 is to be recompiled
for putting into operation in a Version 4.2 environment. The relevant functions or features are
listed below.

The V42COMP option has been provided to detect such incompatibilities and trigger an errormessage
that supplies a reason code for why the recompilation failed. The following values are possible:

System Commands44

COMPOPT



When a program is compiled under Version 8.2, every attempt to use a syntax construction that is
supported by Version 8.2, but not by Version 4.2, is rejected and a NAT0599 syntax error and a
corresponding reason code (see below) will be output.

ON

A test for Version 4.2 compatibility is not performed. This is the default value.OFF

Compilation Relevant Differences between Version 8.2 and 4.2

The following table gives an overview of the features newly introduced with Version 8.2, and in-
dicates the reason code that will be supplied when incompatible syntax is detected:

Reason
Code

Version 4.2Version 8.2Function or Feature

001not possible
(NAT0169)

possibleA variable of format P/N or a numeric constant with more than
7 precision digits was defined.

Example:

DEFINE DATA LOCAL
  1 #P(P5.8) ↩

002not possible
(NAT0881)

possibleSize of a cataloged program exceeds 64 KB.

003unknownpossibleNew object type “Function” was used, either by

■ a reference to a function; or
■ a DEFINE PROTOTYPE statement.

004unknownpossibleNew compiler option was referenced:

■ MEMOPT

■ MAXPREC

Example:

OPTIONS MAXPREC=10

005unknownpossibleOne of the newfield optionswas used in an I/O statement (WRITE,
DISPLAY, PRINT, INPUT):

■ EMU=

■ ICU=

■ LCU=

■ TCU=

Example:

45System Commands

COMPOPT



Reason
Code

Version 4.2Version 8.2Function or Feature

DISPLAY #TEXT (LCU='<' TCU='>')

006not possiblepossibleAn arithmetic expression was used to specify the start-, end- or
step-value in a FOR statement.

Example:

FOR #I := (#J + 1) TO (#K - 1) STEP (#L + 1)

007not possiblepossibleIn a MOVE ALL statement, a SUBSTR option was applied for the
source or target field.

Example:

MOVE ALL 'X' TO SUBSTR(#A, 3, 5)

008unknownpossibleOne of the following new system functions was used:

■ *MAXVAL

■ *MINVAL

■ *TRIM

■ *TRANSLATE

Example:

COMPUTE #I := *MAXVAL(1, #J, #K) + 1

009unknownpossibleA SUBSTR option was applied

■ for the selection field in a DECIDE ON statement, or
■ within a VALUE(S) clause

Example:

DECIDE ON FIRST VALUE OF SUBSTR(#A, 2,3)
VALUE SUBSTR(#VAL,1,3) ..

010unknownpossibleWithin an EXAMINE statement,

■ the DIRECTION clause or
■ the POSITION clause or
■ a multi-valued (array) field for the search value

was used.

Example:

System Commands46

COMPOPT



Reason
Code

Version 4.2Version 8.2Function or Feature

EXAMINE #TEXT FOR #ARR(1:3) GIVING NUMBER #I

011unknownpossibleThe ADJUST option was used in a READ WORK FILE statement
to auto resize a X-array field at access.

Example:

READ WORK FILE 1 #XARR(*) AND ADJUST

012unknownpossibleThe field referenced in the REINPUT .. MARK clause is supplied
with a (CV=..) option.

Example:

REINPUT 'text' MARK *#FLD (CV=#C)

013unknownpossibleSystemvariableswere referenced in the field list of a WRITE WORK
FILE statement.

014unknownpossibleWithin a READ or FIND statement,

■ an IN SHARED HOLD clause or
■ a SKIP RECORDS IN HOLD clause

was used.

015unknownpossibleNew statements: READLOB and UPDATELOB.

47System Commands

COMPOPT



48



9 DEBUG

DEBUG object-name

This command is used to invoke the Natural debugger. With the command, you specify the name
of the object to be debugged.

See the Debugger documentation for detailed information on the debugger.

Note: This command is not executable in batch mode.

49



50



10 EDIT

■ Syntax 1 ........................................................................................................................................ 52
■ Syntax 2 ........................................................................................................................................ 54
■ Syntax 3 ........................................................................................................................................ 54

51



This command is used to invoke a Natural editor for the purpose of editing the source form of a
Natural programming object.

Three different forms of command syntax exist. These are documented in the following sections.

Related command: READ.

See also Object Naming Conventions in the Using Natural Studio documentation.

See also Invoking Editors in Using Natural Studio.

Syntax 1

EDIT [object-type] [object-name [library-id]]

object-type

The following object types can be edited:

CLASS

4

COPYCODE

DIALOG

3

GLOBAL

HELPROUTINE

LOCAL

MAP

PARAMETER

PROGRAM

SUBPROGRAM

N

SUBROUTINE

TEXT

VIEW

7 (for Function)

Which editor is invoked depends on the type of object to be edited:

■ Local data areas, global data areas or parameter data areas are edited with the data area editor.

System Commands52

EDIT



■ Maps are edited with the map editor.
■ Dialogs are edited with the dialog editor.
■ Classes are edited with the Class Builder.
■ EDIT VIEW only works in the current library and when an object-name is specified. If the object
to be viewed is a DDM, the DDM editor is invoked.

■ All other types of objects - program, subprogram, subroutine, 7 (for function), helproutine,
copycode, text, description - are edited with the program editor.

Note: The text object “description” is available on mainframes only. A description is a pro-
gram description as stored and maintained in the Predict Data Dictionary; an object of this
type can only be edited if Predict is installed.

The object types are described in the Programming Guide. The editors are described in the Editors
documentation.

If you specify the name of the object you wish to edit, you need not specify its object type.

object-name

With the EDIT command, you specify the name of the object youwish to edit. Themaximum length
of the object name is 8 characters.

Note: For DDMs, the maximum length is 32 characters.

Natural will then load the object into the edit work area of the appropriate editor and set the object
name for a subsequent SAVE, CATALOG, STOW command.

If you do not specify an object-name and there is no object in the source work area, the empty
program editor screen will be invoked where you can create a program. If the source work area
is not empty, the object will be loaded in the appropriate editor.

Note: If the source work area is not empty and contains an object that has been opened in
an editor session, the corresponding editor window is displayed and gets the input focus.
Any changes that are applied to the source work area in the meantime (for example, by
running Natural programs) will not be displayed.

library-id

If the object you wish to edit is not contained in the library you are currently logged on to, you
must specify the library-id of the library in which the object to be edited is contained.

If Natural Security is active, a library-idmust not be specified, which means that you can only
edit objects which are in your current library.

53System Commands

EDIT



Syntax 2

**
EDIT

object-nameobject-type

If you do not remember the name of the object you wish to edit, you can use this form of the EDIT
command to display a list of objects, and then select from the list the desired object.

displays a list of all objects in your current library.EDIT *

displays a list of all objects of that type in your current library.EDIT object-type *

To select an object from a certain range of objects, you can use asterisk notation and wildcard
notation for the object-name in the same manner as described for the system command LIST.

Syntax 3

EDIT FUNCTION subroutine-name

The EDIT FUNCTION command may be used to edit a subroutine using the subroutine name (not
the object name) with maximally 32 characters.

Note: Please note that the keyword FUNCTION used in this syntax is not identical with the
Natural object type 7 (for function) listed above. See the description of object type Function
in the Programming Guide.

Example:

DEFINE SUBROUTINE CHECK-PARAMETERS
...

END-SUBROUTINE
END

Assuming that the above subroutine has been saved under the object name CHCKSUB, youmay edit
subroutine CHECK-PARAMETERS either by issuing the command:

EDIT S CHKSUB

or by

EDIT F CHECK-PARAMETERS

System Commands54

EDIT



11 EXECUTE

■ Syntax Explanation .......................................................................................................................... 56
■ Examples of EXECUTE Command ..................................................................................................... 57

55



[library-id]program-name[REPEAT]EXECUTE

program-name [parameter ...]

This command is used to execute a Natural object module of type program or of type dialog. The
object module must have been cataloged (that is, stored in object form) in the Natural system file
or linked to theNatural nucleus. The execution of an objectmodule does not affect the source code
currently in the editor work area.

See also Executing Objects in Using Natural Studio.

Syntax Explanation

The keyword EXECUTE is optional; it is sufficient to specify program-name, i.e. the name
of the program or dialog to be executed.

EXECUTE

If the program or dialog being executed produces multiple screen output and you wish
the screens to be output one after another without intervening prompts, you specify the
keyword REPEAT together with the keyword EXECUTE.

REPEAT

The name of the program or dialog to be executed. If you do not specify a library-id,
Natural can only execute the specified program or dialog if it is stored either in your
current library or in the current steplib library (the default steplib is SYSTEM).

program-name

If the programor dialog is stored in another library, specify the library-id of that library.
In this case, the program or dialog can only be executed if it is actually stored in the
specified library.

library-id

A library-id that begins with SYSmust not be specified (except SYSTEM).

When you execute a program by specifying the program name without the keyword
EXECUTE, youmay pass parameters to the program. These parameters will be read by the
first INPUT statement in the executed program.

parameter

You can specify the parameters as positional parameters or as keyword parameters, with
the individual specifications separated from one another by blanks or the input delimiter
character (as specified with the session parameter ID).

Note: If one of the parameters passed contains blanks or is a stringwhich contains blanks,
the transfer will only be executed if directly after the program name an input delimiter is
set.

System Commands56

EXECUTE



Examples of EXECUTE Command

EXECUTE PROG1

EXECUTE PROG1 ULIB1

PROG1

PROG1 VALUE1 VALUE2 VALUE3

PROG1 VALUE1, VALUE2, VALUE3

PROG1 PARM1=VALUE1, PARM2=VALUE2, PARM3=VALUE3

PROG1 PARM3=VALUE3 PARM1=VALUE1 VALUE2

PROG1,ab cd ef,gh,de fg,ab

57System Commands

EXECUTE



58



12 FIN

FIN

This command is used to terminate a Natural session. It applies to online sessions as well as batch
mode sessions.

A batchmode session is also terminatedwhen an end-of-file condition is detected in the command
input dataset.

59



60



13 GLOBALS

■ Syntax Explanation .......................................................................................................................... 62
■ List of Parameters ........................................................................................................................... 62
■ Interaction with SET GLOBALS and Other Statements ............................................................................ 64

61



GLOBALS [parameter=value ...]

This command is used to set Natural session parameters.

Note: In batch mode, this command is only executable, if parameters are specified. For ex-
ample, GLOBALS SM=ON can be executed in batch mode.

Syntax Explanation

If the GLOBALS command is entered without parameters, a window appears where you can
modify the parameter settings. For detailed information on this window, see Using Session
Parameters in Using Natural Studio.

GLOBALS

Parameter settings can be supplied in any order and must be separated by a blank.parameter

Ifmore parameters are specified thanwill fit on one command line, severalGLOBALS commands
must be issued.

Example:

GLOBALS DC=, ID=.

Note: Certain session parameters can be modified only using the above mentioned window,
but not via the command line.

List of Parameters

The following table contains a list of session parameters that can be specified with the system
command GLOBALS.

FunctionParameters

Character for Terminal CommandsCF

Set RPC Buffer CompressionCOMPR

Code Page Conversion ErrorCPCVERR

Interpretation of Database Short NamesDBSHORT

Character for Decimal Point NotationDC

Date Format for OutputDFOUT

Date Format for StackDFSTACK

Output Format of Date in Standard Report TitleDFTITLE

Dump GenerationDU

Page EjectEJ

System Commands62

GLOBALS



FunctionParameters

Endian Mode for Compiled ObjectsENDIAN

Filler Character for Dynamically Protected Input FieldsFCDP

Default Format/Length Setting for User-Defined VariablesFS

Global Format IDsGFID

Input Assign CharacterIA

Input Delimiter CharacterID

Input ModeIM

Reaction when Limit for Processing Loop ExceededLE

Line SizeLS

Limit for Processing LoopsLT

Position of Message LineML

Use of Natural System CommandsNC

Overwriting of Protected Fields by HelproutinesOPF

Print ModePM

Page Size for Natural ReportsPS

Issue Internal REINPUT Statement for Invalid DataREINP

Sound Terminal AlarmSA

Spacing FactorSF

Programming in Structured ModeSM

Generate Symbol TableSYMGEN

Thousands Separator CharacterTHSEPCH

Wait Time for RPC Server ResponseTIMEOUT

Try Alternative Server AddressTRYALT

Wait for Record in Hold StatusWH

Creation of XRef Data for NaturalXREF

Zero-Division CheckZD

Zero PrintingZP

63System Commands

GLOBALS



Interaction with SET GLOBALS and Other Statements

Statement SET GLOBALS

The system command GLOBALS and the statement SET GLOBALS offer the same parameters for
modification. They can both be used in the same Natural session. Parameter values specified with
a GLOBALS command remain in effect until they are overridden by a new GLOBALS command or
SET GLOBALS statement, the session is terminated, or you log on to another library.

Other Statements Influencing the Session Parameter Settings

Some parameter values may be overridden during program execution using the LIMIT, EJECT,
and FORMAT statements and by format entries specified in INPUT, DISPLAY, PRINT, and WRITE state-
ments.

System Commands64

GLOBALS



14 HELP

[NAT]nnnnHELP
USER[nnnn]?

This command is used to invoke online help for error messages.

Note: This command is not executable in batch mode.

For further information, see Using Help in Using Natural Studio.

Displays the help menu.HELP

Entering HELP and a number (up to 4 digits, optionally prefixed by "NAT") displays the
detailed message text for the Natural error condition associated with that number, that
is, the long text of the Natural system error message NATnnnn.

HELP [NAT]nnnn

Displays the long text of the library-specific error message number nnnn in the current
library.

HELP USERnnnn

65



66



15 INPL

INPL [R]

This command is used to invoke the Natural INPL utility. This utility is only used for the loading
of Software AG installation datasets into the system files as described in the online help and in
the platform-specific installation documentation.

Apart from that, you use the Object Handler to load objects into the system files.

If you enter the INPL command without any parameters, the INPL utility will be invoked.INPL

Invokes the INPL utility function Natural Security Recover which is only available if Natural
Security is installed.

INPL R

It can be used to reset the access to the Natural Security library SYSSEC: the user DBA, the library
SYSSEC, and the link between the two will be redefined as after the initial installation, while all
other links to SYSSECwill be cancelled. See also Inaccessible Security Profiles in the section
Countersignatures of the Natural Security documentation.

For further information, see INPL Utility in the Tools and Utilities documentation.

67



68



16 LAST

LAST
-
-nn
*

This command is used to display the system command(s) that was/were last executed. Moreover,
you can have the displayed command(s) executed again. You can also overwrite them before they
are executed.

Only system commands that you actually entered can be displayed via the LAST command; com-
mands issued internally by Natural as a result of a command you entered are not available via
LAST.

The command that was issued last is placed in a dialog box and can be executed.LAST

The command that was issued last is placed in a dialog box and can be executed.LAST -

If you enter LAST - again, the last but one command is placed in a dialog box.

By repeatedly entering LAST -, you can thus “page” backwards command by command.

Natural “remembers” up to the last 20 commands that were issued; nnmust therefore not be
greater than 20.

The last command but nn is placed in a dialog box and can be executed.

LAST -nn

A dialog box is displayed showing the last 20 system commands that were issued.LAST *

■ To execute the commands again, select the required commands and use the Copy button to
copy the commands to the Selected Commands list box.

■ The selected commands in the list box can be modified before executing them.

69



70



17 LASTMSG

LASTMSG

This command is used to display additional information about the error situation which has oc-
curred last.

Note: This command is also available in a remote session. All information can be read in
batch mode.

When Natural displays an error message, it may in some cases be that this error is not the actual
error, but an error caused by another error (which in turn may have been caused by yet another
error, etc.). In such cases, the LASTMSG command allows you to trace the issued error back to the
error which has originally caused the error situation.

When you enter the command LASTMSG, you will get - for the error situation that has occurred last
- the errormessage that has been displayed, aswell as all preceding (not displayed) errormessages
that have led to this error.

See also Last Message in Using Natural Studio.

To display information on the corresponding error

■ Select one of these messages and choose the Details button, or double-click the message.

The following is displayed:

■ error number;
■ number of the line in which the error occurred;
■ name, type and level of the object that caused the error;
■ name, database ID and file number of the library containing the object;
■ error class (system = error issued by Natural; user = error issued by user application);

71



■ error type (runtime, syntax, command execution, session termination, program termination,
remote procedure call);

■ date and time of the error.

Note: The library SYSEXT contains a user application programming interface USR2006which
enables you to display in yourNatural application the error information supplied by LASTMSG.

Natural Remote Procedure Call (RPC):

If an error occurs on the server, the following error information is not displayed: database ID, file
number, date and time.

System Commands72

LASTMSG



18 LIST

■ Syntax Overview ............................................................................................................................. 74
■ Displaying an Individual Source .......................................................................................................... 75
■ Displaying a List of Objects ............................................................................................................... 76
■ Displaying Directory Information ......................................................................................................... 77
■ Displaying Views ............................................................................................................................. 77
■ Displaying File Information of Resource Objects .................................................................................... 78
■ Displaying File Information of Error Message Containers ......................................................................... 78

73



This system command is used to display the source code of a single object or to list one or more
objects which are contained in the current library.

Note: This command is not executable in batch mode.

This chapter covers the following topics:

See also Listing Objects in Using Natural Studio, and the descriptions of the commands LIST XREF
and LIST COUNT.

Syntax Overview

LIST

[object-type] object-name
DIRECTORY [object-name]
VIEW [view-name]
RESOURCE [name]
ERROR [name]

object-type

System Commands74

LIST



*

CLASS

4

COPYCODE

DATA-AREAS

GLOBAL

LOCAL

PARAMETER

DIALOG

3

7 (for function)

8 (for adapter)

MAP

PROCESSOR

CP

5

PROGRAM

ROUTINES

HELPROUTINE

SUBPROGRAM

N

SUBROUTINE

TEXT

object-name

In place of object-name, you may specify the name of an object (8 characters long at maximum).
You may also specify asterisk notation (*), see the examples below.

Displaying an Individual Source

If you enter only the LIST command itself, without any parameters,
the contents of the source of the object currently selectedwill be listed.

LIST

If you enter a single object name with the LIST command, you need
not specify the object-type.

If you specify an object-type, you must also specify an
object-name.

LIST object-name

LIST object-type object-name

75System Commands

LIST



In both cases, the object's source code will be listed.

Displaying a List of Objects

To have all objects in the current library listed, except DDMs, you
specify an asterisk (*) for the object-name, but no object-type.

LIST object-name

LIST object-type object-name

To have all objects of a certain type listed, you specify a certain
object-type and an asterisk (*) for the object-name.

If you wish a certain range of objects to be listed, you can use asterisk
notation (*) for the object-name and/or wildcard notation (?).

Examples

■ List all objects in the current library, except DDMs:

LIST *

■ List all subroutines in the current library:

LIST S *

■ List all objects (of any type) whose names begin with SYS:

LIST SYS*

■ List all maps whose names begin with SYS:

LIST M SYS*

■ List directory information of object PRG01 in current library:

LIST DIR PRG01

■ List all objects such as NATAL, NATURAL, NATvrAL (where vr represents the relevant product ver-
sion):

LIST N?T*AL

System Commands76

LIST



Displaying Directory Information

Displays the directory information about the last active object currently in the source
work area:

LIST DIRECTORY

■ Source code:
“Saved-on” date and time, library name, user ID, programming mode (reporting
or structured), Natural version, code page information (if available), operating
system, size, encoding.

■ Object code:
“Cataloged-on” date and time, library name, user ID, programmingmode,Natural
version, code page information (if available), operating system/version, size, Endian
mode.

Directory information on the saved source code cannot be always exact, because the
source code can be edited with non-Natural editors which are not under the control
of Natural.

Displays the directory information about the specified object. If you use asterisk
notation (*) for object-name, the directory information of the existing objects is
displayed sequentially.

LIST DIRECTORY
object-name

Note: The code page information displayed shows the first 32 characters of the code page
only.

Displaying Views

Displays a list of all views (DDMs).LIST VIEW

If you specify a single view name, the specified view will be displayed.

For the view-name, you can use asterisk notation to display a list of all views
(*) or a certain range of views (for example: A*).

LIST VIEW view-name

77System Commands

LIST



Displaying File Information of Resource Objects

Displays the file information about the specified resource object. For name, you
may only use asterisk notation (*).

LIST RESOURCE name

Example - Display the file information of all resource objects whose name starts with a W:

LIST RESOURCE W*

Displaying File Information of Error Message Containers

Displays the file information about the specified error message container
NnnAPMSL.MSG, where nn is the language code. For name, youmay only use asterisk
notation (*).

LIST ERROR name

System Commands78

LIST



19 LIST COUNT

LIST COUNT

This command is used to list the number of Natural objects in your current library.

Displays the total number of objects.LIST COUNT

Displays the number of objects broken down by object types.LIST COUNT *

Displays the number of objects whose names are less/equal name.LIST COUNT name<

Displays the number of objects whose names are greater/equal name.LIST COUNT name>

Displays the number of only those objects whose names begin with name.LIST COUNT name*

Note: If there are objects listed under object type undefined, this indicates that the library
contains objects whose version is not compatible.

79



80



20 LIST XREF

LIST XREF

This command is only available if Predict has been installed.

It is used to display all active cross-reference data for the current library.

For further information, see List XREF For Natural in the Predict documentation.

81



82



21 LOGOFF

LOGOFF

Related command: LOGON.

This command is used to cause the library ID to be set to SYSTEM and the Adabas password to be
set to blanks. The contents of the source program work area are not affected by this command.

LOGOFF has no effect on Natural global parameter settings.

For information on LOGOFF processing under Natural Security, see How to End a Natural Session in
section Logging On of the Natural Security documentation.

Note: LOGOFF does not cause the Natural session to be terminated.

To terminate the session

■ Use the system command FIN, or execute a program that contains a TERMINATE statement.

83



84



22 LOGON

LOGON library-id [password]

Related command: LOGOFF.

This command is used to log on to a library in your environment or create a new library. In the
specified library, all newly created source or object programs saved during the session will be
stored (unless you explicitly specify another library ID in a SAVE, CATALOG or STOW command).

The LOGON command has no direct effect on the source program in the currently active window.

LOGON causes all Natural global data areas and application independent variables (AIVs), all as-
signmentsmade using the SET KEY statement and retained ISN lists to be released. Data definition
modules (DDMs) contained in the DDM buffer area are also released.

The library ID can be 1 to 8 characters long and must not contain blanks. It can consist
of the following characters:

LOGON
library-id

upper-case alphabetical charactersA - Z

numeric characters0 - 9

hyphen-

underscore_

The first character of a library ID must be an upper-case alphabetical character.

TheAdabas password; see Session Parameters in section LibraryMaintenance of theNatural
Security documentation.

LOGON
library-id
password

For information on LOGONprocessing underNatural Security, see LoggingOn in theNatural Security
documentation.

85



86



23 MAIL

*

MAIL ?

mailbox-id

This command is used to invoke a mailbox which is a kind of “notice board” used to broadcast
messages under Natural Security. The contents and/or expiration date of the mailbox can be
modified.

If you enter the MAIL command without any parameters, a window is displayed
prompting you to enter a mailbox ID.

MAIL

A list of all mailboxes you may use is displayed, and you may then select a mailbox
from the list.

MAIL *

MAIL ?

If you specify a mailbox-id (maximum 8 characters), the corresponding mailbox is
invoked directly. The mailbox-idmust have been defined in Natural Security.

MAIL mailbox-id

For further information, seeMailboxes in the Natural Security documentation.

87



88



24 MAP

■ Establish a Connection to a Natural Development Server Environment ....................................................... 90
■ Establish a Connection to a Natural Application ..................................................................................... 91

89



The MAP command enables you to perform the following functions, using the Natural command
line:

This chapter covers the following topics:

Related command: UNMAP.

Establish a Connection to a Natural Development Server Environment

The following MAP command syntax applies if you want to establish a connection to a Natural
Development Server, using the Natural command line:

MAP ENVIRONMENT=environment-nameserver-nameport-name [userid [password ['parm=value;...']]

This method has the same effect as the dialog described in the sectionMapping a Development
Server in the Remote Development Using SPoD documentation.

Alias name used for the connection.

If environment-name is not specified, an alias name in the form server(port)
will be generated.

environment-name

If the environment name contains blanks, it must be enclosed in single quotes ('...').

The name of the Natural development server on themainframe, UNIX or OpenVMS
server.

server-name

The TCP/IP port number of the development server.port-name

The user ID for access to the development server.

If you enter an asterisk (*) as userid, the user ID of the client session is used.

userid

If Natural Security is installed on the development server, specify the required
password.

If you enter an asterisk (*) as password, an empty password string is sent to the
development server.

password

If dynamic parameters are required for your development server, specify the session
parameters using single quotes ('...').

parm

To unmap a session on a Natural Development Server, you can use the UNMAP command.

System Commands90

MAP



Establish a Connection to a Natural Application

The following MAP command syntax applies if you want to establish a connection to a Natural
application, using the Natural command line:

MAP APPLICATION=application-name [userid [password]

This method has the same effect as the dialog described in the sectionMapping and Unmapping
Applications in the Remote Development Using SPoD documentation. For information on the term
“Natural Application”, refer to the Natural Single Point of Development documentation.

The name of the application.application-name

The user ID for access to the application.

If you enter an asterisk (*) as userid, the user ID of the client session is used.

userid

If Natural Security is installed on the development server, specify the required
password.

If you enter an asterisk (*) as password, an empty password string is sent to the
development server.

password

To unmap an application on a Natural Development Server, you can use the UNMAP command or
the dialog described in the sectionMapping and Unmapping Applications.

91System Commands

MAP



92



25 PROFILE

This command is available only if Natural Security is installed.

PROFILE

This command is used to display the security profile currently in effect. This profile informs you
of the conditions of use in effect for you in your current Natural environment.

For further information, see PROFILE Command in the Natural Security documentation.

93



94



26 PURGE

PURGE [object-name ...]

This command is used to delete one or more source objects.

Note: If theNatural profile parameter RECAT is set to ON, the PURGE commandwill be rejected
for a source for which a corresponding cataloged object exists.

If you enter the PURGE commandwithout an object-name, a list of all objects in the
current library will be displayed; on the list, you can then mark the objects to be
deleted.

PURGE

As object-name, you specify the name(s) of the object(s) to be deleted. You can only
delete objects that are stored in the library to which you are currently logged on.

PURGE
object-name

If youwish to delete all objectswhose names beginwith a specific string of characters,
use asterisk notation (*) for the object-name.

95



96



27 READ

READ object-name [library-id]

Related command: EDIT.

This command is used to transfer an object that is stored in source form into the source work area.
Any object currently in the source work area will be overwritten by the object read.

See also Object Naming Conventions in the Using Natural Studio documentation.

The name of the object to be read.READ object-name

If object-name is specified without a library ID, the object will be read
only if it is stored in the library to which you are currently logged on.

The library in which the object to be read is contained.READ object-name
library-id

If both object-name and library-id are specified,Natural will only read
the object if it is stored under the specified library ID.

97



98



28 REGISTER

ES
library-nameclass-module-name

REGISTER IM

EM**

Related command: UNREGISTER.

This command is used to register Natural classes. They are registered for the server ID under
which Natural was started.

For further information, see The REGISTER Command in the Administrating NaturalX Applications
part of the Operations documentation.

99



100



29 RENAME

This command is not available via the command line in a remote development environment.

RENAME [old-name [new-name [new-type]]

This command is used to give a Natural programming object another name. In addition, you can
change the object type.

You can only rename one object at a time. The object to be renamed must be stored in the library
to which you are currently logged on. To ensure consistency, Natural will rename source code or
object module or both.

See also Object Naming Conventions in the Using Natural Studio documentation.

If you issue the command without parameters, a Rename Objectwindow appears where you
can specify the same parameters as in the command line.

RENAME

As old-name you specify the existing name of the object to be renamed.old-name

As new-name you specify the name under which the object is to be stored from now on.new-name

When you rename an object in source form, you can also change its object type by specifying
the corresponding character for new-type.

The possible values you can specify for new-type are:

new-type

Dialog3

Class4

Processor5

Function7

Adapter8

Resource9

Parameter data areaA

CopycodeC

101



Global data areaG

HelproutineH

Local data areaL

MapM

SubprogramN

MacroO

ProgramP

SubroutineS

TextT

RuleY

RecordingZ

See also Renaming Objects in Using Natural Studio.

System Commands102

RENAME



30 RENUMBER

RENUMBER [(n)]

This command is used to renumber the lines in the source program currently in the source work
area.

If you enter the command without parameter, the increment to be used for renumbering
is 10.

RENUMBER

n can be used to specify a value between 1 and 10 as increment for renumbering.RENUMBER (n)

103



104



31 RETURN

I

RETURN nn

*

This command is used to return to a previous (or initial) Natural application.

If RETURN is specified without any parameters, control will be returned to the previous
application (as definedwith the system command SETUP). All information about this previous

RETURN

application will be deleted. If no previous application exists, control is returned to the initial
application.

If RETURN is issued and no return point is set, the RETURN command will be ignored.

Under Natural Security:

A LOGOFF command will be executed if RETURN is issued and no return point has been set.

This command causes control to be returned directly to the initial application. This option
also causes Natural to delete all definitions of previous applications (except that of the initial
application).

RETURN I

This command causes control to be returned to the nnth previous application. When this
option is used, all information for applications subsequent to the nnth application is deleted.

RETURN nn

This command will display a list of all return points which are currently set up. On the list
you may then select the return point to which you wish to return.

RETURN *

See the SETUP command for further information and examples.

105



106



32 RPCERR

RPCERR

This command is used to display the last Natural error number andmessage if it was RPC related,
and it also displays the last Broker reason code and associated message. Additionally, the node
and server name from the last Broker call can be retrieved.

For further information, seeMonitoring the Status of an RPC Session in the Operating a Natural RPC
Environment section of the Natural Remote Procedure Call (RPC) documentation.

107



108



33 RUN

RUN [REPEAT] [program-name [library-id]]

This command is used to compile and execute a source program or dialog. The program or dialog
may be in the source work area or in the Natural system file.

See also:

■ Running Objects in Using Natural Studio
■ Object Naming Conventions in Using Natural Studio

If program name is not specified,Natural will compile and execute the programor dialog
currently residing in the work area.

RUN

REPEAT defines that if the program or dialog being executed produces multiple screen
output, the screens are to be output one after another without intervening prompting
messages. When the program or dialog terminates, Natural will enter command mode.

REPEAT

The name of the program or dialog to be run.program-name

If program-name is specified without a library ID, Natural will read the source program
or dialog into the source work area, compile, and execute the specified program or dialog
only if it is stored under the current library ID. If it is not stored under the current library
ID, an error message will be issued.

The library in which the program or dialog to be run is contained.library-id

If both program-name and library-id are specified, Natural will retrieve, compile, and
execute the specified program or dialog only if it is stored under the library ID specified.
If it is not stored under the current library ID, an error message will be issued.

The setting for library-idmust not begin with SYS (except SYSTEM).

109



110



34 SAVE

SAVE [object-name [library-id]]

Related commands: STOW | CATALOG.

This command is used to save the source code of the programming object currently in the work
area of the editor and store it as a source object in the Natural system file.

See also:

■ Saving Objects in Using Natural Studio
■ Object Naming Conventions in Using Natural Studio

Caution: The SAVE command cannot be used if the profile parameter RECAT has been set to
ON; in this case, use the STOW command to compile and store the object.

If you use the command without object-name, the current source object in the
source work area will be saved in the library from which the object was read into

SAVE

the source work area (for example, with EDIT or READ). An existing source code
will be replaced.

A new source object is created. As object-name, you specify the name under
which the source object is to be saved. The new source object is stored in the current
library. If the source object exists, the command is rejected.

SAVE object-name

When you save a source object under a different name or save a newly created
object, the source object will, by default, be stored in the current library. If youwish

SAVE object-name
library-id

to store it in another library, you have to specify the desired library-id after the
object-name. A new source object is created, if the source object exists, the
command is rejected.

111



112



35 SCAN

SCAN

This command invokes a dialog box which is used to find Natural objects and character strings
within these objects. For detailed information on this dialog box, see Finding Objects in a Library
in Using Natural Studio.

Note: This command is not executable in batch mode.

113



114



36 SCRATCH

*
SCRATCH

object-name...

This command is used to delete one or more objects - in both source and object form. The contents
of the source work area is not affected.

If you enter the SCRATCH command without an object-name or without an
object-name but with an asterisk (*), a list of all objects or all selected objects

SCRATCH

SCRATCH *
in the current librarywill be displayed. On the list youmay thenmark the objects
to be deleted.

As object-name, you specify the name(s) of the object(s) to be deleted. You
can only delete objects which are stored in your current library.

If you wish to delete all objects whose names begin with a specific string of
characters, use asterisk notation (*) for the object-name.

SCRATCH object-name

Note: If an FDIC system file is specified in the parameter file which is not valid, Natural will
display an appropriate error message when the SCRATCH command is issued.

115



116



37 SETUP

■ Syntax Explanation ........................................................................................................................ 118
■ SETUP/RETURN Example .............................................................................................................. 119

117



SETUP [application-name] [command-name] [I]

This command is used to define applications to which control is to be returned using the RETURN
command. This allows you to easily transfer from one application to another during a Natural
session.

This chapter covers the following topics:

Syntax Explanation

The command syntax and the parameters that can be issued with the SETUP system command are
explained below. If a parameter is to be omitted, you may use the input delimiter character to
mark the beginning of the following parameter(s).

If SETUP is issued without parameters, a menu will be displayed for the purpose of
entering the command information.

SETUP

The name of the application to which control is to be returned. A maximum of 8
characters may be used (A8).

application-name

If application-name is blank, a LOGON command will not be issued. This permits
multiple return points within the same application.

If application-name is "*", the current setting of the system variable *LIBRARY-ID
(that is, at the time SETUP is issued) is used to create the LOGON command when
RETURN is issued.

The name of the command which is to be executed when control is returned to the
application. A maximum of 60 characters may be used (A60).

command-name

If command-name is blank, no commandwill be issued after the LOGON. This is useful
for applications underNatural Security forwhich a startup programhas already been
defined.

If command-name is "*", the current setting of the system variable *STARTUP (that is,
at the time SETUP is issued) is used as the startup command when RETURN is issued.

If the I option is specified, all return points defined with previous SETUP commands
will be deleted and the application specified with SETUP Iwill be defined as the
new initial application.

I

In a non-Security environment, if you log on from library SYSTEM to another library
and no return point has been set, this other library will automatically be set as initial
return point.

System Commands118

SETUP



SETUP/RETURN Example

1. User starts Natural session (default application is APPL1).

Return point APPL1 is defined on Level 1.

2. User issues command LOGON APPL2.

3. User executes a programwhich stacks two commands (establish return point and go to another
application):

SETUP *,MENU
LOGON APPL3

Return point APPL2, STARTUP MENU is defined on Level 2.

4. User issues command LOGON APPL4 (user selects another application).

5. User presses a PF key which has the setting RETURN. Natural will issue for the user:

LOGON APPL2
MENU

Return to APPL2, delete Level 2.

6. User executes a program which stacks:

SETUP *,MENU
LOGON APPL5

Return point APPL2, STARTUP MENU is defined on Level 2.

7. User executes a program which stacks:

SETUP *,MENU
LOGON APPL6

Return point APPL5, STARTUP MENU is defined on Level 3.

8. User executes a program which stacks:

SETUP *,MENU
LOGON APPL7

Return point APPL6, STARTUP MENU is defined on Level 4.

9. User executes a program which stacks:

119System Commands

SETUP



SETUP *,MENU
LOGON APPL8

Return point APPL7, STARTUP MENU is defined on Level 5.

10. User executes a program which stacks:

SETUP *,MENU
LOGON APPL9

Return point APPL8, STARTUP MENU is defined on Level 6.

11. User issues command RETURN 2 (return two levels back).

Natural will return user to APPL7, since that was the second previous session (all information
for APPL8 is now lost). Level 6 (APPL8) is deleted, Level 5 (APPL7) is activated and level deleted.

12. User issues command RETURN.

Level 4 (APPL6) is activated, level deleted. Natural will return user to APPL6, since that was the
session previous to APPL7.

13. User issues command RETURN.

Level 3 (APPL5) is activated, level deleted. Natural will return user to APPL5, since that was the
session previous to APPL6.

14. User issues command RETURN I.

Level 2 (APPL2) is deleted, Level 1 (APPL1) is activated.

System Commands120

SETUP



38 STOW

STOW [object-name [library-id]]

Related commands: SAVE | CATALOG.

This command is used to compile and store a Natural programming object (in both source and
object form) in the Natural system file. You can regard this command as a CATALOG followed by a
SAVE.

See also:

■ Stowing Objects in Using Natural Studio
■ Object Naming Conventions in Using Natural Studio

If you use the command without object-name, the current source object in the
sourcework area and the generated code are stored in the library under the name
of the object last read into the sourcework area (for example,with EDIT or READ).

STOW

Use this command syntax to store a new object (source and generated code)
named object-name in the current library. If the object exists in either source
or cataloged form, the command is rejected.

STOW object-name

If both object-name and library-id are specified, a newobjectwill be created
and stored under that name in the specified library ID. If the object exists in either
source or cataloged form, the command is rejected.

STOW object-name
library-id

Note: If an FDIC system file is specified in the parameter file which is not valid, Natural
will display an appropriate error message when the STOW command is issued.

121



122



39 STRUCT

■ Indentation of Source Code Lines ..................................................................................................... 124

123



STRUCT [(n)]

This command is used to perform structural indentation of the source code of the programming
object currently in the work area of the editor.

By default (that is, if (n) is not specified), indentation is by 2 positions.STRUCT

The parameter (n)may be supplied to specify the number of spaces used for indentation.

Possible values: 1 - 9.

STRUCT (n)

Example:

STRUCT (5)

The following types of statements are affected by the STRUCT command:

■ processing loops (READ, FIND, FOR, etc.),
■ conditional statement blocks (AT BREAK, IF, DECIDE FOR, etc.),
■ DO/DOEND statement blocks,
■ DEFINE DATA blocks,
■ inline subroutines.

This chapter covers the following topics:

Indentation of Source Code Lines

You can have a source program indented so that the indentation of source-code lines reflects the
structure of the program.

Note: Indentation is performed differently for a reporting-mode program than for a struc-
tured-mode program.

Partial Indentation

You can exclude sections of your program source from structural indentation by using the special
statements /*STRUCT OFF and /*STRUCT ON. These must be entered at the beginning of a source-
code line. The source-code lines between these two statements will remain as they are when you
issue the STRUCT command.

System Commands124

STRUCT



Example of Structural Indentation

Program before being structurally indented:

DEFINE DATA LOCAL
1 EMPL VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 FULL-NAME
3 FIRST-NAME
3 NAME
1 VEHI VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE
END-DEFINE
FIND EMPL WITH NAME = 'ADKINSON'
IF NO RECORDS FOUND
WRITE 'NO RECORD FOUND'
END-NOREC
FIND (1) VEHI WITH PERSONNEL-ID = EMPL.PERSONNEL-ID
DISPLAY EMPL.PERSONNEL-ID FULL-NAME MAKE
END-FIND
END-FIND
END

The same program after being structurally indented:

DEFINE DATA LOCAL
1 EMPL VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FULL-NAME

3 FIRST-NAME
3 NAME

1 VEHI VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
FIND EMPL WITH NAME = 'ADKINSON'

IF NO RECORDS FOUND
WRITE 'NO RECORD FOUND'

END-NOREC
FIND (1) VEHI WITH PERSONNEL-ID = EMPL.PERSONNEL-ID

DISPLAY EMPL.PERSONNEL-ID FULL-NAME MAKE
END-FIND

END-FIND
END

125System Commands

STRUCT



126



40 SYSAPI

SYSAPI

This command is used to invoke the SYSAPI utility.

This utility is used to locate Application Programming Interfaces (APIs) provided byNatural add-
on products such as Entire Output Management (NOM).

For each API, the utility SYSAPI provides one or more example programs that contain a functional
description of the API and that can be used to test the effect of the API.

For further information, see SYSAPI - APIs of Natural Add-on Products in the Tools and Utilities
documentation.

127



128



41 SYSCP

SYSCP

This command is used to invoke the SYSCP utility.

The SYSCP utility can be used to obtain code page information.

For further information, see SYSCP Utility - Code Page Information in the Tools and Utilities docu-
mentation and Unicode and Code Page Support.

129



130



42 SYSERR

SYSERR

This command is used to invoke the SYSERR utility.

With the SYSERR utility, you can write your own application-specific messages.

■ You can use the SYSERR utility to separate error or information messages from your Natural
code and manage them separately.

■ Aswell as unifying messages and definingmessage ranges for different kinds of messages, you
can translate messages into another language and attach a long text to a message.

■ You can also use the SYSERR utility to modify the texts of existing Natural system messages, al-
though this is not recommended as modifications will be lost with new Natural releases.

For further information, see SYSERR Utility in the Tools and Utilities documentation.

131



132



43 SYSEXT

SYSEXT

This command is used to invoke the SYSEXT utility.

This utility is used to display various Natural application programming interfaces contained in
the library SYSEXT.

For further information, see SYSEXT - Natural Application Programming Interfaces in the Tools and
Utilities documentation.

133



134



44 SYSEXV

SYSEXV

This command is used to invoke the SYSEXV utility.

The SYSEXV utility gives you access to examples of new features available in the current and in
some earlier versions of Natural.

For further information, see SYSEXV Utility in the Tools and Utilities documentation.

135



136



45 SYSFILE

■ SYSFILE in a Remote Mainframe Environment .................................................................................... 138

137



SYSFILE

This command is used to display work and print files information. You can obtain information
about the following:

■ reports,
■ logical devices,
■ defined physical devices,
■ defined printer profiles, and
■ defined workfiles.

See alsoWork and Print Files in Using Natural Studio.

For further information on work and print files, see

■ Printer Profiles in the Configuration Utility documentation, and
■ Device/Report Assignments in the Configuration Utility documentation,
■ Work Files in the Operations documentation,

SYSFILE in a Remote Mainframe Environment

You can obtain the following work and print files information:

■ type of assignment,
■ record format,
■ logical record length,
■ block size,
■ status,
■ dynamic parameter specification.

System Commands138

SYSFILE



46 SYSINST

SYSINST

This command is used to invoke theNatural Installer. This utility helps you to install Natural add-
on products, for example, Natural Security.

For further information, see Installer in the Tools and Utilities documentation.

139



140



47 SYSMAIN

SYSMAIN

This command is used to invoke the SYSMAIN utility. You use this utility to perform operations
such as copy,move and delete onNatural objects. The SYSMAIN utility is also used to transfer objects
within the Natural system from one environment to another using the import function.

For further information, see SYSMAIN Utility in the Tools and Utilities documentation.

Note: This command is not executable in batch mode.

141



142



48 SYSMN

SYSMN

This command is used to invoke Mainframe Navigation.

For further information, refer to the Mainframe Navigation documentation.

143



144



49 SYSNCP

SYSNCP

This command is used to invoke the SYSNCP utility.

For further information, see SYSNCP Utility in the Tools and Utilities documentation.

145



146



50 SYSOBJH

SYSOBJH

This command is used to invoke the Object Handler. You use the Object Handler to process Nat-
ural and non-Natural objects for distribution in Natural environments.

For further information, see Object Handler in the Tools and Utilities documentation.

147



148



51 SYSPROD

SYSPROD

This command is used to ascertain which products are installed at your Natural site. You are
given information on your currentNatural version, Natural selectable units and products running
with or under Natural.

When you enter the command, a dialog displays information such as the following for each product
installed:

■ the product name,
■ the product version (see also Version in the Glossary),
■ the installation date,
■ the product identification code (ID).

See also Product Information in Using Natural Studio.

149



150



52 SYSPROF

SYSPROF

This command is used to display the current definitions of the Natural system files.

For each system file, the following information is displayed (on the System Files page):

■ the file name
■ the database ID
■ the file number
■ the database type

In addition, the following information can be displayed for each defined combination of database
ID and file number:

■ the path in the file system (on the Files in File System page)
■ the logical file number, if assigned (on the All Files page)

See also System Files in Using Natural Studio.

151



152



53 SYSRPC

SYSRPC

This command is used to invoke the SYSRPC utility.

The SYSRPC utility provides functions for maintaining remote procedure calls.

For further information, see SYSRPC Utility in the Tools and Utilities documentation.

For information on how to apply the SYSRPC utility functions to establish a framework for commu-
nication between server and client systems, refer to the Natural Remote Procedure Call (RPC) docu-
mentation.

153



154



54 SYSWIZDB

SYSWIZDB

This command is used to invoke the Data Browser, a development tool wizard within Natural
Studio. It enables you to display and print or store file structures.

For further information, see Data Browser in the Tools and Utilities documentation.

155



156



55 SYSWIZDW

SYSWIZDW

This command is used to invoke theDialogWizard, a tool for creating dialogs for specific purposes.
The defined dialogs can have several layouts that adapt to desired requirements.

For further information, seeDialogWizard in theDialog Editor section of theEditorsdocumentation.

157



158



56 TECH

TECH

This command is used to display the following technical and other information about yourNatural
session:

■ user ID
■ library ID
■ Natural version (see also Version in the Glossary)
■ startup transaction
■ Natural Security indicator
■ operating system name and version
■ machine class
■ hardware
■ TP monitor (Mainframes and Windows (*TPSYS) in remote configuration only)
■ device type
■ terminal ID (Mainframes and Windows in remote configuration only)
■ code page
■ locale
■ last command issued
■ information on the last error that occurred
■ names, database IDs and file numbers of all currently active steplibs
■ names, types and levels of the currently active programming object and all objects on higher
levels, as well as the line numbers of the statements invoking the subordinate programming
objects (Mainframes, UNIX and OpenVMS only).

159



See also Technical Information in Using Natural Studio.

Notes:

1. For character-user-interface applications only: To display this information from any point in
an application, you can use the terminal command %<TECH. In addition, the following information
is still available: Names, types and levels of the currently active programming object and all
objects on higher levels.

2. This command is also available in a remote session. All information can be read in batch mode.

System Commands160

TECH



57 UNCATALOG

UNCATALOG [object-name ...]

This command is used to delete one or more object modules.

To prevent inconsistencies, you are recommended to use themenu commandDelete and to delete
both source code and object module of an object. See Deleting Objects in Using Natural Studio.

You can only delete objects which are stored in the library to which you are currently logged on.
The contents of the source work area is not affected by the UNCATALOG command.

If you enter the UNCATALOG commandwithout an object-name or with an asterisk
(*), a list of all cataloged objects in the current library will be displayed; on the list,
you can then mark the object(s) to be deleted.

UNCAT

UNCAT *

As object-name, you specify the name of the object to be deleted.

If more than one object is to be deleted, the object-namesmust be separated by
one or more blanks (or the currently defined delimiter character).

UNCAT object name

If you wish to delete all objects whose names begin with a specific string of
characters, use asterisk notation (*) for the object-name. A list containing all objects
selectedwill be displayed. On the list, you can thenmark the object(s) to be deleted.

Note: If an FDIC system file is specified in the parameter file which is not valid, Natural will
display an appropriate error message when the UNCATALOG command is issued.

161



162



58 UNLOCK

■ Unlocking Natural Objects ............................................................................................................... 164
■ Unlocking Documentation Objects ..................................................................................................... 165
■ Parameter Descriptions ................................................................................................................... 165
■ Parameter Processing and Display of Objects Found ............................................................................ 167

163



This command is used for unlocking

■ Natural source objects in a remote development environment, and
■ documentation objects in the local development environment, provided that Predict Version
4.4 or above is installed on Windows.

■ documentation objects in a remote development environment, provided that theObject Descrip-
tion plug-in is installed (see separate Object Description documentation).

It is used to view source objects or documentation objects that are locked and to unlock them if
need be. This command is recommended for use by the Natural administrator only. However, the
administrator can enable the use of this command for each user profile in Natural Security.

This chapter covers the following topics:

For further information, see Unlocking Objects Manually in the Remote Development Using SPoD
documentation.

See also Object Naming Conventions in the Using Natural Studio documentation.

Unlocking Natural Objects

If the system command UNLOCK is used without parameters, a dialog appears where you can enter
the parameters.

UNLOCK

The following shows the direct command syntax for unlocking Natural objects.

[NATURAL] [OBJECT] object-nameUNLOCK

[TYPE object-type]

[LIBRARY library-name]

[DBID dbid] [FNR fnr]

[PASSWORD password] [CIPHER cipher]

[APPLICATION application-name]

[USER locked-by]

[DATE locked-on [locked-on2]]

System Commands164

UNLOCK



Unlocking Documentation Objects

The following shows the direct command syntax for unlocking documentation objects.

DOCUMENT [OBJECT] object-nameUNLOCK

[TYPE object-type]

[USER locked-by]

[DATE locked-on [locked-on2]]

Parameter Descriptions

The object name must be defined in each case. If any of the other parameters is not specified, the
corresponding default value will be used.

DescriptionDefault
Value

Format/LengthParameter

The name of the object to be unlocked. Asterisk notation (*)
or ">" can be used.

*A33object-name

*A1object-type Natural object types:

In place of object-type, youmay specify one of the object
type codes shown below or an asterisk (*).

ProgramP

Class4

SubprogramN

SubroutineS

Function7

Adapter8

CopycodeC

HelproutineH

TextT

Dialog3

MapM

Local Data AreaL

Global Data AreaG

Parameter Data AreaA

DDM (View)V

165System Commands

UNLOCK



DescriptionDefault
Value

Format/LengthParameter

ApplicationX

Documentation object types:*A2

User-defined short descriptions for documentation object
types or an asterisk (*).

Name of the library where the locked object is in. Asterisk
notation (*) can be used.

*A8library-name

Database ID of the defined library. Specify asterisk (*) or in
format N5.

On mainframe servers with parameter SLOCK=PRE, the
following applies: When asterisk notation (*) is used, only
the current FNAT, FUSER and FDIC systemfiles are scanned.

current
database
ID

A5dbid

File number of the defined library. Specify asterisk (*) or in
format N5.

On mainframe servers with parameter SLOCK=PRE, the
following applies: When asterisk notation (*) is used, only
the current FNAT, FUSER and FDIC systemfiles are scanned.

current
file
number

A5fnr

If used, the password for the specified system file (dbid
and fnr).

Needs not to be specified, when the dbid and fnr of the
current FNAT or FUSER is used.

blankA8password

This parameter is available only in a mainframe remote
development environment and when profile parameter
SLOCK=PRE has been set in the mainframe environment.

If used, the cipher key for the specified system file (dbid
and fnr).

Needs not to be specified, when the dbid and fnr of the
current FNAT or FUSER is used.

blankA8cipher

This parameter is available only in a mainframe remote
development environment and when profile parameter
SLOCK=PRE has been set in the mainframe environment.

If used, the name of the application to which the locked
object belongs.

If you specify a blank, all locked objects, irrespective of
whether they are linked to an application or not, are listed
in a results windowwhere they can be unlockedmanually.

blankA32application-name

System Commands166

UNLOCK



DescriptionDefault
Value

Format/LengthParameter

ID of the user who caused the object to be locked. Asterisk
notation (*) can be used.

If Natural Security is used, it can be changed only if the
security unlock flag is set to "F" (forced unlock) in the
Natural Security user profile.

current
user ID

A8locked-by

The two date parameters are available to provide for the
different date formats:

blankA10locked-on

A8locked-on2

2005-09-28 (date format according to the DTFORM profile
parameter)
2005-09-28 11:27:20
Today
Today + nnnn
Today - nnnn
Yesterday

Note: Locking can also be enabled locally on a mainframe server based on Natural for
Mainframes Version 4.2 or above. In this case, the following limitations apply: The applic-
ation-name cannot be used as a selection criterion. For dbid and fnr, the current FNAT and
FUSER system files are searched if asterisk notation (*) is used.

Parameter Processing and Display of Objects Found

If the parameter(s) specified is (are) valid and a complete object name is specified and if the cor-
responding object is found and itwas locked by the current user, this object is unlocked immediately
and a corresponding message is displayed. This applies under the condition that the object name
is specified directly without using asterisk notation (*) and the current user tries to unlock his own
locked records.

If any of the parameters specified is invalid or if no objects are found, the unlock dialog with an
error message box will appear.

In the following cases, the locked objects found are listed in a results window where they can be
unlocked manually:

■ if you used asterisk notation (*) or ">" (where applicable),
■ if you did not specify a specific object name,
■ if you did not specify an application name.

167System Commands

UNLOCK



Note: Onmainframe serverswith parameter SLOCK=PRE, the following applies:When asterisk
notation (*) is used for object type and library, the locked DDMs have also to be listed by
scanning the current FDIC system file.

If the object type of a documentation object is not unique, look into the hidden column next to the
object type for the internal object types.

For further information on the results window, seeUnlocking ObjectsManually in theRemote Devel-
opment Using SPoD documentation.

System Commands168

UNLOCK



59 UNMAP

■ Unmapping the Currently Active Environment/Application ...................................................................... 170
■ Unmapping a Natural Development Server Environment ........................................................................ 170
■ Unmapping a Natural Application ...................................................................................................... 170

169



The UNMAP command enables you to perform the following functions, using theNatural command
line:

Tomap aNatural Development Server or a Natural application, you can use the system command
MAP or the dialog described inMapping/Unmapping an Application in the Remote Development Using
SPoD documentation.

Unmapping the Currently Active Environment/Application

The following command syntax applies if you want to unmap the currently active Natural Devel-
opment Server environment or Natural application:

UNMAP

Unmapping a Natural Development Server Environment

The following command syntax applies if you want to unmap a Natural Development Server en-
vironment:

UNMAP ENVIRONMENT=environment-name

Where environment-name is the alias name of the connection. If the environment name contains
blanks, it must be enclosed in single quotes ('...').

Unmapping a Natural Application

The following command syntax applies if you want to unmap a Natural application:

UNMAP APPLICATION=application-name

Where application-name is the name of the application to be unmapped.

System Commands170

UNMAP



60 UNREGISTER

[server-id]
library-nameclass-module-name

UNREGISTER
**

Related command: REGISTER.

This command is used to unregister Natural classes.

For further information, seeTheUNREGISTERCommand in theAdministratingNaturalXApplications
part of the Operations documentation.

Note: Under Natural Security, this command can only be called for a single library. This
means the library name has either to be omitted or a specific library has to be used. It is not
possible to use an asterisk (*).

171



172



61 UPDATE

ON
UPDATE

OFF

This command is used to prevent (or allow) database updating being carried out by a program.

This allows updating. This command will be ignored if the Natural administrator has made
updating impossible during Natural installation.

UPDATE ON

This prevents updatingwhichwould normally be performed as a result of an UPDATE, STORE,
or DELETE statement. Programs containing these statements will execute normally but no

UPDATE OFF

modification of the databasewill occur.When an update operation is encountered, amessage
will be displayed instead of a database update being performed.

When the system command CHECK is used with UPDATE OFF, an error message is displayed. The
UPDATE command has no effect on other Natural system commands.

173



174



62 XREF

ON

XREF

OFF

FORCE

DOC

This command is only available if Predict has been installed. It controls the usage of the Predict
function "active cross-references".

The active cross-reference facility automatically creates documentation in the Data Dictionary
about the objectswith a program/data area reference. These objects include programs, subprograms,
subroutines, helproutines,maps, data areas, database views, database fields, user-defined variables,
processing rules, error numbers, work files, printers, classes and retained ISN sets.

The active cross-reference is created when a program/data area is cataloged.

To look at cross-reference data, you use the XREF option of the system command LIST.

For further information on active cross-references, see the Predict documentation.

The following command options are available:

If you enter the XREF command without parameters, a menu/dialog is displayed where you
specify the desired option.

XREF

This command activates the active cross-reference function. Cross-reference data will be
stored in the respective Predict entries each time a Natural program/data area is cataloged.

XREF ON

This command deactivates the active cross-reference facility. No cross-reference data will
be stored. Existing cross-reference data for the object being cataloged will be deleted.

XREF OFF

175



The object can only be cataloged if a Predict entry exists for it. When the object is cataloged,
its cross-reference data will be stored in Predict. If no Predict entry exists, the object cannot
be cataloged.

XREF FORCE

The object can only be cataloged if a Predict entry exists for it. However, when the object is
cataloged, no cross-reference datawill be stored in Predict, and existing cross-reference data
for the object will be deleted. If no Predict entry exists, the object cannot be cataloged.

XREF DOC

Natural Security Considerations

If Natural Security is installed, the setting for XREFmay be set for each library in the library security
profile. Depending on the security profile, some options of the XREF commandmay not be available
to you.

System Commands176

XREF


	System Commands
	Table of Contents
	Preface
	1 Issuing System Commands
	Command Input
	Command Line
	NEXT Prompt
	MORE Prompt

	2 System Command Syntax
	Syntax Elements
	Example of Command Syntax

	3 System Commands Grouped by Function
	Navigating within Natural
	Environment Settings
	Editing and Storing Programming Objects
	Executing Programs
	Maintenance Utilities
	Transfer of Programming Objects
	Monitoring and Debugging
	Commands Used with NaturalX
	Miscellaneous

	4 CATALL
	CATALL in Interactive Mode
	CATALL in Batch Mode

	5 CATALOG
	6 CHECK
	7 CLEAR
	8 COMPOPT
	Syntax Explanation
	Compiler Options
	Specifying Compiler Parameters
	COMPOPT in a Remote Mainframe Environment
	Specifying Compiler Keyword Parameters (Remote Mainframe Environment)
	General Compilation Options (Remote Mainframe Environment)
	CHKRULE - Validate INCDIR Statements in Maps
	CPAGE - Code Page Support for Alphanumeric Constants
	DBSHORT - Interpretation of Database Short Field Names
	DB2ARRY - Support DB2 Arrays in SQL SELECT and INSERT Statements
	DB2BIN – Generate SQL Binary Data Types for Natural Binary Fields
	DB2TSTI – Generate SQL TIMESTAMP Data Type for Natural TIME Fields
	ECHECK - Existence Check for Object Calling Statements
	GDASC - GDA Signature Check
	GFID - Generation of Global Format IDs
	Rules for Generating GLOBAL FORMAT-IDs in Natural

	KCHECK - Keyword Checking
	LOWSRCE - Allow Lower-Case Source
	MAXPREC – Maximum Number of Digits after Decimal Point
	MEMOPT - Memory Optimization for Locally Declared Variables
	PCHECK - Parameter Check for Object Calling Statements
	PSIGNF - Internal Representation of Positive Sign of Packed Numbers
	THSEP - Dynamic Thousands Separator
	TQMARK - Translate Quotation Mark
	TSENABL - Applicability of TS Profile Parameter

	Compilation Options for Ensuring Version Compatibility (Remote Mainframe Environment)
	FINDMUN - Detect Inconsistent Comparison Logic in FIND Statements
	MASKCME - MASK Compatible with MOVE EDITED
	NMOVE22 - Assignment of Numeric Variables of Same Length and Precision
	V41COMP - Disable Version 4.2 and 8.2 Syntax
	Compilation Relevant Differences between Version 4.2 and 4.1

	V42COMP - Disable Version 8.2 Syntax
	Compilation Relevant Differences between Version 8.2 and 4.2



	9 DEBUG
	10 EDIT
	Syntax 1
	Syntax 2
	Syntax 3

	11 EXECUTE
	Syntax Explanation
	Examples of EXECUTE Command

	12 FIN
	13 GLOBALS
	Syntax Explanation
	List of Parameters
	Interaction with SET GLOBALS and Other Statements
	Statement SET GLOBALS
	Other Statements Influencing the Session Parameter Settings


	14 HELP
	15 INPL
	16 LAST
	17 LASTMSG
	18 LIST
	Syntax Overview
	object-type
	object-name

	Displaying an Individual Source
	Displaying a List of Objects
	Displaying Directory Information
	Displaying Views
	Displaying File Information of Resource Objects
	Displaying File Information of Error Message Containers

	19 LIST COUNT
	20 LIST XREF
	21 LOGOFF
	22 LOGON
	23 MAIL
	24 MAP
	Establish a Connection to a Natural Development Server Environment
	Establish a Connection to a Natural Application

	25 PROFILE
	26 PURGE
	27 READ
	28 REGISTER
	29 RENAME
	30 RENUMBER
	31 RETURN
	32 RPCERR
	33 RUN
	34 SAVE
	35 SCAN
	36 SCRATCH
	37 SETUP
	Syntax Explanation
	SETUP/RETURN Example

	38 STOW
	39 STRUCT
	Indentation of Source Code Lines
	Partial Indentation
	Example of Structural Indentation


	40 SYSAPI
	41 SYSCP
	42 SYSERR
	43 SYSEXT
	44 SYSEXV
	45 SYSFILE
	SYSFILE in a Remote Mainframe Environment

	46 SYSINST
	47 SYSMAIN
	48 SYSMN
	49 SYSNCP
	50 SYSOBJH
	51 SYSPROD
	52 SYSPROF
	53 SYSRPC
	54 SYSWIZDB
	55 SYSWIZDW
	56 TECH
	57 UNCATALOG
	58 UNLOCK
	Unlocking Natural Objects
	Unlocking Documentation Objects
	Parameter Descriptions
	Parameter Processing and Display of Objects Found

	59 UNMAP
	Unmapping the Currently Active Environment/Application
	Unmapping a Natural Development Server Environment
	Unmapping a Natural Application

	60 UNREGISTER
	61 UPDATE
	62 XREF

