5 software~

Natural

Statements

Version 6.3.13 for Windows

October 2012

Natural



This document applies to Natural Version 6.3.13 for Windows.
Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2012 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This software may include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: NATWIN-NNATSTATEMENTS-6313-20121005



Table of Contents

1 Syntax Symbols and Operand Definition Tables ............ccccccccceviiiiiiiiiiniiiniinnnnn. 3
Syntax Symbols ..o 4
Operand Definition Table ..........ccccccciiiiiiiiiiiiiiiiiic 5

2 Statements Grouped by FUNCHONS .........ccooiiiiiiiiiii, 9
Database Access and Update .........c.ccocieiiiiiiiiiiiiiiiiiiiiicicceccecceccee e 10
Arithmetic and Data Movement Operations .............ccccoeviviiiiiiiiiniiiininincn, 11
Loop EXeCUtION .....oociiiii 12
Creation of Output Reports .........ccccociiiiiiiiiiiiiiiiiiiiii, 12
Screen Generation for Interactive Processing ............cccocooviviiiiiiiiiininin, 13
Processing of Logical Conditions ..........ccccecveeiiiiiiiiiiniiiiiiniiiicciecccceen 13
Invoking Programs and Routines .............cccooceeviiiiiiiiiiiiiiccs 14
User-Defined Functions ...........ccccociiiiiiiiiiiiiiiiiic 14
Program and Session Termination .............ccccceveiiiiiiiiiiiiiiiiiiiiiiiiiecce 14
Control of WOork Files ..o 15
Component Based Programming ...........cccccooeviiiiiiiiiiiiiiiiiiiiiiiiiccccciccne 15
Event-Driven Programming .............ccociiiiiiiiiiiiiiiiiiece e 15
Memory Management Control for Dynamic Variables or X-Arrays ............... 16
Natural Remote Procedure Call ..........cccociiiiiiiiiiiiiiiiiii 16
Internet and XML ... 16
MiSCellaneous ...........ccuiiiiiiiiiiiiiic 17
Reporting Mode Statements .............c.ocoooiiiiiiiiiiiii 17

...................................................................................................................................... 19

3 ACCEPT/REJECT ..ottt 21
FUNCHON Lo 22
Syntax Description ...........ccocviiiiiiiiiiiiiiiiiiii 22
Processing of Multiple ACCEPT/REJECT Statements ............ccccocoeviieiiiennns 23
Limit NOtation .....ccooooiiiii 23
EXAMPIES ...ooviiiiiiiiiicice 24

B ADD ..o 27
FUNCHON ..o 28
Syntax 1 - ADD Statement without GIVING Clause ..........ccccocvieviiiininnnnnnn. 28
Syntax 2 - ADD Statement with GIVING Clause ............ccccoeveiviiiiiiiiiinnnnn. 29
EXAMPIE ..o 30

5 ASSIGN ..ot 33

6 AT BREAK ..ot 35
FUNCHON ..o 36
Syntax Description ...........ccocuiiiiiiiiiiiiiiiiii 37
Multiple Break Levels ... 38
EXampPles .....ooviiiiiiiiiiiii 39

7 AT END OF DATA .....oiiiiiiiiiiiie s 43
FUNCHON ..o 44




Statements

ReStIICtiONS .....ooiiiiiiiiiiiiic 45
Syntax Description ..........cccooviiiiiiiiiiiiiiei 45
EXample ....oooiiiiiiiii 46
8 AT END OF PAGE .....oooiiiiiiiiiiiiiicccccc e 49
FUNCHON ..o 50
Syntax Description ...........ccoooiiiiiiiiiiii 52
EXaMPLe .o 53
9 AT START OF DATA ....ooiiiiiiiieeeee e 57
FUNCHON ..o 58
Syntax Description ...........ccoccviiiiiiiiiiiiiiiiiiiii 59
EXAMPIE ..o 59
10 AT TOP OF PAGE .....ooiiiiiiiiiiieeceee et 63
FUNCHON ..o 64
ReSIICHON .o 65
Syntax Description ...........ccocciiiiiiiiiiiiiiiiii 65
EXAMPIE ...oooiiii 66
11 BACKOUT TRANSACTION ....cooiiiiiiiiiiiiiieiccieccccc e 69
FUNCHON ..o 70
ReSIICHON .evveiiiiiiiiic 71
Database-Specific Considerations ............c.ccoovveiuiiiiiiiiiiiiiiiccceecc 71
Example ....oooiiiiii 71
12 BEFORE BREAK PROCESSING .......ccooiiiiiiiiiiiiiiiiciiciccciccc v 73
FUNCHON .o 74
ReSIICHONS ...vveiiiiiiiiiccic 75
Syntax Description ...........cccooiiiiiiiiiiii 75
EXaMPLe ..o e 76
13 CALL e 77
FUNCHON Lo 78
Syntax Description ...........ccocciiiiiiiiiiiiiiiiiiii i 78
Return Code ......oooiiiiiiiiiiiiii 79
USET EXItS .ovvviiiiiiiiicc 79
INTERFACEZ ......ooiiiiiiiiiiicicc s 80
14 CALL FILE ..ooiiiiiiiiiic et 93
FUNCHON ..o 94
ReSIICHON . 94
Syntax Description ...........ccocciiiiiiiiiiiiiiiiiiii i 94
EXAMPIE ...ooiniiiiiicc 95
15 CALL LOOP ...ttt 97
FUNCHON Lo 98
ReSIICHON .o 98
Syntax Description ...........ccocciiiiiiiiiiiiiiiiiiiii 99
EXAMPIE ..ot 99
16 CALLNAT ..ottt 101
FUNCHON ..o 102
Syntax Description .........cccccoiiiiiiiiiiiiiiiii 103

Statements



Statements

Parameter Transfer with Dynamic Variables ..............cccccooiiiiiiiiinin, 105
EXaMPIES ....ooiiiiiiiiii 106

17 CLOSE CONVERSATION ......ccciiiiiiiiiiiiiiiicicccccicec s 109
FUNCHON .o 110
Syntax Description ........ccccccovviiiiiiiiiiiiiiiii 110
Further Information and Examples ............ccccociiiiiiiiiiiiiiiii, 111

18 CLOSE DIALOG .....oooiiiiiiiiiiiiiccecccece s 113
FUNCHON ..o 114
Syntax Description ...........cccoviiiiiiiiiiiiii 114
Further Information and Examples ............cccccoooiiiiiiiiiiiiiiiiiiiii, 115

IIL e 117
19 CLOSE PRINTER .....cooviiiiiiiiiiiiiiicccece e 119
FUNCHON ..o 120
Syntax Description .........c.ooouiiiiiiiiiiiiiii 120
EXample .....ooooiiiiiiiiiii 121

20 CLOSE WORK FILE .....coooiiiiiiiiiiiiiiiiiiiciccicceicccc e 123
FUNCHON ..o 124
Syntax Description .........ccoooiiiiiiiiiiiiii 124
EXaMPLE ..o 124

21 COMPRESS ......oiiiiiiiiiiiiiii s 127
FUNCHON .o 128
Syntax Description .........ccccoiiiiiiiiiiiiiiiiii 128
PrOCESSING ....ooviiiiiiiiieic 132
EXamPEs ....ooiiiiiiiiiici 132

22 COMPUTE .....ooiiiiiiiiiiii e 137
FUNCHON ..o 138
Syntax Description .........ccccoiiiiiiiiiiiiiiiiii 140
Result Precision of @ Division ..........ccccccooviiiiiiiiiiiiiiiii, 142
EXamPIes .....oooiiiiiiiiiiiic 143

23 CREATE OBJECT .....ooiiiiiiiiiiiiiiiiiiiccic e 145
FUNCHON oo 146
Syntax Description .........c.oocuiiiiiiiiiiiiii 146

24 DECIDE FOR ...coiiiiiiiiiiiiiiiciec et 149
FUNCHON ..o 150
Syntax Description ...........cccooiiiiiiiiiiiii 150
EXamPles .....oooiiiiiiiiiii 151

25 DECIDE ON ....ooiiiiiiiiiiiiiiiicic s 155
FUNCHON .o 156
Syntax Description ..........ccccoviiiiiiiiiiiiiiii 156
EXamPIES ....oooviiiiiiiic 158

26 DEFINE CLASS ......oooiiiiiiicecc e 161
FUNCHON .o 162
Syntax Description .........cccccoviiiiiiiiiiiiiiiiii 162

IV DEFINE DATA ... 165
27 SyntaxX OVEIVIEW ......cccoiiiiiiiiiiiiiiiiiiii e 167

Statements v



Statements

General Syntax ........ccccovviiiiiiiiiii 168
Basic Syntax Elements ............cccccoooiiiiiiiiiii 168
28 DEFINE DATA - General ........cccccooviiiiiiiiiiiiiiiiiiiiiciccccc e 173
FUNCHON ..o 174
RULES o 174
Programming Modes ..........ccooiiiiiiiiiiiiicc 174
Further Information ...........c.coociiiiiiiiiiiini e 175
29 Defining Local Data .........ccccccoiiiiiiiiiiiiiiiiiiiii 177
FUNCHON ..o 178
REStIICHON ..o 178
Syntax Description ..........occooiiiiiiiiiiiii 178
30 Defining Global Data ..........ccceecuiiiiiiiiiiiiiiiiii e 183
FUNCHON ..ooiiiiiiiiii e 184
Syntax Description .........ccccoiiiiiiiiiiiiiiiiiiiii 184
31 Defining Parameter Data ...........ccccooviiiiiiiiiiiiiiiiiii 187
FUNCHON ..o 188
REStIICHONS ..eoiiiiiiiiiiiiiicc 188
Syntax Description .........ccoooiiiiiiiiiiiiii 188
32 Defining Application-Independent Variables ............cccccceeiiiiiiiiiiniiiniinnn. 195
FUNCHON ..ot 196
Syntax Description ...........cccooiiiiiiiiiiii 196
33 Defining Context Variables for Natural RPC ..........cccccccooviiiiiiiiiniiiiiiiiin, 199
FUNCHON ..o 200
REStIICHONS ..ooiiiiiiiiiiiiiiicci 201
Syntax Description .........ccoooiiiiiiiiiiiiiii 201
34 Defining NaturalX ODbJECtS ........cccceviiiiiiiiiiiiiiiiiiiiiceeceeece e 203
FUNCHON ..o 204
Syntax Description ...........cccooiiiiiiiiiiiii 204
35 Variable Definition ..........ccccociiiiiiiiiiiiiiiiiiiiii 207
FUNCHON ..o 208
Syntax Description .........ccccoiiiiiiiiiiiiiiiii 209
36 View Definition ..........cccoviiiiiiiiiiiiiiiiiiiii 213
FUNCHON ..o 214
Syntax Description .........ccccoiiiiiiiiiiiiiiii 214
37 Redefinition .......cccceeiiiiiiiiiiiiiiiiiii i 219
FUNCHON ..o 220
ReSIICHONS ... 220
Syntax Description .........cccccovviiiiiiiiiiiiiiiiii 221
38 Array Dimension Definition ...........ccccoviiiiiiiiiiiiiiiiii, 223
FUNCHON ..o 224
Syntax Description ..........ccccoviiiiiiiiiiiiiiiiii 224
39 Initial-Value Definition ...........ccccocuiiiiiiiiiiiiiiiii 227
FUNCHON ..o 228
ReStIICHON ..ot 228
Syntax Description .........cccccoiiiiiiiiiiiiiiiii 228

vi

Statements



Statements

40 Initial/Constant Values for an Array ...........ccccccevviiiiiiiiiiiiiiiiiiniiceeeee, 231
FUNCHION ittt e e e e 232
ReSETICHION .ovviiiiiiiiiiiiiiiiiiiiii s 232
Syntax Description ...........cccoiiiiiiiiiiii 233

41 EM, HD, PM Parameters for Field/Variable .......cccooovvuvoeiiiiiioeiiiiieeeeiiieeeeennnnn 235
FUNCHION et e e e e e e 236
Syntax Description .........ccccoviiiiiiiiiiiiiiiiii 236

42 Examples of DEFINE DATA Statement Usage .........ccccccoceivviiiiiiiiiiniiininnn, 239
Example 1 - DEFINE DATA LOCAL (Direct Data Definition) ...................... 240
Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization) ......... 240
Example 3 - DEFINE DATA (View Definition, Array Redefinition) .............. 241
Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas) ....... 242
Example 5 - DEFINE DATA (Initialization) ..........ccccovvviiiiiniiiiiniiiiiie 243
Example 6 - DEFINE DATA (Variable Array) ........ccccooviiiiiniiiiiiiiiiii, 244

Vet ettt et e e e et e st e st e e et et sttt 247

43 DEFINE FUNCTION ....ooiiiiiiiiiiiieieeie ettt 249
FUNCHON Loeiiiiiiiiiiiii e 250
Syntax Description .........ccoooiiiiiiiiiiiiii 250
EXaMPLES ..o 254

44 DEFINE PRINTER ......ooiiiiiiiiiiiiiteeiee ettt ettt et s 257
FUNCHION «oeiiiiiiiieie ettt e e e e 258
Syntax Description .........ccccoiiiiiiiiiiiiiiiiii 258
EXAMPIES ...oooiiiiiiici 260

45 DEFINE PROTOTYPE ..ottt 263
FUNCHION it e e e e e e e 264
Syntax Description ........ccccovviiiiiiiiiiiiiiiiii 265
EXamples .....oooiiiiiiiiiiiiii 269

46 DEFINE SUBROUTINE ......cccoiiiiiiiiiiiiiiiceeeeeeeee e 271
FUNCHON Loeviiiiiiiiiii s 272
RESEIICIONS ...vvveieieeiieiiiieeet ettt e e e e e e e e nreeeeeeeeeeens 273
Syntax Description .........ccccoiviiiiiiiiiiiiiiiii 274
EXAMPIES ...oooiiiiiiiiiiiicc 274

47 DEFINE WINDOW ...ttt ettt st 279
FUNCHON ..ot 280
Syntax Description ...........cccooiiiiiiiiiiiii 281
Protection of Input Fields in @ Window ..........ccccociiiiiiiiiiiin, 285
Invoking Different Windows ...........c.occooviiiiiiiiiiii 285
EXaMPLe ..o 285

48 DEFINE WORK FILE ......oiiiiiiiiiiiiiiieieeteee et 287
FUNCHION ittt e e e 288
Syntax Description ..........cccoviiiiiiiiiiiiiiiiii 288

2 S OO O PO OTO PSSR UP PR OPPRP 293

A9 DELETE ..ottt ettt st 295
FUNCHION ittt e et e e e e 296
RESETICEION ..etiiiiiiiiiiiiiiiee ettt 296

Statements Vii



Statements

Syntax Description ..........ccooiiiiiiiiiiiiii 296
Database-Specific Considerations ..............ccoceeviviiiiiiiiiiiiiicc, 297
EXampPles .....cooiiiiiiiiiiiiiic 297
50 DISPLAY ...ooiiiiiiiiiiiiiiccc e 299
FUNCHON .o 300
Syntax Description .........cccooiiiiiiiiiiiii 300
Defaults Applicable for a DISPLAY Statement ...........ccccccoeeeniiiiiiniiniennnn. 312
EXamples .....cooiiiiiiiiiiiiii 313
SIDIVIDE .ot 321
FUNCHON ..o 322
Syntax 1 - DIVIDE Statement without GIVING Clause .............cc.cccoovveenennin. 322
Syntax 2 - DIVIDE Statement with GIVING Clause ............cccccceeceeeuiiniennnen. 323
Syntax 3 - DIVIDE Statement with REMAINDER Clause ............c.ccccoceenen. 324
EXample ...c.oooiiiiii 326
52 DO/DOEND ..ottt 327
FUNCHON .o 328
ReSIICHONS ..ovviiiiiiiciicc 328
EXAMPIE ..o 329
BB EJECT i 331
FUNCHON ..ot 332
Syntax Description ...........cccooiiiiiiiiiiii 332
PIOCESSING ..ccuvviiiiiiiiiiiicii 334
EXAMPIE ..o 334
54 END oo 337
FUNCHON ..o 338
Syntax Description .........ccccoviiiiiiiiiiiiiiiii 338
EXamples .....oooiiiiiiiiiiiiii 339
55 END TRANSACTION ....ccoooiiiiiiiiiiiiiiiccicccc e 341
FUNCHON ..o 342
ReSIICHON v 342
Syntax Description .........ccccoiiiiiiiiiiiiiiiii 343
Databases Affected ...........ccoccoiiiiiiiiiiiiiiii 343
Database-Specific Considerations .............cccoecviiiiiiiiiiiiiiiiiiiiiice, 344
EXamples .....cooiiiiiiiiiiiiii 344
56 ESCAPE ....oooiiiiiiiiiicecc s 347
FUNCHON ..o 348
Syntax Description .........ccocoiiiiiiiiiiiii 349
EXaMPLe ..o 350
57 EXAMINE ..ot 353
Syntax 1 - EXAMINE .......cccooiiiiiiiiicc 354
Syntax 2 - EXAMINE TRANSLATE .......cccccoiiiiiiiiiiiiiiiccccccecci 362
Syntax 3 - EXAMINE for Unicode Graphemes ...............cccocoviiiiiiiiinnnnn, 364
EXamPLES ...oiiiiiiiiiiiici e 366
58 EXPAND ....ooiiiiiiiiiiiiii e 377
FUNCHON .o 378

viii

Statements



Statements

Syntax Description ..........cccoiiiiiiiiiiiiiii 378

VL s 383
B9 FETCH ..o 385
FUNCHON .o 386
Syntax Description ........ccccccovviiiiiiiiiiiiiiiii 386
EXample ......oooiiiiiiiiiii 388

00 FIND ...ooiiiiii s 391
FUNCHON ..o 392
ReSIICHONS ..ovviiiiiiiciiccc 394
Syntax 1 - FIND Statement with Processing LoOp .......cccccoecviiviiiiiiiiininnen. 394
Syntax 2 - FIND Statement without Processing Loop .........c.ccccevveviiiiininnnnnn 394
Syntax Description ........ccccoviiiiiiiiiiiiiiiii 395
EXAMPIES ...oooviiiiiiiiiiccc 415

01 FOR ..o 425
FUNCHON ..o 426
Syntax Description ...........cccooiiiiiiiiiiii 426
EXamPle ...ooiiiiiiiii 428

02 FORMAT ..ottt 431
FUNCHON .o 432
Syntax Description ..........cocoiiiiiiiiiiiiiiii 432
Applicable Parameters ...........ccccciiviiiiiiiiiiiiiiii 433
EXamPle ..ooooiiiiiiiiiiii 434

03 GET oo 437
FUNCHON ..o 438
ReSIICHONS ..o 439
Syntax Description ........ccccovviiiiiiiiiiiiiiiiii 439
EXample .....coooiiiiiiiiiiii 440

64 GET SAME ...ccooiiiiiiiii 443
FUNCHON ..o 444
ReSIICHONS ..o 4
Syntax Description .........ccccoiviiiiiiiiiiiiiiiii 444
Example ...c.oooiiiiiiiiiii 445

65 GET TRANSACTION DATA ....cooiiiiiiiiiiiicicccccc 447
FUNCHON ..o 448
ReSIICHON . 448
Syntax Description ........cccccovviiiiiiiiiiiiiiiii 449
EXAMPIE ..coviiiiiiciic 449

66 HISTOGRAM ....ooiiiiiiiiiiiicc e 451
FUNCHON ..o 452
ReSIICHONS ..ovvviiiiiiciecce e 453
Syntax Description ..........cccoviiiiiiiiiiiiiiiiii 453
System Variables Available with HISTOGRAM ............cccooiiiiiiiiiicis 458
EXamMPIES ..ooiiiiiiiiiiic e 459

07 T oo 463
FUNCHON .o 464
Statements iX



Statements

Syntax Description ..........ccooiiiiiiiiiiiiii 464
EXAMPIE ..ooviiiiiicic 465

68 IF SELECTION ......ooiiiiiiiiiiiiiiciieicccce e 467
FUNCHON .o 468
Syntax Description ........cccccovviiiiiiiiiiiiiiiiii 468
EXample ...c..oooiiiiiiiiiii 470

09 IGINORE .....ooiiiiiiii e 471
FUNCHON ..o 472
EXample ....oooiiiiiii 472
ZOINCLUDE ....cooiiiiiiiiiiicc e 473
FUNCHON .o 474
Syntax Description ........ccccoviiiiiiiiiiiiiiiii 474
EXAMPIES ...oooviiiiiiiiiiccc 475
VIITINPUT Lot 481
71 INPUT Syntax 1 - Dynamic Screen Layout Specification ............c.cccoeveinnnnn. 487
INPUT Syntax 1 - DeScription ........c..cccoeiiviiiiiiiiiiiicciccceieecee e 488
Examples - Syntax 1 ......ccocciiiiiiiiiiiiiiiiiic 497

72 INPUT Syntax 2 - Using Predefined Map Layout ............ccocooviiiininiiinnn. 501
INPUT USING MAP without Parameter List ..........ccccoccooviiiiininn 502
INPUT Fields Defined in the Program ............ccccocciiiiiiiiiiiiiiiiiiiiiiie 503
INPUT Syntax 2 - DeScription ........c..cccoeuiiviiiiiiiiiiiiicceicccee e 503
Using the INPUT Statement in Non-Screen Modes ...........ccccocveviiiiiininnn. 504
Processing Data from the Natural Stack ...........c.ccoooooiii 506

DX e 507
73 INTERFACE .....ooiiiiiiiiiiiiii i 509
FUNCHON ..o 510
Syntax Description .........ccccoiiiiiiiiiiiiiiiii 511

74 LIMIT Lo 517
FUNCHON ..o 518
Syntax Description .........ccoooiiiiiiiiiiiiiiii 519
EXamMPLES ..eoiiiiiiiiiii e 519

75 LOOP ..ot s 521
FUNCHON ..o 522
ReSETICHON ..t 522
Syntax Description ...........cccooiiiiiiiiiiiiii 523
EXamPles .....oooiiiiiiiiiii 523

76 METHOD ....cocoiiiiiiiiiiiii e 525
FUNCHON .o 526
Syntax Description ..........cocoiiiiiiiiiiiiiiii 526
EXAMPIE ..ooviiiiii 527

77 MOVE ..ot 531
FUNCHON .o 532
Syntax 1 - MOVE ROUNDED .......ccccooiiiiiiiiiiiiiiiiiiiiicciccccec e 533
Syntax 2 - MOVE SUBSTRING ........cccccciviiiiiiiiiiiiiiiiicecn 535
Syntax 3 - MOVE BY NAME / POSITION .......cccccceciiiiiiiiniiiiiiiiiiiiciecee 537

X Statements



Statements

Syntax 4 - MOVE EDITED (Edit Mask Specified with operand?) ................. 538
Syntax 5 - MOVE EDITED (Edit Mask Specified with operandl) ................. 539
Syntax 6 - MOVE LEFT / RIGHT JUSTIFIED .......c..cccccoooviiiiiiiiiiiiiiicicns 540
Syntax 7 - MOVE NORMALIZED ......ccccooiiiiiiiiiiiiiiiiiceccccce 541
Syntax 8 - MOVE ENCODED ........ccccociiiiiiiiiiiiiiiiicicicecicce 543
EXAMPIES ...oooiiiiiiiiiciiec 545

78 MOVE ALL ..ottt 551
FUNCHON ..o 552
Syntax Description ...........cccoviiiiiiiiiiiiii 552
EXamPle ...ooiiiiiiiiiiii 553

79 MOVE INDEXED ......cooiiiiiiiiiiiiiiiiiiii s 555
80 MULTIPLY ..ottt 557
FUNCHON ..o 558
Syntax 1 - MULTIPLY Statement without GIVING Clause ..............cc.......... 558
Syntax 2 - MULTIPLY Statement with GIVING Clause ............ccccccoeovevniennn. 559
EXAMPIE ..coviiiiiiic 560

81 NEWPAGE ..ot 563
FUNCHON ..o 564
Syntax Description ........ccccovviiiiiiiiiiiiiiii 564
EXample ....oooiiiiiiiiiii 565

82 OBTAIN ..ot 569
FUNCHON ..o 570
ReSIICHON .. 570
Syntax Description ........ccccoviiiiiiiiiiiiiiiiii 571
EXAMPIES ...oooiiiiiiiiiiicc 575

83 ON ERROR .....coiiiiiiiiiiiiiiiii s 577
FUNCHON ..o 578
ReSIICHON v 578
Syntax Description .........cccccovviiiiiiiiiiiiiiii 579

ON ERROR Processing within Objects on Different Levels .......................... 579
System Variables ..........ccccoooiiiiiiiiiiiiii e, 580
Example ...c.oooiiiiiiiiiii 580

84 OPEN CONVERSATION ......coociiiiiiiiiiiiiiiiic i 583
FUNCHON ..o 584
Syntax Description ...........cccooiiiiiiiiiiiii 584
Further Information and Examples ............cccccoeviiiiiiiiiiiiiininiiiiee, 585

85 OPEN DIALOG ....cooiiiiiiiiiiiiiiiiciicciicc e 587
FUNCHON .o 588
Syntax Description ..........ccccoviiiiiiiiiiiiiiii 588
Further Information and Examples ..........c..cccocoiiiiiiiiiiiiiic 590

86 OPTIONS ...t 591
FUNCHON .o 592
Processing of Multiple OPTIONS Statements ..........cccccccevveiiniiiiieniinnciennn. 592

K e e 593
87 PARSE XML ....oiiiiiiiiiiiiiiiiicccic e 595
Statements Xi



Statements

FUNCHON ..ooiiiiiiiii e 596
Syntax Description ...........cccooviiiiiiiiiiiiic 597
EXampPles .....cooiiiiiiiiiiiiiic 600
B8 PASSW ... 605
FUNCHON .o 606
Syntax Description .........cccooiiiiiiiiiiiii 606
89 PERFORM ...ttt 609
FUNCHON ..o 610
Syntax Description ...........cccoiiiiiiiiiiiiii 610
EXamPIes .....oooiiiiiiiiiiiiicc 613
90 PERFORM BREAK PROCESSING .......cccccoviiiiiiiiiiiiiiiniiiccccecccee 617
FUNCHON .o 618
Syntax Description .........c.cooiiiiiiiiiiiiiii 618
EXample ...c.oooiiiiii 619
91 PRINT .eooii e 621
FUNCHON .o 622
Syntax Description .........cccccoviiiiiiiiiiiiiiiiii 623
EXAMPIE ..o 628
92 PROCESS ...ttt 631
FUNCHON ..ot 632
ReSIICHON ..o 632
Syntax Description .........cccccoviiiiiiiiiiiiiiii 632
93 PROCESS COMMAND .....cociiiiiiiiiiiiiiiiccicccc s 635
FUNCHON ..o 637
Syntax Description .........ccoooiiiiiiiiiiiiiii 637
DDM: COMMAND ......ooiiiiiiiiiiiiiccc e 649
EXamples .....oooiiiiiiiiiiiiii 650
94 PROCESS GUI ..ottt 653
FUNCHON ..o 654
Syntax Description .........ccoooiiiiiiiiiiiiiiii 654
95 PROCESS PAGE .....cooiiiiiiiiiiiiicicceccee s 657
FUNCHON ..o 658
Syntax 1 - PROCESS PAGE ......cc.ccooiiiiiiiiiiiiiii 658
Syntax 2 - PROCESS PAGE USING ........ccccoviiiiiiiiiiiiiiccccee 661
Syntax 3 - PROCESS PAGE UPDATE ........cccccciiiiiiiiiiiiiiicicicce 664
Syntax 4 - PROCESS PAGE MODAL ......c..cccooiiiiiiiiiiiiiicc 667
EXAMPIES ...oooiiiiiiiiiiicc 669
96 PROCESS REPORTER .......oooiiiiiiiiiiiiiiiiiiiccicccc et 671
FUNCHON ..ot 672
Syntax Description ...........cccoiiiiiiiiiii 673
EXamPles .....oooiiiiiiiiiiiiii 678
97 PROPERTY ...ooiiiiiiiiiiiicicccc s 681
FUNCHON ..o 682
Syntax Description .........ccoooiiiiiiiiiiiiiiii 682
EXaMPLE ..o 683

Xii Statements



Statements

XL e 685
98 READ ..o 687
FUNCHON ..o 688
Syntax Description ...........cccoiiiiiiiiiiii 689
System Variables Available with READ .........cccccooiiiiiiiiiiiiiiiiiiiiicie, 698
EXAMPIES ...oooiiiiiiiiiciiec 698

99 READ WORK FILE ....cooiiiiiiiiiiiiiiiiiiccccc e 705
FUNCHON ..o 706
Syntax 1 - READ WORK FILE with Processing LoOp ........ccccccoviiiiiiiiiinnnns 706
Syntax 2 - READ WORK FILE without Processing Loop ..........ccccccceeviinnnn. 707
Syntax Description ..........occooiiiiiiiiiiiii 707
Field Lengths ........ccccoiiiiiiiiiiiiiicc e 710
Handling of Large and Dynamic Variables ...............ccccccooiiiiiniinnn. 711
EXample ...c.oooiiiiii 711

100 REDEFINE .....oooiiiiiiiiii e 713
FUNCHON .o 714
ReSIICHON v 714
Syntax Description .........ccoooiiiiiiiiiiiiii 714
EXaMPLES ..o 715

101 REDUCE ....cooiiiiiiiiiiiicic e 717
FUNCHON .o 718
Syntax Description .........ccccoiiiiiiiiiiiiiiiiii 718

102 REINPUT ...oooiiiiiiiiic s 723
FUNCHON ..o 724
Syntax Description .........cccooiiiiiiiiiiiiii 725
EXaMPLES ..o 731

103 REJECT e 735
104 RELEASE ....ooiiiiiiiiic e 737
FUNCHON ..o 738
Syntax Description .........ccoooiiiiiiiiiiiii 738
EXamMPLe .o 739

105 REPEAT ..ottt 741
FUNCHON .o 742
Syntax Description .........ccccoviiiiiiiiiiiiiiiii 742
EXAMPIES ....ooiiiiiiiiie 743

106 REQUEST DOCUMENT ......cooiiiiiiiiiiiiiiiciicciceicccec e 747
FUNCHON .o 748
Syntax Description .........cccccoviiiiiiiiiiiiiiiii 749
Encoding of Incoming/Outgoing Data ...........cccccoeviiiiiiiiiiiiiiiiiiiii, 757
EXamPIES ....oooviiiiiiiic 758

107 RESET ..ottt 761
FUNCHON .o 762
Syntax Description .........cccccoviiiiiiiiiiiiiiiiii 762
EXample ...c.oooiiiiiiiiiii 763

108 RESIZE ...ttt 765
Statements xiii



Statements

FUNCHON ..ooiiiiiiiii e 766
Syntax Description ...........cccooviiiiiiiiiiiiic 766
109 RETRY oo 771
FUNCHON .o 772
ReSEIICHON .ovviiiiiiici 772
EXample ...c..oooiiiiiiiiiii 772
110 RUN Lo 775
FUNCHON ..o 776
Syntax Description ...........cccoiiiiiiiiiiiiii 776
Dynamic Source Text Creation/EXecution ...........ccccoeviiiiiiiiiiiiiinniiininnnn. 777
EXAMPIE ..coviiiiiiiiic 778
.................................................................................................................................. 781
111 SEND EVENT ..ot 783
FUNCHON .o 784
Syntax Description ..........cccoviiiiiiiiiiiiiii 784
Further Information and Examples ............ccccoooiiiiiiii 786
112 SEND METHOD ....cooiiiiiiiiiiiicccc e 787
FUNCHON ..o 788
Syntax Description ........ccccovviiiiiiiiiiiiiiiiiii 788
EXample ...c.coooiiiiiiiiiii 791
113 SEPARATE ....ooiiiiiiiiiiiee s 799
FUNCHON ..o 800
Syntax Description ..........cccooiiiiiiiiiiii 800
EXamPEs ....ooiiiiiiiiiici 803
114 SET CONTROL .....oooiiiiiiiiiiiiiiicicc e 807
FUNCHON ..o 808
Syntax Description .........ccccoiiiiiiiiiiiiiiiii 808
EXAMPIES ...oooiiiiiiiiiiicc 808
115 SET GLOBALS .....oooiiiiiiiiiicicee e 811
FUNCHON .o 812
Syntax Description .........ccccoiiiiiiiiiiiiiiiii 812
Parameters .........ocouiiiiiiiiiiii 813
EXample ..oc.oooiiiiii 814
116 SET KEY oot 815
FUNCHON .o 816
Syntax Description ........cccccovviiiiiiiiiiiiiiiii 816
Making Keys Program-Sensitive and Deactivating Keys ..............c.ccccccoee. 817
Assigning Commands/Programs .........c.ccceceeviiiiiiiiiiniiiiniiniciecee e 819
Assigning Input DATA ... 819
COMMAND OFF/ON .....coiiiiiiiiiiiiiiiiiiiiiciii e 820
Assigning HELD .........cccccoiiiiiiiiiiiiiiiiic 820
DYNAMIC OPtION ...ocuviiiiiiiiiiiiiiiiciicciccc e 821
DISABLED OPHion ....c..cooviiiiiiiiiiiiciiiiiiccicic e 821
SET KEY Statements on Different Program Levels .............cccccoooeiinn, 822
Assigning NAMES ......c..ooiiiiiiiiiiiiiii 824

Xiv

Statements



Statements

EXample .....ooooiiiiiiiiiii 825

117 SET TIME ...oiiiiiiiiiiiiiicic e 827
FUNCHON ..o 828
EXAMPIE ..coviiiiii 828

118 SET WINDOW ...cviiiiiiiiiiiiiicciccc s 831
FUNCHON ..o 832
Syntax Description .........ccccoviiiiiiiiiiiiiiiiii 832
EXample ...c.ooooiiiiiiiiiii 832

119 SKIP oot s 833
FUNCHON ..o 834
Syntax Description ..........occooiiiiiiiiiiiii 834
EXaMPLe ..o 835

120 SORT ..o 837
FUNCHON .o 838
ReSETICHONS ...vveeiiiiiiiiiicciic i 839
Syntax Description ...........cccooiiiiiiiiiiii 839
Three-Phase SORT Processing ...........ccocceeviiiiiiiiiiiiiiiiiiiiiiicciccceceeceee 842
EXAMPIE ..coviiiiiiciicc 843

121 STACK i 847
FUNCHON ..ot 848
Syntax Description ..........cccooiiiiiiiiiiii 848
EXamPle ..ooooiiiiiiiiiiii 851

122 STOP .o 853
FUNCHON ..o 854
EXample .....ooooiiiiiiiiiii 854

XIII e 857
123 STORE ...t 859
FUNCHON oo 860
Database-Specific Considerations ...........ccccoecuviiiiiiiiniiiiiiiiiiiiiec 861
Syntax Description .........ccoooiiiiiiiiiiiii 861
EXamMPLe .o 863

124 SUBTRACT ..ottt 867
FUNCHON .o 868
Syntax 1 - SUBTRACT Statement without GIVING Clause .............ccc.c...... 868
Syntax 2 - SUBTRACT Statement with GIVING Clause ............cccccccoveenenninn 869
EXamPle ...ooiiiiiiiii 870

125 SUSPEND IDENTICAL SUPPRESS ........cccccooiiiiiiiiiiiiiiiiiiecic 871
FUNCHON .o 872
Syntax Description ..........ccccoviiiiiiiiiiiiiiii 872
EXamPles .....oooiiiiiiii 872

126 TERMINATE .....oooviiiiiiiiiiiiiiccecec e 877
FUNCHON .o 878
Syntax Description .........cccccoviiiiiiiiiiiiiiiiii 878
Program Receiving Control after Termination .............cccoccooviiiiiiiinnn. 879
EXQMPLE ..o 879
Statements XV



Statements

127 UPDATE ..ottt 881
FUNCHON .o 882
ReSIICHONS ..ovviiiiiiiiiic 883
Database-Specific Considerations ...........c.coccoeieviiiiiiiiiiiiccicccce 883
Syntax Description ........cccccovviiiiiiiiiiiiiiiiii 883
EXample ...c..oooiiiiiiiiiii 884

128 WRITE ..o s 887
FUNCHON ..o 888
Syntax 1 - Dynamic Formatting ............cccocooiiiiiiiii, 888
Syntax 2 - Using Predefined Form/Map ..........cccoeoiiiiiiiiiiiiiiiiiiiiiiiie 896
EXAMPIES ...oooiiiiiiiiciic 897

129 WRITE TITLE .....oooiiiiiiiiiiiiiiciciccccc s 903
FUNCHON ..o 904
ReSIICHONS .ovviiiiiiiiiie e 905
Syntax Description ..........cccoviiiiiiiiiiiiiii 905
EXAMPIE ..coviiiiiiii 908

130 WRITE TRAILER .....cooviiiiiiiiiiiiiiiicc e 911
FUNCHON ..o 912
ReSIICHONS ..ovvviiiiiiciiccc 913
Syntax Description ..........cccoiiiiiiiiiiiiiii 913
EXample ...c.oooiiiiii 916

131 WRITE WORK FILE ......oooiiiiiiiiiiiiiiccccccccce s 919
FUNCHON .o 920
Syntax Description ........ccccoviiiiiiiiiiiiiiiiii 920
External Representation of Fields ...........c.cccooiiiiiii 922
Handling of Large and Dynamic Variables ...........c.ccccccooiiiiiiiiniinniininn. 923
EXample .....coooiiiiiiiiiiii 924

XIV Natural SQL Statements .......ccceeeieieieieieieeeeeeeeeeeee e e e e e e e e e e e e e e e e e e e e e ee e e 925

132 Common Set and Extended Set ............cccccooviiiiiiiiiiiiii 927

133 Basic Syntactical Items ...........ccocooiiiiiiiiii 929
CONSLANES ..ot 930
INAINES ..o 930
Parameters .........oooiiiiiiiiii 934
Natural Formats and SQL Data Types ........ccccccceiviiiiiiiiiiiiiiiiiiiciiccecen 937

134 Natural View COoncept .......c.oceeiiiiiiiiiiiiiiiiccecccc e 939

135 Scalar EXPIessions .........ccccocuiiiiiiiiiiiiiiiiiecii e 941
Scalar EXPIression ..........ccoiiiiiiiiiiiiieiccicicecce 942
Scalar OPerator .........c.oocuiiiiiiiiiiiiicie e 942
FacCtor ...oooiiiiiii 942
Row Value EXPIression ...........cccoieiiiiiiiiiiiiicccceee 945

136 Search CoNditioNS ..........ccevuiiiiiiiiiiiiiic 947
Search Condition ..........ccciiiiiiiiiiiiiii 948
Predicate ..o 948

137 Select EXPIeSSIONS ......ccuevuiiiuiiiiiiiiiieeicitccie ettt 953
SeleCHON ..o 954

XVi

Statements



Statements

Table EXPIeSSiON .........cccciiiiiiiiiiiiiiiiiiiiiici 955

138 Flexible SQL ........cccoiiiiiiiiiiiiiiiic 961
Using Flexible SQL .........cocoiiiiiiiiiiiiiiiiiiii e 962
Specifying Text Variables in Flexible SQL ............cc.cccoooiiiiii 963

139 CALLDBPROC - SQL .....ooiiiiiiiiiiiiiciicicceciccec e 965
FUNCHON ..o 966
Syntax Description .........ccccoviiiiiiiiiiiiiiiiii 967
EXample ...c.ooooiiiiiiiiiii 968

140 COMMIT - SQL ....oviiiiiiiiiiiiiicie s 971
FUNCHON ..o 972
EXAMPIE ..coviiiiiiiiic 972

141 DELETE - SQL ....oiiiiiiiiiiiiicec s 973
FUNCHON ..o 974
Syntax 1 - Searched DELETE .........ccccccooiiiiiiiiiiiiiiicicc 974
Syntax 2 - Positioned DELETE ..........cccccciiiiiiiiiiiiiiiiiiiie 975

142 INSERT - SQL ..ottt 977
FUNCHON ..o 978
Syntax Description .........ccoooiiiiiiiiiiiiii 978
EXaMPLE ..o 983

143 PROCESS SQL ....cciiiiiiiiiiiiiieieciecc e 985
FUNCHON .o 986
Syntax Description .........ccccoiiiiiiiiiiiiiiiiii 986
Entire Access OPHiONS .........ccooiiiiiiiiiiiiicccc e 987
EXamPEs ....ooiiiiiiiiiici 988

144 READ RESULT SET - SQL ....coiiiiiiiiiiiiiiiiiicicciceccc e 989
FUNCHON ..o 990
Syntax Description .........ccccoiiiiiiiiiiiiiiiiii 990

145 ROLLBACK - SQL ...oviiiiiiiiiiiiiccicic e 993
FUNCHON ..o 994
Consideration for Non-Natural Programs ...........c.cccoeeviiiiiiiiiiciiincienn, 994
EXamMPLe .o 994

146 SELECT - SQL ..ot 995
FUNCHON .o 996
Syntax 1 - Cursor-Oriented Selection .............cccccoviiiiiiiiiiiiiiiiiiiiiiii, 996
Syntax 2 - Non-Cursor Selection .............ccoceeviiiiiiiiiiiiii, 1012

JOIN QUETIES .euneeeiiieeeecee ettt e e e e e e e e et ee e e e e e s eeaaraaeeeeaaeeeees 1014

147 UPDATE - SQL ..ottt 1015
FUNCHON .o 1016
Syntax 1 - Searched UPDATE .........cccoociiiiiiiiiiiiiiiiiiiice 1016
Syntax 2 - Positioned UPDATE ............cccoooiiiiiiiiiii 1018
EXamPles .....ooviiiiiiiiiiiiiiic 1019

XV Referenced Example Programs ............cccccooviiiiiiiiiiiiiiiiiccccccce 1021
148 Referenced Example Programs ...........cccceeviiiiiiiiiiiiiiiiiiiiciccicccccneceee 1023
ASSIGN L. 1024

AT BREAK ..ot 1025

Statements XVii



Statements

AT END OF DATA ....ooiiiiecee e 1027
AT END OF PAGE ..o 1028
AT START OF DATA .....cooiiiiiiiiiec e 1028
AT TOP OF PAGE .....oooiiiiiiii 1030
DEFINE SUBROUTINE .......ccoooiiiiiiiiiiiiiiiiieeec 1031
FIND oo 1032
FOR o 1034
HISTOGRAM ..ottt 1035
E s 1035
PERFORM BREAK PROCESSING .......ccoooviiiiiiiiiiiiiiiiceeeecnn 1037
READ oo 1038
REPEAT ..ot 1039
SORT .. 1040
STORE ..ot 1041
UPDATE ..ottt 1043
Example Programs for System Variables ..............ccccooiiiiiiiiii 1044

XViii

Statements



Preface

This documentation describes the Natural programming language statements. It is organized
under the following headings:

Syntax Symbols and
Operand Definition Tables

Statements Grouped by
Functions

Statements in Alphabetical
Order

Natural SQL Statements

Referenced Example
Programs

Information on the symbols that are used within the diagrams that describe
the syntax of Natural statements and on operand definition tables.

Provides an overview of the Natural statements ordered by functional groups.
Descriptions of the statements (except SQL statements) in alphabetical order.

Describes specific statements that can be used in Natural programs to maintain
data contained in an SQL database.

Contains additional example programs that are referenced in the Natural
statements and system variables reference documentation.

Note: Generally, the example programs shown in the statement descriptions

are written in structured mode. For statements where the reporting-mode
syntax differs considerably from the structured-mode syntax, references to
equivalent reporting-mode examples are also provided. The example programs
are available in source-code form in the Natural library SYSEXSYN. Further
example programs of using Natural statements are documented in the section
Referenced Example Programs in the Programming Guide. These example programs
are provided in the Natural library SYSEXPG. Please ask your Natural
administrator about the availability of these libraries at your site. The example
programs use data from the files EMPLOYEES and VEHICLES, which are supplied
by Software AG for demonstration purposes.

See also the Programming Guide for statement usage related topics such as: User-Defined Variables
| Dynamic and Large Variables/Fields, Introduction, Usage | User-Defined Constants | Report
Specification | Text Notation | User Comments | Rules for Arithmetic Assignment | Logical Condition
Criteria | User-Defined Functions

Notation vrs or vr

When used in this documentation, the notation vrs or vr represents the relevant product version
(see also Version in the Glossary).

XiX



XX



|

= 1 Syntax Symbols and Operand Definition TabIES .............cooiiiiiiiiiiiiiiiii e
m 2 Statements Grouped bY FUNCHONS .........cooiiiiiiiii e,







1 Syntax Symbols and Operand Definition Tables

B SYNEAX SYMDOIS ...ttt
= Operand Definition TADIE ..........vuiiiiiiieeee e




Syntax Symbols and Operand Definition Tables

Syntax Symbols

The following symbols are used within the diagrams that describe the syntax of Natural statements:

Syntax Symbol

Description

ABCDEF

Upper-case letters indicate that the term is either a Natural keyword or a Natural
reserved word that must be entered exactly as specified.

ABCDEF

If an optional term in upper-case letters is completely underlined (not a hyperlink!),
this indicates that the term is the default value. If you omit the term, the underlined
value applies.

If a term in upper-case letters is partially underlined (not a hyperlink!), this indicates
that the underlined portion is an acceptable abbreviation of the term.

Letters in italics are used to represent variable information. You must supply a valid
value when specifying this term.

Note: Inplaceof statementor statements, you must supply one or several suitable

statements, depending on the situation. If you do not want to supply a specific
statement, you may insert the I GNORE statement.

Elements contained within square brackets are optional.

If the square brackets contain several lines stacked one above the other, each line is an
optional alternative. You may choose at most one of the alternatives.

If the braces contain several lines stacked one above the other, each line is an alternative.
You must choose exactly one of the alternatives.

The vertical bar separates alternatives.

A term preceding an ellipsis may optionally be repeated. A number after the ellipsis
indicates how many times the term may be repeated.

If the term preceding the ellipsis is an expression enclosed in square brackets or braces,
the ellipsis applies to the entire bracketed expression.

A term preceding a comma-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by commas. A number after the comma-ellipsis indicates
how many times the term may be repeated.

If the term preceding the comma-ellipsis is an expression enclosed in square brackets
or braces, the comma-ellipsis applies to the entire bracketed expression.

A term preceding a colon-ellipsis may optionally be repeated; if it is repeated, the
repetitions must be separated by colons. A number after the colon-ellipsis indicates
how many times the term may be repeated.

If the term preceding the colon-ellipsis is an expression enclosed in square brackets or
braces, the colon-ellipsis applies to the entire bracketed expression.

Statements



Syntax Symbols and Operand Definition Tables

Syntax Symbol Description

Other symbols All other symbols except those defined in this table must be entered exactly as specified.

(except[ 1 { |}

Exception: The SQL scalar concatenation operator is represented by two vertical bars
..) |that must be entered literally as they appear in the syntax definition.

Example:

WRITE [USING] {

FORM

MAP } operandl [operand? ... ]

WRITE, USING, MAP and FORM are Natural keywords which you must enter as specified.

operandl and operand?Z are user-supplied variables for which you specify the names of the objects
you wish to deal with.

The braces indicate that you must choose whether to specity either FORM or MAP; however, you
must specify one of the two.

The square brackets indicate that USING and operand? are optional elements which you can, but
need not, specify.

The ellipsis indicates that you may specify operandZ? several times.

Operand Definition Table

Whenever one or more operands appear in the syntax of a Natural statement, the following table
is provided:

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted
operand1|C|s |A|G|N/M|E |A|UIN|P|1[F|B|D|T|L|C|G|O]| yes/no yes/no

This table provides the following information on each operand:

Possible Structure

Indicates the structure which the operand may take:

Statements



Syntax Symbols and Operand Definition Tables

C  |Constant.

S |Single occurrence (scalar; that is, a field/variable which is neither an array nor a group).
A Array.

G |Group.

NIM | Natural system variable:

N All system variables can be used.

M Only modifiable system variables can be used. For information on
wether the content of a system variable is modifiable or not, see
the Natural System Variables documentation.

E

Arithmetic expressions.

Possible Formats

Indicates the format which the operand may take:

Alphanumeric (ASCII code page)

Alphanumeric (Unicode)

Numeric unpacked

o =Z c >

Packed numeric

Integer

Floating point

Binary

Date

Time

Logical

Attribute control

HANDLE OF GUI

O ® O r| A O m T

HANDLE OF OBJECT

Referencing Permitted

Indicates whether the operand may be referenced or not, using a statement label or the source
code line number.

Statements



Syntax Symbols and Operand Definition Tables

Dynamic Definition

Indicates whether the field may be dynamically defined within the body of the program. This is
possible in reporting mode only.

Statements 7






2 Statements Grouped by Functions

® Database ACCESS AN UPAAte .........vviiiiiiieii e 10
= Arithmetic and Data Movement OPErations ..............ciiiiiiiiiiiiiie e 1
B 100D EXECULION ...t 12
® Creation Of OUIPUE REPOTS ..ottt e e e e e ee e 12
= Screen Generation for INteractive ProCESSING .......vvvviiiiiiiii i 13
m Processing of LOGICal CONAIIONS ........couuriiiiiiiii e 13
= [nvoKing Programs and ROULINES .........uuueeeiiiiiiiiiiiiiiiiiiiisisiiiseiasesiee s nsnnsnnnnnes 14
B USer-DefiNed FUNCHONS ..ot e e e e e 14
= Program and SesSion TErMINALION ...........oiuiiiiiiiiiii e 14
B CONETOl OF WOTK FIlES ... e e 15
= Component Based Programming ..........o.ueeieoiiuireeiiiiit et 15
L =T L Ao T o To v 44T o o PP 15
= Memory Management Control for Dynamic Variables or X-Arrays ..........ccocvviiiiiiiiiiiiiiiceiieee e 16
= Natural Remote Procedure Call ............cuviieiiiiiie e 16
B Nernet anNd XML ... 16
B MISCEIIANEOUS ...ttt ettt e e e e oottt e e e e e e e ettt e e e e e e et aaeeaa s 17
m Reporting Mode STAIEMENES ........vviiiiiie i 17




Statements Grouped by Functions

This chapter provides an overview of the statements grouped by their functions.

] Notes:

1. Certain statements can be used both in structured mode and in reporting mode, while others
can be used in reporting mode only. See Natural Programming Modes in the Programming Guide.

2. The statements DLOGOFF, DLOGON, SHOW, IMPORT and EXPORT are only available when Entire DB
is installed. For a description, see the Entire DB documentation.

Database Access and Update

The following types of staments are available:

= Natural DML Statements
= Natural SQL Statements

Natural DML Statements

The following Natural Data Manipulation Language (DML) statements are used to access and
manipulate information contained in a database.

READ Reads a database file in physical or logical sequence of records.

FIND Selects records from a database file based on user-specified criteria.

HISTOGRAM Reads the values of a database field.

GET Reads a record with a given ISN (internal sequence number) or RNO (record
number).

GET SAME Re-reads the record currently being processed.

ACCEPT/REJECT Accepts/reject records based on user-specified criteria.

PASSW Provides password for access to a password-protected file.

LIMIT Limits the number of executions of a READ, FIND or HISTOGRAM processing
loop.

STORE Adds a new record to the database.

UPDATE Updates a record in the database.

DELETE Deletes a record from the database.

END TRANSACTION Indicates the end of a logical transaction.

BACKOUT TRANSACTION Backs out a partially completed logical transaction.

GET TRANSACTION DATA Reads transaction data stored with a previous END TRANSACTION statement.

RETRY Attempts to re-read a record which is in hold status for another user.

AT START OF DATA Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

10 Statements



Statements Grouped by Functions

AT END OF DATA

Specifies statements to be performed after the last of a set of records has
been processed in a processing loop.

AT BREAK

Specifies statements to be performed when the value of a control field
changes (break processing).

BEFORE BREAK PROCESSING |Specifies statements to be performed before performing break processing.

PERFORM BREAK PROCESSING|Immediately invokes break processing.

Natural SQL Statements

In addition to the Natural DML Statements, Natural also provides SQL statements for use in
Natural programs so that SQL can be used directly.

The following SQL Statements are available:

CALLDBPROC Invokes a stored procedure of the SQL database system to which Natural is connected.

COMMIT Indicates the end of a logical transaction and releases all data locked during the
transaction. All data modifications are committed and made permanent.

DELETE Deletes either rows in a table without using a cursor (“searched” DELETE) or rows in
a table to which a cursor is positioned (“positioned” DELETE).

INSERT Adds one or more new rows to a table.

PROCESS SQL

Issues SQL statements to the underlying database.

READ RESULT SET

Reads a result set which was created by a stored procedure that was invoked by a
previous CALLDBPROC statement.

ROLLBACK Undoes all database modifications made since the beginning of the last recovery unit.

SELECT Supports both the cursor-oriented selection that is used to retrieve an arbitrary number
of rows and the non-cursor selection (singleton SELECT) that retrieves at most one
single row.

UPDATE Performs an update operation on either rows in a table without using a cursor

“searched” UPDATE) or columns in a row to which a cursor is positioned (“positioned”
UPDATE).

Arithmetic and Data Movement Operations

The following statements are used for arithmetic and data movement operations:

Statements

11



Statements Grouped by Functions

COMPUTE Performs arithmetic operations or assigns values to fields.
ADD Adds two or more operands.

SUBTRACT Subtracts one or more operands from another operand.
MULTIPLY Multiplies two or more operands.

DIVIDE Divides one operand into another.

EXAMINE TRANSLATE |Translates the characters contained in a field into upper-case or lower-case, or into
other characters.

MOVE Moves the value of an operand to one or more fields.

MOVE ALL Moves multiple occurrences of a value to another field.

COMPRESS Concatenates the value of two or more fields into a single field.

SEPARATE Separates the content of a field into two or more fields.

EXAMINE Scans a field for a specific value and replaces it, and/or counts how often it occurs.
RESET Sets the value of a field to zero (if numeric) or blank (if alphanumeric), or to its

initial value.

Loop Execution

The following statements are related to the execution of processing loops:

ESCAPE |Stops the execution of a processing loop.

FOR Initiates a processing loop and controls the number of times the loop is to be processed.

REPEAT |Initiates a processing loop (and terminates it based on a specified condition).

SORT  |Sorts records.

Creation of Output Reports

The following statements are used for the creation of output reports:

FORMAT Specifies output parameter settings.

DISPLAY Specifies fields to be output in column form.

WRITE/PRINT Specifies fields to be output in non-column form.

WRITE TITLE Specifies text to be output at the top of each page of a report.

WRITE TRAILER Specifies text to be output at the bottom of each page of a report.

AT TOP OF PAGE Specifies processing to be performed when a new output page is started.

AT END OF PAGE Specifies processing to be performed when the end of an output page
is reached.

12 Statements



Statements Grouped by Functions

SKIP Generates one or more blank lines in a report.
EJECT Causes a page advance without titles or headings.
NEWPAGE Causes a page advance with titles and headings.
SUSPEND IDENTICAL SUPPRESS|Suspends identical suppression for a single record.
DEFINE PRINTER Allocates a report to a logical output destination.
CLOSE PRINTER Closes a printer.

Screen Generation for Interactive Processing

The following statements are used to create data screens (maps) for the purpose of interactive
processing of data:

INPUT Creates a formatted screen (map) for data display/ entry.

REINPUT Re-executes an INPUT statement (if invalid data were entered in response to the
previous INPUT statement).

DEFINE WINDOW Specifies the size, position and attributes of a window.
SET WINDOW Activates and de-activates a window.
PROCESS PAGE Creates a data mapping to a web rich GUI screen.

PROCESS PAGE USING |Performs rich GUII/O processing using an adapter object generated from a page
layout.

PROCESS PAGE UPDATE |Re-executes a PROCESS PAGE statement.
PROCESS PAGE MODAL |Initiates a processing block and controls the lifetime of a rich GUI window.

Processing of Logical Conditions

The following statements are used to control the execution of statements based on conditions de-
tected during the execution of a Natural program:

IF Performs statements depending on a logical condition.

IF SELECTION |Verifies that in a sequence of alphanumeric fields one and only one contains a value.

DECIDE FOR |Performs statements depending on logical conditions.

DECIDE ON Performs statements depending on the contents of a variable.

Statements 13



Statements Grouped by Functions

Invoking Programs and Routines

The following statements are used in conjunction with the execution of programs and routines:

CALL Invokes a non-Natural program from a Natural program.

CALLNAT Invokes a Natural subprogram.

CALL FILE Invokes a non-Natural program to read a record from a non-Adabas file.
CALL LOOP Generates a processing loop containing a call to a non-Natural program.

DEFINE SUBROUTINE |Defines a Natural subroutine.

ESCAPE Stops the execution of a routine.
FETCH Invokes a Natural program.
PERFORM Invokes a Natural subroutine.

PROCESS COMMAND |Invokes a command processor.

RUN Compiles and executes a source program.

User-Defined Functions

The following Natural statements are used to create user-defined functions:

DEFINE FUNCTION |Creates new user-defined functions which may be called instead of operands in the
Natural statements. Functions can be defined inside the object type Function only.

DEFINE PROTOTYPE|Specifies a signature according to a certain function call.

Function Call Used to call user-defined functions which are defined inside special objects of type
function. Also used to call Natural functions.

Program and Session Termination

The following Natural statements are used to terminate the execution of an application or to ter-
minate the Natural session.

14 Statements



Statements Grouped by Functions

STOP Terminates the execution of an application.

TERMINATE |Terminates the Natural session.

Control of Work Files

The following Natural statements are used to read/write data to a physical sequential (non-Adabas)
work file:

WRITE WORK FILE |Writes data to a work file.

READ WORK FILE |Reads data from a work file.
CLOSE WORK FILE |[Closes a work file.

DEFINE WORK FILE|Assigns a file name to a work file.

Component Based Programming

The following Natural statements are used in conjunction with component based programming:

DEFINE CLASS |Specifies a class from within a Natural class module.

CREATE OBJECT|Creates an object (also known as an instance) of a given class.

SEND METHOD  |Invokes a method of an object.

INTERFACE Defines an interface (a collection of methods and properties) for a certain feature of a
class.

METHOD Assigns a subprogram as the implementation of a method, outside an interface definition.

PROPERTY Assigns an object data variable as the implementation to a property, outside an interface
definition.

Event-Driven Programming

The following Natural statements are used for event-driven programming:

Statements 15



Statements Grouped by Functions

OPEN DIALOG |Opens a dialog.
CLOSE DIALOG|Closes a dialog.

SEND EVENT |Triggers a user-defined event.

PROCESS GUI |Performs a standard procedure in an event-driven application.

Memory Management Control for Dynamic Variables or X-Arrays

EXPAND |Expands the allocated memory of dynamic variables to a given size or expands the number of
occurrences of X-arrays.

REDUCE |Reduces the size of a dynamic variable or the number of occurrences of X-arrays.

RESIZE |Adjusts the size of a dynamic variableor the number of occurrences of X-arrays.

Natural Remote Procedure Call

OPEN CONVERSATION  |Allows the RPC Client to open a conversation and specify the remote
subprograms to be included in the conversation.

CLOSE CONVERSATION |Allows the client to close conversations. You can close the current conversation,
another open conversation, or all open conversations.

DEFINE DATA CONTEXT [Defines variables known as context variables, which are meant to be available
to multiple remote subprograms within one conversation, without having to
explicitly pass the variables as parameters with the corresponding CALLNAT
statements.

See also the section Natural Statements Involved in the Natural Remote Procedure Call documentation.

Internet and XML

PARSE Allows you to parse XML documents from a Natural program.

REQUEST DOCUMENT |Allows you to access an external system.

16 Statements




Statements Grouped by Functions

Miscellaneous

DEFINE DATA

Defines the data elements which are to be used in a Natural program or routine.

END Indicates the end of the source code of a Natural program or routine.
INCLUDE Incorporates Natural copycode at compilation.
ON ERROR Intercepts runtime errors which would otherwise result in a Natural error message,

followed by the termination of the Natural program.

PROCESS REPORTER

Enables communication with the Natural reporter from within a program, instructing
the reporter to perform a particular action.

RELEASE

Deletes the contents of the Natural stack; releases sets of ISN sets retained viaa FIND
statement; releases Natural global variables.

SET CONTROL

Performs a Natural terminal command from within a Natural program.

SET KEY Assigns functions to terminal keys.

SET GLOBALS Sets values for session parameters.

SET TIME Establishes a point-in-time reference for a *TIMD system variable.
STACK Places data and/or commands into the Natural stack.

Reporting Mode Statements

The following statements are for reporting mode only:

LOOP

Closes a processing loop.

DO/DOEND

Specify a group of statements to be executed based on a logical condition.

OBTAIN

Causes one or more fields to be read from a file.

REDEFINE

Redefines a field.

The following statements can be used both in structured mode and in reporting mode, however,
the statement structure and, with some of them, the functionality is different:

AT START OF DATA

Specifies statements to be performed when the first of a set of records is
processed in a processing loop.

AT END OF DATA

Specifies statements to be performed after the last of a set of records has
been processed in a processing loop.

AT BREAK

Specifies statements to be performed when the value of a control field
changes (break processing).

AT TOP OF PAGE

Specifies processing to be performed when a new output page is started.

Statements

17



Statements Grouped by Functions

AT END OF PAGE

Specifies processing to be performed when the end of an output page is
reached.

BEFORE BREAK PROCESSING

Specifies statements to be performed before performing break processing.

CALL LOOP Generates a processing loop containing a call to a non-Natural program.
CALL FILE Invokes a non-Natural program to read a record from a non-Adabas file.
COMPUTE Performs arithmetic operations or assigns values to fields.

DEFINE SUBROUTINE

Defines a Natural subroutine.

ESCAPE Stops the execution of a processing loop.

FIND Selects records from a database file based on user-specified criteria.
GET SAME Re-reads the record currently being processed.

HISTOGRAM Reads the values of a database field.

IF Performs statements depending on a logical condition.

IF SELECTION

Verifies that in a sequence of alphanumeric fields one and only one contains
a value.

ON ERROR Intercepts runtime errors which would otherwise result in a Natural error
message, followed by the termination of the Natural program.
READ Reads a database file in physical or logical sequence of records.

READ WORK FILE

Reads data from a work file.

REPEAT

Initiates a processing loop (and terminates it based on a specified condition).

SORT Sorts records.
STORE Adds a new record to the database.
UPDATE Updates a record in the database.

18

Statements



I1

B 3 ACCEPTIREJECT o 21
B ADD s 27
B 5 ASSIGN s 33
B 6 AT BREAK . 35
B 7 AT END OF DATA .ottt 43
BB AT END OF PAGE ... 49
B O AT START OF DATA L.ttt 57
B A0 AT TOP OF PAGE ... 63
® 11 BACKOUT TRANSACTION ..ottt 69
® 12 BEFORE BREAK PROCESSING ..ottt 73
BTG CALL o s 77
B4 CALL FILE e 93
B IS CALL LOOP ...t 97
B A8 CALLN AT L e 101
B 17 CLOSE CONVERSATION ...ttt 109
B 18 CLOSE DIALOG ... 113

19



20



3 ACCEPT/REJECT

B FUNCHON oo
= Syntax Description .........c..vvviiiiiiiiiiiiee,

= Processing of Multiple ACCEPT/REJECT Statements

mLimit Notation .......ooovviiiiiiii e
BOEXAMPIES oo

21



ACCEPT/REJECT

{ ACCEPT

} [IF] Togical-condition
REJECT

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT TRANSACTION |
BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | HISTOGRAM | GET | GET SAME |
GET TRANSACTION DATA | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |
UPDATE

Belongs to Function Group: Database Access and Update

Function

The statements ACCEPT and REJECT are used for accepting/rejecting a record based on user-specified
logical criterion. The ACCEPT/REJECT statement may be used in conjunction with statements which
read data records in a processing loop (FIND, READ, HISTOGRAM, CALL FILE, SORT or READ WORK
FILE). The criterion is evaluated after the record has been selected/read.

Whenever an ACCEPT/REJECT statement is encountered for processing, it will internally refer to the
innermost currently active processing loop initiated with one of the above mentioned statements.

When ACCEPT/REJECT statements are placed in a subroutine, in case of a record reject, the sub-
routine(s) entered in the processing loop will automatically be terminated and processing will
continue with the next record of the innermost currently active processing loop.

Syntax Description

Syntax Element Description

IF IF Clause:

An IF clause may be used with an ACCEPT or REJECT statement to specify logical
condition criteria in addition to that specified when the record was selected/read
with a FIND, READ, or HISTOGRAM statement. The logical condition criteria are
evaluated after the record has been read and after record processing has started.

lTogical-condition|Logical Condition Criterion:
The basic criterion is a relational expression. Multiple relational expressions may
be combined with logical operators (AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

22 Statements



ACCEPT/REJECT

Syntax Element Description

The fields used to specify the logical criterion may be database fields or user-defined
variables. For additional information on logical conditions, see Logical Condition
Criteria in the Programming Guide.

Note: When ACCEPT/REJECT is used with a HI STOGRAM statement, only the database
field specified in the HI STOGRAM statement may be used as a logical criterion.

Processing of Multiple ACCEPT/REJECT Statements

Normally, only one ACCEPT or REJECT statement is required in a single processing loop. If more
than one ACCEPT/REJECT is specified consecutively, the following conditions apply:

® If consecutive ACCEPT and REJECT statements are contained in the same processing loop, they
are processed in the specified order.

® If an ACCEPT condition is satisfied, the record will be accepted and consecutive ACCEPT/REJECT
statements will be ignored.

® If a REJECT condition is satisfied, the record will be rejected and consecutive ACCEPT/REJECT
statements will be ignored.

= If the processing continues to the last ACCEPT/REJECT statement, the last statement will determine
whether the record is accepted or rejected.

If other statements are interleaved between multiple ACCEPT/REJECT statements, each ACCEPT/REJECT
will be handled independently.

Limit Notation

If a LIMIT statement or other limit notation has been specified for a processing loop containing an
ACCEPT or REJECT statement, each record processed is counted against the limit regardless of
whether or not the record is accepted or rejected.

Statements 23



ACCEPT/REJECT

Examples

= Example 1 - ACCEPT
= Example 2 - ACCEPT / REJECT

Example 1 - ACCEPT

** Example "ACREX1': ACCEPT

R R R R R R R R S R R R R b R R R R R R R R R R R R R b R b R R i b b R S b 4

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 SEX
2 MAR-STAT

END-DEFINE

*

LIMIT 50

READ EMPLOY-VIEW

ACCEPT IF SEX='M' AND MAR-STAT =
WRITE NOTITLE '=' NAME '=' SEX 5X '=

END-READ
END

Output of Program ACREX1:

NAME: MORENOQ
NAME: VAUZELLE
NAME: BAILLET
NAME: HEURTEBISE
NAME: LION
NAME: DEZELUS
NAME: BOYER
NAME: BROUSSE
NAME: DROMARD
NAME: DUC
NAME: BEGUERIE
NAME: FOREST
NAME: GEORGES

(I RNV RNV Vo RV RV B Vo R RN V2 RN B Vo RN V)
Mm rm rm rm rm rmorrore e mmeoree mm

>X X X X X X X X X X X X X

ISI

T

MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL
MARITAL

" MAR-STAT

STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:
STATUS:

(2 I B RV I R Vo RV BNV RV B o RN Ve RN Vo)

24

Statements



ACCEPT/REJECT

Example 2 - ACCEPT / REJECT

** Example 'ACREX2': ACCEPT/REJECT

R R B b R R e e b b R e S b b e e b b S b b e e i b b e e b b S e b b R e I b b b b S S e b b R e b b e e b b b S 4

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 SALARY (1)
*
1 ffPROC-COUNT (N8) INIT <0>
END-DEFINE
*
EMP. FIND EMPLOY-VIEW WITH NAME = 'JACKSON'
WRITE NOTITLE *COUNTER NAME FIRST-NAME 'SALARY:' SALARY(1)
/*
ACCEPT IF SALARY (1) LT 50000
WRITE *COUNTER 'ACCEPTED FOR FURTHER PROCESSING'
/*
REJECT IF SALARY (1) GT 30000
WRITE *COUNTER 'NOT REJECTED'
/*
ADD 1 TO #PROC-COUNT
END-FIND
*
SKIP 2
WRITE NOTITLE 'TOTAL PERSONS FOUND ' *NUMBER (EMP.) /
"TOTAL PERSONS SELECTED' #PROC-COUNT
END <

Output of Program ACREX2:

TOTAL PERSONS FOUND 3
TOTAL PERSONS SELECTED 1

1 JACKSON CLAUDE SALARY:
1 ACCEPTED FOR FURTHER PROCESSING

2 JACKSON FORTUNA SALARY:
2 ACCEPTED FOR FURTHER PROCESSING

3 JACKSON CHARLIE SALARY :
3 ACCEPTED FOR FURTHER PROCESSING

3 NOT REJECTED

33000

36000

23000

Statements

25



26



4 ADD

B FUNCHON o

= Syntax 1 - ADD Statement without GIVING ClaUSE .............vvviiiiiiiiiiiiiiccceec e,

= Syntax 2 - ADD Statement with GIVING Clause

B OEXAMPIE .o

27



ADD

Related Statements: COMPRESS | COMPUTE | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET
| SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The ADD statement is used to add two or more operands.

This statements has two different syntax structures.

J Notes:

1. At the time the ADD statement is executed, each operand used in the arithmetic operation must
contain a valid value.

2. For additions involving arrays, see also the section Arithmetic Operations with Arrays.

3. As for the formats of the operands, see also the section Performance Considerations for Mixed
Formats.

Syntax 1 - ADD Statement without GIVING Clause

’ADD [ROUNDED] operandl... TO operand?2 ‘

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table (Syntax 1):

Operand | Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandI|C|S |A]| |N N|P|I|F| |D|T yes no

operandz| |S|A| M N|P|I|F| |D|T yes yes

Syntax Element Description:

28 Statements



ADD

Syntax Element |Description:

operandl Operand(s):
operandl is a summand

ROUNDED ROUNDED Option:

If the keyword ROUNDED is used, the result will be rounded.

For information on rounding, see Rules for Arithmetic Assignment, Field Truncation and Field
Rounding in the Programming Guide.

TO operand? |Summand and Result of Summation:

operand? is included in the addition as a summand, and it receives the result of the
operation.

Example:

The statement

ADD #A(*) TO #B(*) s equivalent to COMPUTE #B(*) := ffA(*) + #B(*)

ADD #S TO #R is equivalent to COMPUTE #R = #S + #R
ADD #S #T TO #R is equivalent to COMPUTE #R = #S + #T + 4R
ADD #A(*) TO #R is equivalent to COMPUTE #R := #A(*) + 4R

Syntax 2 - ADD Statement with GIVING Clause

’ADD [ROUNDED] operandl... GIVING operand? \

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table (Syntax 2):

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandI|C|S [A N N|P|I|F| |D|T yes no

operandz| |S |A M| [A|U|N|PI|F|B*|D|T yes yes

* Format B of operand3 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Statements 29



ADD

Syntax Element Description:
operandl Operands:

operandl is a summand.
ROUNDED ROUNDED Option:

If the keyword ROUNDED is used, the result will be rounded.

For information on rounding, see Rules for Arithmetic Assignment, Field Truncation and
Field Rounding in the Programming Guide.

GIVING operand? |Result of Summation:
operand? is only used to receive the result of the operation. It is not included in the
addition.

Note: If operand?is defined with alphanumeric format, the result will be converted

to alphanumeric.

. Note: If Syntax 2 is used, the following applies: Only the (operandl) field(s) left of the

keyword GIVING are the terms of the addition, the field right of the keyword GIVING
(operand?)isjust used to receive the result value. If just a single (operandi) field is supplied,
the ADD operation turns into an assignment.

Example:

The statement

ADD #S GIVING #R is equivalent to COMPUTE #R := #S
ADD #S T GIVING #R s equivalent to COMPUTE #R := #S + #T
ADD #A(*) O GIVING #R 1is equivalent to COMPUTE #R := #A(*) + 0

which is a legal operation, due to the rules defined in Arithmetic Operations <«
with Arrays
ADD HA(*) GIVING #R s equivalent to COMPUTE #R := #A(*)

which is an illegal operation, due to the rules defined in Assignment Operations <
with Arrays

Example

** Example 'ADDEX1': ADD

P i b b B b b b b b b b i S b b b i S b b b i S S b b S i i b b b i b S b b b i S b b b S b b b i S b b b b i S b b b i b b b b
DEFINE DATA LOCAL

1 #A (P2)

1 4B (P1.1)

1 #C (P1)

1 4DATE (D)

1 JFARRAY1 (P5/1:4,1:4) INIT (2,*) <5>

1 #ARRAY2 (P5/1:4,1:4) INIT (4,%) <10>

END-DEFINE

30 Statements



ADD

*

ADD +5 -2 -1 GIVING #A

WRITE NOTITLE 'ADD +5 -2 -1 GIVING #A' 15X '=' {#A

*

ADD .231 3.6 GIVING #B

WRITE / 'ADD .231 3.6 GIVING #B' 15X '=' #B

*

ADD ROUNDED 2.9 3.8 GIVING #C

WRITE / 'ADD ROUNDED 2.9 3.8 GIVING #C' 8X '='

*

MOVE *DATX TO {#fDATE

ADD 7 TO {DATE

WRITE / 'CURRENT DATE:' *DATX (DF=L) 13X
"CURRENT DATE + 7:' #DATE (DF=L)

*

WRITE / '{#fARRAY1 AND #fARRAY2 BEFORE ADDITION'
/ "=" {fARRAY1 (2,*) '=' #ARRAY2 (4,*)

ADD #ARRAY1 (2,*) TO #ARRAY2 (4,*)

WRITE / "{#fARRAY1 AND #fARRAY2 AFTER ADDITION'
/ '=" #fARRAY1 (2,*) '=' #fARRAY2 (4,*)

*

END

Output of Program ADDEXI:

ADD +5 -2 -1 GIVING fA A 2

ADD .231 3.6 GIVING #B #B: 3.8

ADD ROUNDED 2.9 3.8 GIVING fC #C: 7

CURRENT DATE: 2005-01-10 CURRENT DATE + 7: 2005-01-17

#ARRAYL AND #ARRAY2 BEFORE ADDITION
#ARRAY1: 5 5 5 5 #ARRAY2: 10 10 10

##ARRAY1 AND #fARRAY2 AFTER ADDITION
fFARRAY1: 5 5 5 5 JFARRAY2: 15 15 15

10

15

Statements

31



32



5 ASSIGN

See the statement COMPUTE.

33



34



6 AT BREAK

L V10 o PSPPSR
B SYNEAX DESCHIPION ...ttt et e e e e e e e e e e e e e e
B MUIIPIE Bre@k LEVEIS ..ot
L e 11T <SPPSR

35



AT BREAK

Structured Mode Syntax

[AT] BREAK [(r)] [OF] operandl [/n/]
statement ...
END-BREAK

Reporting Mode Syntax

[AT] BREAK [(r)] [OF] operandI[/n/]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT START OF DATA | AT END OF DATA | BACKOUT TRANSACTION
| BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The AT BREAK statement is used to cause the execution of one or more statements whenever a
change in value of a control field occurs. It is used in conjunction with automatic break processing
and is available with the following statements: FIND, READ, HISTOGRAM, SORT, READ WORK FILE.

The automatic break processing works as follows: Immediately after a record was read by the
processing loop, the control field is checked. If a value change is detected in comparison to the
previous record, the statements included in the AT BREAK statement block are executed. This does
not apply to the very first record in the processing loop. In addition, when the processing loop is
terminated (as reading of records is complete or due to an ESCAPE BOTTOM statement), a final exe-
cution of the statements in the AT BREAK statement block is triggered.

For further information, see Automatic Break Processing in the Programming Guide.

An AT BREAK statement block is only executed if the object which contains the statement is active
at the time when the break condition occurs.

It is possible to initiate a new processing loop within an AT BREAK condition. This loop must also
be closed within the same AT BREAK condition.

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

36 Statements



AT BREAK

Natural system functions may be used in conjunction with an AT BREAK statement, see Natural
System Functions for Use in Processing Loops in the System Functions documentation and Example of
System Functions with AT BREAK Statement in the Programming Guide.

For further information, see also the section AT BREAK Statement in the Programming Guide. It
covers topics such as:

= Control Break Based on a Database Field
® Control Break Based on a User-Defined Variable

Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operand1| |s | | | |AJUN|P[1[F[BD|T|L]]] yes no

Syntax Element Description:

Syntax Element Description

(r) Reference Notation:

By default, the final AT BREAK condition (for loop termination) is always related to the
outermost active processing loop initiated with a FIND, READ, READ WORK FILE,
HISTOGRAM or SORT statement.

With the notation ( r) you can relate the final break condition of an AT BREAK statement
to another specific currently open processing loop (that is, the loop in which the AT
BREAK statement is located or any outer loop).

Example:

READ ...
FIND ...
FIND ...
AT BREAK ...
FIND ...
END-FIND
END-BREAK
END-FIND
END-FIND
END-READ

Statements 37



AT BREAK

Syntax Element

Description

In this example, the final AT BREAK condition is related to the READ loop initiated in
line 0120. It would be possible to have it related to one of the FIND loops initiated in
line 0130 and 0140, but not to the one initiated in line 0160.

If (r) is specified for a break hierarchy, it must be specified with the first AT BREAK
statement and applies also to all AT BREAK statements which follow.

operandl

Control Field:

The field used as the break control field is usually a database field. If a user-defined
variable is used, it must be initialized prior to the evaluation of automatic break
processing (see BEFORE BREAK PROCESSING statement). A specific occurrence of an
array can also be used as a control field.

/n/

Notation /n/:

The notation /n/ may be used to indicate that only the first n positions (counting from
left to right) of the control field are to be checked for a change in value. This notation
can only be used with operands of format A, B, N or P.

A control break occurs when the value of the control field changes, or when all records
in the processing loop for which the AT BREAK statement applies have been processed.

statement ...

Statement(s) to be Executed at Break Condition:

In structured mode, you must supply one or several suitable statements, depending
on the situation. For an example of a statement, see Examples below.

END-BREAK

statement
DO statement
DOEND

End of AT BREAK Statement:

In structured mode, the Natural reserved word END-BREAK must be used to end the
AT BREAK statement.

In reporting mode, use the DO ... DOEND statements to supply one or several suitable
statements, depending on the situation, and to end the AT BREAK statement. If you
specify only a single statement, you can omit the DO ... DOEND statements. With
respect to good coding practice, this is not recommended.

Multiple Break Levels

Multiple AT BREAK statements may be specified within a processing loop within the same program
module. If multiple BREAK statements are specified for the same processing loop, they form a
hierarchy of break levels independent of whether they are specified consecutively or interspersed
within other statements. The first AT BREAK statement represents the lowest control break level,
and each additional AT BREAK statement represents the next higher control break level.

Every processing loop in a loop hierarchy may have its own break hierarchy attached.

38

Statements



AT BREAK

Example:
Structured Mode: Reporting Mode:
FIND ... FIND ...
AT BREAK AT BREAK
DO
END-BREAK
AT BREAK DOEND
ce AT BREAK
END-BREAK DO
AT BREAK ce
DOEND
END-BREAK
END-FIND

A change in the value of a control field in a break level causes break processing to be activated for
that break level and all lower break levels, regardless of the values of the control fields for the
lower break levels.

For easier program maintenance, it is recommended to specify multiple breaks consecutively.

See also Example 3 below and the section Multiple Control Break Levels in the Programming Guide.

Examples

This section covers the following topics:

= Example 1 - AT BREAK
= Example 2 - AT BREAK Using /n/ Notation
= Example 3 - AT BREAK with Multiple Break Levels

For further examples of AT BREAK, see Natural System Functions for Use in Processing Loops, Examples
ATBEX3 and ATBEX4.

Statements 39



AT BREAK

Example 1 - AT BREAK

** Example 'ATBEX1S': AT BREAK (structured mode)
R R B b R R e I b b e S b b e e b b S b b e e b b e e b b S e b b R e I b b e e b b S e b b e b b b e e b b b S S
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 COUNTRY

2 NAME
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY CITY
AT BREAK OF CITY

SKIP 1

END-BREAK

DISPLAY NOTITLE CITY (IS=0N) COUNTRY (IS=0N) NAME
END-READ

*

END ©

Output of Program ATBEX1S:

CITY COUNTRY NAME
ATKEN USA SENKO
AIX EN OTHE F GODEFROY
AJACCIO CANALE
ALBERTSLUND DK PLOUG
ALBUQUERQUE USA HAMMOND
ROLLING
FREEMAN
LINCOLN
ALFRETON UK GOLDBERG
ALICANTE E GOMEZ o

Equivalent reporting-mode example: ATBEX1R.

40

Statements



AT BREAK

Example 2 - AT BREAK Using /n/ Notation

** Example 'ATBEX2': AT BREAK (with /n/ notation)
R R B b R R e e b b R e S b b e e b b S b b e e i b b e e b b S e b b R e I b b b b S S e b b R e b b e e b b b S 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 DEPT

2 NAME
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY DEPT STARTING FROM ‘A’
AT BREAK OF DEPT /4/

SKIP 1

END-BREAK

DISPLAY NOTITLE DEPT NAME
END-READ

*

END o

Output of Program ATBEX2:

DEPARTMENT NAME
CODE

ADMAO1 JENSEN

ADMAO1 PETERSEN

ADMAO1 MORTENSEN

ADMAO1 MADSEN

ADMAO1 BUHL

ADMAO?2 HERMANSEN

ADMAO2 PLOUG

ADMAO?2 HANSEN

COMPO1 HEURTEBISE

COMPO1 TANCHOU ©

Example 3 - AT BREAK with Multiple Break Levels

** Example '"ATBEX5S': AT BREAK (multiple break levels) (structured mode)
R R R o R R b b i b e b e I b R i b e i b e b i R e i R i b S e b R R i b b e S b b 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 DEPT

2 NAME

2 LEAVE-DUE
1 #LEAVE-DUE-L (N4)
END-DEFINE

Statements 41



AT BREAK

*

LIMIT 5
FIND EMPLOY-VIEW WITH CITY = "PHILADELPHIA" OR = 'PITTSBURGH'
SORTED BY CITY DEPT
MOVE LEAVE-DUE TO #LEAVE-DUE-L
DISPLAY CITY (IS=ON) DEPT (IS=ON) NAME #LEAVE-DUE-L
/*
AT BREAK OF DEPT
WRITE NOTITLE /
T*DEPT OLD(DEPT) T*#fLEAVE-DUE-L SUM(#fLEAVE-DUE-L) /
END-BREAK
AT BREAK OF CITY
WRITE NOTITLE
T*CITY OLD(CITY) T*{fLEAVE-DUE-L SUM({LEAVE-DUE-L) //
END-BREAK
END-FIND

*

END

Output of Program ATBEX5:

CITY DEPARTMENT NAME ##LEAVE-DUE-L
CODE
PHILADELPHIA MGMT30 WOLF-TERROINE 11
MACKARNESS 27
MGMT30 38
TECHIO BUSH 39
NETTLEFOLDS 24
TECH10 63
PHILADELPHIA 101
PITTSBURGH MGMT10 FLETCHER 34
MGMT10 34
PITTSBURGH 34 @

Equivalent reporting-mode example: ATBEX5R.

42 Statements



7 AT END OF DATA

L V10 o PSPPSR
B RESHTICHIONS .o et e e e e e e e e e
B SYNEAX DESCIIPHION .
B EXAMIPIE ettt e et e e e ettt e e e e e et aeeeaa e e nnees

3



AT END OF DATA

Structured Mode Syntax

[AT] END [OF] DATA [(r)]
statement ..
END-ENDDATA

Reporting Mode Syntax

[AT] END [OF] DATA [(r)]
{ statement }
DO statement ... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | BACKOUT TRANSACTION
BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION
DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The AT END OF DATA statement is used to specify processing to be performed when all records
selected for a database processing loop have been processed.

This section covers the following topics:

= Processing

= Values of Database Fields
= Positioning

= System Functions

See also AT START/END OF DATA Statements in the Programming Guide.

44 Statements



AT END OF DATA

Processing

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Values of Database Fields

When the AT END OF DATA condition for the processing loop occurs, all database fields contain
the data from the last record processed.

Positioning

This statement must be specified within the same program module which contains the loop creating
statement.

System Functions

Natural system functions may be used in conjunction with an AT END OF DATA statement as de-
scribed in Using System Functions in Processing Loops in the System Functions documentation.

Restrictions

* This statement can only be used in a processing loop that has been initiated with one of the
following statements: FIND, READ, READ WORK FILE, HISTOGRAM or SORT.

® It may be used only once per processing loop.

= It is not evaluated if the processing loop referenced for END OF DATA processing is not entered.

Syntax Description

Syntax Element Description

(r) Reference to a Specific Processing Loop:
An AT END OF DATA statement may be related to a specific active processing
loop by using the notation (r).

If this notation is not used, the AT END OF DATA statement will be related to
the outermost active database processing loop.

statement ... Statement(s) to be Executed at End of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

Statements 45



AT END OF DATA

Syntax Element

Description

END-ENDDATA

statement ...

DO statement ...

DOEND

End of AT END OF DATA Statement:

In structured mode, the Natural reserved word END-ENDDATA must be used
toend the AT END OF DATA statement.

Inreporting mode, usethe DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT END OF
DATA statement. If you specify only a single statement, you can omit the DO

. DOEND statements. With respect to good coding practice, this is not
recommended.

Example

** Example '"AEDEX1S': AT END OF DATA

R R R o R R b b R b e b R e I b R i b b e o S e b i R e i R i i b b e b R R e i b b e i b b 4

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID

2 NAME
2 FIRST-NAME

2 SALARY (1)
2 CURR-CODE (1)

END-DEFINE

*

LIMIT 5

EMP. FIND EMPLOY-VIEW WITH CITY = 'STUTTGART'
IF NO RECORDS FOUND

ENTER
END-NOREC

DISPLAY PERSONNEL-ID NAME FIRST-NAME
SALARY (1) CURR-CODE (1)

/*

AT END OF DATA

IF *COUNTER (EMP.) = 0
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM

END-IF

WRITE NOTITLE /

END-ENDDATA
/*
END-FIND

*

END

"SALARY STATISTICS:'

/ 7X "MAXIMUM:' MAX(SALARY(1)) CURR-CODE (1)
/ 7X '"MINIMUM:' MIN(CSALARY(1)) CURR-CODE (1)
/ 7X "AVERAGE:' AVER(SALARY(1)) CURR-CODE (1)

46

Statements



AT END OF DATA

See also Natural System Functions for Use in Processing Loops in the System Functions documentation.

Output of Program AEDEX1S:

PERSONNEL NAME FIRST-NAME ANNUAL ~ CURRENCY
ID SALARY CODE
11100328 BERGHAUS ROSE 70800 DM
11100329 BARTHEL PETER 42000 DM
11300313 AECKERLE SUSANNE 55200 DM
11300316 KANTE GABRIELE 61200 DM
11500304 KLUGE ELKE 49200 DM

SALARY STATISTICS:

MAXIMUM: 70800 DM
MINIMUM: 42000 DM
AVERAGE: 55680 DM ©

Equivalent reporting-mode example: AEDEXIR.

Statements 47



48



8 AT END OF PAGE

L V10 o PSPPSR 50

B SYNEAX DESCHIPION ...ttt et e e e e e e e e e e e e e e 52
53

= Example

49



AT END OF PAGE

Structured Mode Syntax

[AT] END [OF] PAGE [(rep)]
statement ...
END-ENDPAGE

Reporting Mode Syntax

[AT] END [OF] PAGE [(rep)]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRATILER

Belongs to Function Group: Creation of Output Reports

Function

The AT END OF PAGE statement is used to specify processing that is to be performed when an end-
of-page condition is detected (see session parameter PS in the Parameter Reference). An end-of-page
condition may also occur as a result of a SKIP or NEWPAGE statement, but not as a result of an EJECT
or INPUT statement.

See also the following sections in the Programming Guide:

® Controlling Data Output

" Report Specification - (rep) Notation
® Layout of an Output Page

® AT END OF PAGE Statement

50 Statements



AT END OF PAGE

Processing

An AT END OF PAGE statement block is only executed if the object which contains the statement
block is active at the time when the end-of-page condition occurs.

An AT END OF PAGE statement must not be placed within an inline subroutine.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Logical Page Size

The end-of-page check is performed after the processing of a DISPLAY or WRITE statement is com-
pleted. Therefore, if a DISPLAY or WRITE statement produces multiple lines of output, overflow of
the physical page may occur before an end-of-page condition is detected.

Alogical page size (session parameter PS) which is less than the physical page size must be specified
to ensure that information printed by an AT END OF PAGE statement appears on the same physical
page as the title.

Last-Page Handling

Within a main program, an end-of-page condition is activated when the execution of the main
program terminates via ESCAPE, STOP or END.

Within a subroutine, an end-of-page condition is not activated when the execution of the subroutine
terminates via ESCAPE-ROUTINE, RETURN or END-SUBROUTINE.

System Functions

Natural system functions may be used in conjunction with an AT END OF PAGE statement as de-
scribed in the section Using System Functions in Processing Loops in the System Functions document-
ation.

If a system function is to be used within an AT END OF PAGE statement block, the GIVE SYSTEM
FUNCTIONS clause must be specified in the corresponding DISPLAY statement.

Statements 51



AT END OF PAGE

INPUT Statement with AT END OF PAGE

If an INPUT statement is specified withinan AT END OF PAGE statement block, no new page operation
is performed. The page size (session parameter PS) must be reduced to a value that allows the
lines created by the INPUT statement to appear on the same physical page.

See also:

= Split Screen Feature of INPUT Statement
® Example 2 - AT END OF PAGE with INPUT Statement

Syntax Description

Syntax Element

Description

(rep)

Report Specification:

The notation ( rep) may be used to specify the identification of the report for
which the AT END OF PAGE statement is applicable. A value in the range 0 -
31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified.

If (rep) is not specified, the AT END OF PAGE statement will apply to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Controlling Data Output in the Programming Guide.

statement

Statement(s) to be Executed at End of Page Condition:

In structured mode, you must supply one or several suitable statements, depending
on the situation. For an example of a statement, see Example below.

END-ENDPAGE

statement

DOEND

DO statement ...

End of AT END OF PAGE Statement:

In structured mode, the Natural reserved word END-ENDPAGE must be used to
end the AT END OF PAGE statement.

In reporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT END OF PAGE
statement. If you specify only a single statement, you can omitthe D0 ... DOEND
statements. With respect to good coding practice, this is not recommended.

52

Statements



AT END OF PAGE

Example

= Example 1 - AT END OF PAGE
= Example 2 - AT END OF PAGE with INPUT Statement

Example 1 - AT END OF PAGE

** Example "AEPEX1S': AT END OF PAGE (structured mode)
KA KRR AR A AR AR R AR A AR A AR AR R AR A AR A AR AR KR AR KA KA AR AR KA KR KA KA AR AR KA A AR A A KA AR ARk AK
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 SALARY (1)
2 CURR-CODE (1)
END-DEFINE
*
FORMAT PS=10
LIMIT 10
READ EMPLOY-VIEW BY PERSONNEL-ID FROM '20017000°
DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
NAME JOB-TITLE 'SALARY' SALARY(1) CURR-CODE (1)
/*

AT END OF PAGE

WRITE / 28T 'AVERAGE SALARY: ..." AVER(SALARY(1)) CURR-CODE (1)
END-ENDPAGE

END-READ
*
END +

See also Natural System Functions for Use in Processing Loops.

Output of Program AEPEX1S:

NAME CURRENT SALARY  CURRENCY
POSITION CODE
CREMER ANALYST 34000 USD
MARKUSH TRAINEE 22000 USD
GEE MANAGER 39500 USD
KUNEY DBA 40200 USD
NEEDHAM PROGRAMMER 32500 USD
JACKSON PROGRAMMER 33000 USD

Statements 53



AT END OF PAGE

AVERAGE SALARY: ... 33533 USD ©

Equivalent reporting-mode example: AEPEX1R.

Example 2 - AT END OF PAGE with INPUT Statement

*x Example 'AEPEX2': AT END OF PAGE (with INPUT)
R R B b R R e e b b R e e b b e e b b e e b b e e i b b e e b b S e b b R e I b b R e b b e e b R e i b b e e b b b S 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 POST-CODE
2 CITY
*
1 #START-NAME (A20)
END-DEFINE

*

FORMAT PS=21
*
REPEAT
READ (15) EMPLOY-VIEW BY NAME = #START-NAME
DISPLAY NOTITLE NAME FIRST-NAME POST-CODE CITY
END-READ
NEWPAGE
/*
AT END OF PAGE
MOVE NAME TO #START-NAME

INPUT / "-" (79)
/ 10T 'Reposition to name ==>'
fFSTART-NAME (AD=MI) '(''.'' to exit)"
IF #START-NAME = '.'
STOP
END-IF
END-ENDPAGE
/*
END-REPEAT
END ©

Output of Program AEPEX2S:

NAME FIRST-NAME POSTAL CITY
ADDRESS
ABELLAN KEPA 28014 MADRID
ACHIESON ROBERT DE3 4TR DERBY
ADAM SIMONE 89300 JOIGNY
ADKINSON JEFF 11201 BROOKLYN
ADKINSON PHYLLIS 90211 BEVERLEY HILLS

54

Statements



AT END OF PAGE

ADKINSON HAZEL 20760 GAITHERSBURG
ADKINSON DAVID 27514 CHAPEL HILL
ADKINSON CHARLIE 21730 LEXINGTON
ADKTNSON MARTHA 17010 FRAMINGHAM
ADKINSON TIMMIE 17300 BEDFORD
ADKTINSON BOB 66044 LAWRENCE
AECKERLE SUSANNE 7000 STUTTGART
AFANASSTEV PHILIP 39401 HATTIESBURG
AFANASSTEV ROSE 60201 EVANSTON
AHL FLEMMING 2300 SUNDBY
Reposition to name ==> AHL (".' to exit) ©
Statements 95



56



9 AT START OF DATA

= Function .............

= Syntax Description

= Example .............

57



AT START OF DATA

Structured Mode Syntax

[AT] START [OF] DATA[(n)]
statement ...
END-START

Reporting Mode Syntax

[AT] START [OF] DATA [(r)]
{ statement }
DO statement... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT END OF DATA | BACKOUT TRANSACTION | BEFORE
BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION DATA
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The statement AT START OF DATA is used to perform processing immediately after the first of a
set of records is read for a processing loop that has been initiated by one of the following statements:
READ, FIND, HISTOGRAM, SORT or READ WORK FILE.

See also AT START/END OF DATA Statements in the Programming Guide.
Processing

If the loop-initiating statement contains a WHERE clause, the at-start-of-data condition will be true
when the first record is read which meets both the basic search and the WHERE criteria.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

58 Statements



AT START OF DATA

Value of Database Fields

All database fields contain the values of the record which caused the at-start-of-data condition to
be true (that is, the first record of the set of records to be processed).

Positioning

This statement must be positioned within a processing loop, and it may be used only once per
processing loop.

Syntax Description

Syntax Element Description

(r) Reference to a Specific Processing Loop:

An AT START OF DATA statement may be related to a specific outer active
processing loop by using the notation (r). If this notation is not used, the
statement is related to the outermost active processing loop.

statement ... Statement(s) to be Executed at Start of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

END-START End of AT START OF DATA Statement:

statement ...
DO statement ... DOEND

In structured mode, the Natural reserved word END- START must be used to
end the AT START OF DATA statement.

Inreporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT START
OF DATA statement. If you specify only a single statement, you can omit the
DO ... DOEND statements. With respect to good coding practice, this is not
recommended.

Example

** Example 'ASDEX1S': AT START OF DATA (structured mode)
RRAR R b R R e b b R e b b e e b b e e b b e b b b S e b b S S b R e b b e e b b i e e b R e B b b e e b b Y
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY

*

1 J)ICNTL (A1) INIT <" '>

Statements 59



AT START OF DATA

1 #CITY (A20) INIT <' '>

END-DEFINE
*
REPEAT
INPUT 'ENTER VALUE FOR CITY' #CITY
IF #CITY = ' ' OR = 'END'
STOP
END-IF

FIND EMPLOY-VIEW WITH CITY = #CITY
IF NO RECORDS FOUND
WRITE NOTITLE NOHDR 'NO RECORDS FOUND'
ESCAPE BOTTOM
END-NOREC
/*
AT START OF DATA
INPUT (AD=0) 'RECORDS FOUND' *NUMBER //

"ENTER "'D"' TO DISPLAY RECORDS' #CNTL (AD=A)

IF #CNTL NE 'D'
ESCAPE BOTTOM
END-IF
END-START
/*
DISPLAY NAME FIRST-NAME
END-FIND
END-REPEAT
END

Output of Program ASDEX1S:

ENTER VALUE FOR CITY PARIS

After entering and confirming name of city:

RECORDS FOUND 26

ENTER 'D' TO DISPLAY RECORDS D

Records displayed:

NAME FIRST-NAME
MATZTERE ELISABETH
MARX JEAN-MARIE
REIGNARD JACQUELINE
RENAUD MICHEL
REMOUE GERMAINE
LAVENDA SALOMON
BROUSSE GUY
GIORDA LOUIS
SIECA FRANCOIS

60

Statements



AT START OF DATA

CENSTER
DUC
CAHN
MAZUY
FAURIE
VALLY
BRETON
GIGLEUX
KORAB-BRZOZOWSKI
XOLIN
LEGRIS
VVVV

Equivalent reporting-mode example: ASDEXIR.

BERNARD
JEAN-PAUL
RAYMOND
ROBERT
HENRI
ALAIN
JEAN-MARIE
JACQUES
BOGDAN
CHRISTIAN
ROGER

«

Statements

61



62



10 AT TOP OF PAGE

L V10 o PSPPSR 64
L = 140 o S PSPSRR 65
B SYNEAX DESCIIPHION . 65
B EXAMIPIE ettt e et e e e ettt e e e e e et aeeeaa e e nnees 66

63



AT TOP OF PAGE

Structured Mode Syntax

[AT] TOP [OF] PAGE [(rep)]
statement ...
END-TOPPAGE

Reporting Mode Syntax

[AT] TOP [OF] PAGE [(rep)]
{ statement }
DO statement ... DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | CLOSE PRINTER | DEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The statement AT TOP OF PAGE is used to specify processing which is to be performed when a
new page is started.

See also the following sections in the Programming Guide:

Controlling Data Output

Report Specification - (rep) Notation

Layout of an Output Page
AT TOP OF PAGE Statement

64 Statements



AT TOP OF PAGE

Processing

A new page is started when the internal line counter exceeds the page size set with the session
parameter PS (page size for Natural reports), or when a NEWPAGE statement is executed. Either of
these events cause a top-of-page condition to be true. An EJECT statement causes a new page to
be started but does not cause a top-of-page condition.

An AT TOP OF PAGE statement block is only executed when the object which contains the statement
is active at the time when the top-of-page condition occurs.

Any output created as a result of AT TOP 0F PAGE processing will appear following the title line
with an intervening blank line.

This statement is non-procedural, that is, its execution depends on an event, not on where in a
program it is located.

Restriction

An AT TOP OF PAGE statement must not be placed within an inline subroutine.

Syntax Description

Syntax Element Description

(rep) Report Specification:
The notation ( rep) may be used to specify the identification of the report for
which the AT TOP OF PAGE statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using
the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the AT TOP OF PAGE statement applies to the first
report (Report 0).

For information on how to control the format of an output report created with
Natural, see Controlling Data Output in the Programming Guide.

Statement ... Statement(s) to be Executed at Start of Data Condition:

In structured mode, you must supply one or several suitable statements,
depending on the situation. For an example of a statement, see Example below.

END-TOPPAGE End of AT TOP OF PAGE Statement:
[S)S ’ ti—min L t . In structured mode, the Natural reserved word END-TOPPAGE must be used to
DOEIjDa ement. .- end the AT TOP OF PAGE statement.

Statements 65



AT TOP OF PAGE

Syntax Element Description

In reporting mode, use the DO . ..

DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the AT TOP OF

PAGE statement. If you specify only a single statement, you can omit the DO . . .
DOEND statements. With respect to good coding practice, this is not recommended.

Example

** Example 'ATPEX1S': AT TOP OF PAGE (structured mode)

R R R o R R b b R b i b e b R R i b b e b S e b i R e i i S e b b e e b R e i b b e S b b i 4

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 CITY
2 DEPT

END-DEFINE

*

FORMAT PS=15

LIMIT 15

READ EMPLOY-VIEW BY NAME STARTING FROM 'L
DISPLAY 2X NAME 4X FIRST-NAME CITY DEPT
WRITE TITLE UNDERLINED 'EMPLOYEE REPORT'
WRITE TRAILER '-' (78)
/*

AT TOP OF PAGE

WRITE 'BEGINNING NAME:' NAME

END-TOPPAGE

/%
AT END OF PAGE
SKIP 1
WRITE "ENDING NAME: ' NAME
END-ENDPAGE
END-READ
END ©

Output of Program ATPEX1S:

EMPLOYEE REPORT

BEGINNING NAME: LAFON

NAME FIRST-NAME CITY
LAFON CHRISTIANE PARIS
LANDMANN HARRY ESCHBORN
LANE JACQUELINE DERBY

DEPARTMENT
CODE

VENT18
MARK29
MGMTO2

66

Statements




AT TOP OF PAGE

LANKATILLEKE
LANNON
LANNON
LARSEN
LARSEN

ENDING NAME:

Equivalent reporting-mode example: ATPEX1R.

LARSEN

LALITH
BOB
LESLIE
CARL
MOGENS

FRANKFURT
LINCOLN
SEATTLE
FARUM
VEMMELEV

PROD22
SALE20
SALE30
SYSAO1
SYSAOQ2

Statements

67



68



11

BACKOUT TRANSACTION
L V10 o PSPPSR 70
B RESHTICHON .ttt 7"
= Database-Specific CONSIABTAIONS ...........oiiiiiiiiii e 71
B EXAMIPIE ettt e et e e e ettt e e e e e et aeeeaa e e nnees 71

69



BACKOUT TRANSACTION

BACKOUT [TRANSACTION]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BEFORE
BREAK PROCESSING | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION DATA
| HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The BACKOUT TRANSACTION statement is used to back out all database updates performed during
the current logical transaction. This statement also releases all records held during the transaction.

The statement is executed only if a database transaction under control of Natural has taken place.
For which databases the statement is executed depends on the setting of the profile parameter ET
(execution of END/BACKOUT TRANSACTION statements):

" If ET=0FF, the statement is executed only for the database affected by the transaction.

= If ET=0N, the statement is executed for all databases that have been referenced since the last exe-
cution of a BACKOUT TRANSACTION or END TRANSACTION statement.

Backout Transaction Issued by Natural

If the user interrupts the current Natural operation with a terminal command (command %% or
CLEAR key), Natural issues a BACKOUT TRANSACTION statement.

See also the terminal command %% in the Terminal Commands documentation.
Additional Information

For additional information on the use of the transaction backout feature, see the sections Database
Update - Transaction Processing and Backing Out a Transaction in the Programming Guide.

70 Statements



BACKOUT TRANSACTION

Restriction

This statement is not available with Entire System Server.

Database-Specific Considerations

SQL Databases |As most SQL databases close all cursors when a logical unit of work ends, a BACKOUT
TRANSACTION statement must not be placed within a database modification loop; instead,
it has to be placed after such a loop.

XML Databases|A BACKOUT TRANSACTION statement must not be placed within a database modification
loop; instead, it has to be placed after such a loop.

Example

** Example '"BOTEX1': BACKOUT TRANSACTION

* %

**% CAUTION: Executing this example will modify the database records!
khkkhkhkhkhkkhkhkhhkhkkhkhkhhhkhkkhkhkhhkhhkkhkhhhhkkhkhkhhhkhkhhhhhkhkhkhhhkhkhkhkhhhhkhkhhrhkkhkhkhhkhkkhkhkhrkkkhkhkrkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 DEPT

2 LEAVE-DUE

2 LEAVE-TAKEN
*
1 {#fDEPT (A6)
1 #fRESP (A3)
END-DEFINE
*
LIMIT 3
INPUT 'DEPARTMENT TO BE UPDATED:"' #fDEPT
IF #fDEPT = ' '

STOP
END-IF
*
FIND EMPLOY-VIEW WITH DEPT = 4DEPT

IF NO RECORDS FOUND

REINPUT 'NO RECORDS FOUND'

END-NOREC
INPUT 'NAME: " NAME (AD=0) /
"LEAVE DUE: ' LEAVE-DUE (AD=M) /

"LEAVE TAKEN:" LEAVE-TAKEN (AD=M)

Statements 71



BACKOUT TRANSACTION

UPDATE
END-FIND
*
INPUT 'UPDATE TO BE PERFORMED? YES/NO:' #RESP
DECIDE ON FIRST #RESP
VALUE 'YES"
END TRANSACTION
VALUE "NO'
BACKOUT TRANSACTION
NONE
REINPUT 'PLEASE ENTER YES OR NO'
END-DECIDE

*

END =

Output of Program BOTEX1:

DEPARTMENT TO BE UPDATED: MGMT30

Result for department MGMT30:

NAME : POREE
LEAVE DUE: 45
LEAVE TAKEN: 31

Confirmation query:

UPDATE TO BE PERFORMED YES/NO: NO

72 Statements



12

BEFORE BREAK PROCESSING

= Function
= Restrictions
= Syntax Description
= Example

73



BEFORE BREAK PROCESSING

Structured Mode Syntax

BEFORE [BREAK] [PROCESSING]
statement ...
END-BEFORE

Reporting Mode Syntax

[BEFORE [BREAK] [PROCESSING]
{ statement }
DO statement ...DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | DELETE | END TRANSACTION | FIND | GET | GET SAME | GET TRANSACTION | HISTOGRAM
| LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The BEFORE BREAK PROCESSING statement may be used in conjunction with automatic break pro-
cessing to perform processing;:

" before the value of the break control field is checked;

" before the statements specified with an AT BREAK statement are executed;

" before Natural system functions are evaluated.

This statement is most often used to initialize or compute values of user-defined variables which
are to be used in break processing (see AT BREAK statement).

This statement is non-procedural (that is, its execution depends on an event, not on where in a
program it is located).

See also the following sections in the Programming Guide:

= Control Breaks
® BEFORE BREAK PROCESSING Statement
® Example of BEFORE BREAK PROCESSING Statement

74 Statements



BEFORE BREAK PROCESSING

Restrictions

® The BEFORE BREAK PROCESSING statement may only be used with a processing loop that has
been initiated with one of the following statements:

= FIND
® READ

® HISTOGRAM

® SORT

® READ WORK FILE

It may be placed anywhere within the processing loop and is always related to the processing
loop in which it is contained. Only one BEFORE BREAK PROCESSING statement may be specified
per processing loop.

® The BEFORE BREAK PROCESSING statement must not be used in conjunction with the statement
PERFORM BREAK PROCESSING.

Syntax Description

Syntax Element

Description

statement. ..

Statement(s) for Break Processing;:
In place of statement, you must supply one or several suitable statements,
depending on the situation.

For an example of a statement, see Example below.

If no break processing is to be performed (that is, no AT BREAK statement is
specified for the processing loop), any statements specified with a BEFORE
BREAK PROCESSING statement will not be executed.

END-BEFORE

statement ...
DO statement ...

DOEND

End of BEFORE BREAK PROCESSING Statement:

In structured mode, the Natural reserved word END-BEFORE must be used
to end the BEFORE BREAK PROCESSING statement.

Inreporting mode, use the DO ... DOEND statements to supply one or several
suitable statements, depending on the situation, and to end the BEFORE BREAK
PROCESSING statement. If you specify only a single statement, you can omit
the DO ... DOEND statements. With respect to good coding practice, this is

not recommended.

Statements

75



BEFORE BREAK PROCESSING

Example

**

**

DE
1

*

1
EN
*
LI
RE

B

EN
EN

Example 'BBPEX1': BEFORE BREAK PROCESSING
ko o o o o ook ok ok ko ok o o ok ok ok ok ok ok ok ko ok ko o o ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok o ok ok ok
FINE DATA LOCAL
EMPLOY-VIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 SALARY (1)
2 BONUS (1,1)

#FINCOME  (P11)
D-DEFINE

MIT 7
AD EMPLOY-VIEW BY CITY = 'L’
/*
EFORE BREAK PROCESSING
COMPUTE #INCOME = SALARY (1) + BONUS (1,1)
END-BEFORE
/*
AT BREAK OF CITY
WRITE NOTITLE "AVERAGE INCOME FOR' OLD (CITY) 20X AVER(#INCOME) /
END-BREAK
/%
DISPLAY CITY "NAME' NAME "SALARY' SALARY (1) 'BONUS' BONUS (1,1)
D-READ
D ©

Output of Program BBPEX1:

LA
AV

LA
LA
LA
LA
LA
LA
AV

CITY NAME SALARY BONUS
BASSEE HULOT 165000 70000
ERAGE INCOME FOR LA BASSEE 235000
CHAPELLE ST LUC  GUILLARD 124100 23000
CHAPELLE ST LUC  BERGE 198500 50000
CHAPELLE ST LUC POLETTE 124090 23000
CHAPELLE ST LUC  DELAUNEY 115000 23000
CHAPELLE ST LUC  SCHECK 125600 23000
CHAPELLE ST LUC KREEBS 184550 50000
ERAGE INCOME FOR LA CHAPELLE ST LUC 177306

76

Statements



13 CALL

0 oo RPN 78
B SYNEAX DESCHIPION ...ttt et e e e e e e e e e e e e e e 78
L T O [T 79
B S XIS ...ttt e e 79
B NTERFACES ... 80

77



CALL

CALL[INTERFACE4] operandl [USING] [operand?]...128

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH |
PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALL statement is used to call an external program or function written in another standard
programming language from a Natural program and then return to the next statement after the
CALL statement.

The called program or function may be written in any programming language which supports a

standard CALL interface. Multiple CALL statements to one or more external program or functions
may be specified.

Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted

operandI|C |S A yes no

operand2|C |S |A |G A|U|N|P|I|F|B|D|T|L|C|G yes yes

Syntax Element Description:

Syntax Element Description

INTERFACE4 Interface Usage:
The optional keyword INTERFACE4 specifies the type of the interface that is used for
the call of the external program. See the section INTERFACE4 below.

operandl Name of Called Function:

The name of the function to be called (operandI) can be specified as a constant or - if
different functions are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 8. A function name must be placed left-justified in the variable.

[USING] Parameters to be Passed:
operand?

78 Statements



CALL

Syntax Element Description

The CALL statement may contain up to 128 parameters (operand?). One address is
passed in the parameter list for each parameter field specified.

If a group name is used, the group is converted to individual fields; that is, if a user
wishes to specify the beginning address of a group, the first field of the group must be
specified.

Note: If an application-independent variable (AIV) or context variable is passed as a

parameter to a user exit, the following restriction applies: if the user exit invokes a
Natural subprogram which creates a new AIV or context variable, the parameter is
invalid after the return from the subprogram. This is true regardless of whether the
new AIV/context variable is created by the subprogram itself or by another object
invoked directly or indirectly by the subprogram.

Return Code

The condition code of any called function may be obtained by using the Natural system function
RET (Return Code Function).

Example:

RESET #RETURN(B4)
CALL 'PROGI'
IF RET ('PROG1') > #RETURN
WRITE '"ERROR OCCURRED IN PROGRAMI'
END-IF

User Exits

User exits are needed to be able to access external functions that are invoked with a CALL statement.
The user exits have to be placed in a DLL (dynamic link library). For further information on the
user exits, refer to the following file:

%NATDIR% \ %9NATVERS % \ natural \ samples \ sysexuex \ readme.txt

The readme.txt file is installed together with the samples. As a prerequisite for finding this file, the
feature “Samples” must have been selected during the Natural installation.

Statements 79



CALL

INTERFACE4

The keyword INTERFACE4 specifies the type of the interface that is used for the call of the external
program. This keyword is optional. If this keyword is specified, the interface, which is defined as
INTERFACE4, is used for the call of the external program.

The following table lists the differences between the CALL statement used with INTERFACE4 and
the one used without INTERFACE4:

CALL statement without keyword |CALL statement with keyword
INTERFACE4 INTERFACE4

Number of parameters possible 128 32767

Maximum data size of one parameter |65535 1GB

Retrieve array information no yes

Support of large and dynamic operands |no yes

Parameter access via API no yes

The following topics are covered below:

= [INTERFACE4 - External 3GL Program Interface
= QOperand Structure for INTERFACE4

= INTERFACE4 - Parameter Access

= Exported Functions

INTERFACE4 - External 3GL Program Interface

The interface of the external 3GL program is defined as follows, when INTERFACE4 is specified
with the Natural CALL statement:

NATFCT functionname (numparm, parmhandle, traditional)

USR_WORD|numparm; 16 bit unsigned short value, containing the total number of transferred
operands (operand?).

void *parmhandle; |Pointer to the parameter passing structure.

void *traditional; |Check for interface type (if it is not a NULL pointer it is the traditional CALL
interface).

80 Statements



CALL

Operand Structure for INTERFACE4

The operand structure of INTERFACE4 isnamed parameter_descriptionandis defined as follows.
The structure is delivered with the header file natuser.h.

struct parameter_description

void * |address Address of the parameter data, not aligned, realloc() and
free() are not allowed.
int format Field data format: NCXR_TYPE_ALPHA, etc. (natuser.h).
int Tength Length (before decimal point, if applicable).
int precision Length after decimal point (if applicable).
int byte_length Length of field in bytes int dimension number of dimensions (0
to IF4_MAX_DIM).
int dimensions Number of dimensions (0 to IF4_MAX_DIM).
int length_all Total data length of array in bytes.
int flags Several flag bits combined by bitwise OR operation, meaning:
IF4_FLG_PROTECTED: The parameter is write protected.
IF4_FLG_DYNAMIC: The parameter is a dynamic
variable.
IF4_FLG_NOT_CONTIGUOUS: The array elements are not
contiguous (have spaces between
them).
IF4_FLG_ATIV: The parameter is an
application-independent variable.
IF4_FLG_DYNVAR: The parameter is a dynamic
variable.
IF4_FLG_XARRAY: The parameter is an X-array.
IF4_FLG_LBVAR_O: The lower bound of dimension 0
is variable.
IF4_FLG_UBVAR_O: The upper bound of dimension 0
is variable.
IF4_FLG_LBVAR_I: The lower bound of dimension 1
is variable.
IF4_FLG_UBVAR_I: The upper bound of dimension 1
is variable.
IF4_FLG_LBVAR_Z: The lower bound of dimension 2
is variable.
IF4_FLG_UBVAR_Z: The upper bound of dimension 2
is variable.
int occurrences[IF4_MAX_DIM] |Array occurrences in each dimension.
int indexfactors[IF4_MAX_DIM]|Array indexfactors for each dimension.
Statements 81



CALL

void * [dynp Reserved for internal use.

void * |[pops Reserved for internal use.

The address element is null for arrays of dynamic variables and for X-arrays. In these cases, the
array data cannot be accessed as a whole, but must be accessed through the parameter access
functions described below.

For arrays with fixed bounds of variables with fixed length, the array contents can be accessed
directly using the address element. In these cases the address of an array element (i,j k) is computed
as follows (especially if the array elements are not contiguous):

elementaddress = address + i * indexfactors[0] + j * indexfactors[1l] + k * <
indexfactors[2]

If the array has less than 3 dimensions, leave out the last terms.
INTERFACE4 - Parameter Access

A set of functions is available to be used for the access of the parameters. The process flow is as
follows:

® The 3GL program is called via the CALL statement with the INTERFACE4 option, and the parameters
are passed to the 3GL program as described above.

® The 3GL program can now use the exported functions of Natural, to retrieve either the parameter
data itself, or information about the parameter, such as format, length, array information, etc.

® The exported functions can also be used to pass back parameter data.

There are also functions to create and initialize a new parameter set in order to call arbitrary sub-
programs from a 3GL program. With this technique a parameter access is guaranteed to avoid
memory overwrites done by the 3GL program. (Natural's data is safe: memory overwrites within
the 3GL program's data are still possible).

Exported Functions

The following topics are covered below:

= Get Parameter Information

= Get Parameter Data

= Write Back Operand Data

= Create, Initialize and Delete a Parameter Set
= Create Parameter Set

= Delete Parameter Set

Initialize a Scalar of a Static Data Type
Initialize an Array of a Static Data Type
Initialize a Scalar of a Dynamic Data Type
Initialize an Array of a Dynamic Data Type

82 Statements



CALL

= Resize an X-array Parameter
Get Parameter Information

This function is used by the 3GL program to receive all necessary information from any parameter.
This information is returned in the struct parameter_description, whichis documented above.

Prototype:

int ncxr_get_parm_info ( int parmnum, void *parmhandle, struct parameter_description «
*descr );

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter list.
Range: 0 ... numparm-1.
parmhand]le |Pointer to the internal parameter structure
descr Addressof a struct parameter_description
return Return Value: Information:
0 OK
-1 Illegal parameter number.
-2 Internal error.
-7 Interface version conflict.

Get Parameter Data

This function is used by the 3GL program to get the data from any parameter.

Natural identifies the parameter by the given parameter number and writes the parameter data
to the given buffer address with the given buffer size.

If the parameter data is longer than the given buffer size, Natural will truncate the data to the
given length. The external 3GL program can make use of the function ncxr_get_parm_info, to
request the length of the parameter data.

There are two functions to get parameter data: ncxr_get_parm gets the whole parameter (even if
the parameter is an array), whereas ncxr_get_parm_array gets the specified array element.

If no memory of the indicated size is allocated for “buffer” by the 3GL program (dynamically or
statically), results of the operation are unpredictable. Natural will only check for a null pointer.

If data gets truncated for variables of the type 12/14/F4/F8 (buffer length not equal to the total
parameter length), the results depend on the machine type (little endian/big endian). In some ap-
plications, the user exit must be programmed to use no static data to make recursion possible.

Statements 83



CALL

Prototypes:

int ncxr_get_parm( int parmnum, void *parmhandle, int buffer_length, void *buffer )

int ncxr_get_parm_array( int parmnum, void *parmhandle, int buffer_length, void <
*pbuffer, int *indexes )

This function is identical to ncxr_get_parm, except that the indexes for each dimension can be
specified. The indexes for unused dimensions should be specified as 0.

Parameter Description:

parmnum

Ordinal number of the parameter. This identifies the parameter of the passed parameter
list. Range: 0 ... numparm-1.

parmhandle

Pointer to the internal parameter structure

buffer_length

Length of the buffer, where the requested data has to be written to

buffer

Address of buffer, where the requested data has to be written to. This buffer should be
aligned to allow easy access to 12/14/F4/F8 variables.

indexes Array with index information
return Return Value: Information:
<0 Error during retrieval of the information:
-1 Illegal parameter number.
-2 Internal error.
-3 Data has been truncated.
-4 Data is not an array.
-7 Interface version conflict.
-100 Index for dimension 0 is out of range.
-101 Index for dimension 1 is out of range.
-102 Index for dimension 2 is out of range.
0 Successful operation.
>0 Successful operation, but the data was only this
number of bytes long (buffer was longer than the
data).
84 Statements



CALL

Write Back Operand Data

These functions are used by the 3GL program to write back the data to any parameter. Natural
identifies the parameter by the given parameter number and writes the parameter data from the
given buffer address with the given buffer size to the parameter data. If the parameter data is
shorter than the given buffer size, the data will be truncated to the parameters data length, that
is, the rest of the buffer will be ignored. If the parameter data is longer than the given buffer size,
the data will be copied only to the given buffer length, the rest of the parameter stays untouched.
This applies to arrays in the same way. For dynamic variables as parameters, the parameter is
resized to the given buffer length.

If data gets truncated for variables of the type 12/14/F4/F8 (buffer length not equal to the total
parameter length), the results depend on the machine type (little endian/big endian). In some ap-
plications, the user exit must be programmed to use no static data to make recursion possible.

Prototypes:

int ncxr_put_parm ( int parmnum, void *parmhandle,
int buffer_length, void *buffer );
int ncxr_put_parm_array ( int parmnum, void *parmhandle,
int buffer_length, void *buffer,
int *indexes );

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter of the passed parameter
list. Range: 0 ... numparm-1.
parmhandle Pointer to the internal parameter structure.
buffer_length|Length of the data to be copied back to the address of buffer, where the data comes from.
indexes Index information
return Return Value: Information:
<0 Error during copying of the information:
-1 Illegal parameter number.
-2 Internal error.
-3 Too much data has been given. The copy back was done
with parameter length.
-4 Parameter is not an array.
-5 Parameter is protected (constant or AD=0).
-6 Dynamic variable could not be resized due to an “out of
memory” condition.
-7 Interface version conflict.
-13 The given buffer includes an incomplete Unicode character.
-100 Index for dimension 0 is out of range.

Statements 85



CALL

-101 Index for dimension 1 is out of range.

-102 Index for dimension 2 is out of range.

0 Successful operation.

>0 Successful operation., but the parameter was this number
of bytes long (length of parameter greater than given
length).

Create, Initialize and Delete a Parameter Set

If a 3GL program wants to call a Natural subprogram, it needs to build a parameter set that cor-
responds to the parameters the subprogram expects. The function ncxr_create_parmis used to
create a set of parameters to be passed with a call to ncxr_if_cal1nat. The set of parameters created
is represented by an opaque parameter handle, like the parameter set that is passed to the 3GL
program with the CALL INTERFACE4 statement. Thus, the newly created parameter set can be ma-
nipulated with functions ncxr_put_parm* and ncxr_get_parm* as described above.

The newly created parameter set is not yet initialized after having called the function
ncxr_create_parm. Anindividual parameter is initialized to a specific data type by a set of
ncxr_parm_init* functions described below. The functions ncxr_put_parm* and ncxr_get_parm*
are then used to access the contents of each individual parameter. After the caller has finished
with the parameter set, they must delete the parameter handle. Thus, a typical sequence in creating
and using a set of parameters for a subprogram to be called through ncxr_if4_callnat will be:

ncxr_create_parm
ncxr_init_ parm*
ncxr_init_ parm*

ncxr_put_ parm*
ncxr_put_ parm*

ncxr_get_parm_info*
ncxr_get_parm_info*

nexr_if4_callnat

ncxr_get_parm_info*
ncxr_get_parm_info*

ncxr_get_ parm*
ncxr_get_ parm*

ncxr_delete_parm

86 Statements



CALL

Create Parameter Set

The function ncxr_create_parmis used to create a set of parameters to be passed with a call to
ncxr_if_callnat.

Prototype:
int ncxr_create_parm( int parmnum, void** pparmhandle )

Parameter Description:

parmnum Number of parameters to be created.
pparmhand]e |Pointer to the created parameter handle.
return Return Value: Information:
<0 Error:
-1 Illegal parameter count.
-2 Internal error.
-6 Out of memory condition.
0 Successful operation.

Delete Parameter Set

The function ncxr_delete_parmis used to delete a set of parameters that was created with
ncxr_create_parm.

Prototype:

int ncxr_delete_parm( void* parmhandle )

Parameter Description:

parmhand]le |Pointer to the parameter handle to be deleted.
return Return Value: Information:

<0 Error:

-2 Internal error.

0 Successful operation.

Statements 87



CALL

Initialize a Scalar of a Static Data Type

Prototype:

int ncxr_init_parm_s( int parmnum, void *parmhandle,
char format, int Tength, int precision, int flags );

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhand]le |Pointer to the parameter handle.

format Format of the parameter.

Tength Length of the parameter.

precision |Precision of the parameter.

flags IFA_FLG_PROTECTED

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-9 Invalid length or precision.
0 Successful operation.

Initialize an Array of a Static Data Type

Prototype:

int ncxr_init_parm_sa( int parmnum, void *parmhandle,
char format, int Tength, int precision,
int dim, int *occ, int flags );

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.

parmhand]e [Pointer to the parameter handle.

format Format of the parameter.

Tength Length of the parameter.

precision [Precision of the parameter.

88 Statements




CALL

IF4_FLG_PROTECTED
IFA_FLG_LBVAR_O
IF4_FLG_UBVAR_O
IF4_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IF4_FLG_LBVAR_?
IFA_FLG_UBVAR_?

dim Dimension of the array.
occ Number of occurrences per dimension.
flags A combination of the flags

return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-9 Invalid length or precision.
-10 Invalid dimension count.
-11 Invalid combination of variable bounds.
0 Successful operation.

Initialize a Scalar of a Dynamic Data Type

Prototype:

int ncxr_init_parm_d( int parmnum, void *parmhandle,

char format, int flags );

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 numparm-1.
parmhand]le |Pointer to the parameter handle.
format Format of the parameter.
flags IF4_FLG_PROTECTED
return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
Statements 89



CALL

Invalid format.

Successful operation.

Initialize an Array of a Dynamic Data Type

Prototype:

int ncxr_init_parm_da( int parmnum, void *parmhandle,
char format, int dim, int *occ, int flags );

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.
parmhand]le |Pointer to the parameter handle.
format Format of the parameter.
dim Dimension of the array.
occ Number of occurrences per dimension.
flags A combination of the flags
IFA_FLG_PROTECTED
IF4_FLG_LBVAR_O
IF4_FLG_UBVAR_O
IF4A_FLG_LBVAR_1
IF4_FLG_UBVAR_1
IFA_FLG_LBVAR_Z
IFA_FLG_UBVAR_Z
return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-8 Invalid format.
-10 Invalid dimension count.
-11 Invalid combination of variable bounds.
0 Successful operation.
90 Statements




CALL

Resize an X-array Parameter

Prototype:

int ncxr_resize_parm_array( int parmnum, void *parmhandle, int *occ );

Parameter Description:

parmnum Ordinal number of the parameter. This identifies the parameter in the passed parameter list.
Range: 0 ... numparm-1.
parmhand] e |Pointer to the parameter handle.
occ New number of occurrences per dimension.
return Return Value: Information:
<0 Error:
-1 Invalid parameter number.
-2 Internal error.
-6 Out of memory condition.
-12 Operand is not resizable (in one of the specified
dimensions).
0 Successful operation.

All function prototypes are declared in the file natuser.h.

Statements 91



92



14 CALL FILE

L V10 o PSPPSR 94
L = 140 o S PSPSRR 94
B SYNEAX DESCIIPHION . 94
B EXAMIPIE ettt e et e e e ettt e e e e e et aeeeaa e e nnees 95

93



CALL FILE

Structured Mode Syntax

CALL FILE'program-name' operandl operand?
statement ...
END-FILE

Reporting Mode Syntax

CALL FILE'program-name' operandl operand?
statement ...
LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALL FILE statement is used to call a non-Natural program which reads a record from a non-
Adabas file and returns the record to the Natural program for processing.

Restriction

The statements AT BREAK, AT START OF DATAand AT END OF DATA mustnotbe used withina CALL
FILE processing loop.

Syntax Description

Operand Definition Table:

94 Statements



CALL FILE

Operand | Possible Structure Possible Formats Referencing Dynamic Definition
Permitted

operandl A AUNPIFBDTLC yes yes

operandZ A |G AUNPIFBDTLC yes yes

Syntax Element Description:

Syntax Element Description

"program-name' |Program to be Called:
The name of the non-Natural program to be called.

operandl Control Field:
operandl is used to provide control information.

operand? Record Area:
operandZ defines the record area.
The format of the record to be read can be described using field definitions (or FILLER
nX) entries following the name of the first field in the record. The fields used to define
the record format must not have been previously defined in the Natural program. This
ensures that fields are allocated in the contiguous storage by Natural.

statement ... |Processing Loop:
The CALL FILE statement initiates a processing loop which must be terminated with
an ESCAPE or STOP statement. More than one ESCAPE statement may be specified to
escape from a CALL FILE loop based on different conditions.

END-FILE End of CALL FILE Statement:

LooP In structured mode, the Natural reserved keyword END- FILE must be used to end the
CALL FILE statement.
In reporting mode, the Natural statement LOOP isused to end the CALL FILE statement.

Example

Calling Program:

** Example 'CFIEX1':

CALL FILE

R R R R e R b e b b R b e b i e R e i e R e e b e I e S e e B e e b e e b e b e b e e b e b e b e e i e b e S e e b o 4

DEFINE DATA LOCAL
1 #fCONTROL (A3)

1 ffRECORD
2 A (A10)
2 B (N3.2)
2 #FILLL (A3)
2 {tC (P3.1)
END-DEFINE
*
Statements 95



CALL FILE

CALL FILE "USER1" #fCONTROL #RECORD
IF #CONTROL = "END'
ESCAPE BOTTOM
END-IF
END-FILE

/*****************************

/* ... PROCESS RECORD ...

/*****************************

END

The byte layout of the record passed by the called program to the Natural program in the above

example is as follows:

CONTROL #A 1B FILLER 4C
(A3) (A10) (N3.2) 3X (P3.1)

XXX XXXXXXXXXX XXXXX XXX XXX

Called COBOL Program:

ID DIVISION.
PROGRAM-ID. USERI.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT USRFILE ASSIGN UT-S-FILEUSR.

DATA DIVISION.
FILE SECTION.

FD USRFILE RECORDING F LABEL RECORD OMITTED

DATA RECORD DATA-IN.
01 DATA-IN PIC X(80).
LINKAGE SECTION.
01 CONTROL-FIELD PIC XXX.
01 RECORD-IN PIC X(21).

PROCEDURE DIVISION USING CONTROL-FIELD RECORD-IN.

BEGIN.
GO TO FILE-OPEN.
FILE-OPEN.
OPEN INPUT USRFILE
MOVE SPACES TO CONTROL-FIELD.

ALTER BEGIN TO PROCEED TO FILE-READ.

FILE-READ.
READ USRFILE INTO RECORD-IN
AT END

MOVE '"END' TO CONTROL-FIELD

CLOSE USRFILE

ALTER BEGIN TO PROCEED TO FILE-OPEN.

GOBACK.

96

Statements



15 CALL LOOP

L V10 o PSPPSR 98
L = 140 o S PSPSRR 98
B SYNEAX DESCIIPHION . 99
B EXAMIPIE ettt e et e e e ettt e e e e e et aeeeaa e e nnees 99

97



CALL LOOP

Structured Mode Syntax

CALL LOOP operandl [operandZ]..A40
statement ...
END-LOOP

Reporting Mode Syntax

CALL LOOP operandl [operandZ]...40
Statement ...
LOOP

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL FILE | CALLNAT | DEFINE SUBROUTINE | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALL LOOP statement is used to generate a processing loop that contains a call to a non-Natural
program.

Unlike the CALL statement, the CALL LOOP statement results in a processing loop which is used to
repeatedly call the non-Natural program. See the CALL statement for a detailed description of the
CALL processing.

Restriction

The statements AT BREAK, AT START OF DATAand AT END OF DATA must not be used withina CALL
LOOP processing loop.

98 Statements



CALL LOOP

Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted

operandl|C (S A yes no

operandZ|C |S |A |G A|UIN|P|I|F|B|D|T|L|C yes yes

Syntax Element Description:

Syntax Element Description

operandl Program to be Called:

The name of the non-Natural program to be called can be specified as a constant or -
if different programs are to be called dependent on program logic - as an alphanumeric
variable of length 1 to 8. A program name must be placed left-justified in the variable.

operand? Parameters:

The CALL LOOP statement can have a maximum of 40 parameters. The parameter list
is constructed as described for the CALL statement. Fields used in the parameter list
may be initially defined in the CALL LOOP statement itself or may have been previously
defined.

statement ... |Processing Loop:
The CALL LOOP statement initiates a processing loop which must be terminated with
an ESCAPE statement.

END-LOOP End of CALL LOOP Statement:
LOOP

In structured mode, the Natural reserved word END-LOOP must be used to end the
CALL LOOP statement.

In reporting mode, the Natural statement LOOP is used to end the CALL LOOP statement.

Example

DEFINE DATA LOCAL

1 PARAMETER1 (A10)

END-DEFINE

CALL LOOP 'ABC' PARAMETER1L
IF PARAMETERI = "END'

ESCAPE BOTTOM

END-IF

END-LOOP

END

Statements 99



100



16 CALLNAT

L V101 1o PP P PP PO PPPPRPPPPPPR 102
B SYNEAX DESCIIPHON ...ttt et 103
= Parameter Transfer with Dynamic Variables ... 105
L e 11T P URT R SUPPPRPRR 106

101



CALLNAT

M
operandZ2 (AD= ‘ 0 ’ )

CALLNAT operandl [USING] A

nX

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALL LOOP | DEFINE SUBROUTINE | ESCAPE | FETCH |
PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The CALLNAT statement is used to invoke a Natural subprogram for execution. (A Natural subpro-
gram can only be invoked via a CALLNAT statement; it cannot be executed by itself.)

When the CALLNAT statement is executed, the execution of the invoking object (that is, the object
containing the CALLNAT statement) will be suspended and the invoked subprogram will be executed.
The execution of the subprogram continues until either its END statement is reached or processing
of the subprogram is stopped by an ESCAPE ROUTINE statement being executed. In either case,
processing of the invoking object will then continue with the statement following the CALLNAT
statement.

) Notes:

1. A subprogram can in turn invoke other subprograms.

2. A subprogram has no access to the global data area used by the invoking object. If a subprogram
in turn invokes a subroutine or helproutine, it can establish its own global data area to be shared
with the subroutine/helproutine.

102 Statements



CALLNAT

Syntax Description

Operand Definition Table:

Operand  |Possible Structure Possible Formats Referencing |Dynamic Definition
Permitted

operandI|C |S A yes no

operand2|C |S |A |G A|UN|P|I|F|B|D|T|L|C|G|O yes yes

Syntax Element Description:

Syntax
Element

Description

operandl

Subprogram to be Invoked:

As operandl, you specify the name of the subprogram to be invoked. The name may be specified
either as a constant of 1 to 8 characters, or - if different subprograms are to be called dependent
on program logic - as an alphanumeric variable of length 1 to 8.

The subprogram name may contain an ampersand (&); at execution time, this character will be
replaced by the one-character code corresponding to the current value of the system variable
*LANGUAGE. This makes it possible, for example, to invoke different subprograms for the
processing of input, depending on the language in which input is provided.

operand?

Parameters:

If parameters are passed to the subprogram, the structure of the parameter list must be defined
inaDEFINE DATA PARAMETER statement. The parameters specified with the CALLNAT statement
are the only data available to the subprogram from the invoking object.

By default, the parameters are passed by reference, that is, the data are transferred via address
parameters, the parameter values themselves are not moved. However, it is also possible to
pass parameters by value, that is, pass the actual parameter values. To do so, you define these
fieldsinthe DEFINE DATA PARAMETER statement of the subprogram with the option BY VALUE
or BY VALUE RESULT (see parameter-data-definitionin the description of the DEFINE
DATA statement).

= If parameters are passed by reference, the following applies: The sequence, format and length
of the parameters in the invoking object must match exactly the sequence, format and length
of the DEFINE DATA PARAMETER structure in the invoked subprogram. The names of the
variables in the invoking object and the invoked subprogram may be different.

If parameters are passed by value, the following applies: The sequence of the parameters in
the invoking object must match exactly the sequence in the DEFINE DATA PARAMETER
structure of the invoked subprogram. Formats and lengths of the variables in the invoking
object and the subprogram may be different; however, they have to be data transfer compatible;

see the corresponding table in the section Rules for Arithmetic Assignments, Data Transfer in

Statements

103



CALLNAT

Syntax
Element

Description

the Programming Guide. The names of the variables in the invoking object and the subprogram
may be different. If parameter values that have been modified in the subprogram are to be
passed back to the invoking object, you have to define these fields with BY VALUE RESULT.
When BY VALUE is specified without RESULT, it is not possible to pass modified parameter
values back to the invoking object (regardless of the AD specification; see also below).

Note: With BY VALUE, an internal copy of the parameter values is created. The subprogram
accesses this copy and can modify it, but this will not affect the original parameter values in
the invoking object. With BY VALUE RESULT, an internal copy is likewise created, however,
after termination of the subprogram, the original parameter values are overwritten by the
(modified) values of the copy.

For both ways of passing parameters, the following applies:

If a group is specified as operand?Z, the individual fields contained in that group are passed to
the subprogram; that is, for each of these fields a corresponding field must be defined in the
subprogram's parameter data area.

In the parameter data area of the invoked subprogram, a redefinition of groups is only permitted
within a REDEFINE block.

If an array is passed, its number of dimensions and occurrences in the subprogram's parameter
data area must be the same as in the CALLNAT parameter list.

Note: If multiple occurrences of an array that is defined as part of an indexed group are passed

with the CALLNAT statement, the corresponding fields in the subprogram's parameter data area
must not be redefined, as this would lead to the wrong addresses being passed.

When the option PCHECK of the COMPOPT command is set to ON, the compiler will check the
number, format, length and array index bounds of the parameters that are specified ina CALLNAT
statement. Also, the OPTIONAL feature of the DEFINE DATA PARAMETER statement is considered
in the parameter check.

Attribute Definition:

If operand?is a variable, you can mark it in one of the following ways:

AD=0 Non-modifiable, see session parameter AD=0.

Note: Internally, AD=0 is processed in the same

way as BY VALUE (see
parameter-data-definitionin the
description of the DEFINE DATA statement).

AD=M Modifiable, see session parameter AD=M.

This is the default setting.

AD=A Input only, see session parameter AD=A.

If operandZis a constant, AD cannot be explicitly specified. For constants AD=0 always applies.

104

Statements



CALLNAT

Syntax Description
Element
nXx Parameters to be Skipped:

With the notation nX you can specify that the next n parameters are to be skipped (for example,
1X to skip the next parameter, or 3X to skip the next three parameters); this means that for the
next 1 parameters no values are passed to the subprogram. The possible range of values for 1

is1l - 4096.

A parameter that is to be skipped must be defined with the keyword OPTIONAL in the
subprogram's DEFINE DATA PARAMETER statement. 0PTIONAL means that a value can - but
need not - be passed from the invoking object to such a parameter.

Parameter Transfer with Dynamic Variables

Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).

A call by reference is possible because the value space of a dynamic variable is contiguous. A call
by value causes an assignment with the variable definition of the caller as the source operand and
the parameter definition as the destination operand. In addition, a call by value result causes the
movement to change to the opposite direction. When using a call-by-reference, both definitions

must be DYNAMIC. If only one of them is DYNAMIC, a runtime error is raised. In case of a call by value
(result) all combinations are possible.

The following table illustrates the valid combinations of statically and dynamically defined variables
of the caller, and statically and dynamically defined parameters concerning the parameter transfer.

Call By Reference

operand? of caller|Parameter definition
Static Dynamic

Static yes no

Dynamic no yes

The formats of the dynamic variables A or B must match.

Statements

105



CALLNAT

Call by Value (Result)

operand? of caller|Parameter definition
Static Dynamic

Static yes yes

Dynamic yes yes

| Note: When using static/dynamic or dynamic/static definitions, a value truncation may

occur according to the data transfer rules of the appropriate assignments.

Examples

= Example 1
= Example 2

Example 1
Calling Program:

** Example "CNTEX1': CALLNAT

R R b b e b b e b b e b b e b S b e e I e e b e b e e e B e e B e e b e b e b e e b e i e b e b e B i b e b e e b i 4
DEFINE DATA LOCAL

1 #FIELDI (N6)

1 #/FTELD2 (A20)

1 #fFIELD3 (A10)

END-DEFINE

*

CALLNAT 'CNTEXIN' #FIELD1 (AD=M) #FIELD2 (AD=0) #FIELD3 'P4 TEXT'

*

WRITE '=' #FIELD1 '=" #FIELD2 '=' #FIELD3

*

END o

Called Subprogram CNTEXIN:

** Example 'CNTEXIN': CALLNAT (called by CNTEX1)

R R R R B b B R R b b i b S B e i b b b b S b b e e e b b b e b b b i e i b b e e b b b e i S b b b e b b
DEFINE DATA PARAMETER

1 #FIELDA (N6)

1 #FIELDB (A20)

1 #FIELDC (A10)

1 #FIELDD (A7)

END-DEFINE

*
*

106

Statements



CALLNAT

JIFIELDA := 4711

*

#FIELDB := 'HALLO'

*

##FIELDC := 'ABC'

*

WRITE '=' #FIELDA '=' #FIELDB '=' #FIELDC '=' #FIELDD
*

END o
Example 2

Calling Program:

** Example 'CNTEX2': CALLNAT
Khkhkkhhkkhhkhhkkhhkkhhkkhhkhhkhhhhkhhhhkhhhhkhhhhhhhhkhhkhhkhhkhhkhhkhhkhrkhhkhrkhhkhrkhhkhrkhrkhrkhkrkhrk
DEFINE DATA LOCAL

1 #ARRAYL (N4/1:10,1:10)

1 #NUM (N2)

END-DEFINE

*
*
CALLNAT '"CNTEX2N' #fARRAY1 (2:5,%*)
*
FOR #NUM 1 TO 10

WRITE #NUM #FARRAYI(#NUM,1:10)
END-FOR

*

END

Called Subprogram CNTEX2N:

** Example 'CNTEX2N': CALLNAT (called by CNTEX2)

R R R o R R b b R b e b e S b R R i b b e i b e i b R e i b R i i b b e b R R e i b b e b i 4
DEFINE DATA

PARAMETER

1 #FARRAY (N4/1:4,1:10)

LOCAL

11 (I2)

END-DEFINE

*

*

FOR I 1 10
F#ARRAY (1,1) :=1
#FARRAY (2,1) := 100 + I
#FARRAY (3,1) := 200 + I
FFARRAY (4,1) := 300 + I
END-FOR

*

END o

Statements

107



108



17 CLOSE CONVERSATION

L V101 1o PP P PP PO PPPPRPPPPPPR 110
B SYNEAX DESCIIPHON ...ttt et 110
= Further Information and EXamPpIES .........oooiiiiiiie s 11

109



CLOSE CONVERSATION

CLOSE CONVERSATION ‘ *CONVID

{operandl} ... ]

ALL

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DEFINE DATA CONTEXT | OPEN CONVERSATION

Belongs to Function Group: Natural Remote Procedure Call

Function

The statement CLOSE CONVERSATION is used in conjunction with the Natural Remote Procedure
Call (RPC). It allows the client to close conversations. You can close the current conversation, an-
other open conversation, or all open conversations.

| Note: A logon to another library does not automatically close conversations.

Syntax Description

Operand Definition Table:

Operand | Possible Structure Possible Formats Referencing Permitted Dynamic Definition

operandl

‘S ‘A ’ I yes no

Syntax Element Description:

Syntax Element

Description

operandl

Identifier of Conversation to be Closed:
To close a specific open conversation, specify its ID as operand]I.

operandl must be a variable of format/length 14.

*CONVID

Closing the Current Conversation:
To close the current conversation, specify *CONVID.

The ID of the current conversation is determined by the value of the system variable *CONVID.

ALL

Closing All Open Conversations:

To close all open conversations, specify ALL.

110

Statements



CLOSE CONVERSATION

Further Information and Examples

See the following sections in the Natural Remote Procedure Call (RPC) documentation:

® Natural RPC Operation in Conversational Mode
® Using a Conversational RPC

Statements 111



12



18 CLOSE DIALOG

L V101 1o PP P PP PO PPPPRPPPPPPR 114
B SYNEAX DESCIIPHON ...ttt et 114
= Further Information and EXamPpIES .........oooiiiiiiie s 115

13



CLOSE DIALOG

operandl
CLOSE DIALOG[USING][DIALOG-ID] { }

*DIALOG-ID

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: OPEN DIALOG | PROCESS GUI | SEND EVENT

Belongs to Function Group: Event-Driven Programming

Function

The CLOSE DIALOG statement is used to close a dialog dynamically.

] Note: If a modal dialog is a child in a hierarchy of dialogs, the modal dialog should not
close its parent(s) because this will result in a deadlock.

Syntax Description

Operand Definition Table:

Operand | Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

operandl] S | | | [|[]a]]]]]]]] yes no

Syntax Element Description:

Syntax Element|Description

operandl Identifier:of ID to be Closed:

operandl is the identifier of the dialog to be closed.
*DIALOG-ID |Closing the Current Dialog;:

To close the current dialog, specify the system variable *DIALOG- I D, which contains the ID
of the current instance of a dialog.

114 Statements




CLOSE DIALOG

Further Information and Examples

See the section Event-Driven Programming Techniques in the Programming Guide.

Statements 115



116



I11

B 19 CLOSE PRINTER ... 119
B 20 CLOSE WORK FILE ...t 123
B 2T COMPRESS ... 127
B 22 COMPUTE . 137
B 23 CREATE OBUECT ... 145
B 24 DECIDE FOR .o 149
B 25 DECIDE ON ..o 155
B 26 DEFINE CLASS ..o 161

"7



118



19 CLOSE PRINTER

L V101 1o PP P PP PO PPPPRPPPPPPR 120
B SYNEAX DESCIIPHON ...ttt et 120
LI 1o [ PSPPSR 121

19



CLOSE PRINTER

logical-printer-name
CLOSE PRINTER { (109 P ) }

(printer-number)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE IDEFINE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRATILER

Belongs to Function Group: Creation of Output Reports

Function

The CLOSE PRINTER statement is used to close a specific printer. With this statement, you explicitly
specify in a program that a printer is to be closed.

A printer is also closed automatically in one of the following cases:

® when a DEFINE PRINTER statement in which the same printer is defined again is executed;

® when command mode is reached.

Syntax Description

Syntax Element Description

Togical-printer-name|Logical Printer Name:

With the /ogical-printer-name you specify which printer is to be closed.
The name is the same as in the corresponding DEFINE PRINTER statement in
which you defined the printer.

Naming conventions for the Togical-printer-name are the same as for
user-defined variables, see Naming Conventions for User-Defined Variables in Using
Natural Studio.

printer-number Printer Number:

Alternatively to the Togical-printer-name, you may define the
printer-number to specify which printer is to be closed.

The printer-number may be a number in the range from 0 - 31. This is the
number also to be used ina DISPLAY /WRITE or DEFINE PRINTER statement.

Printer number 0 indicates the hardcopy printer.

120 Statements



CLOSE PRINTER

Example

** Example 'CLPEX1': CLOSE PRINTER
R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b
DEFINE DATA LOCAL
1 EMP-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 BIRTH
*
1 #1-NAME (A20)
END-DEFINE

*

DEFINE PRINTER (PRTO1=1)

*

REPEAT
INPUT "SELECT PERSON' #I-NAME
IF #I-NAME = " '
STOP
END-IF
FIND EMP-VIEW WITH NAME = 4I-NAME
WRITE (PRTO1) "NAME :' NAME "," FIRST-NAME
/ "PERSONNEL-ID :' PERSONNEL-ID
/ "BIRTH :' BIRTH (EM=YYYY-MM-DD)
END-FIND
/*
CLOSE PRINTER (PRTO1)
/*
END-REPEAT
END ©

Statements 121



122



20 CLOSE WORK FILE

L V101 1o PP P PP PO PPPPRPPPPPPR 124
B SYNEAX DESCIIPHON ...ttt et 124
LI 1o [ PSPPSR 124

123



CLOSE WORK FILE

CLOSE WORKI[FILE] work-file-number

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DEFINE WORK FILE | READ WORK FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

The statement CLOSE WORK FILE is used to close a specific work file. It allows you to explicitly
specify in a program that a work file is to be closed.

A work file is closed automatically:

® When command mode is reached.
® When an end-of-file condition occurs during the execution of a READ WORK FILE statement.

" Before a DEFINE WORK FILE statement is executed which assigns another file to the work file
number concerned.

Syntax Description

Syntax Element Description

work-file-number |The number of the work file (as defined to Natural) to be closed.

Example

** Example '"CWFEX1': CLOSE WORK FILE
Sk ok ok o o ok ok ok ok ok ko o o o ok o ok ok ok ok ok ko ko ok o o o ok ok ok ok ok ok ko ko ok o o o ok ok ok ok ok ok ko ok ok ok ok ok o ok ok ok
DEFINE DATA LOCAL
1 W-DAT (A20)
1 REC-NUM (N3)
11 (P3)
END-DEFINE
*
REPEAT
READ WORK FILE 1 ONCE W-DAT /* READ MASTER RECORD
/*
AT END OF FILE
ESCAPE BOTTOM

124 Statements



CLOSE WORK FILE

END-ENDFILE
INPUT 'PROCESSING FILE' W-DAT (AD=0)
/ "ENTER RECORDNUMBER TO DISPLAY' REC-NUM
IF REC-NUM = 0
STOP
END-IF
FOR' I =1 TO REC-NUM
/%
READ WORK FILE 1 ONCE W-DAT
/%
AT END OF FILE
WRITE 'RECORD-NUMBER TOO HIGH, LAST RECORD IS'
ESCAPE BOTTOM
END-ENDFILE
END-FOR
I =1 -1
WRITE '"RECORD" I ":' W-DAT
/*
CLOSE WORK FILE 1
/*
END-REPEAT
END ©

Statements 125



126



21 COMPRESS

L V101 1o PP P PP PO PPPPRPPPPPPR 128
B SYNEAX DESCIIPHON ...ttt et 128
L o (0o o OO PP UUR O PUPPPPPPRR 132
L e 11T P URT R SUPPPRPRR 132

127



COMPRESS

COMPRESS [NUMERIC] [FULL]

{ operandl [(parameter)]
SUBSTRING (operandl,operand3,operand4) [(parameter)]

operand2
INTO { SUBSTRING

LEAVING NO [SPACE]

[ LEAVING [SPACE]
WITH[ALL] [DELIMITERS] [operand7]

(operandZ2,operandb,operandé6)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ASSIGN | COMPUTE | EXAMINE | MOVE | MOVE ALL | SEPARATE

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The COMPRESS statement is used to transfer (combine) the contents of one or more operands into

a single field.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic
Permitted |Definition
operandl |C |S |A |G |[N |[A|UIN|PI|FB |D|T| | |G|O yes no
operand?2 S A|U B yes yes
operand3 |C |S N|P|I| (B yes no
operand4 |C |S N|P|I| [B yes no
operand5 |C |S N|P|I| |B yes no
operand6 |C |S N|P|I| [B yes no
operand7 |C |S A|U B yes no

" Format B of operand3, operand4, operands and operandé may be used only with a length of less

than or equal to 4.

128

Statements



COMPRESS

Syntax Element Description:

Syntax Description
Element
NUMERIC Handling of Sign Characters:
This option determines how sign characters and decimal characters are to be handled:
Without NUMERIC, decimal points and signs in numeric source values are suppressed before
the values are transferred. For example:
COMPRESS -123 1.23 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: 123*123
With NUMERIC, decimal points and signs in numeric source values are also transferred to the
target field.
For floating point source values, decimal points and signs are transferred, regardless of
whether NUMERIC has been specified or not.
Example 1:
COMPRESS NUMERIC -123 1.23 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: -123%1.23
Example 2:
COMPRESS NUMERIC 'ABC' -0056.00 -0056.10 -0056.01 INTO #TARGET WITH <
DELIMITER '*'
Content of #TARGET is: ABC*-56*-56.1*-56.01
Example 3:
COMPRESS NUMERIC FULL "ABC' -0056.00 -0056.10 -0056.01 INTO #fTARGET WITH <
DELIMITER '*'
Content of #TARGET is: ABC*-0056.00*%-0056.10*-0056.01
FULL Handling of Source Field Values:
Without FULL, the following are removed from the source fields before the values are
transferred:
B Jeading zeros before the decimal point for fields of format N, P or I
B trailing zeros after the decimal point for fields of format N or P
® trailing blanks for fields of format A
® and leading binary zeros for fields of format B
For a numeric source field containing all zeros, one zero will be transferred. For example:
Statements 129



COMPRESS

Syntax Description

Element
COMPRESS "ABC ' 001 INTO #TARGET WITH DELIMITER '*'

Content of #TARGET is: ABC*1
With FULL, the values of the source fields in their actual lengths will be transferred to the
target field. In other words:
B Jeading zeros before the decimal point for fields of format N, P or I
B trailing zeros after the decimal point for fields of format N or P
B and trailing blanks for fields of format A
B Jeading binary zeros for fields of format B
are displayed as entered. For example:
COMPRESS FULL 'ABC ' 001 INTO #TARGET WITH DELIMITER '*'
Content of #TARGET is: ABC *001
operandl |Source Fields:
As operandl, you specify the fields whose contents are to be transferred.
Note: If operand] is not of format A or B, its content is converted into alphanumeric
representation before it is transferred. If necessary, the alphanumeric representation is
truncated.
If operandl is a time variable (format T), only the time component of the variable content
is transferred, but not the date component.
operand? |Target Field:
As operandZ, you specify the field which is to receive the values of the source fields.
If the target field is of format U (Unicode) and if a source field of format B is involved, the
length of the sending binary field must be even.

LEAVING Values in Target Field Separated by a Blank:

SPACE If you use the COMPRESS statement without any further options, or if you specify LEAVING
SPACE (which also applies by default), the values in the target field will be separated from
one another by a blank.

LEAVING NO |Values in Target Field Not Separated:

SPACE If you specify LEAVING NO SPACE, the values in the target field will not be separated from
one another by a blank or any other character.

parameter |Print Mode/Date Format Parameters:

As parameter, you can specify the session parameter PM or the session parameter DF:

PM=I In order to support languages whose writing
direction is from right to left, you can specify
PM=I so as to transfer the value of operandl in
inverse (right-to-left) direction to operandZ. For

130

Statements



COMPRESS

Syntax Description

Element
example, as a result of the following statements,
the content of #B would be ZYXABC:
MOVE 'XYZ' TO #A
COMPRESS #fA (PM=I) 'ABC' INTO #B <
LEAVING NO SPACE
Any trailing blanks in operandI will be removed
(except if FULL is specified), then the value is
reversed character by character and transferred
to operand?.

DF If operand1 is a date variable, you can specify
the session parameter DF as parameter for this
variable.

SUBSTRING |SUBSTRING Option:

(operandl, |If operand] is of alphanumeric (A), Unicode (U) or binary (B) format, you can use the

operand3, |SUBSTRING option to transfer only a certain part of a source field. After the field name

operand4) |(operandl)youspecify first the starting position (operand3) and then the length (operand4)
of the field portion to be transferred.

INTO INTO Clause:

SUBSTRING

(operandz, |Also, you can use the SUBSTRING option in the INTO clause to transfer source values into a

operands, |certain part of the target field.

operand6) .
In both cases, the use of the SUBSTRING option in a COMPRESS statement corresponds to that
in a MOVE statement. See the MOVE statement for details on the SUBSTRING option.

WITH Input Delimiter Character:

DELIMITERS

If you wish the values in the target field to be separated from one another by a specific

character, you use the DELIMITERS option.

If you specify WITH DELIMITERS without operand/, the values will be separated by the

input delimiter character as defined with the session parameter 1D.

WITH Specific Delimiter Character:

DELIMITERS |If you specify WITH DELIMITERS operand’, the values will be separated by the character

operand/ |specified with operand/. operand/ must be a single character. If operand/ is a variable, it
must be of format/length (A1) or (B1).

If the target field is of format A or B, the format/length of the delimiter has to be (A1), (B1)

or (U1).

If the target field is of format U (Unicode), the format/length of the delimiter has to be (A1),

(B2) or (U1).

WITH ALL |Handling of Delimiters:

Without ALL, a delimiter is placed in the target field only between values actually transferred.
For example:

Statements

131



COMPRESS

Syntax Description
Element

COMPRESS 'A" ' " 'C' ' ' INTO #TARGET WITH DELIMITERS '*'
Content of ##TARGET is: A*C

With ALL, a delimiter is also placed in the target field for each blank value that is not actually
transferred. This means that the number of delimiters in the target field corresponds to the

number of source fields minus 1. This may be useful, for example, if the content of the target
field is to be separated again with a subsequent SEPARATE statement. For example:

COMPRESS '"A' " ' 'C' ' ' INTO #TARGET WITH ALL DELIMITERS '*'
Content of #TARGET is: A**(C*

Processing

A destination field of format B is handled like a destination field of format A.

The COMPRESS operation terminates when either all operands have been processed or the target
field (operand?) is filled.

If the target field contains more positions than all operands combined, all remaining positions of
operandZ will be filled with blanks. If the target field is shorter, the value will be truncated.

If operandZis a dynamic variable, the COMPRESS operation terminates when all source operands
have been processed. No truncation will be performed. The length of operand? after the COMPRESS
operation will correspond to the combined length of the source operands. The current length of
a dynamic variable can be ascertained by using the system variable *LENGTH.

Examples

This section covers the following topics:

= Example 1 - Compress
= Example 2 - Compress Leaving No Space

132 Statements



COMPRESS

= Example 3 - Compress with Delimiter

Example 1 - Compress

** Example 'CMPEX1': COMPRESS
R R R R R b b R b e b e I b R R i b e b e i b i R e i R b b S b R R e i b b e S b b
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 FIRST-NAME
2 MIDDLE-I
*
1 ##COMPRESSED-NAME (A20)
END-DEFINE
*
LIMIT 4
READ EMPLOY-VIEW BY NAME
COMPRESS FIRST-NAME MIDDLE-I NAME INTO #COMPRESSED-NAME
DISPLAY NOTITLE
FIRST-NAME MIDDLE-T NAME 5X #COMPRESSED-NAME
END-READ

*

END

Output of Program CMPEXI:

FIRST-NAME MIDDLE-I NAME ##FCOMPRESSED-NAME
KEPA ABELLAN KEPA ABELLAN
ROBERT W ACHIESON ROBERT W ACHIESON
SIMONE ADAM SIMONE ADAM
JEFF H ADKINSON JEFF H ADKINSON

Example 2 - Compress Leaving No Space

** Example 'CMPEX2': COMPRESS (with LEAVING NO SPACE)
ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ke ok ok ok
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 CURR-CODE (1)
2 SALARY (1)
*
1 #fCCSALARY (A20)
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME

Statements

133



COMPRESS

COMPRESS CURR-CODE (1) SALARY (1) INTO #CCSALARY
LEAVING NO SPACE
DISPLAY NOTITLE
NAME CURR-CODE (1) SALARY (1) 5X #CCSALARY
END-READ

*

END

Output of Program CMPEX2:

NAME CURRENCY  ANNUAL fFCCSALARY
CODE SALARY
ABELLAN PTA 1450000 PTA1450000
ACHIESON UKL 11300 UKL11300
ADAM FRA 159980 FRA159980
ADKINSON Usb 34500 USD34500 ©

Example 3 - Compress with Delimiter

** Example 'CMPEX3': COMPRESS (with delimiter)
R R R e b e b e b e b e b e b R e e e e b e e e I B e e I e e b e e b e e b e e b e b e b i b e b e e b o 4
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME

2 CURR-CODE (1)

2 SALARY (1)
*
1 #fCCSALARY  (A20)
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME

COMPRESS CURR-CODE (1) SALARY (1) INTO #CCSALARY

WITH DELIMITER '*°

DISPLAY NOTITLE NAME CURR-CODE (1) SALARY (1) 5X #CCSALARY

END-READ

*

END

134

Statements



COMPRESS

Output of Program CMPEX3:

NAME CURRENCY
CODE
ABELLAN PTA
ACHIESON UKL
ADAM FRA
ADKINSON usb

ANNUAL
SALARY

1450000
11300
159980
34500

fFCCSALARY

PTA*1450000
UKL*11300
FRA*159980

USD*34500 ©

Statements

135



136



22 COMPUTE

L 3 Tod (1o O 138
B SYNEAX DESCIIPHON ...ttt et 140
B ResUlt Precision 0f @ DIVISION ..........oiiiiiiie et 142
L e 11T P URT R SUPPPRPRR 143

137



COMPUTE

Structured Mode Syntax

arithmetic-expression
operand2

SUBSTRING
(operand2,operand3,operand4)

{COMPUTE}

ASSTGN {operandl

[ROUNDED] ‘
=} ...

arithmetic-expression
{operandl operand?
=}.. SUBSTRING
(operand2,operand3,operand4)
Reporting Mode Syntax
arithmetic-expression
COMPUTE o operand?2
[ { ASSTGN } [ROUNDED] ] {operandl[:]=} .. SUBSTRING
(operandZ,operand3,operand4)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ADD | COMPRESS | DIVIDE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The COMPUTE statement is used to perform an arithmetic or assignment operation.

A COMPUTE statement with multiple target operands (operandl) is identical to the corresponding
individual COMPUTE statements if the source operand (operand?) is not an arithmetic expression.

##TARGETL := #fTARGET2 := #SOURCE

is identical to

#FTARGETL := #SOURCE
#TARGET2 := #SOURCE

Example:

138 Statements



COMPUTE

DEFINE DATA LOCAL

1 JFARRAY(I4/1:3) INIT <3,0,9>
1 #INDEX(I4)

1 #RESULT(I4)

END-DEFINE

*

FINDEX := 1

*

FINDEX := /* #INDEX is 3
#RESULT := /* #RESULT is 9
HHARRAY (#FINDEX)

*

JFINDEX := 2

*

#FINDEX := /* f#FINDEX is O

JFARRAY (3) := /* returns run time error NAT1316
JFARRAY (FINDEX)

END e

If the source operand is an arithmetic expression, the expression is evaluated and its result is stored
in a temporary variable. Then the temporary variable is assigned to the target operands.

#TARGET1 := #TARGET2 := #SOURCE1 + 1
is identical to

#FTEMP := #fSOURCE1 + 1

#TARGET1 := #TEMP

#TARGET2 := #TEMP <

Example:

DEFINE DATA LOCAL

1 #ARRAY (I4/1:3) INIT <2, 0, 9
1 ffINDEX(I4)

1 fRESULT(I4)

END-DEFINE

S

FFINDEX := 1

*

FINDEX := /* FINDEX is 3
#RESULT := /* {RESULT s 3
#ARRAY (INDEX) + 1

*

J#FINDEX := 2

*

#FINDEX := /* J/INDEX is 0
FARRAY (3) := /* returns run time error NAT1316
#FARRAY (##INDEX)

END

For further information, see Rules for Arithmetic Assignment in the Programming Guide and particu-
larly the following sections:

Statements 139



COMPUTE

= Arithmetic Operations with Arrays

® Data Transfer (for information on data transfer compatibility and the rules for data transfer)

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl S|A| M| |A|UIN|P|I|FB |D|T|L|C|G|O yes yes
operandZ |C|S |A| |N|E |A|UN|PI|FIB |D|T|L|C|G|O yes no
operand3 |C|S NP |I| |B* yes no
operand4 |C |S N|P|I| |B* yes no

*If operand3or operand4 is a binary variable, it may be used only with a length of less than or
equal to 4.

Syntax Element Description:

Syntax Element Description

COMPUTE | ASSIGN [:]= Usage of Keywords:

This statement may be issued in short form by omitting the statement
keyword COMPUTE (or ASSIGN).

In structured mode, when the statement keyword COMPUTE (or ASSIGN)
is omitted, the equal sign (=) must be preceded by a colon (:).

However, when the ROUNDED option is used, the statement keyword
COMPUTE (or ASSIGN) must be specified.

ROUNDED ROUNDED Option:

If you specify the keyword ROUNDED, the value will be rounded before
it is assigned to operand1l.

For information on rounding, see Rules for Arithmetic Assignments, Field
Truncation and Field Rounding in the Programming Guide.

operandl Result Field:
operandl will contain the result of the arithmetic/assignment operation.

For the precision of the result, see Precision of Results of Arithmetic
Operations in the Programming Guide.

If operandlis a database field, the field in the database is not updated.

140 Statements



COMPUTE

Syntax Element

Description

If operandl is a dynamic variable, it is filled with exactly the data and
length of operandZ or the length of the result of the arithmetic-operation,
including trailing blanks. The current length of a dynamic variable can
be obtained by using the system variable *LENGTH.

For general information on dynamic variables, see Using Dynamic and
Large Variables.

arithmetic-expression

Arithmetic Expression:

An arithmetic expression consists of one or more constants, database
fields, and user-defined variables.

Natural mathematical functions (described in the System Functions
documentation) may also be used as arithmetic operands.

Operands used in an arithmetic expression must be defined with format
N,BLED,orT

As for the formats of the operands, see also Performance Considerations
for Mixed Formats in the Programming Guide.

The following connecting operators may be used:

Operator: Symbol:
Parentheses ()
Exponentiation *x
Multiplication *
Division

Addition +
Subtraction -

Each operator should be preceded and followed by at least one blank
so as to avoid any conflict with a variable name that contains any of the
above characters.

The processing order of arithmetic operations is:

1. Parentheses

2. Exponentiation

3. Multiplication/division (left to right as detected)
4. Addition/subtraction (left to right as detected)

operand?

Source Field:

operandZis the source field. If operandl is of format C, operandZ may
also be specified as an attribute constant.

See User-Defined Constants in the Programming Guide.

Statements

141



COMPUTE

Syntax Element

Description

SUBSTRING
(operandZ,operand3,operand4)

SUBSTRING Option:
Without the substring option, the whole content of operandZis moved.

If operandl and operandZ are of alphanumeric, Unicode or binary
format, you may use the SUBSTRING option to assign a certain part of
operandZto operandl.

After the field name (operand?) in the SUBSTRING clause, you specify
the starting position (operand3) and then the length (operand4) of the
field portion to be moved.

For example, to assign the 3rd to 6th position of field #8 to field #A, you
would specify:

ffA := SUBSTRING(#B,3,4)

If you omit operand3, the starting position is assumed to be 1. If you
omit operand4, thelength is assumed to range from the starting position
to the end of the field.

Note: ASSIGN with the SUBSTRING option is a byte-by-byte assignment

(that is, the rules described under Rules for Arithmetic Assignment in the
Programming Guide do not apply).

See also MOVE SUBSTRING.

Result Precision of a Division

The precision (number of decimal positions) of the result of a division in a COMPUTE statement is
determined by the precision of either the first operand (dividend) or the first result field, whichever

is greater.

For a division of integer operands, however, the following applies: For a division of two integer
constants, the precision of the result is determined by the precision of the first result field; however,
if at least one of the two integer operands is a variable, the result is also of integer format (that is,
without decimal positions, regardless of the precision of the result field).

142

Statements



COMPUTE

Examples

= Example 1 - ASSIGN Statement
= Example 2 - COMPUTE Statement

Example 1 - ASSIGN Statement

** Example "ASGEX1S': ASSIGN (structured mode)

R R R B b R R e I b b R e e b b e e b b S e b b e e i b b e e b b S e b b R e I b b b b S e b R e b b b e b b b e 4

DEFINE DATA LOCAL

1

| b b e

1

17
1B
#C
1D
f+HE
1FF
#G
1FH

(N3)
(AG)
(NO.3)
(NO.5)
(N1.3)
(N5)
(A25)
(A3/1:3)

END-DEFINE

*

ASSIGN ftA
ASSIGN #B
ASSIGN #C

5
"ABC'
.45

ASSIGN #D = #f/E = -0.12345
ASSIGN ROUNDED #F = 199.999

#G := "HELLO"'
#H (1) := "UVW'
fiH (3) = 'XYZ'

*

END

Output of Program ASGEX1S:

A
1#B:
f#tC:
#D:
ftE
JFF:
G
1 :

5

ABC
.450

-.12345
-0.123

200
HELLO
UVIW XYZ

WRITE NOTITLE '=" A
WRITE '=' #B

WRITE '=' #C

WRITE '=' #D / '=' {tE
WRITE '=' #F

WRITE '=' #G

WRITE '=' #H (1:3)

Equivalent reporting-mode example: ASGEXIR.

PR}

Statements

143



COMPUTE

Example 2 - COMPUTE Statement

** Example 'CPTEX1': COMPUTE

R R B b R R e I b b e S b b e e b b S b b e e b b e e b b S e b b R e I b b e e b b S e b b e b b b e e b b b S S

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 SALARY (1:2)

*

1 #A (P4)

1 4B (N3.4)
1 #C (N3.4)
1 #CUM-SALARY (P10)
1 #I (P2)
END-DEFINE

*

COMPUTE #A =3 * 2 + 4 / 2 - 1

WRITE NOTITLE 'COMPUTE #A =3 * 2 + 4 / 2 - 1' 10X '=
*
COMPUTE ROUNDED #B = 3 -4 / 2 * .89
WRITE 'COMPUTE ROUNDED #B = 3 -4 / 2 * .89' 5X '=' 4B
*
COMPUTE #C = SQRT (#B)
WRITE 'COMPUTE #C = SQRT (#B)' 18X '=' #C
*
LIMIT 1
READ EMPLOY-VIEW BY PERSONNEL-ID STARTING FROM '20017000°
WRITE / 'CURRENT SALARY: ' 4X SALARY (1)
/ '"PREVIOUS SALARY:' 4X SALARY (2)
FOR #1 =1 T0 2
COMPUTE {ffCUM-SALARY = #CUM-SALARY + SALARY (#I)
END-FOR
WRITE 'CUMULATIVE SALARY:' {CUM-SALARY
END-READ
*
END
Output of Program CPTEX1:
COMPUTE #fA = 3 * 2 + 4 / 2 - 1 7HA 7
COMPUTE ROUNDED #B =3 -4 / 2 * .89 #B: 1.2200
COMPUTE #C = SQRT (#B) f#C: 1.1045
CURRENT SALARY: 34000
PREVIOUS SALARY: 32300
CUMULATIVE SALARY: 66300 =
144 Statements



23 CREATE OBJECT

L V101 1o PP P PP PO PPPPRPPPPPPR 146
B SYNEAX DESCIIPHON ...ttt et 146

145



CREATE OBJECT

CREATE OBJECT operandl OF [CLASS] operandZ?
[ON [NODE] operand3]
[GIVING operand4]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DEFINE CLASS | INTERFACE | METHOD | PROPERTY | SEND METHOD

Belongs to Function Group: Component Based Programming

Function

The CREATE 0BJECT statement is used to create an instance of a class.

When a CREATE 0BJECT statement is executed on Windows platforms, Natural checks if the name
of the class specified in the statement is registered as a DCOM class. If this is the case, it creates
the object using DCOM. If this is not the case, it searches for a class with that name in the current
Natural library or in the steplibs and creates the object locally.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats  |Referencing | Dynamic Definition
Permitted

operandl S O no no

operand? |C |S A yes no

operand3 |C |S A yes no

operand4 S N I yes no

Syntax Element Description:

Syntax Element Description

operandl Object Handle:

operandl mustbe defined as an object handle (HANDLE OF OBJECT). The object handle
is filled when the object is successfully created. When not successfully returned,
operandl contains the value NULL-HANDLE.

OF CLASS Class-Name:
operand?

146 Statements



CREATE OBJECT

Syntax Element

Description

operand? is the name of the class of which the object is to be created. For classes that
are not registered as DCOM classes, it must contain the class name defined in the
DEFINE CLASS statement. For classes that are registered as DCOM classes, it must
contain either the ProgID of the class or the class GUID. For Natural classes that are
registered as DCOM classes, the ProgID corresponds to the class name specified in
the DEFINE CLASS statement.

For further information, see the section Registration with Natural.

CREATE OBJECT #01 OF CLASS "Employee" or
CREATE OBJECT #01 OF CLASS "653BCFE0-84DA-11D0-BEB3-10005A66D231"

ON NODE
operand3

Node:

As operand3 you specify the node where the object is created. This is only possible if
the class is registered as a DCOM class.

If the node clause is specified, an attempt is made to create the object on that node.

If the node clause is not specified or contains a blank value, the object is created on the
node that is specified in the system registry under the key RemoteServerName for
that class. If this registry key is not specified, the object is created in the local Natural
session. For example

CREATE OBJECT #01 OF CLASS "Employee" ON NODE "volcano.iceland.com"

GIVING operand4

GIVING Clause:

If this clause is specified, operand4 contains either the Natural message number if an
error occurred, or zero on success.

If this clause is not specified, Natural run time error processing is triggered if an error
occurs.

Statements

147



148



24 DECIDE FOR

L V101 1o PP P PP PO PPPPRPPPPPPR 150
B SYNEAX DESCIIPHON ...ttt et 150
L =11 OO URP R PUPPPPPRRR 151

149



DECIDE FOR

FIRST
DECIDE FOR { } CONDITION
EVERY

{WHEN Togical-condition statement..}...
[WHEN ANY statement..]

[WHEN ALL statement ..]

WHEN NONE statement ..

END-DECIDE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: DECIDE ON | IF | IF SELECTION [ ON ERROR

Belongs to Function Group: Processing of Logical Conditions

Function

The DECIDE FOR statement is used to decide for one or more actions depending on multiple condi-
tions (cases).

] Note: If no action is to be performed under a certain condition, you must specify the state-
ment IGNORE in the corresponding clause of the DECIDE FOR statement.

Syntax Description

Syntax Element Description

FIRST CONDITION Processing of First Condition Only:
Only the first true condition is to be processed.

See also Example 1.

EVERY CONDITION Processing of Every Condition:

Every true condition is to be processed.

See also Example 2.

WHEN Togical-condition Logical Condition(s) to be Processed:

statement
With this clause, you specify the logical condition(s) to be processed.

See the section Logical Condition Criteria in the Programming Guide.

WHEN ANY statement WHEN ANY Clause:

150 Statements



DECIDE FOR

Syntax Element

Description

With WHEN ANY, you can specify the statement(s) to be executed when
any of the logical conditions are true.

WHEN ALL statement

WHEN ALL Clause:

With WHEN ALL, you can specify the statement (s) to be executed when
all logical conditions are true.

This clause is applicable only if EVERY has been specified.

WHEN NONE statement

WHEN NONE Clause:

With WHEN NONE, you specify the statement(s) to be executed when none
of the logical conditions are true.

END-DECIDE End of DECIDE FOR Statement:
The Natural reserved word END-DECIDE mustbe used toend the DECIDE
FOR statement.

Examples

= Example 1 - DECIDE FOR with FIRST Option
= Example 2 - DECIDE FOR with EVERY Option

Example 1 - DECIDE FOR with FIRST Option

** Example 'DECEX1': DECID
R R R R B b 4
DEFINE DATA LOCAL

1 #FUNCTION (A1)

1 #PARM (A1)
END-DEFINE

*

INPUT #FUNCTION #PARM

*

DECIDE FOR FIRST CONDITION

E FOR (with FIRST option)

ERR R R R R b b R R b b R e b R R e b b R e I b b R e S b b b e e b b Y

WHEN #FUNCTION = 'A' AND #PARM = 'X'

WRITE 'Function A with

parameter X selected.’

WHEN #fFUNCTION = 'B' AND #PARM = 'X'

WRITE 'Function B with

parameter X selected.’

WHEN #FUNCTION = 'C' THRU 'D'
WRITE 'Function C or D selected.’

WHEN NONE
REINPUT 'Please enter

a valid function.'

MARK *#FUNCTION

END-DECIDE

Statements

151



DECIDE FOR

*

END ©

Output of Program DECEXI:

##FUNCTION A #fPARM Y

After pressing ENTER:

PLEASE ENTER A VALID FUNCTION
##FUNCTION A #fPARM Y

Example 2 - DECIDE FOR with EVERY Option

** Example 'DECEX2': DECIDE FOR (with EVERY option)

P R e b i b b b b b i i b o B B b i b i b b b b L b i b o e b i b i i e b b b b b i b i e b e b b b i b i b b b b e b i b b b i
DEFINE DATA LOCAL

1 #FIELD1 (N5.4)

END-DEFINE

*

INPUT #FIELD1
*
DECIDE FOR EVERY CONDITION
WHEN #FIELD1 >= 0
WRITE 'f#FIELD1 is positive or zero.'
WHEN #FIELD1 <= 0
WRITE '#FIELD1 is negative or zero.'
WHEN FRAC(#FIELD1) =0
WRITE '#FIELD]1 has no decimal digits.'
WHEN ANY
WRITE 'Any of the above conditions is true.'
WHEN ALL
WRITE '4fFIELD1 is zero.'
WHEN NONE
IGNORE
END-DECIDE

*

END

152 Statements



DECIDE FOR

Output of Program DECEX2:

##FIELDL 42

After pressing ENTER:

Page 1 05-01-11 14:56:26

#IFIELDL is positive or zero.
#IFIELDL has no decimal digits.
Any of the above conditions is true.

Statements 153



154



25 DECIDE ON

L V101 1o PP P PP PO PPPPRPPPPPPR 156
B SYNEAX DESCIIPHON ...ttt et 156
L =11 OO URP R PUPPPPPRRR 158

155



DECIDE ON

DECIDE ON

FIRST

{ EVERY

{

{ VALUES  {

(4

[: {

[ANY [VALUES]
[ALL [VALUES]

END-DECIDE

} [VALUES] [OF]

operandl
SUBSTRING (operand3,operand5,operand6)

operand2
SUBSTRING (operand4,operand/,operand8)

operand2
SUBSTRING (operand4,operand/,operand8)

operand2
SUBSTRING (operand4,operand/,operand8)

Statement ...]

statement ..]

NONE [VALUES] statement ...

}

}

1.

HI

statement ..}

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: DECIDE FOR | IF | IF SELECTION | ON ERROR

Belongs to Function Group: Processing of Logical Conditions

Function

The DECIDE ON statement is used to specify multiple actions to be performed depending on the

value (or values) contained in a variable.

] Note: If no action is to be performed under a certain condition, you must specify the state-

ment IGNORE in the corresponding clause of the DECIDE ON statement.

Syntax Description

Operand Definition Table:

156

Statements



DECIDE ON

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl S |A N |A|UIN|P|I|F|B |D|T|L| |G|O yes no
operandZ? |C |S |A A|UIN|P|I|F|B |D|T|L| |G|O yes no
operand3 S |A AU B yes no
operand4 |C |S |A AU B yes no
operand5 |C |5 N|P|I| |B* yes no
operand6 |C |5 N|P|I| |B* yes no
operand/ |C |5 N|P|I| |B* yes no
operand8 |C |5 NP|I| |B* yes no

* Format B of operand5, operand6, operand’ and operand8 may be used only with a length of less
than or equal to 4.

Syntax Element Description:

Syntax Element

Description

FIRST/EVERY Processing of Values:
With one of these keywords, you indicate whether only the first or
every value that is found is to be processed.

operandl Selection Field:

As operandl or operandZ you specify the name of the field whose
content is to be checked.

VALUES operand? [[,operand?]
[:operand2]lstatement ...

VALUES Clause:

With this clause, you specify the value (operand?) of the selection
field, as well as the statement (s) which are to be executed if the
field contains that value.

You can specify one value, multiple values, or a range of values
optionally preceded by one or more values.

Multiple values must be separated from one another either by the
input delimiter character (as specified with the session parameter 1D)
or by acomma. A comma must not be used for this purpose, however,
if the comma is defined as decimal character (with the session
parameter DC).

For a range of values, you specify the starting value and ending value
of the range, separated from each other by a colon.

SUBSTRING

(operand3, operand5, operand6)

SUBSTRING Option:

Statements

157



DECIDE ON

Syntax Element

Description

Without the SUBSTRING option, the whole content of a field is checked.
The SUBSTRING option allows you to check only a certain part of an
alphanumeric, Unicode or binary field.

After the field name (0perand3), you specify first the starting position
(operand5) and then the length (operandb6) of the field portion to be
checked.

SUBSTRING
(operand4,operand/,operand8)

SUBSTRING Option:

After the field name (0perand4), you specify first the starting position
(operand/) and then the length (operand$) of the field portion to be
checked.

ANY statement

ANY Clause:

With ANY, you specify the statement (s) which are to be executed
if any of the values in the VALUES clause are found. These statements
are to be executed in addition to the statement specified in the VALUES
clause.

ALL statement

ALL Clause:

With ALL, you specify the statement (s) which are to be executed
if all of the values in the VALUES clause are found. These statements
are to be executed in addition to the statement specified in the VALUES
clause.

The ALL clause applies only if the keyword EVERY is specified.

NONE statement

NONE Clause:

With NONE, you specify the statement (s) which are to be executed
if none of the specified values are found.

END-DECIDE End of DECIDE ON Statement:
The Natural reserved word END-DECIDE must be used to end the
DECIDE ON statement.

Examples

= Example 1 - DECIDE ON with FIRST Option

158

Statements



DECIDE ON

= Example 2 - DECIDE ON with EVERY Option

Example 1 - DECIDE ON with FIRST Option

** Example 'DECEX3': DECIDE ON (with FIRST option)

R R R R R b b R b e b e I b R R i b e b e i b i R e i R b b S b R R e i b b e S b b

*

SET KEY ALL
INPUT "Enter any PF key' /
"and check result' /
*
DECIDE ON FIRST VALUE OF *PF-KEY
VALUE 'PF1°'
WRITE 'PF1 key entered.’
VALUE 'PF2°'
WRITE 'PF2 key entered.’
ANY VALUE
WRITE 'PF1 or PF2 key entered.’
NONE VALUE
WRITE 'Neither PF1 nor PF2 key entered.’
END-DECIDE

*

END

Output of Program DECEX3:

Enter any PF key
and check result

Output after pressing PF1:

Page 1 05-01-11 15:08:50

PF1 key entered.
PF1 or PF2 key entered.

Example 2 - DECIDE ON with EVERY Option

** Example 'DECEX4': DECIDE ON (with EVERY option)

Sk ok ok o o ok ok ok ok ok ko o o o ok o ok ok ok ok ok ko ko ok o ok ok ok ok ok ok ok ok ko ko ok ok o o ok ok ok ok ok ok ok ko ok o ok ok ok ok ok ok
DEFINE DATA LOCAL

1 #fFTIELD (N1)

END-DEFINE

*

INPUT 'Enter any value between 1 and 9:' #FIELD (SG=0FF)
*
DECIDE ON EVERY VALUE OF #FIELD

VALUE 1 : 4

Statements 159



DECIDE ON

WRITE 'Content of #FIELD is 1-4'
VALUE 2 : 5

WRITE 'Content of #FIELD is 2-5'
ANY VALUE

WRITE 'Content of #FIELD is 1-5'
ALL VALUE

WRITE 'Content of #FIELD is 2-4'
NONE VALUE

WRITE 'Content of #FIELD is not 1-5'

END-DECIDE

*

END

Output of Program DECEX4:

ENTER ANY VALUE BETWEEN 1 AND 9: 4

After entering and confirming 4:

Page 1 05-01-11 15:11:45

Content of #FIELD is 1-4
Content of #FIELD is 2-5
Content of #FIELD is 1-5
Content of #FIELD is 2-4

160 Statements



26 DEFINE CLASS

= Function .............

= Syntax Description

161



DEFINE CLASS

DEFINE CLASS class-name

EM
[WITH]I ACTIVATION[POLICY] ES
M
lTocal-data-area
OBJECT USING{ parameter-data-area}
data-definition ..
lTocal-data-area
LOCAL USING{ parameter-data-area}
data-definition
[ID class-GUID]
INTERFACE USING copycode
INTERFACE
[PROPERTY ]...
[METHOD ] ...
END-CLASS

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CREATE OBJECT | INTERFACE | METHOD | PROPERTY | SEND METHOD

Belongs to Function Group: Component Based Programming

Function

The DEFINE CLASS statement is used to specify a class from within a Natural class module. A
Natural class module consists of one DEFINE CLASS statement followed by an END statement.

Syntax Description

Syntax Element | Description

class-name |Class Name:

This is the name that is used by clients to create objects of this class. The name can be up to
amaximum of 32 characters long. The name may contain periods: this can be used to construct
class names such as

company-name.application-name.class-name

162 Statements



DEFINE CLASS

Syntax Element

Description

Each part between the periods (...) must conform to the Naming Conventions for User-Defined
Variables.

If the class is planned to be used by clients written in different programming languages, the
class name should be chosen in a way that it does not conflict with the naming conventions
that apply in these languages.

WITH
ACTIVATION
POLICY

WITH ACTIVATION POLICY Clause:

This clause is used to define explicitly the activation policy which is registered for the
current class.

You can set the following parameters:

EM Sets activation policy "ExternalMultiple".

ES Sets activation policy "ExternalSingle".

IM Sets activation policy "InternalMultiple".

When the class is stowed and registered, the setting in the WITH ACTIVATION POLICY
clause overrides the ACTPOLICY profile parameter, but is in turn overridden by manual
registration using the REGI STER command with an explicit activation policy definition. For
further information, see the section Activation Policies in the Operations documentation.

0BJECT

OBJECT Clause:

This clause is used to define the object data. The syntax of the 0BJECT clause is the same as
for the LOCAL clause of the DEFINE DATA statement.

For further information, see the description of the LOCAL clause of the DEFINE DATA
statement.

LOCAL

LOCAL Clause:

This clause is only used to include globally unique IDs (GUIDs) in the class definition. GUIDs
need only be defined if a class is to be registered with DCOM. GUIDs are mostly defined in
a local data area.

For further information, see the section Globally Unique Identifiers (GUIDs) in the Programming
Guide.

The syntax of the LOCAL clause is the same as for the LOCAL clause of the DEFINE DATA
statement.

For further information, see the description of the LOCAL clause of the DEFINE DATA
statement.

ID

ID Clause:

This clause is used to assign a globally unique ID to the class. The class GUID is the name
of a GUID defined in the data area that is included by the LOCAL clause. The class GUID is
a (named) alphanumeric constant. A GUID must be assigned to a class if it is to be registered
with DCOM.

Statements

163



DEFINE CLASS

Syntax Element | Description
INTERFACE |INTERFACE Clause:
USING
This clause is used to include copycode that contains INTERFACE statements.
copycode Copycode:
The copycode used by the INTERFACE USING clause may contain one or more INTERFACE
statements.
PROPERTY PROPERTY Statement:
The PROPERTY statement is used to assign an object data variable operand as the
implementation to a property, outside an interface definition.
METHOD METHOD Statement:
The METHOD statement is used to assign a subprogram as the implementation to a method,
outside an interface definition.
END-CLASS |End of DEFINE CLASS Statement:
The Natural reserved word END-CLASS must be used to end the DEFINE CLASS statement.
164 Statements




IV DEFINE DATA

General Syntax

DEFINE DATA
[GLOBAL USING global-data-area [WITH bTlock[.block]..]]

USING parameter-data-area

PARAMETER
parameter-data-definition..
local-data-area
USING { }
OBJECT parameter-data-area
data-definition..
local-data-area
USING
LOCAL parameter-data-area

data-definition.
[INDEPENDENT [AIV-data-definition ..]]-.

local-data-area
USING { }
CONTEXT parameter-data-area
context-data-definition...
END-DEFINE

The DEFINE DATA statement offers a number of clauses to declare data definitions for use within
a Natural program, either by referencing predefined data definitions contained in a local data area
(LDA), global data area (GDA) or paramater data area (PDA), or by writing in-line definitions.

The documentation for the DEFINE DATA statement is divided into the following sections:

165




DEFINE DATA

9
9

Syntax Overview

DEFINE DATA - General

Specific Data Definitions:

<9

L L L L L

Defining Local Data

Defining Global Data

Defining Parameter Data

Defining Application-Independent Variables
Defining Context Variables for Natural RPC

Defining NaturalX Objects

Clauses and Options:

3 Variable Definition
Y View Definition
9 Redefinition
1 Array Dimension Definition
Y Initial-Value Definition
9 Initial/Constant Values for an Array
9 EM, HD, PD Parameters for Field/Variable
Examples:
Y Examples of DEFINE DATA Statement Usage
166 Statements



27 Syntax Overview

B GENEIAl SYNTAX ..ttt ettt 168
B BasiC SYNtaX EIBMENTS .......eiiiiii e 168

167



Syntax Overview

This chapter contains a complete summary of the syntax boxes used in the DEFINE DATA statement
descriptions.

It provides information about the way the keywords, clauses, parameters, options and other syntax
elements are to be arranged and combined in the program statement lines.

General Syntax

DEFINE DATA
[GLOBAL USING global-data-area [WITH bTlock[.block]..]]

USING parameter-data-area
PARAMETER
parameter-data-definition..

local-data-area
USING { }
OBJECT parameter-data-area
data-definition..

local-data-area
USING { }

LOCAL parameter-data-area

direct-data-definition..
[INDEPENDENT [AIV-data-definition..]]-.

local-data-area
USING
CONTEXT parameter-data-area
context-data-definition...
END-DEFINE

Basic Syntax Elements

The following topics are covered below:

= data-definition

= parameter-data-definition
= parameter-handle-definition
= variable-definition

= view-definition

= redefinition

= init-definition

= array-definition

= array-init-definition

= emhdpm

168 Statements



Syntax Overview

= AlV-data-definition
= context-data-definition

data-definition

group-name[(array-definition)]
variable-definition

level view-definition
redefinition

handle-definition

For more information, see Defining Local Data or Defining NaturalX Objects.

parameter-data-definition

group-name [(array-definition)]
redefinition

(format-Tlength[/array-definition])
Tevel

A [BY VALUE
variable-name [ U [(array-definition)] ] DYNAMIC [RESULT]]
B [OPTIONAL]

parameter-handle-definition[BY VALUE [RESULT]][OPTIONAL]

For more information, see Defining Parameter Data.

parameter-handle-definition

dialog-element-type }

handle-name  [(array-definition)] HANDLE OF {
OBJECT

For more information, see Parameter Handle Data Definition.

variable-definition

{ <$ca7ar-def7'n7't7'on>}
<array-definition>

<scalar-definition>

Statements 169



Syntax Overview

(format-Tlength)

variable-name [ { C} ] - [{ (I:STTANT} init-definition | [emhdpn]
B
<array-definition>
(format-Tlength/ array-definition) [

variable-name A CONSTANT } array-init-definition | [emhdpm]
U} /array-definition | DYNAMIC {INIT
B

For more information, see Variable Definition.

view-definition

([format-Tlength][/array-definition])
; ddm-field A [emhdpm]
view-name U [/array-definition] DYNAMIC
VIEW [OF] level B
ddm-name
redefinition
For more information, see View Definition.
redefinition
rgroup
REDEFINE field-name { Tevel ‘ rfield(format-length[/array-definition]) ’}
FILLER nX
For more information, see Redefinition.
Statements

170




Syntax Overview

init-definition

{constant>
<{system-variable>

FULL LENGTH <character-s>
LENGTH n <character-s>

For more information, see Initial/Constant Values for Array.

array-definition

{bound[:bound]},...3

For more information, see Array Dimension Definition.

array-init-definition

FULL LENGTH
{ } <character-s,..>
ALL LENGTH n
index[:1ndex] constant
< )] -1 E
Vv G system-variable,...

For more information, see Initial/Constant Values for an Array.

emhdpm

([EM=value] [HD="text '] [PM=value])

For more information, see EM, HD, PM Parameters for Field/Variable.

AlV-data-definition

variable-definition
level redefinition

handle-definition

For more information, see Defining Application-Independent Variables.

Statements 171



Syntax Overview

context-data-definition

variable-definition
level redefinition

handle-definition

For more information, see Defining Context Variables for Natural RPC

172 Statements



28 DEFINE DATA - General

L 3 Tod (1o O 174
B RUIBS o 174
B Programming MOGES .......oooiiiiiei et 174
B EURNET INfOMMALION .ot e et 175

173



DEFINE DATA - General

Function

The DEFINE DATA statement offers a number of clauses to declare data definitions for use within
a Natural program, either by referencing predefined data definitions contained in a local data area
(LDA), global data area (GDA) or paramater data area (PDA), or by writing in-line definitions.

Rules

® When a DEFINE DATA statement is used, it must be the first statement of the program/routine.

" An “empty” DEFINE DATA statement is not allowed; in other words, at least one clause (LOCAL,
GLOBAL, PARAMETER, INDEPENDENT, CONTEXT or 0BJECT) must be specified and at least one field
must be defined.

" You may specify more than one clause; in this case, the clauses must be specified in the order
shown in the syntax diagrams.

® The Natural reserved word END-DEFINE must be used to end the DEFINE DATA statement.

Programming Modes

The DEFINE DATA statement is available in structured mode and in reporting mode. Differences
are marked accordingly in the DEFINE DATA statement description.

Generally, the following applies:

= Structured Mode
= Reporting Mode

Structured Mode

All variables to be used, except application-independent variables (AIVs), must be defined in
the DEFINE DATA statement; they must not be defined elsewhere in the program. If a DEFINE DATA
INDEPENDENT statement is used, AIVs must not be defined elsewhere in the program.

174 Statements



DEFINE DATA - General

Reporting Mode

The DEFINE DATA statement is not mandatory since variables may be defined in the body of the
program. However, ifa DEFINE DATA LOCAL statement is used in reporting mode, variables, except
application-independent variables (AIVs), must not be defined elsewhere in the program; and if
a DEFINE DATA INDEPENDENT statement is used, application-independent variables (AIVs) must
not be defined elsewhere in the program.

Further Information

For further information on the DEFINE DATA statement, see the following sections in the Programming
Guide:

® Use and Structure of DEFINE DATA Statement
® Use of Data Areas

Statements 175



176



29 Defining Local Data

L 3 Tod (1o O 178
I =T (4101 1o TP RURUPRRTNS 178
B SYNEAX DESCIIPHON ...ttt e 178

177



Defining Local Data

General syntax of DEFINE DATA LOCAL:

DEFINE DATA
local-data-area
USING { }
LOCAL parameter-data-area
direct-data-definition..
END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA LOCAL statementis used to define the data elements that are to be used exclusively
by a single Natural module in an application. These elements or fields can be defined in different
ways:

= either within the DEFINE DATA LOCAL statementitself, using the direct-data-definitionsyntax
(see Direct Data Definition)

® or outside the program in a separate LDA (Local Data Area) or PDA (Parameter Data Area), with
the DEFINE DATA LOCAL USING statement referencing that data area.

Restriction

The LDA and the objects which reference it must be contained in the same library (or in a steplib).

Syntax Description

Syntax Element Description

Tocal-data-area LDA Name:
Specify the name of the local data area (LDA) to be referenced.

An LDA is created with the Data Area Editor. It contains predefined data
elements which can be included in the DEFINE DATA LOCAL statement.

You may reference more than one data area; in that case you have to repeat
the reserved words LOCAL and USING, for example:

178 Statements



Defining Local Data

Syntax Element Description

DEFINE DATA LOCAL
LOCAL USING DATX_L
LOCAL USING DATX_P

END-DEFINE ;

For further information, see also Defining Fields in a Separate Data Area and
Local Data Area, Example 2 in the Programming Guide.

parameter-data-area PDA Name:
Specify the name of a parameter data area (PDA).

Note: A data area referenced with DEFINE DATA LOCAL may also be a

parameter data area (PDA). By using a PDA as an LDA you can avoid the
extra effort of creating an LDA that has the same structure as the PDA.

A PDA is created with the Data Area Editor.

For further information, see Parameter Data Area in the Programming Guide.

direct-data-definition|Direct Data Definition:

For information on how to define elements or fields within the statement
itself, that is, without using an LDA or PDA, see the section Direct Data
Definition below.

END-DEFINE End of DEFINE DATA Statement:

The Natural reserved word END-DEFINE must be used to end the DEFINE
DATA statement.

Direct Data Definition

Local data can be defined directly within a program or routine. For direct data definition, the fol-
lowing syntax applies:

group-name [(array-definition)]
variable-definition

level ) o
view-definition

redefinition

For further information, see

® Example 1 - DEFINE DATA LOCAL (Direct Data Definition)
® Defining Fields within a DEFINE DATA Statement in the Programming Guide

® Local Data Area, Example 1 in the Programming Guide

Statements 179



Defining Local Data

Syntax Element Description for Direct Data Definition:

Syntax Element Description

level Level Number:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading
zero is optional) used in conjunction with field grouping. Fields assigned a level
number of 02 or greater are considered to be a part of the immediately preceding
group which has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only
1 field) by using the group name. With certain statements (CALL, CALLNAT, RESET,
WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A group may consist of other groups. When assigning the level numbers for a
group, no level numbers may be skipped.

A view-definition must always be defined at Level 1.

group-name Group Name:

The name of a group. The name must adhere to the rules for defining a Natural
variable name.

See also the following sections:

® Naming Conventions for User-Defined Variables in Using Natural Studio.
® Qualifying Data Structures in the Programming Guide.

array-definition Array Dimension Definition:

With an array-definition, you define the lower and upper bounds of
dimensions in an array-definition.

See Array Dimension Definition.

variable-definition|Variable Definition:

A variable-definitionisused to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

See Variable Definition.

view-definition View Definition:

A view-definitionisused to define a view as derived from a data definition
module (DDM).

See View Definition.

redefinition Redefinition:

180 Statements



Defining Local Data

Syntax Element

Description

A redefinitionmay be used to redefine a group, a view, a DDM field or a
single field/variable (that is a scalar or an array).

See Redefinition.

Statements

181



182



30 Defining Global Data

L V101 1o PP P PP PO PPPPRPPPPPPR 184
B SYNEAX DESCIIPHON ...ttt et 184

183



Defining Global Data

General syntax of DEFINE DATA GLOBAL:

DEFINE DATA

END-DEFINE

GLOBAL USING global-data-area[WITH block[.block..]]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA GLOBAL statement is used to define data elements using a GDA (see Global Data

Area).

Syntax Description

Syntax Element

Description

USING
global-data-area

GDA Name:
Specify the name of a global data area (GDA) to be referenced.

A GDA is created with the Data Area Editor. It contains predefined data elements
which can be included in the DEFINE DATA LOCAL statement.

In contrast to an LDA, the data elements defined in a GDA can be referenced by
more than one programming object.

For further information, see Global Data Area in the Programming Guide.

WITH block

Data Blocks:

To save data storage space, you can create a global data area with data blocks. Data
blocks can overlay one another during program execution, thereby saving storage
space.

The maximum number of block levels is 8 (including the master block).

For further information, see Data Blocks in the Programming Guide.

.block

Block(s) to be Used:

A single or multiple . b7ock notations specify the block(s) which are used in the
program.

END-DEFINE

End of DEFINE DATA Statement:

184

Statements



Defining Global Data

Syntax Element Description

The Natural reserved word END-DEFINE must be used to end the DEFINE DATA
statement.

Statements 185



186



31 Defining Parameter Data

L 3 Tod (1o O 188
B RS IONS L. 188
B SYNEAX DESCIIPHON ...ttt e 188

187



Defining Parameter Data

General syntax of DEFINE DATA PARAMETER:

DEFINE DATA
USING parameter-data-area

PARAMETER

parameter-data-definition..

END-DEFINE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The DEFINE DATA PARAMETER statement is used to define the data elements that are to be used as
incoming parameters in a Natural subprogram, external subroutine, helproutine, function or dialog.
These parameters can be defined within the statement itself (see Parameter Data Definition below);
or they can be defined outside the program in a parameter data area (PDA), with the statement
referencing that data area.

Restrictions

® Parameter data elements must not be assigned initial or constant values, and they must not have
edit mask (EM), header (HD) or print mode (PM) definitions; see also EM, HD, PM Parameters for
Field/Variable.

® The parameter data area and the objects which reference it must be contained in the same library
(or in a steplib).

Syntax Description

Syntax Element Description

USING parameter-data-area |PDA Name:

The name of the parameter-data-area that contains data elements
which are used as parameters in a subprogram, external subroutine or
dialog.

parameter-data-definition|Direct Parameter Data Definition:

Instead of defining a parameter data area, parameter data can also be
defined directly within a program or routine.

188 Statements



Defining Parameter Data

Syntax Element Description

See Direct Parameter Data Definition below.

END-DEFINE End of DEFINE DATA Statement:

The Natural reserved word END-DEFINE must be used toend the DEFINE
DATA statement.

Direct Parameter Data Definition

For direct parameter data definition, the following syntax applies:

group-name [(array-definition)]
redefinition

(format-Tlength[/array-definition])

Tevel A [BY VALUE
variable-name [ U [(array-definition)] ] DYNAMIC [RESULT]]
B [OPTIONAL]

parameter-handle-definition[BY VALUE [RESULT]][OPTIONAL]

Syntax Element Description:

Syntax Element Description

level Level Number:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the
leading zero is optional) used in conjunction with field grouping. Fields
assigned a level number of 02 or greater are considered to be a part of
the immediately preceding group which has been assigned a lower
level number.

The definition of a group enables reference to a series of fields (may
also be only 1 field) by using the group name. With certain statements
(CALL, CALLNAT, RESET, WRITE, etc.), you may specify the group name
as a shortcut to reference the fields contained in the group.

A group may consist of other groups. When assigning the level numbers
for a group, no level numbers may be skipped.

group-name Group Name:

The name of a group. The name must adhere to the rules for defining
a Natural variable name.

See also the following sections:

® Naming Conventions for User-Defined Variables in Using Natural Studio.

® Qualifying Data Structures in the Programming Guide.

Statements 189



Defining Parameter Data

Syntax Element

Description

array-definition

Array Dimension Definition:

Withan array-definition, you define the lower and upper bounds
of dimensions in an array-definition.

For further information, see Array Dimension Definition and Variable
Arrays in a Parameter Data Area.

redefinition

Redefinition:

A redefinitionmay be used to redefine a group or a single
field/variable (that is a scalar or an array). See Redefinition.

Note: Inaparameter-data-definition, aredefinition of groups
is only permitted within a REDEFINE block.

variable-name

Variable Name:

The name to be assigned to the variable. Rules for Natural variable
names apply. For information on naming conventions for user-defined
variables.

For further information, see Naming Conventions for User-Defined
Variables in Using Natural Studio.

format-length

Format/Length Definition:
The format and length of the field.

For information on format/length definition of user-defined variables,
see Format and Length of User-Defined Variables in the Programming Guide.

A, UorB Data Type:
Alphanumeric (A), Unicode (U) or binary (B) for dynamic variable.
DYNAMIC DYNAMIC Option:

A parameter may be defined as DYNAMIC. For further information on
processing dynamic variables, see Introduction to Dynamic Variables and
Fields in the Programming Guide.

Call Mode:

Depending on whether call-by-reference, call-by-value or
call-by-value-result is used, the appropriate transfer mechanism is
applicable. For further information, see the CALLNAT statement.

(without BY VALUE)

Call-by-Reference:

Call-by-reference is active by default when you omit the BY VALUE
keywords. In this case, a parameter is passed to a
subprogram/subroutine by reference (that is, via its address); therefore
a field specified as parameter in a CALLNAT/PERFORM statement must

190

Statements



Defining Parameter Data

Syntax Element

Description

have the same format/length as the corresponding field in the invoked
subprogram/subroutine.

BY VALUE

Call-by-Value:

When you specify BY VALUE, a parameter is passed to a
subprogram/subroutine by value; that is, the actual parameter value
(instead of its address) is passed. Consequently, the field in the
subprogram/subroutine need not have the same format/length as the
CALLNAT/PERFORM parameter. The formats/lengths must only be data
transfer compatible. For data transfer compatibility, the Rules for
Arithmetic Assignment and Data Transfer apply (see Programming Guide).

BY VALUE allows you, for example, to increase the length of a field in
a subprogram/subroutine (if this should become necessary due to an
enhancement of the subprogram/subroutine) without having to adjust
any of the objects that invoke the subprogram/subroutine.

For parameter definitions for dialogs, the following applies:

= Without BY VALUE, a parameter, as specified in the inline definition
of a dialog's parameter data area, is transferred via its address (by
reference); the format and length of the parameter in an OPEN
DIALOG or SEND EVENT statement, for example, must match the
format and length of the parameter in the inline parameter data
definition of the dialog. You can use a parameter by reference in the
before open and after open event handlers and in all other events if
the used parameters are transferred in the SEND EVENT statement
triggering this event.

= With BY VALUE, a parameter is transferred via its value; format and
length do not have to match; the parameter in the OPEN DIALOG or
SEND EVENT statement must be data transfer compatible with the
parameter of the dialog.

Example of BY VALUE:

* Program * Subroutine SUBRO1
DEFINE DATA LOCAL DEFINE DATA PARAMETER

1 #fFIELDA (P5) 1 #FIELDB (P9) BY VALUE
. END-DEFINE

END-DEFINE

CALLNAT 'SUBRO1' #FIELDA

BY VALUE RESULT

Call-by-Value-Result:

While BY VALUE applies to a parameter passed to a
subprogram/subroutine, BY VALUE RESULT causes the parameter to
be passed by value in both directions; that is, the actual parameter

Statements

191




Defining Parameter Data

Syntax Element

Description

value is passed from the invoking object to the subprogram/subroutine
and, on return to the invoking object, the actual parameter value is
passed from the subprogram/subroutine back to the invoking object.

With BY VALUE RESULT, the formats/lengths of the fields concerned
must be data transfer compatible in both directions.

Note: BY VALUE RESULT cannot be used in dialogs.

OPTIONAL

Optional Parameters:

For a parameter defined without OPTIONAL (default), a value must be
passed from the invoking object.

For a parameter defined with OPTIONAL, a value can, but need not be
passed from the invoking object to this parameter.

In the invoking object, the notation X is used to indicate parameters
which are skipped, that is, for which no values are passed.

With the SPECIFIED option you can find out at run time whether an
optional parameter has been defined or not.

parameter-handle-definition

Parameter Handle Definition:
See the section Parameter Handle Definition below.

Parameter Handle Definition

Syntax of parameter-handle-definition:

handle-name [(array-definition)] HANDLE OF {

dialog-element-type }
OBJECT

Syntax Element Description:

Syntax Element Description

handle-name Handle Name:

The name to be assigned to the handle; the naming conventions for
user-defined variables apply.

For further information, see Naming Conventions for User-Defined Variables in
Using Natural Studio.

HANDLE OF Dialog Element Type:

dialog-element-type

The type of dialog element. Its possible values are the values of the TYPE
attribute.

192

Statements




Defining Parameter Data

Syntax Element Description

For further information, see the sections Dialog Elements and Attributes in the
Dialog Component Reference.

HANDLE OF OBJECT Handle of Object:

Is used in conjunction with NaturalX as described in the section NaturalX of
the Programming Guide.

array-definition Array Dimension Definition:

With an array-definition, you define the lower and upper bounds of
dimensions in an array-definition.

For further information, sse Array Dimension Definition.

Statements 193



194



32 Defining Application-Independent Variables

LI V1ot o PSP PPPPURSR PP 196
B SYNEAX DESCIIPHON ...ttt et 196

195



Defining Application-Independent Variables

General syntax of DEFINE DATA INDEPENDENT:

DEFINE DATA
INDEPENDENT [AIV-data-definition..]
END-DEFINE

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Function

The DEFINE DATA INDEPENDENT statement is used to define application-independent variables
(AIVs).

An application-independent variable is referenced by its name, and its content is shared by all
programming objects executed within one application that refer to that name. The variable is al-
located by the first executed programming object that references this variable and is deallocated
by the LOGON command or a RELEASE VARIABLES statement.

The optional INIT clause is evaluated in each executed programming object that contains this
clause (not only in the programming object that allocates the variable).

| Note: Inan RPC server, application-independent variables (AlVs) are not deallocated impli-

citly, but stay active across RPC requests, because different clients may have access to the
same variables on the RPC server. This means they must be deallocated explicitly using the
RELEASE VARIABLES statement. See Application-Independent Variables in the Natural Remote
Procedure Call documentation.

Syntax Description

Syntax Element Description

INDEPENDENT AIV Data Definition:

AlV-data-definition
The DEFINE DATA INDEPENDENT statement can be used to define a single

or multiple application-independent variables (AIVs). For each AIV, the
syntax shown in AIV Data Definition applies.

END-DEFINE End of DEFINE DATA Statement:

The Natural reserved word END-DEFINE must be used to end the DEFINE
DATA statement.

196 Statements



Defining Application-Independent Variables

AIV Data Definition

variable-definition
level redefinition

handle-definition

Syntax Element Description:

Syntax Element

Description

level

Level Number:

An application-independent variable must be defined at Level 01. Other levels
are only used in a redefinition.

variable-definition

Variable Definition

A variable definitionisused to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

For further information, see Variable Definition.

Note: The name of an application-independent variable must start with a plus

(+) character.

redefinition

Redefinition:

With a redefinition, you can partition an application-independent variable
into one or more subfields.

For further information, see Redefinition.

The subfields resulting from the redefinition must not be application-independent
variables; that is, their name must not start with a plus sign (+). These fields are
treated as local variables.

handle-definition

Handle Definition:

A handle identifies a dialog element in code and is stored in handle variables.

) Note: The first character of the name must be a plus (+). Rules for Natural variable names

apply, see Naming Conventions for User-Defined Variables in Using Natural Studio.

Statements

197



198



33 Defining Context Variables for Natural RPC

L 3 Tod (1o O 200
B RS IONS L. 201
B SYNEAX DESCIIPHON ...ttt e 201

199



Defining Context Variables for Natural RPC

General syntax of DEFINE DATA CONTEXT:

DEFINE DATA

local-data-area
USING
parameter-data-area
CONTEXT
context-data-definition..
END-DEFINE

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Belongs to Function Group: Natural Remote Procedure Call

Function

The DEFINE DATA CONTEXT statement is used in conjunction with the Natural Remote Procedure
Call (RPC). Itis used to define variables known as context variables, which are meant to be available
to multiple remote subprograms within one conversation, without having to explicitly pass the
variables as parameters with the corresponding CALLNAT statements.

A context variable is referenced by its name, and its content is shared by all programming objects
executed in one conversation that refer to that name. The variable is allocated by the first executed
programming object that contains the definition of the variable and is deallocated when the con-
versation ends.

Context variables can also be used in a non-conversational CALLNAT. In this case, the context variables
only exist during a single invocation of this CALLNAT but the variables can be shared with all its
callees.

A context variable is not shared with subprograms that are called within the conversation. If such
a subprogram or one of its callees references a context variable, a separate storage area is allocated
for this variable.

The optional INIT clause is evaluated in each executed programming object that contains this
clause (not only in the programming object that allocates the variable). This is different to the way
the INIT works for global variables.

For further information, see Defining a Conversation Context in the Natural Remote Procedure Call
documentation.

200 Statements



Defining Context Variables for Natural RPC

Restrictions

A context variable must be defined at Level 01. Other levels are only used in a redefinition.

Syntax Description

Syntax Element

Description

USING Tocal-data-area

LDA Name:

A local data area (LDA) contains data elements which are to be used in a
single Natural module. You may reference more than one data area; in that
case you have to repeat the reserved words CONTEXT and USING, for example:

DEFINE DATA
CONTEXT USING DATX_L
CONTEXT USING DATX_P

END-DEFINE ;

For further information, see Defining Fields in a Separate Data Area in the
Programming Guide.

USING
parameter-data-area

PDA Name:

A parameter data area contains data elements which are used as parameters
in a subprogram, external subroutine or dialog.

context-data-definition

Context Data Definition:

Context data can be defined directly within a program or routine. For direct
data definition, the syntax shown below applies.

END-DEFINE End of DEFINE DATA Statement:
The Natural reserved word END-DEFINE must be used to end the DEFINE
DATA statement.

Context Data Definition

Context data can be defined directly within a program or routine. For direct data definition, the

following syntax applies:

Statements

201



Defining Context Variables for Natural RPC

variable-definition
level redefinition

handle-definition

For further information, see Defining Fields within a DEFINE DATA Statement in the Programming

Guide.

Syntax Element

Description

level

Level Number:

An application-independent variable must be defined at Level 01. Other levels
are only used in a redefinition.

variable-definition

Variable Definition:

A variable-definitionisused to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

For further information, see Variable Definition.

Note: The CONSTANT clause must not be used in this context

redefinition

Redefinition:

A redefinitionmay be used to redefine a group, a view, a DDM field or a
single field/variable (that is a scalar or an array).

For further information, see Redefinition.

handle-definition

Handle Definition:

A handle identifies a dialog element in code and is stored in handle variables.

| Note: The fields resulting from the redefinition are not considered a context variable. These

fields are treated as local variables.

202

Statements



34 Defining NaturalX Objects

L V101 1o PP P PP PO PPPPRPPPPPPR 204
B SYNEAX DESCIIPHON ...ttt et 204

203



Defining NaturalX Objects

General syntax of DEFINE

DATA OBJECT:

DEFINE DATA

USING {
0BJECT

END-DEFINE

data-definition...

local-data-area }
parameter-data-area ]

For an explanation of the

Function

symbols used in the syntax diagram, see Syntax Symbols.

The DEFINE DATA OBJECT

statement is used in a subprogram or class in conjunction with NaturalX.

For further information, refer to the section NaturalX in the Programming Guide.

Syntax Description

Syntax Element

Description

USING Tocal-data-area

LDA Name:

Alocal data area (LDA) contains data elements which are to be used in a single
Natural module. You may reference more than one data area; in that case you
have to repeat the reserved words 0BJECT and USING, for example:

DEFINE DATA
OBJECT USING DATX_L
OBJECT USING DATX_P

END-DEFINE ;

For further information, see also Defining Fields in a Separate Data Area in the
Programming Guide.

USING
parameter-data-area

PDA Name:

A data area defined with DEFINE DATA OBJECT may be a parameter data area
(PDA). By using a PDA as an object data area you can avoid the extra effort of
creating an object data area that has the same structure as the PDA.

data-definition

Direct Data Definition:

204

Statements



Defining NaturalX Objects

Syntax Element

Description

Data can also be defined directly using the syntax shown in Direct Data
Definition.

END-DEFINE End of DEFINE DATA Statement:
The Natural reserved word END-DEFINE mustbe used toend the DEFINE DATA
statement.
Direct Data Definition

Data can also be defined directly using the following syntax:

group-name [(array-definition)]
variable-definition

Tevel view-definition
redefinition

handle-definition

For further information, see Defining Fields within a DEFINE DATA Statement in the Programming

Guide.

Syntax Element

Description

level

Level Number:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading
zero is optional) used in conjunction with field grouping. Fields assigned a level
number of 02 or greater are considered to be a part of the immediately preceding
group which has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only
1 field) by using the group name. With certain statements (CALL, CALLNAT, RESET,
WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A group may consist of other groups. When assigning the level numbers for a
group, no level numbers may be skipped.

A view-definition must always be defined at Level 1.

group-name

Group Name:

The name of a group. The name must adhere to the rules for defining a Natural
variable name.

See also the following sections:

® Naming Conventions for User-Defined Variables in Using Natural Studio.

® Qualifying Data Structures in the Programming Guide.

Statements

205



Defining NaturalX Objects

Syntax Element

Description

array-definition

Array Dimension Definition:

With an array-definition, you define the lower and upper bounds of
dimensions in an array-definition.

For further information, see Array Dimension Definition.

variable-definition

Variable Definition:

A variable-definitionisused to define a single field/variable that may be
single-valued (scalar) or multi-valued (array).

For further information, see Variable Definition.

view-definition

View Definition:

A view-definitionisused to define a view as derived from a data definition
module (DDM).

For further information, see View Definition.

redefinition

Redefinition:

A redefinitionmay be used to redefine a group, a view, a DDM field or a
single field/variable (that is a scalar or an array).

For further information, see Redefinition.

handle-definition

Handle Definition:

A handle identifies a dialog element in code and is stored in handle variables.

206

Statements




35 Variable Definition

L V101 1o PP P PP PO PPPPRPPPPPPR 208
B SYNEAX DESCIIPHON ...ttt et 209

207



Variable Definition

The variable-definition option is used with DEFINE DATA LOCAL, DEFINE DATA INDEPENDENT,
DEFINE DATA CONTEXT and DEFINE DATA OBJECT.

In the variable-definition option, you may specify either a scalar-definitionor an
array-definition:

{ <sca7ar-def7'n7't7’on>}
<array-definition>

{scalar-definition>

(format-Tength)

HANDLE OF { d7alog-e7ement-type}

variable-name OBJECT [{ CONSTANT}init—deﬁnition [emhdpm]
A INIT
( { U }) DYNAMIC
B

<array-definition>

(format-length/array-definition)
(array-definition) { dialog-e]ement-type} [
. HANDLE OF OBJECT CONSTANT .. .
variable-name array-init-defin
A { INIT
( { U } larray-definition) DYNAMIC
B

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

A variable-definitionisused to define a single field/variable that may be single-valued (scalar)
or multi-valued (array).

208 Statements



Variable Definition

Syntax Description

Syntax Element

Description

variable-name

Variable Name:

The name to be assigned to the variable. Rules for Natural variable names
apply. With DEFINE DATA INDEPENDENT, the variable name must begin with
a plus character (+).

For information on naming conventions for user-defined variables, see Naming
Conventions for User-Defined Variables in Using Natural Studio.

format-length

Format/Length Definition:

For information on format/length definition of user-defined variables, see
Format and Length of User-Defined Variables in the Programming Guide.

HANDLE OF OBJECT

Handle of Object:

Used in conjunction with NaturalX. A handle identifies a dialog element in
code and is stored in handle variables.

The handle definition in the DEFINE DATA statement is generated automatically
on the creation of a dialog element or dialog.

After having defined a handle, you can use the handle name in any statement
to query, set or modify attribute values for the defined d7alog-element -type.

Examples:

1 ffSAVEAS-MENUITEM HANDLE OF MENUITEM
1 ffOK-BUTTON (1:10) HANDLE OF PUSHBUTTON

For further information, see NaturalX in the Programming Guide.

HANDLE OF
dialog-element-type

Dialog Element Type:

The type of dialog element. Its possible values are the values of the TYPE
attribute.

For further information, see Dialogs and Dialog Elements in the Dialog Component
Reference.

A, UorB

Data Type:

Alphanumeric (A), Unicode (U) or binary (B) for dynamic variables.

array-definition

Array Dimension Definition:

With an array-definitionyou define the lower and upper bounds of
dimensions in an array-definition.

Statements

209



Variable Definition

Syntax Element

Description

For further information, see Array Dimension Definition.

DYNAMIC DYNAMIC Option:

A field may be defined as DYNAMIC.

For more information on processing dynamic variables, see Introduction to

Dynamic Variables and Fields.

CONSTANT CONSTANT Option:

The variable/array is to be treated as a named constant. The constant value(s)

assigned will be used each time the variable/array is referenced. The value(s)

assigned cannot be modified during program execution.

See also Defining Fields, User-Defined Constants, Defining Named Constants in the

Programming Guide.

Note:

1. For reasons of internal handling, it is not allowed to mix variable definitions
and constant definitions within one group definition; that is, a group may
contain either variables only or constants only.

2. The CONSTANT clause must not be used with DEFINE DATA INDEPENDENT
and DEFINE DATA CONTEXT. The CONSTANT option cannot be used with
X-arrays.

3. The CONSTANT option must not be used with DEFINE DATA INDEPENDENT
and DEFINE DATA CONTEXT.

INIT INIT Option:

The variable/array is to be assigned an initial value. This value will also be
used when this variable/array is referenced in a RESET INITIAL statement.

If no INIT specification is supplied, a field will be initialized with a default
initial value depending on its format (see table Default Initial Values below).

For further information, see Defining Fields, Initial Values in the Programming
Guide.

With DEFINE DATA INDEPENDENT and DEFINE DATA CONTEXT, the INIT
clause is evaluated in each executed programming object that contains this
clause (not only in the programming object that allocates the variable). This is
different to the way the INIT works for global variables.

The INIT option cannot be used with X-arrays.

init-definition

Initial-Value Definition:

With the init-definitionoption, you define the initial/constant values for
a variable. See Initial-Value Definition.

array-init-definition

Initial/Constant Values for an Array:

210

Statements



Variable Definition

Syntax Element

Description

The array is to be assigned an initial value. This value will also be used when
this array is referenced in a RESET INITIAL statement.

Withan array-init-definition, you define the initial/constant values for
an array.

For further information, see Initial/Constant Values for an Array.

emhdpm

EM, HD, PM Parameters for Field/Variable:

With this option, additional parameters to be in effect for a field/variable may
be defined.

For further information, see EM, HD, PM Parameters for Field/Variable.

Default Initial Values

The following table shows the default initial values that are provided with the various formats:

Format Default Initial Value
B,ELN,P 0

AU (blank)

L FALSE

D D'

T T'00:00:00"

C (AD=D)

GUI Handle |NULL-HANDLE
Object Handle [NULL-HANDLE

Fields declared as DYNAMIC do not have any initial value because their field length is zero by default.

Statements

211



212



36 View Definition

L V101 1o PP P PP PO PPPPRPPPPPPR 214
B SYNEAX DESCIIPHON ...ttt et 214

213



View Definition

The view-definition option is used with DEFINE DATA LOCAL and DEFINE DATA OBJECT.

The view-definition option has the following syntax:

view-name
VIEW[OF]
ddm-name

level

([format-Tlength][/array-definition])

ddm-field A [emhdpnm)
U [farray-definition] DYNAMIC

B

redefinition

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

A view-definitionisused todefine a data view as derived from a data definition module (DDM).

| Note: Inaparameter data area, view-definitionis not permitted.

For further information, see Accessing Data in an Adabas Database in the Programming Guide and
particularly the following topics:

® Data Definition Modules - DDMs

® Database Arrays

® Datenbank-View definieren

Syntax Description

Syntax Element

Description

view-name View Name:
The name to be assigned to the view.
Rules for Natural variable names apply; see Naming Conventions for User-Defined
Variables in Using Natural Studio.
VIEW [OF] DDM Name:
ddm-name
The name of the data definition module (DDM) from which the view is to be taken.
Tevel Level Number:
214 Statements




View Definition

Syntax Element

Description

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding group which
has been assigned a lower level number.

The definition of a group enables reference to a series of fields (may also be only one
field) by using the group name. With certain statements (CALL, CALLNAT, RESET,
WRITE, etc.), you may specify the group name as a shortcut to reference the fields
contained in the group.

A group may consist of other groups. When assigning the level numbers for a group,
no level numbers may be skipped.

ddm-field

DDM Field Name:
The name of a field to be taken from the DDM.

When you define a view for a HI STOGRAM statement, the view must contain only the
descriptor for which HISTOGRAM is to be executed.

redefinition

Redefinition:

A redefinitionmay be used to redefine a group, a view, a DDM field or a single
field/variable (that is a scalar or an array).

For further information, see Redefinition.

format-length

Format/Length Definition:
Format and length of the field. If omitted, these are taken from the DDM.

In structured mode, the definition of format and length (if supplied) must be the
same as those in the DDM.

In reporting mode, the definition of format and length (if supplied) must be
type-compatible with those in the DDM.

A, U orB

Data Type:
Alphanumeric (A), Unicode (U) or binary (B) for dynamic variables.
Note:

1. For Adabas on mainframe computers, format U is available for LA fields (length
<=16381 bytes), but not for LB fields (length: <=1 GB).

2. Format B is not available with Adabas.

array-definition

Array Definition:

Depending on the programming mode used, arrays (periodic-group fields,
multiple-value fields) may have to contain information about their occurrences.

For further information, see Array Definition in a View below.

Statements

215



View Definition

Syntax Element

Description

emhdpm EM, HD, PM Parameters for Field/Variable:
With this option, additional parameters to be in effect for a field/variable may be
defined. See EM, HD, PM Parameters for Field/Variable.

DYNAMIC DYNAMIC Option:

Defines a view field as DYNAMIC.

For further information on processing dynamic variables, see Introduction to Dynamic
Variables and Fields in the Programming Guide.

Array Definition in a View

Depending on the programming mode used, arrays (periodic-group fields, multiple-value fields)
may have to contain information about their occurrences.

= Structured Mode
= Reporting Mode

Structured Mode

If a field is used in a

view that represents an array, the following applies:

® An index value must be specified for MU/PE fields

® When no format/length specification is supplied, the values are taken from the DDM.

® When a format/length specification is supplied, it must be the same as in the DDM.

Database-Specific Considerations in Structured Mode:

e.g. (1:10,1:5).

Adabas: | [f MU/PE fields (defined in a DDM) are to be used inside a view, these fields must include an array
index specification. For an MU field or ordinary PE field, you specify a one-dimensional index
range, e.g. (1:10). For an MU field inside a PE group, you specify a two-dimensional index range,

Tamino: [DDM definition allowed not allowed
A(*:X2) A(*:Y2) Y2=<X2 A 2%)
ACY1:Y2) Y2>Y1 ACYL:*)

Y2=<X2 A(Z:7+Y) Y>=0

216

Statements




View Definition

A(X1:*) ACY1:*) YI>=X1 A(*:*)
ACY1:Y2) Y2>=X1, Y1>=X1 A(*:Y2)

ACZ:Z+Y) Y>=0
ACY1:Y2) Y2<Y1 A(*:*)
A(X1:X2) ACZ:7+Y) 0=<Y>=X2-X1+1 ACYL:*)
A(*:Y2)

Examples for Structured Mode:

DEFINE DATA LOCAL
1 EMPI VIEW OF EMPLOYEES
2 NAME(A20)
2 ADDRESS-LINECA20 / 1:2)

1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(1:2)

1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINEC(2)

1 4K (14)
1 EMP4 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(#K:#K+1)
END-DEFINE
END

Reporting Mode

In this mode, the same rules are valid as for structured mode, however, there are two exceptions:

® Anindex value needs not be supplied. In this case, the index range for the missing dimensions

is set to (1:1).

® The format/length specification may differ from the specification in the DDM. Then the definition
of format and length must be type-compatible with those in the DDM.

Statements

217



View Definition

Examples:

DEFINE DATA LOCAL
1 EMPI VIEW OF EMPLOYEES
2 NAME(A30)
2 ADDRESS-LINE(A35 / 5:10)

1 EMP2 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(A40) /* ADDRESS LINE (1:1) IS ASSUMED

1 EMP3 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE /* ADDRESS LINE (1:1) IS ASSUMED

1 4K (I4)
1 EMP4 VIEW OF EMPLOYEES
2 NAME
2 ADDRESS-LINE(#K:#K+1)
END-DEFINE
END

218 Statements



37 Redefinition

B UN G 0N et 220
B RSOt ONS e ettt ettt e 220
B SYNEAX DESCIIPHON ...ttt e 221

219



Redefinition

The redefinitionoptionisused with DEFINE DATA LOCAL, DEFINE DATA PARAMETER, DEFINE DATA
INDEPENDENT, DEFINE DATA CONTEXT and DEFINE DATA 0BJECT.

The redefinition option has the following syntax:

rgroup
REDEFINE field-name ‘ lTevel ‘ rfield(format-length[/array-definition]) ] ] .
FILLER nX

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

A redefinition may be used to redefine a group, a view, a DDM field or a single field/variable
(that is a scalar or an array).

J Notes:

1. A redefinitionof aview or a DDM field is not applicable to a parameter-data-definition.

2. Unicode fields should not be redefined as alphanumeric (A) or numeric (N) fields.

See also Redefining Fields in the Programming Guide.

Restrictions

® Handles, X-arrays and dynamic variables cannot be redefined and cannot be contained in a re-
definition clause.

" A group that contains a handle, X-array or a dynamic variable can only be redefined up to - but
not including or beyond - the element in question.

220 Statements



Redefinition

Syntax Description

Syntax Element

Description

field-name

Name of Field to be Redefined:

The name of the group, view, DDM field or single field that is being redefined.

level

Level Number of Field being Redefined:

Level number is a 1- or 2-digit number in the range from 01 to 99 (the leading zero
is optional) used in conjunction with field grouping. Fields assigned a level number
of 02 or greater are considered to be a part of the immediately preceding group,
which has been assigned a lower level number.

rgroup

Name of Resulting Group:
The name of the group resulting from the redefinition.

Note: Ina redefinitionwithina view-definition, the name of rgroup must

be different from any field name in the underlying DDM.

rfield

Name of Resulting Field:
The name of the field resulting from the redefinition.

Note: Ina redefinitionwithina view-definition, the name of rfieldmust

be different from any field name in the underlying DDM.

format-length

Format/Length of Resulting Field:

The format and length of the resulting field (rf7eld).

array-definition

Array Dimension Definition:

Withan array-definition, youdefine the lower and upper bounds of dimensions
in an array-definition.

For further information, see Array Dimension Definition.

FILLER nX

Filler Byte Definition:

With this notation, you define n filler bytes - that is, segments which are not to be
used - in the field that is being redefined.

The definition of trailing filler bytes is optional.

Statements

221



Redefinition

Examples of REDEFINE Usage

Example 1:

Example 2:

Example 3:

DEFINE DATA LOCAL
01 #VARL (A15)
01 FVAR2
02 #VAR2A (N4.1) <
INIT <0>
02 #VAR2B (P6.2) <
INIT <0>
01 REDEFINE #VAR2
02 #VAR2RD (A10)
END-DEFINE

DEFINE DATA LOCAL
01 MYVIEW VIEW OF STAFF
02 NAME
02 BIRTH
02 REDEFINE BIRTH
03 BIRTH-YEAR (N4) <

03 BIRTH-MONTH (N2)
03 BIRTH-DAY (N2)
END-DEFINE

DEFINE DATA LOCAL

1 #FIELD (Al12)
1 REDEFINE #FIELD
2 #RFIELD1 (A2)
2 FILLER 2X
2 #RFIELD2 (A2)
2 FILLER 4X
2 #RFIELD3 (A2)
END-DEFINE

P}

222

Statements




38 Array Dimension Definition

L V101 1o PP P PP PO PPPPRPPPPPPR 224
B SYNEAX DESCIIPHON ...ttt et 224

223



Array Dimension Definition

The array-dimension-definitionis used in the statement DEFINE DATA OBJECT and in the
variab7e-def7’n7’t7’onoptionofDEFINE DATA LOCAL, DEFINE DATA INDEPENDENT, DEFINE DATA
CONTEXT, DEFINE DATA OBJECT.Itis also used in the DEFINE FUNCTION statement.

The array-dimension-definition has the following syntax:

‘{bound[:bound]},... 3

Function

With an array-dimension-definition, you define the lower and upper bound of a dimension in
an array-definition.

You can define up to 3 dimensions for an array.

See also Arrays in the Programming Guide.

Syntax Description

Syntax Element|Description

bound Lower/Upper Bound:
A bound can be one of the following;:

" a numeric integer constant;

® a previously defined named constant;

(for database arrays) a previously defined user-defined variable; or

an asterisk (*) defines an extensible bound, otherwise known as an X-array (eXtensible
array).

If only one bound is specified, the value represents the upper bound and the lower bound
is assumed to be 1.

X-Arrays

If at least one bound in at least one dimension of an array is specified as extensible, that array is
then called an X-array (eXtensible array). Only one bound (either upper or lower) may be extensible
in any one dimension, but not both. Multi-dimensional arrays may have a mixture of constant and
extensible bounds, for example: #fa(1:100, 1:*).

Example:

224 Statements



Array Dimension Definition

DEFINE DATA LOCAL
#FARRAY1(I4/1:10)
#FARRAY2(14/10)
#X-ARRAY3(I4/1:%)

##X-ARRAYS5(I4/*:10)

##X-ARRAY6(I14/1:10,100:*,*:1000)

ND-DEFINE

1
1
1
1 #X-ARRAY4(I4/*,1:5)
1
1
E

In the following table you can see the bounds of the arrays in the above program more clearly.

Dimension1 Dimension2 Dimension3

Lower bound |Upper bound | Lower bound |Upper bound | Lower bound | Upper bound
#FARRAYL |1 10 - - - -
#ARRAY2 |1 10 - - - -
#FX-ARRAY3 |1 eXtensible |- - - -
#FX-ARRAY4 |1 eXtensible |1 5 - -
##X-ARRAY5 [eXtensible |10 - - - -
##X-ARRAY6 |1 10 100 eXtensible |eXtensible [1000

Examples of array definitions:

#FARRAY2(14/10)
##X-ARRAY4(I4/*,1:5)

##X-ARRAY6(14/1:10,100:*,*:1000)

/* a one-dimensional array with 10 occurrences (1:10)

/* a two-dimensional
/* a three-dimensional array

Variable Arrays in a Parameter Data Area

array

In a parameter data area, you may specify an array with a variable number of occurrences. This
is done with the index notation 1:V.

Example 1: #ARROT (A5/1:V)

Example 2: fARR02 (I12/1:V,1:V)

A parameter array which contains a variable index notation 1: V can only be redefined in the length

of

" its elementary field length, if the 1:V index is right-most; for example:

#ARR(A6/1:V) can be redefined up to a length of 6 bytes
#ARR(A6/1:2,1:V) can be redefined up to a length of 6 bytes
#ARR(A6/1:2,1:3,1:V) can be redefined up to a length of 6 bytes

® the product of the right-most fixed occurrences and the elementary field length; for example:

#FARR(A6/1:V,1:2) can be redefined up to a length of 2*6 = 12 bytes

Statements

225



Array Dimension Definition

#FARR(A6/1:V,1:3,1:2) can be redefined up to a length of 3*2%6 = 36 bytes
#ARR(A6/1:2,1:V,1:3) can be redefined up to a length of 3*6 = 18 bytes

A variable index notation 1:V cannot be used within a redefinition.

Example:

DEFINE DATA PARAMETER
1 #FARR(A6/1:V)
1 REDEFINE 4fARR
2 #R-ARR(AL/1:V) /* (1:V) is not allowed in a REDEFINE block
END-DEFINE

As the number of occurrences is not known at compilation time, it must not be referenced with
the index notation (*) in the statements INPUT, WRITE, READ WORK FILE, WRITE WORK FILE.Index
notation (*) may be applied either to all dimensions or to none.

Valid examples:

#FARROL (*)

#ARRO2 (*,*)
##ARROL (1)

f#ARRO2 (5,#FFIELDX)
ffARR02 (1,1:3)

Invalid example:

#FARRAYY (1,*) /* not allowed

To avoid runtime errors, the maximum number of occurrences of such an array should be passed
to the subprogram/subroutine via another parameter. Alternatively, you may use the system
variable *0OCCURRENCE.

) Notes:

1. If a parameter data area that contains an index 1:V is used as a local data area (that is, specified
ina DEFINE DATA LOCAL statement), a variable named V must have been defined as CONSTANT.

2. In a dialog, an index 1:V cannot be used in conjunction with BY VALUE.

226 Statements



39 Initial-Value Definition

L 3 Tod (1o O 228
I =T (4101 1o TP RURUPRRTNS 228
B SYNEAX DESCIIPHON ...ttt e 228

227



Initial-Value Definition

The init-definition optionisused inthe variable-definitionoption of DEFINE DATA LOCAL,
DEFINE DATA INDEPENDENT, DEFINE DATA CONTEXT and DEFINE DATA OBJECT.

The init-definition option has the following syntax:

<constant>
<system-variable>
FULL LENGTH<character-s>

LENGTH n <character-s>

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

With the 7nit-definitionoption, you define the initial/constant values for a variable.

B Note: If, inthe variable-definitionoption, the keyword INIT was used for the initializa-

tion, the value may be modified by any statement that affects the content of a variable. If
the keyword CONST was used for the initialization, any attempt to change the value will be
rejected by the compiler.

See also Defining Fields, Initial Values in the Programming Guide.

Restriction

For a redefined field, an init-definitionis not permitted.

Syntax Description

Syntax Element Description

{constant> Constant Value Option:

The constant value with which the variable is to be initialized; or the constant value
to be assigned to the field.

For further information, see User-Defined Constants in the Programming Guide.

<system-variable>|System Variable Option:

228 Statements



Initial-Value Definition

Syntax Element

Description

The initial value for a variable may also be the value of a Natural system variable,
for example:

DEFINE DATA LOCAL
1 {fIMYDATE (D) INIT <*DATX>
END-DEFINE

Note: When the variable is referenced in a RESET INITIAL statement, the system

variable is evaluated again; that is, it will be reset not to the value it contained when
program execution started but to the value it contains when the RESET INITIAL
statement is executed.

FULL LENGTH
{character-s>

LENGTH n
{character-s>

Character/String Option:

As initial value, a variable can be filled, entirely or partially, with a specific single
character or string of characters; this is only possible for alphanumeric (code page
or Unicode) variables.

FULL LENGTH Option:

With the FULL LENGTH option, the entire field will be filled with the specified
characteror characters.In the following example, the entire field will be filled
with asterisks.

DEFINE DATA LOCAL
1 #fFIELD (A25) INIT FULL LENGTH <'*'>
END-DEFINE

LENGTH Option:

With the LENGTH 1 option, the first n positions of the field will be filled with the
specified characteror characters. nmust be anumeric constant. In the following
example, the first 4 positions of the field will be filled with exclamation marks.

DEFINE DATA LOCAL
1 #FIELD (A25) INIT LENGTH 4 <'I'>
END-DEFINE

Statements

229



230



40 Initial/Constant Values for an Array

L 3 Tod (1o O 232
I =T (4101 1o TP RURUPRRTNS 232
B SYNEAX DESCIIPHON ...ttt e 233

231



Initial/Constant Values for an Array

The array-init-definitionoptionisusedinthe variable-definitionoption of DEFINE DATA
LOCAL, DEFINE DATA INDEPENDENT, DEFINE DATA CONTEXT and DEFINE DATA OBJECT.

The array-init-definition option has the following syntax:

ALL { FULL LENGTH } <character-s
LENGTH n >

( { fndex[:index]} 3

v ¢ { constant }

system-variable,...

Function

With an array-init-definitionyou define the initial/constant values for an array.

J Note: If, inthe variable-definitionoption, the keyword INIT was used for the initializa-

tion, the value may be modified by any statement that affects the content of a variable. If
the keyword CONST was used for the initialization, any attempt to change the value will be
rejected by the compiler.

See also Defining Fields in the Programming Guide, particularly the following sections:

® [Initial Values

® User-Defined Constants

Restriction

For a redefined field, an array-init-definitionis not permitted.

232 Statements



Initial/Constant Values for an Array

Syntax Description

Syntax Element

Description

ALL

ALL Option:

All occurrences in all dimensions of the array are initialized with the same value.

index

Index Option:
Only the array occurrences specified by the 7ndex are initialized.

If you specify 7ndex, you can only specify one value with constant; thatis, all specified
occurrences are initialized with the same value.

V Notation:

This notation is only relevant for multidimensional arrays if the occurrences of one
dimension are to be initialized with different values.

V indicates an index range that comprises all occurrences of the dimension specified
with V; that is, all occurrences in that dimension are initialized. Only one dimension
per array may be specified with V. The occurrences are initialized occurrence by
occurrence with the values specified for that dimension. The number of values must
not exceed the number of occurrences of the dimension specified with V.

constant

Constant Value Option:

The constant (value) with which the array is to be initialized (INIT), or the constant
to be assigned to the array (CONSTANT).

For further information, see User-Defined Constants in the Programming Guide.

Note: Occurrences for which no values are specified, are initialized with a default

value.

system-variable

System Variable Option:
The initial value for an array may also be the value of a Natural system variable.

Note: Multiple constant values/system variables must be separated either by the input

delimiter character (as specified with the session parameter 1D) or by a comma. A
comma must not be used for this purpose, however, if the comma is defined as decimal
character (with the session parameter DC).

FULL LENGTH

Character/String Option:

LENGTH n As initial value, a variable can be filled, entirely or partially, with a specific single
character or string of characters (only possible for variables of format A or U).
FULL LENGTH Option:

Statements 233



Initial/Constant Values for an Array

Syntax Element

Description

With FULL LENGTH, the entire array occurrence(s) are filled with the specified
characteror characters.

With LENGTH n, the first n positions of the array occurrence(s) are filled with the
specified characteror characters.

LENGTH Option:
A system-variable must not be specified with FULL LENGTH or LENGTH n.

Within one array-init-definition, only either FULL LENGTH or LENGTH nmay
be specified; both notations must not be mixed.

Example of LENGTH n for Array:

In this example, the first 5 positions of each occurrence of the array will be filled with NONON.

DEFINE DATA LOCAL
1 #FIELD (A25/1:3) INIT ALL LENGTH 5 <'NO'>

END-DEFINE

Numerous examples of assigning initial values to arrays are provided in Initial Values (and the
RESET Statement) in the Programming Guide.

234

Statements



41 EM, HD, PM Parameters for Field/Variable

LI V1ot o PSP PPPPURSR PP 236
B SYNEAX DESCIIPHON ...ttt et 236

235



EM, HD, PM Parameters for Field/Variable

The emhdpmoptionisused inthe view-definitionoptionof DEFINE DATA LOCALand DEFINE DATA
0BJECT and inthe variable-definitionoptionof DEFINE DATA LOCAL, DEFINE DATA INDEPENDENT,

DEFINE DATA

CONTEXT and DEFINE DATA OBJECT.

The emhdpm option has the following syntax:

( [ EM=value
EMU=value

] [HD="text '] [PM=value])

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

With this option, additional parameters to be in effect for a field/variable may be defined.

| Note: If for a database field you specify neither an edit mask (EM= or EMU=) nor a header

(HD=), the default edit mask and default header as defined in the data definition module
(DDM) will be used. However, if you specify one of the two, the other's default from the
DDM will not be used.

Syntax Description

Syntax Element

Description

EM=value

Edit Mask:

The EM parameter may be used to define an edit mask used when the field is displayed with
an I/O statement.

For further information, see the session parameter EM in the Parameter Reference.

EMU=value

Unicode Edit Mask:

The EMU parameter may be used to define a Unicode edit mask used when the field is
displayed with an I/O statement.

For further information, see the session parameter EMU in the Parameter Reference.

HD="text'

Header Definition:

The HD parameter may be used to define the header to be used as the default header for the
field.

For further information, see the session parameter HD in the Parameter Reference.

PM=value

Print Mode:

236

Statements



EM, HD, PM Parameters for Field/Variable

Syntax Element

Description

The PM parameter may be used to set the print mode, which indicates how fields are to be
output.

For further information, see the session parameter PM in the Parameter Reference.

Statements

237



238



42

Examples of DEFINE DATA Statement Usage

= Example 1 - DEFINE DATA LOCAL (Direct Data Definition) ..........ccoouvvieiiiiiiiiiiiiiicecieecie e 240
= Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization) ............ccccoeiiiiiiiiiiiieiic e 240
= Example 3 - DEFINE DATA (View Definition, Array Redefinition) ............ccooeeiiiiiiiic 241
= Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas) ..............ccooveeiiiiiiiiiiiiiiciiiecc, 242
= Example 5 - DEFINE DATA (INtialization) ...........oeveiiiiiiiiiiiiiie e 243
= Example 6 - DEFINE DATA (Variable ArTay) .........ooooiiiiiiiiiiii e 244

239



Examples of DEFINE DATA Statement Usage

The following topics are covered:

Example 1 - DEFINE DATA LOCAL (Direct Data Definition)

** Example 'DDAEX1': DEFINE DATA
P b i i b b b i e i b i b i b i b b e b i b e b i i g i o b o i e i g b e b i i g i b e b i o b i b i i b i i b b e
DEFINE DATA LOCAL
1 {f'VAR1 (A15)
1 #fVAR2

2 #/VAR2A  (N4.1) INIT <1111>

2 ffVAR2B (N6.2) INIT <222222>
1 REDEFINE #VAR2

2 {#/VAR2C (A2)

2 J#/VAR2D (A2)

2 #VAR2E (A6)

END-DEFINE
*
WRITE NOTITLE '=" #fVAR2A / '=' #VAR2B /
"=' ff'VAR2C / '=" ffVAR2D / '=' ffVAR2E
*
END o

Output of Program DDAEX1:

#FVAR2A:  1111.0
##VAR2B:  222222.00
#fVAR2C: 11

##VAR2D: 11

#FVAR2E: 022222 <

Example 2 - DEFINE DATA LOCAL (Array Definition/Initialization)

** Example 'DDAEX2': DEFINE DATA (array definition/initialization)
khkkhkhkhkhkkhkhkhhkhkkhkhkhhhkhkkhkhkhhkhhkhkhhhrhkkhkhkhhhkhkhkhhhhkhkhkhhhkhhkhkhhhhkkhkhkhrhkkhkhkhhkhkkhkhhrkkkhkhrkx
DEFINE DATA LOCAL

1 #VAR1 (A1/1:2,1:2) INIT (1,V) <'A','B'>

1 #VAR2 (N5/1:2,1:3) INIT (1,2) <200>

1 #VAR3 (A1/1:4,1:3) INIT (V,2:3) <'W','X','Y','Z">

END-DEFINE

*

WRITE NOTITLE '=' 4fVAR1 (1,1) '=' 4fVAR1 (1,2)
/ '=" {VARL (2,1) '=' VARl (2,2)

*

WRITE /// '"='" #VAR2 (1,1) '=' FfVAR2 (1,2)
/ '='" #VAR2 (2,1) '=" {/VAR2 (2,2)

24 Statements



Examples of DEFINE DATA Statement Usage

*

WRITE
WRITE
WRITE
WRITE

*

END

/1] '=" {fVAR3 (1,1)
/ "=" {fVAR3 (2,1)
/ '=" {f'VAR3 (3,1)

/ =

" {fVAR3 (4,1)

Output of Program DDAEX2:

#FVARL: A #fVARL: B

FVARL : FVARL :

FVARZ : 0 ffVAR2:
#FVAR2 : 0 F#VARZ:
FVAR3 fFVAR3: W #VAR3:
FVAR3 fFVAR3: X #FVAR3:
FVAR3 : fFVAR3: Y fFVAR3:
FVAR3 : fFVAR3: Z fFVAR3:

200
0

'=' JVAR3 (1,2)
'=' JVAR3 (2,2)
'=' JVAR3 (3,2)
'=' {VAR3 (4,2)

'=' JVAR3 (1,3)

" fVAR3 (2,3)
" #fVAR3 (3,3)
" {fVAR3 (4,3)

Example 3 - DEFINE DATA (View Definition, Array Redefinition)

** Example 'DDAEX3': DEFINE DATA (view definition, array redefinition)

R R b R R b b R e b b e e b b R e e b b R e i b b e b b R e i b b R e e b b R e b b b e e b R e b b b R e b b b S
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME

2 ADDRESS-LINE (A20/2)

2 PHONE

*

—

JFARRAY

2 F#ALIN
1 X
1 #y
END-DEFIN
*
FORMAT PS
LIMIT 5

FIND EMPLOY-VIEW WITH NAME =

(A75/1:4)

1 REDEFINE #FARRAY

E (A25/1:4,1:3)
(N2) INIT <1>
(N2) INIT <1>

E

=20

"SMITH'

Statements

241



Examples of DEFINE DATA Statement Usage

MOVE NAME TO F#ALINE (4X,4HY)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO #ALINE (#X+2,4Y)
MOVE PHONE TO #ALINE (#X+3,4Y)
IF #Y =3
RESET INITIAL #Y
PERFORM PRINT
ELSE
ADD 1 TO #Y
END-IF
AT END OF DATA
PERFORM PRINT
END-ENDDATA
END-FIND
*
DEFINE SUBROUTINE PRINT
WRITE NOTITLE (AD=0I) FARRAY(*)
RESET #FARRAY (*)
SKIP 1
END-SUBROUTINE

*

END

Output of Program DDAEX3:

SMITH SMITH SMITH

ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.
MILWAUKEE MONTERREY

554349 877-4563 994-2260

SMITH SMITH

5 HAWTHORN 13002 NEW ARDEN COUR

0AK BROOK SILVER SPRING

150-9351 639-8963 ©

Example 4 - DEFINE DATA (Global, Parameter and Local Data Areas)

** Example 'DDAEX4': DEFINE DATA (global and Tlocal data area definition)
khkhkkhkkhkhkhkhkhkhkhhkhkhkhkkhkhhkhhkhkhkhhkhkhkhkhkhkhhhhkhhhhhkhkhkhkhhhkhkhkhkhhkhkhkhhkhhkhkhkhkhhhkhkhkhhhhkhkhixk
DEFINE DATA
GLOBAL
USING DDAEX4G
LOCAL
1 #FIELD1 (A10)
1 #FIELD2 (N5)
END-DEFINE

*

242 Statements



Examples of DEFINE DATA Statement Usage

MOVE 'HELLO' TO #FIELDI
MOVE 123 TO ffFIELD2

*

CALLNAT 'DDAEX4N' ffFIELD1 #FIELD2

*

END

Global Data Area DDAEX4G Used by Program DDAEX4:

1 GLOBAL-FIELD A 10 ©

Subprogram DDAEX4N Called by Program DDAEX4:

** Example 'DDAEX4N': DEFINE DATA PARAMETER (called by DDAEX4)

P R b b b b b b o i b o e B b i b o b o e b b b i b o b b e b i i e b e b b b e b i e g e b b b i i b b b b e b o b b b o
DEFINE DATA

PARAMETER

1 ##/FIELDA (A10)

1 ffFIELDB (N5)

END-DEFINE

*

WRITE '=' #FIELDA '=' #FIELDB

END o

Output of Program DDAEX4:

Page 1 05-01-12 08:55:53

##FIELDA: HELLO #fFIELDB: 123 g

Example 5 - DEFINE DATA (Initialization)

** Example 'DDAEX5': DEFINE DATA (initialization)
P b i B b b b o i b o e i b o b o b i e e b i b b g b i e b o b o i g i b e b o i g i b b o o b i b i i b i b b b
DEFINE DATA LOCAL
1 #START-DATE (D)  INIT <*DATX>
1 JfUNDERLINE (A50) INIT FULL LENGTH <'_'>
1 #fSCALE (A65) INIT LENGTH 65 <'....+..../">
END-DEFINE
*
WRITE NOTITLE #START-DATE (DF=L)
/ fFUNDERLINE
/ FSCALE
END o

Statements 243



Examples of DEFINE DATA Statement Usage

Output of Program DDAEXS5:

2005-01-12

B T A T A U A P AV PN AP PP PP

Example 6 - DEFINE DATA (Variable Array)

** Example 'DDAEX6': DEFINE DATA (variable array with (1:V))

P R b i B b b o I i e o i b o b b e b b i b i b i b e b o b o b b b b e b o e g e b b b i o b b b i e b i b b b o
DEFINE DATA LOCAL

1 JARRAY (A1/1:10)

1 {#fMAX-ARR (P3)

END-DEFINE

*

FARRAY (1) := 'R’
FARRAY (2) := 'E'
#ARRAY (3) := 'D’
MAX-ARR  := 4

*

WRITE FFARRAY (*)

*

CALLNAT 'DDAEX6N' #FARRAY(1:4) {FMAX-ARR

*
WRITE fFARRAY (*)
*
*

#IMAX - ARR 5= 5

*

CALLNAT 'DDAEX6N' #FARRAY(1:5) #FMAX-ARR

*

WRITE FFARRAY (*)

*

END w

Subprogram DDAEX6N Called by Program DDAEX6:

** Example 'DDAEX6N': DEFINE DATA (variable array with (1:V))
R R R B b R e b b e b b e e b S b b e e b S e b b S e b b S e b b b S S e b S S e b I e e b b e S
DEFINE DATA
PARAMETER
1 #STRING (A1/1:V)
1 fMAX (P3)
END-DEFINE
*
IF JMAX = 4
MOVE 'B' TO #STRING (1)
MOVE "L' TO #ISTRING (2)

244 Statements



Examples of DEFINE DATA Statement Usage

MOVE 'U'
MOVE 'E'
END-IF

*

IF #iIMAX = 5

MOVE "W’
MOVE 'H'
MOVE 'I'
MOVE 'T'
MOVE 'E'
END-IF
END

Output of Program DDAEX4:

Page

= W
I r— m
— C O
— m
m

T0
TO

T0
T0
T0
T0
T0

#STRING
#STRING

#STRING
#STRING
#STRING
#STRING
#STRING

(3)
(4)

(1)
(2)
(3)
(4)
(5)

©

05-01-12 09:06:43

Statements

245



246



V

= 43 DEFINE FUNCTION

= 44 DEFINE PRINTER

= 45 DEFINE PROTOTYPE

® 46 DEFINE SUBROUTINE ......oiiiii s

= 47 DEFINE WINDOW

= 48 DEFINE WORK FILE

247



248



43 DEFINE FUNCTION

L V101 1o PP P PP PO PPPPRPPPPPPR 250
B SYNEAX DESCIIPHON ...ttt et 250
L =11 OO URP R PUPPPPPRRR 254

249



DEFINE FUNCTION

DEFINE FUNCTION function

Statement. ..
END-FUNCTION

-name
[return-data-definition]

[function-data-definition]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: DEFINE PROTOTYPE

Function

The DEFINE FUNCTION statement is used to create a user-defined function within a Natural object
of type function. A function object may contain only one DEFINE FUNCTION statement, which
defines the function name, the function result, the parameters and the programming code forming

the operation logic.

For further information, see the following sections in the Programming Guide:

® Natural object type Function

= Function Call

® User-Defined Functions

Syntax Description

Syntax Element

Description

function-name

Function Name:
function-name is the symbolic identifier used to call the function.

The name has to follow the same rules which apply for user-defined
variables, see Naming Conventions for User-Defined Variables. This means
the name has to start with a letter or a hash (#), and its maximum length
is 32 characters.

You may not use the same function name twice in one library.

return-data-definition

Return Data Definition Clause:

For details on this clause, see Return Data Definition.

function-data-definition

Function Data Definition Clause:

250

Statements



DEFINE FUNCTION

Syntax Element Description

For details on this clause, see Function Data Definition.

statement. .. Statement(s) to be Executed:

Defines the operation section which is executed when the function is called.
It forms the function logic.

END-FUNCTION End of DEFINE FUNCTION Statement:

The Natural reserved word END-FUNCTION must be used to terminate the
DEFINE FUNCTION statement.

Return Data Definition

(format-Tlength[/array-definition])
. dialog-element-type
RETURNS [(array-definition)] HANDLE OF{ OBJECT } [BY
[variable-name] A VALUE]
( ‘ U ] [farray-definition]) DYNAMIC
B

The return-data-definition clause defines the format/length and, if applicable, the array
structure of the result value returned by the function.

Syntax Element Description:

Syntax Element Description

variable-name Return Value Name:

Optionally, you may specify a name which is used to access the return field within
the function coding. If no such name is specified, the function name is used
instead.

format-Tlength Format/Length Definition:
The format and length of the result field.

For information on format/length definition of user-defined variables, see Format
and Length of User-Defined Variables in the Programming Guide.

array-definition Array Dimension Definition:

With array-definition, youdefine the lower and upper bounds of a dimension
in an array-definition, if the function result is an array field.

For further information, see DEF INE DATA statement, Array Dimension Definition.

HANDLE OF Dialog Element Type:
dialog-element-type

Statements 251



DEFINE FUNCTION

Syntax Element Description

The type of dialog element. Its possible values are the values of the TYPE attribute.

For further information, see Dialogs and Dialog Elements in the Dialog Component
Reference.

HANDLE OF OBJECT Handle of Object:

Used in conjunction with NaturalX.

For further information, see NaturalX in the Programming Guide.

A, UorB Data Type:

Alphanumeric (A), Unicode (U) or binary (B) for a dynamic result.
DYNAMIC Dynamic Variable:

The function result may be defined as DYNAMIC.

For information on processing dynamic variables, see Introduction to Dynamic
Variables and Fields in the Programming Guide.

BY VALUE BY VALUE Option:

If BY VALUE is specified, the format/length of the “sending” field (defined inside
the return-data-definition clause) and the “receiving” field (which receives the
result at the place where the function is called) must only be transfer compatible.

The format/length of the “receiving” field is either

® defined via an explicit (IR=) option in the function call; or
® defined with a DEFINE PROTOTYPE statement; or
® taken over from the RETURNS field of the function object, which must already

exist.

For data transfer compatibility the rules outlined in Rules for Arithmetic Assignment
and Data Transfer in the Programming Guide apply.

If BY VALUE is not specified, the format and length of the “receiving” field must
exactly match the characteristics of the “sending” field.

Function Data Definition

DEFINE DATA

PARAMETER{ USING parameter-data-area }

parameter-data-definition ..

252 Statements



DEFINE FUNCTION

USING
LOCAL ‘

END-DEFINE

data-definition..

[INDEPENDENT AIV-data-definition..]

{ Tocal-data-area }
parameter-data-area ]

The function-data-definitionclause defines the the parameters which are to be provided when
the function is called, and the data fields used by the function, such as local and independent

variables.

Syntax Element Description:

Syntax Element

Description

USING parameter-data-area

PDA Name:

The name of the parameter-data-area that contains data elements
which are used as parameters in a function call.

See also Defining Parameter Data in the DEFINE DATA statement
description.

parameter-data-definition

Direct Parameter Data Definition:

Instead of defining a parameter data area, parameter data can also be
defined directly within a function call.

See also Direct Parameter Data Definition inthe DEFINE DATA statement
description.

USING TJocal-data-area

LDA Name:
Specify the name of the local data area (LDA) to be referenced.

See also Defining Local Data in the DEFINE DATA statement description.

USING parameter-data-area

PDA Name:
Specify the name of a parameter data area (PDA).

Note: A data area referenced with DEFINE DATA LOCAL may also be a

parameter data area (PDA). By using a PDA as an LDA you can avoid
the extra effort of creating an LDA that has the same structure as the PDA.

See also Defining Local Data in the DEFINE DATA statement description.

data-definition

Direct Data Definition:

For information on how to define elements or fields within the statement
itself, that is, without using an LDA or PDA, see the section Direct Data
Definition in the DEFINE DATA statement description.

Statements

253



DEFINE FUNCTION

Syntax Element Description

INDEPENDENT AIV Data Definition:

AlV-data-definition
Can be used to define a single or multiple application-independent

variables (AIVs).

See Defining Application-Independent Variables in the DEFINE DATA
statement description.

END-DEFINE End of Clause:

The Natural reserved word END-DEFINE must be used to end the
function-data-definition clause.

Examples

= Example 1 - DEFINE FUNCTION
= Example 2 - DEFINE FUNCTION with Result Value Array

Example 1 - DEFINE FUNCTION

**% Example 'DFUEX1': DEFINE FUNCTION
khkhkkhkhhkhkhkhkhkhhkhkhhkkhkhhkhhhkhkhhkhhkhkhkhhhhhkhhkhkhhkhkhhkhhhkhkhhkhhkhkhkhhkhhkhkhhkhrhhkhkhkhkkhhkhkhikxk
DEFINE FUNCTION F#FIRST-CHAR

RETURNS #RESULT (A1)

DEFINE DATA PARAMETER

1 {fPARM (A10)

END-DEFINE

/*

F#FRESULT := 4FPARM /* First character as return value.
END-FUNCTION

*

END

The function F#FIRST-CHAR is used in the example program DPTEX? in library SYSEXSYN. See Ex-
amples in the DEFINE PROTOTYPE statement description.

254 Statements



DEFINE FUNCTION

Example 2 - DEFINE FUNCTION with Result Value Array

** Example 'DFUEX2': DEFINE FUNCTION
Sk o ok o o ok ok ok ok ok kK ko o o ok o ok ok ok ok ok ok ko ok ok ok o o ok ok ok ok ok ok ok ko ko ok o o o ok ok ok ok ok ok ok ko ok o ok ok ok ok o ok ok ok
DEFINE FUNCTION F#FACTOR

RETURNS (I2/1:3)

DEFINE DATA PARAMETER

1 #VALUE (I2)

END-DEFINE

/*

FFACTOR(1) := #VALUE * 1

F#FACTOR(2) := #VALUE * 2

FFACTOR(3) := #VALUE * 3

/*
END-FUNCTION

*

END

The function F#FACTOR is used in the example program DPTEX1 in library SYSEXSYN. See Examples
in the DEFINE PROTOTYPE statement description.

Statements 255



256



44 DEFINE PRINTER

L V101 1o PP P PP PO PPPPRPPPPPPR 258
B SYNEAX DESCIIPHON ...ttt et 258
L =11 OO URP R PUPPPPPRRR 260

257



DEFINE PRINTER

DEFINE PRINTER([Togical-printer-name=]n)
[OUTPUT operandI]
PROFILE operand?

DISP operandz
COPIES operand3

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DISPLAY | EJECT |
FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRATLER

Belongs to Function Group: Creation of Output Reports

Function

The DEFINE PRINTER statement is used to assign a symbolic name to a report number and to control
the allocation of a report to a logical destination. This provides you with additional flexibility
when creating output for various logical print queues.

When this statement is executed and the specified printer is already open, the statement will im-
plicitly cause that printer to be closed. To explicitly close a printer, however, you should use the
CLOSE PRINTER statement.

Syntax Description

Operand Definition Table:

Operand Possible Structure  Possible Formats Referencing Permitted Dynamic Definition
operandl |C |S A yes no
operandz |C |S A yes no

Syntax Element Description:

258 Statements



DEFINE PRINTER

Syntax Element

Description

(n)

Printer Number (Report Number):

The report number 1 may be a value in the range of 0 - 31. This is the number
alsotobeusedina DISPLAY /WRITE or CLOSE PRINTER statement.

Report number 0 indicates the output channel of the main report. Only output
statements such as PRINT, WRITE or DISPLAY are affected. The INPUT statement
is not affected.

logical-printer-name

Logical Printer Name:

Optionally you can assign a logical name 7ogical-printer-name to printer
n. This name can be used for the rep notationina DISPLAY / WRITE statement.

Naming conventions for /ogical-printer-name are the same as for
user-defined variables. Multiple logical names may be assigned to the same
printer number. Unlike the value of the OUTPUT operand (see below),
Togical-printer-nameis evaluated at compilation time and therefore
independent of the program control flow.

QUTPUT operandl

Printer Name:

If operandl is a variable, its format/length must be A8 or one of the following.
The name must be specified as LPTrnn, where nn may be a number in the range
of I - 31.See also Example 1.

Additional reports can be assigned with the following names:

Report Function
DUMMY Output to be deleted.
INFOLINE Output to the Natural infoline. For details

on the infoline, see the Natural terminal
command %X in the Terminal Commands
documentation. See also Example 2.

SOURCE Output to the Natural source area.

PROFILE operand?

Name of Printer Control Characters Table:

With the PROF I LE clause, you specify as operandZ the name of a printer control
characters table. The maximum length allowed for operandZis 8.

Such a table is defined in the global configuration file. See Printer Profiles in the
Configuration Utility documentation for details on how to set printer profiles.

DISP operand?

Disposition:

Maximum length of operand: 4 bytes.

Possible values for operand?:

Statements

259



DEFINE PRINTER

Syntax Element Description
DEL The temporary spool file is deleted after its
content has been printed.
This is the default value.
KEEP The temporary spool file is not deleted after
its content has been printed.
HOLD The temporary spool file is neither deleted
nor printed.
COPIES operand3 Number of Copies:
operand3 must be an integer value.

Examples

= Example 1 - Printer Name Definition
= Example 2 - Print Output to Infoline

Example 1 - Printer Name Definition

/* PRINTER NAME DEFINED FOR WINDOWS

*

DEFINE PRINTER (REPORT1 = 1) OUTPUT 'LPT1'

WRITE (REPORT1) 'REPORT 1 PRINTED ON PRINTER LPT1'
END

Example 2 - Print Output to Infoline

** Example 'DPIEX1': DEFINE PRINTER

R R B b R R e I b b R e b b e e b b e e b b e e b R S e b b S e b b R e I b b R e b b S e e b R e b b e b b b e
*

SET CONTROL "XI+' /* SWITCH INFOLINE MODE ON
SET CONTROL "XT' /* INFOLINE TOP

*

DEFINE PRINTER (1) QUTPUT 'INFOLINE'

WRITE (1) "EXECUTING' *PROGRAM 'BY' *INIT-USER
WRITE 'TEST QUTPUT'

EJECT /* FORCE PHYSICAL I/0

*

SET CONTROL "X' /* SWITCH BACK TO NORMAL
*

END

260

Statements



DEFINE PRINTER

Output of Program DPIEX1:

EXECUTING DPIEX1 BY HTR

Page 1 05-01-13 14:54:33

TEST QUTPUT

Statements 261



262



45 DEFINE PROTOTYPE

L V101 1o PP P PP PO PPPPRPPPPPPR 264
B SYNEAX DESCIIPHON ...ttt et 265
L =11 OO URP R PUPPPPPRRR 269

263



DEFINE PROTOTYPE

prototype-name
DEFINE PROTOTYPE [FOR] VARIABLE
prototype-variable-name

UNKNOWN
[return-data-definition]
[parameter-definition]
same-as-clause

USING FUNCTION[DEFINITION[OFII
function-name

END-PROTOTYPE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statement: DEFINE FUNCTION

Function

The prototype definition can be used to describe the call interface of a certain function. This includes
the parameters which are to be passed in a function call, the result value returned by the function
call, and the calling mode of the function (symbolic or variable). This information is used to resolve
a function call within a programming object.

The information provided by a DEFINE PROTOTYPE statement can also be obtained partly from
another source by the compiler. When a corresponding DEFINE PROTOTYPE statement is missing
and the cataloged version of the called function is available, the resultlayout and parameter layout
are extracted from the function object.

A variable function call, where the function name is an alphanumeric variable which contains the
function name, can only be indicated with a DEFINE PROTOTYPE statement.

Therefore, a DEFINE PROTOTYPE statement is only needed for a function call,

® if a variable function call is to be coded;

® if an (IR=) option is not specified in the function call and the cataloged version of the called
function is not available;

= if the parameters provided in the function call are to be validated and the cataloged version of
the called function is not available.

For further information, see the following sections in the Programming Guide:

® Natural object type Function

= Function Call

264 Statements



DEFINE PROTOTYPE

® User-Defined Functions

Syntax Description

Syntax Element

Description

prototype-name

Prototype Name:

prototype-nameis the identifier of the function which is described by this
prototype. If the name matches an existent function name, this prototype is
used to resolve the function calls with this name. A prototype definition can
also be used in the (PT=) option of a function call. Then the referenced
prototype will overrule the result und parameter layouts.

The name has to follow the same rules which apply for a function name.
This means the name has to start with a letter or a hash (#), and the maximum
length is 32 characters.

VARTABLE
prototype-variable-name

Prototype Variable Name:

prototype-variable-name is the name of an alphanumeric field used as
function name in a function call. At execution time it has to contain the name
of the function to be called.

The name has to follow the same rules which apply for a variable reference,
including field qualification, but without array index references.

UNKNOWN

UNKNOWN Option:

The keyword UNKNOWN can be used to specify that the function interface is
currently undefined. In this case, the cataloged object (if available) will not
be used to extract the function result and the parameter description. When
a function call is embedded in a Natural statement, this requires to give the
result layout explicitly with an (IR=) option. In addition, parameters
provided in the function call are not checked.

return-data-definition

See Return Data Definition below.

parameter-definition

See Parameter Definition below.

same-clause

See SAME AS Clause below.

USING FUNCTION
[DEFINITION [OF]]
function-name

See USING FUNCTION Clause below.

END-PROTOTYPE

End of DEFINE PROTOTYPE Statement:

The Natural reserved word END-PROTOTYPE must be used to terminate the
DEFINE PROTOTYPE statement.

Statements

265



DEFINE PROTOTYPE

Return Data Definition

(format-Tlength [/array-definition])
[(array-definition)] HANDLE OF OBJECT

RETURNS [(array-definition)] HANDLE OF GUI
[variable-namel A
( ‘ U ] [/array-definition]) DYNAMIC
B

The return-data-definition clause defines the format/length and, if applicable, the array
structure of the return value.

When no return data definition is specified, a function call can only be used within a statement if
an explicit (IR=) option is provided. If such a clause is missing, the function can only be called
stand-alone, but not in place of an operand in a statement.

Syntax Element Description:

Syntax Element Description

variable-name Return Value Name:

The optional variable-namehasno meaning. It is just there to have a syntax structure
similar to the Return Data Definition clause of the DEFINE FUNCTION statement.

format-length Format/Length Definition:
The format and length of the result field.

For information on format/length definition of user-defined variables, see Format and
Length of User-Defined Variables in the Programming Guide.

array-definition|Array Dimension Definition:

With array-definition, you define the lower and upper bounds of a dimension
in an array-definition, if the function result is an array field.

For further information, see Array Dimension Definition in the description of the
DEFINE DATA statement.

HANDLE OF GUI Handle of GUI:

Used in conjunction with event-driven programming.

See HANDLE OF GUI in Event-Driven Programming Techniques in the Programming
Guide.

HANDLE OF OBJECT|Handle of Object:

Used in conjunction with NaturalX.

For further information, see NaturalX in the Programming Guide.

266 Statements



DEFINE PROTOTYPE

Syntax Element Description

A, UorB Data Type:

Alphanumeric (A), Unicode (U) or binary (B) for a dynamic result.

DYNAMIC Dynamic Variable:

The function result may be defined as DYNAMIC.

For information on processing dynamic variables, see Introduction to Dynamic Variables
and Fields in the Programming Guide.

Parameter Definition

DEFINE DATA
PARAMETER UNKNOWN

PARAMETER {

END-DEFINE

USING parameter-data-area }

parameter-data-definition

The parameter-definition clause defines the parameters which are to be provided in a function
call. This definition layout is checked against the parameters given in a function call. If this clause
is omitted, this declares the function as free of parameters. In this case, every attempt to provide
parameters in the function call is rejected.

The identifiers used to name the parameter fields have no meaning. They are just there to have a
syntax structure similar to the DEFINE DATA PARAMETER syntax.

Syntax Element Description:

Syntax Element

Description

PARAMETER UNKNOWN

UNKNOWN Option:

With this option, no parameter is specified and the parameter check in
the function call is disabled. As a consequence, any number of parameters
in the function call will be accepted.

USING parameter-data-area

PDA Name:

The name of the parameter-data-area that contains data elements
which are used as parameters in a function call.

See also Defining Parameter Data in the DEFINE DATA statement
description.

parameter-data-definition

Direct Parameter Data Definition:

Statements

267



DEFINE PROTOTYPE

Syntax Element Description

Instead of defining a parameter data area, parameter data can also be
defined directly within a function call.

See also Direct Parameter Data Definition inthe DEFINE DATA statement
description.

END-DEFINE End of Clause:

The Natural reserved word END-DEFINE must be used to end the
parameter-definition clause.

SAME AS Clause

rototype-name
SAME AS [PROTOTYPE] { P P }

prototype-variable-name

With the same-as -clause clause you may use the result layout and the parameter layout of another
prototype, which has been defined before in the same programming object.

Syntax Element Description:

Syntax Element Description

prototype-name Name of Referenced Prototype:

prototype-name is the identifier of the prototype whose result and
parameters layouts are to be used.

prototype-variable-name|Variable Name of Referenced Prototype:

prototype-variable-nameisthe name of an alphanumeric field used as
function name in a function call. At execution time it has to contain the name
of the function to be called.

The name has to follow the same rules which apply for a variable reference,
including field qualification, but without array index references.

USING FUNCTION Clause

USING FUNCTION[DEFINITION [OF]] function-name

This clause offers the possibility to reference a function, which is used to extract the result and
parameter layouts. The function-name provided has to be the name of an existing cataloged
function object.

Be aware, the function-name is defined in the DEFINE FUNCTION statement (see function-name)
and does not necessarily have to match the name of the module in which the function is defined.

268 Statements



DEFINE PROTOTYPE

Examples

= Example 1 - DEFINE PROTOTYPE for a Symbolic Function Cal
= Example 2 - DEFINE PROTOTYPE for a Variable Function Call

Example 1 - DEFINE PROTOTYPE for a Symbolic Function Call

This is a prototype definition of a function named F#FACTOR. Since the keyword VARIABLE is
missing, the function call to F#FACTOR will be treated as a symbolic function call. The result returned
by the function is of format (I12/1:3), and a single parameter of format (I2) is required.

** Example 'DPTEX1': DEFINE PROTOTYPE and function call
Kkhkkkhkhkkhkhkkhhkkhkhkhhkkhkhkhhkkhhkhhkkhkhkhhkkhkhkhhkkhrkhhkhhkhhkhhkhhkhrkhhkhkhkhhkhkrkhhkhrkhhkhkrkhhkhkrkhrkhkrkhkrkhxk
DEFINE DATA LOCAL

1 #NUM (12)
END-DEFINE
*
DEFINE PROTOTYPE F#fFACTOR

RETURNS (I2/1:3)

DEFINE DATA PARAMETER

1 #fVALUE (I2)

END-DEFINE

END-PROTOTYPE

*

#INUM = 3

*

WRITE 'Function call:" F#FACTOR(<FENUMD) (*)
*

END

The function F#FACTOR is defined in the example function DFUEX? in library SYSEXSYN. See Examples
in the DEFINE FUNCTION statement description.

Output of Program DPTEX1:

Function call: 3 6 9

Statements 269



DEFINE PROTOTYPE

Example 2 - DEFINE PROTOTYPE for a Variable Function Call

Due to the keyword VARIABLE, this prototype specifies a variable function call. In this case, the
prototype-name referenced is not the name of the called function, but the name of an alphanumeric
variable which contains the function name at execution time.

** Example 'DPTEX2': DEFINE PROTOTYPE and function call
R B R R o S R e e b S S e b b i e b I b S S i b b e e S b b S S i b b i S d b b S e S b e S S b b b i e i b
DEFINE DATA LOCAL
1 #NAME (A20)
1 #TEXT (A10) .

END-DEFINE
e
DEFINE PROTOTYPE VARIABLE #NAME
RETURNS #RETURN (A1)
DEFINE DATA PARAMETER
1 #IN (A10)
END-DEFINE
END-PROTOTYPE
e
#NAME
FTEXT

*

WRITE 'First character:' #NAME(<HFTEXT>)

*

END

"F{#fFIRST-CHAR"
"ABCDEFGHIJ'

The function F#FIRST-CHAR is defined in the example function DFUEX1 in library SYSEXSYN. See
Examples in the DEFINE FUNCTION statement description.

Output of Program DPTEX2:

First character: A «

270 Statements



46 DEFINE SUBROUTINE

LI V1ot o PSP PPPPURSR PP 272
L =1 (47 o PSPPSR 273
B SYNEAX DESCIIPHON ...ttt e 274
L e 11T P URT R SUPPPRPRR 274

271



DEFINE SUBROUTINE

DEFINE [SUBROUTINE] subroutine-name
statement ...
{ END-SUBROUTINE (structured mode only) }

RETURN (reporting mode only)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CALL | CALL FILE | CALL LOOP | CALLNAT | ESCAPE | FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The DEFINE SUBROUTINE statementis used to define a Natural subroutine. A subroutine is invoked
with a PERFORM statement.

Inline/External Subroutines

A subroutine may be defined within the object which contains the PERFORM statement that invokes
the subroutine (inline subroutine); or it may be defined external to the object that contains the
PERFORM statement (external subroutine). An inline subroutine may be defined before or after the
first PERFORM statement which references it.

| Note: Although the structuring of a program function into multiple external subroutines

is recommended for achieving a clear program structure, please note that a subroutine
should always contain a larger function block because the invocation of the external sub-
routine represents an additional overhead as compared with inline code or subroutines.

Data Available in a Subroutine

Inline Subroutines

No explicit parameters can be passed from the invoking program via the PERFORM statement to an
internal subroutine.

An inline subroutine has access to the currently established global data area as well as to the local
data area used by the invoking program.

External Subroutines

An external subroutine has access to the currently established global data area. In addition, para-
meters can be passed directly with the PERFORM statement from the invoking object to the external
subroutine; thus, you may reduce the size of the global data area.

272 Statements



DEFINE SUBROUTINE

An external subroutine has no access to the local data area defined in the calling program; however,
an external subroutine may have its own local data area.

Restrictions

" Any processing loop initiated within a subroutine must be closed before END-SUBROUTINE is is-
sued.

® An inline subroutine must not contain another DEFINE SUBROUTINE statement (see Example 1
below).

" An external subroutine (that is, an object of type subroutine) must not contain more than one
DEFINE SUBROUTINE statement block (see Example 2 below). However, an external DEFINE
SUBROUTINE block may contain further inline subroutines (see Example 1 below).

Example 1

The following construction is possible in an object of type subroutine, but not in any other object
(where SUBRO1 would be considered an inline subroutine):

DEFINE SUBROUTINE SUBRO1

PERFORM SUBROZ
PERFORM SUBRO3

DEFINE SUBROUTINE SUBROZ2
/* inline subroutine...
END-SUBROUTINE

DEFINE SUBROUTINE SUBRO3
/* inline subroutine...
END-SUBROUTINE
END-SUBROUTINE
END

Example 2 (invalid):

The following construction is not allowed in an object of type subroutine:

Statements 273



DEFINE SUBROUTINE

DEFINE SUBROUTINE SUBROL

END-SUBROUTINE

DEFINE SUBROUTINE SUBROZ

END-SUBROUTINE
END

Syntax Description

Syntax Element

Description

subroutine-name

Name of Subroutine:

For a subroutine name (maximum 32 characters), the same naming conventions apply
as for user-defined variables; see Naming Conventions for User-Defined Variables in the
Using Natural Studio documentation.

The subroutine name is independent of the name of the module in which the
subroutine is defined (it may but need not be the same).

statement

Statement(s) to be Executed:
In place of statement, youmust supply one or several suitable statements, depending
on the situation. For an example of a statement, see Examples below.

END-SUBROUTINE
RETURN

End of DEFINE SUBROUTINE Statement:

In structured mode, the subroutine definition is terminated with END-SUBROUTINE.

In reporting mode, RETURN may be used to terminate a subroutine.

Examples

= Example 1 -

Define Subroutine

274

Statements




DEFINE SUBROUTINE

= Example 2 - Sample Structure for External Subroutine Using GDA Fields

Example 1 - Define Subroutine

** Example 'DSREX1S': DEFINE SUBROUTINE (structured mode)

R R R R R b b R b e b e I b R R i b e b e i b i R e i R b b S b R R e i b b e S b b

DEFINE DATA LOCAL

1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 ADDRESS-LINE (A20/2)
2 PHONE
*
1 JFARRAY (A75/1:4)
1 REDEFINE #fARRAY
2 ffALINE  (A25/1:4,1:3)

1 #X (N2) INIT <1>
1 gy (N2) INIT <1>
END-DEFINE

*

FORMAT PS=20
LIMIT 5

FIND EMPLOY-VIEW WITH NAME =
MOVE NAME TO F#ALINE (4X,4Y)
MOVE ADDRESS-LINE(1) TO #ALINE (#X+1,#Y)
MOVE ADDRESS-LINE(2) TO fFALINE (#X+2,#Y)
MOVE PHONE TO fFALINE (#X+3,4Y)

IF #Y =3
RESET INITIAL #Y
PERFORM PRINT
ELSE
ADD 1 TO fY
END-IF
AT END OF DATA
PERFORM PRINT
END-ENDDATA
END-FIND

*

DEFINE SUBROUTINE PRINT

WRITE NOTITLE (AD=0I) FFARRAY(*)

RESET #ARRAY (*)
SKIP 1
END-SUBROUTINE

*

END <

Statements

275



DEFINE SUBROUTINE

Output of Program DSREX1S:

SMITH SMITH SMITH

ENGLANDSVEJ 222 3152 SHETLAND ROAD 14100 ESWORTHY RD.
MILWAUKEE MONTERREY

554349 877-4563 994-2260

SMITH SMITH

5 HAWTHORN 13002 NEW ARDEN COUR

0AK BROOK SILVER SPRING

150-9351 639-8963 S

Equivalent reporting-mode example: DSREX1R.

Example 2 - Sample Structure for External Subroutine Using GDA Fields

** Example 'DSREX2': DEFINE SUBROUTINE (using GDA fields)
B S b S b b S b S S B S S
DEFINE DATA
GLOBAL
USING DSREX2G
END-DEFINE

*

INPUT '"Enter value in GDA field"' GDA-FIELDI

*

* Call external subroutine in DSREX2S

*

PERFORM DSREX2-SUB

*

END ©

Global Data Area DSREX2G Used by Program DSREX2:

1 GDA-FIELDI A 2

Subroutine DSREX2S Called by Program DSREX2:

**% Example 'DSREX2S': SUBROUTINE (external subroutine using global data)
R i b B i i b B B i i e e S i i b e e e b b b e e S i b o o i e i e b i B i i b b i e e g
DEFINE DATA
GLOBAL

USING DSREX2G
END-DEFINE

*

DEFINE SUBROUTINE DSREX2-SUB

*

WRITE "IN SUBROUTINE' *PROGRAM '=" GDA-FIELDI

*

276

Statements



DEFINE SUBROUTINE

END-SUBROUTINE

*

END

Statements 277



278



47 DEFINE WINDOW

L V101 1o PP P PP PO PPPPRPPPPPPR 280
B SYNEAX DESCIIPHON ...ttt et 281
= Protection of Input Fields in @ WINAOW ... 285
= |nvoking Different WINAOWS ........cooiiiiiiiii e 285
B EXAMIPDIE 1ot 285

279



DEFINE WINDOW

DEFINE WINDOW window-name

AUTO
SIZE QUARTER ’
operandl * operand?
CURSOR
TOP LEFT
BASE
BOTTOM RIGHT
operand3/ operand4

[REVERSED [(CD=background-colonr]l]
[TITLE operand5]

[ WINDOW
CONTROL { }
SCREEN
ON][(CD=frame-color osition-clause
[ e {0 ]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: INPUT | REINPUT | SET WINDOW

Belongs to Function Group: Screen Generation for Interactive Processing

Function

The DEFINE WINDOW statement is used to specify the size, position and attributes of a window.

A window is that segment of a logical page, built by a program, which is displayed on the terminal
screen. There is always a window present, although you may not be aware of its existence: unless
specified differently, the size of the window is identical to the physical size of your terminal screen.

A DEFINE WINDOW statement does not activate a window; this is done with a SET WINDOW statement
or with the WINDOW clause of an INPUT statement.

J Note: There is always only one Natural window, that is, the most recent window. Any
previous windows may still be visible on the screen, but are no longer active and are ignored
by Natural. You may enter input only in the most recent window. If there is not enough
space to enter input, the window size must be adjusted first.

280 Statements



DEFINE WINDOW

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C |S N|P|I yes no
operand2 |C |S N|P|I yes no
operand3 |C |S N|P|I yes no
operand4 |C |S N|P|I yes no
operand5 |C |S AU yes no
Syntax Element Description:
Syntax Element Description
window-name The window-name identifies the window. The name may be up to 32 characters

long. For a window name, the same naming conventions apply as for user-defined
variables, see Naming Conventions for User-Defined Variables in the Using Natural
Studio documentation.

SIZE With the SIZE clause, you specify the size of the window.

Note: On mainframe computers, Natural requires additional columns for so-called

attribute bytes to be able to display data on the screen (on other platforms, such
attribute bytes are not needed). Consequently, on mainframe computers the screen
area overlaid by a window is wider, and the size of the page segment visible inside
a window is smaller than on other platforms.

Example: Assume a window whose size is defined as SIZE 5 * 15 (that is, with
a width of 15 columns):

B On mainframe computers, the screen area overlaid by the window is 16 columns;
the size of what is visible inside the window is 14 columns without frame, and
10 columns with frame respectively.

® On other platforms, the screen area overlaid by the window is 15 columns; the
size of what is visible inside the window is 15 columns without frame, and 13
columns with frame respectively.

SIZE AUTO The size of the window is determined automatically by Natural at runtime. The size
is determined by the data generated into the window as follows:

= The number of window lines will be the number of INPUT lines generated (plus
possibly the PE-key lines, message line, and infoline/statistics line).

® The number of window columns is determined by the longest INPUT line: Natural
scans, starting from the ends of the lines, for the rightmost significant byte in a

Statements 281



DEFINE WINDOW

Syntax Element

Description

line. This may cause an input-only or modifiable field ( AD=A or AD=M) to be
truncated; to avoid this, you either put a single-character text string after such a
field or explicitly set the window size with the following:

SIZE operandl *
operand?

If you omit the SI/ZE clause, SIZE AUTO applies by default.

Note: The title is not part of the window data. Therefore, if the window size has

been determined as described above and the title is longer than the window, it will
be truncated.

SIZE QUARTER

The size of the window will be one quarter of the physical screen.

SIZE operandl *
operand?

The size of the window will be 1 lines by 1 columns. The number of lines is
determined by operand1l, the number of columns by operandZ. Neither of the two
operands must contain decimal digits.

If the window is FRAMED, the specified size will be inclusive of the frame.
The minimum possible window size is:

= without frame: 2 lines by 10 columns,

= with frame: 4 lines by 13 columns.

The maximum possible window size is the size of the physical screen.

BASE

With the BASE clause, you determine the position of the window on the physical
screen. If you omit the BASE clause, BASE CURSOR applies by default.

BASE CURSOR

Places the top left corner of the window at the current cursor position. The cursor
position is the physical position of the cursor on the screen. If the size of the window
makes it impossible to place the window at the cursor position, Natural automatically
places the window as close as possible to the desired position.

BASE TOP/BOTTOM

Places the window at the top-left, bottom-left, top-right, or bottom-right corner

LEFT/RIGHT respectively of the physical screen.

BASE This places the top left corner of the window at the specified line/column of the

operand3/operand4|physical screen. The line number is determined by operand3, the column number
by operand4. Neither of the two operands must contain decimal digits.
If the size of the window makes it impossible to place the window at the specified
position, you will get an error message.

REVERSED REVERSED will cause the window to be displayed in reverse video (if the screen

used supports this feature; if it does not, REVERSED will be ignored).

REVERSED CD=
background-color

This will cause the window to be displayed in reverse video and the background
of the window in the specified color (if the screen used supports these features; if
it does not, the respective specification will be ignored).

282

Statements



DEFINE WINDOW

Syntax Element

Description

For information on valid color codes, see session parameter CD in the Parameter
Reference.

TITLE operand5

With the TITLE clause, you may specify a heading for the window. The specified
title (operandb) will be displayed centered in the top frame-line of the window.
The title can be specified either as a text constant (in apostrophes) or as the content
of a user-defined variable. If the title is longer than the window, it will be truncated.
The title is only displayed if the window is FRAMED; if FRAMED OFF is specified for
the window, the TITLE clause will be ignored.

Note: If the title contains trailing blanks, these will be removed. If the first character
of the title is a blank, one blank will automatically be appended to the title.

CONTROL

With the CONTROL clause, you determine whether the PF-key lines, the message line
and the statistics line are displayed in the window or on the full physical screen.

CONTROL WINDOW

CONTROL WINDOW causes the lines to be displayed inside the window.

If you omit the CONTROL clause, CONTROL WINDOW applies by default.

CONTROL SCREEN

CONTROL SCREEN causes the lines to be displayed on the full physical screen outside
the window.

FRAMED

By default, that is, if you omit the FRAMED clause, the window is framed.

The top and bottom frame lines are cursor-sensitive: where applicable, you can page
forward, backward, left or right within the window by simply placing the cursor
over the appropriate symbol (<, -, +, or >; see position-clause below) and then
pressing ENTER. If no symbols are displayed, you can page backward and forward
within the window by placing the cursor in the top frame line (for backward
positioning) or bottom frame line (for forward positioning) and then pressing ENTER.

Note: If the window size is smaller than 4 lines by 12 (or 13 on mainframe

computers) columns, the frame will not be visible.

FRAMED OFF

If you specify FRAMED OFF, the framing and everything attached to the frame
(window title and position information) will be switched off.

FRAMED
(CD=frame-color)

This causes the frame of the window to be displayed in the specified color (if the
screen used is a color screen; if it is not, the color specification will be ignored).

For information on valid color codes, see session parameter CD (in the Parameter
Reference).

Note: In Natural for Windows, this specification is ignored.

position-clause

The POSITION clause is only evaluated on mainframe computers; on all other
platforms it is ignored. For details, refer to Position Clause below.

Statements

283



DEFINE WINDOW

POSITION Clause

The POSITION clause is only evaluated on mainframe computers; on all other platforms it is ignored.

SYMBOL

POSITION

0P LEFT
[AUTO] [SHORT]
BOTTOM RIGHT
LEFT
TEXT [MORE] [ ]
RIGHT
OFF

The POSITION clause causes information on the position of the window on the logical page to be

displayed in the frame of the window. This applies only if the logical page is larger than the win-
dow; if it is not, the POSITION clause will be ignored. The position information indicates in which
directions the logical page extends above, below, to the left and to the right of the current window.

If the POSITION clause is omitted, POSITION SYMBOL TOP RIGHT applies by default.

Syntax Element Description:

Syntax Element

Description

POSITION SYMBOL

Causes the position information to be displayed in form of symbols: More: < -
+ >. The information is displayed in the top and/or bottom frame line.

TOP/BOTTOM Determines whether the position information is displayed in the top or bottom
frame line.

AUTO Is only applicable if the logical page is fully visible in the window as far as its
horizontal size is concerned, that is, if only a minus sign character (-) and/or a
plus sign character (+) are to be displayed. In this case, AUT0 automatically switches
from the symbols to the words Top, Bottom and More respectively.

SHORT Causes the word More : before the symbols < - + > to be suppressed.

LEFT/RIGHT Determines whether the position information is displayed in the left or right part

of the frame line.

POSITION TEXT

Causes the position information to be displayed in text form. The information is
displayed in the top and/or bottom frame line with the words More,Top and
Bottom. The text is language-dependent and may also be displayed in another
language if the language code is set accordingly.

POSITION TEXT MORE

Suppresses the words Top and Bottom and only displays the word More where
applicable, i.e., in the top or bottom frame line or both.

LEFT/RIGHT

Determines whether the position information is displayed in the left or right part
of the top frame line.

POSITION OFF

Causes the position information to be suppressed; no position information will
be displayed.

284

Statements



DEFINE WINDOW

Protection of Input Fields in a Window

The following rules apply to input fields (with AD=A or AD=M) which are not entirely within the
window:

® Input fields whose beginning is not inside the window are always made protected.

* Input fields which begin inside and end outside the window are only made protected if the
values they contain cannot be displayed completely in the window. Please note that in this case
itis decisive whether the value length, not the field length, exceeds the window size. Filler characters
(as specified with the profile parameter FC) do not count as part of the value.

If you wish to access input fields thus protected, you have to adjust the window size accordingly
so that the beginning of the field/end of the value is within the window.

Invoking Different Windows

ADEFINE WINDOW statement must not be placed within a logical condition statement block. To invoke
different windows depending on a condition, use different SET WINDOW statements (or INPUT
statements with a WINDOW clause respectively) in a condition.

Example

** Example 'DWDEX1': DEFINE WINDOW

ko o e ok o ek ok o ook ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok
DEFINE DATA LOCAL

01 #I (P3)

END-DEFINE

*

SET KEY PF1l='%W<<' PF2="%W>>"' PF4="%W--' PF5="'%W++"
*
DEFINE WINDOW WIND1
SIZE QUARTER
BASE TOP RIGHT
FRAMED ON POSITION SYMBOL AUTO
*
SET WINDOW 'WINDI'
FOR #I = 1 TO 10
WRITE 25X #I 'THIS IS SOME LONG TEXT' #I
END-FOR

*

END

Statements 285



DEFINE WINDOW

Output of Program DWDEX1:

pooscoscscoocoooos More 4 D
>r ! Page !
A1l R S P S~ PRPRC B

0010 ** Example 'DWDEX1': DEFINE WIND ! 1 THIS !

0020 khkkkhkkhkkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhkhkkhkhkhkitx I 2 THIS l

0030 DEFINE DATA LOCAL ! 3 THIS !

0040 01 #I (P3) ! 4 THIS |

0050 END-DEFINE ! 5 THIS !

0060 * ! 6 THIS !

0070 SET KEY PF1="%W<<' PF2="%W>>' PF ! 7 THIS !

0080 * ! MORE !

0090 DEFINE WINDOW WINDI fe===scc==s2cc=s2ccs22ccc252c=02c220= 4

0100 SIZE QUARTER

0110 BASE TOP RIGHT

0120 FRAMED ON POSITION SYMBOL AUTO

0130 *

0140 SET WINDOW 'WINDI1'

0150 FOR #I =1 TO 10

0160 WRITE 25X #I 'THIS IS SOME LONG TEXT' #I

0170 END-FOR

0180 *

0190 END

0200

4 1 4 2 A 3 4 4 S 19 L1 ©

286 Statements



48 DEFINE WORK FILE

L V101 1o PP P PP PO PPPPRPPPPPPR 288
B SYNEAX DESCIIPHON ...ttt et 288

287



DEFINE WORK FILE

operandI [TYPE operand?]

TYPE operand? } [ATTRIBUTES {operand3}...]

DEFINE WORK FILEn {

J Note: The elements shown in square brackets [...] are optional, however, at least one of

them must be specified with this statement.
For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements: CLOSE WORK FILE | READ WORK FILE | WRITE WORK FILE

Belongs to Function Group: Control of Work Files / PC Files

Function

The statement DEFINE WORK FILE is used to assign a file name to a Natural work file number
within a Natural application.

This allows you to make or change work file assignments dynamically within a Natural session
or overwrite work file assignments made at another level.

When this statement is executed and the specified work file is already open, the statement will
implicitly close the work file.

] Note: For Unicode and code page support, see Work Files and Print Files on Windows, UNIX
and OpenVMS Platforms in the Unicode and Code Page Support documentation.

Syntax Description

Operand Definition Table:

Operand Possible Structure | Possible Formats |Referencing| Dynamic Definition
Permitted

operandl |C |S AU yes no

operandZ2 |C |S AU yes no

operand3 |C |S AU yes no

| Note: If a format U operand is specified in Unicode (UTF-16), it is converted to session code

page characters before it is evaluated.

Syntax Element Description:

288 Statements



DEFINE WORK FILE

Syntax Element  |Description

DEFINE WORK |Work File Number:

FILE n
n is the work file number (1 to 32). This is the number to be used ina WRITE WORK FILE,
READ WORK FILE or CLOSE WORK FILE statement.

operandl Work File Name:

operand] is the name of the work file.

The file name (operandI) may contain environment variables. It is possible to use physical
work file names. If a file with the specified name does not exist, it will be created.

If operandl is not specified, the value of operand1 is determined by taking the work
file name stored with the Configuration Utility in the parameter file for the corresponding
work file number.

Note: If operandl is not specified, the behavior of Natural for Mainframes and Natural
for Windows/UNIX/OpenVMS is different.

TYPE operand?

TYPE Clause:
operandZ specifies the type of work file.

The value of operand?Zis handled in a case insensitive way and must be enclosed in
quotes or provided in an alphanumeric variable.

DEFAULT Determines the file type from the extension.
Format: Depends on the work file type.

Note: The file type TRANSFER cannot be determined by the

work file type DEFAULT. You must explicitly define
TRANSFER as the file type you wish to use.

TRANSFER Is used to transfer data to and from a PC with Entire
Connection.

This work file type represents a data connection between a
Natural session on UNIX or OpenVMS and an Entire
Connection terminal on a PC.

Format: ENTIRE CONNECTION

Note:

1. This work file type cannot be used in conjunction with
the ATTRIBUTES Clause.

2. This work file type is not available under Windows.

SAG Format: binary

ASCII Files in ASCII are “text” files with records terminated by [a
carriage return] line feed.

Statements

289



DEFINE WORK FILE

Syntax Element

Description

Format: ASCII

ASCIT-COMPRESSED

Is a file in ASCII format, with the exception that all trailing
blanks are removed.

Format: ASCII

ENTIRECONNECTION

With this work file type, you can read and write (using the
statements READ and WRITE, for example) directly from/to
a work file in Entire Connection format on the local disc.

Format: ENTIRE CONNECTION

Note: This work file type is available on PCs, on UNIX and

on OpenVMS. No transfer to PC is possible. The Entire
Connection terminal is not used in this process.

UNFORMATTED

A completely unformatted file. No formatting information
is written (neither for fields nor for records).

Format: UNFORMATTED

PORTABLE

Files which can handle dynamic variables exactly and can
also be transported: for example, from a Little Endian
machine to a Big Endian machine, and vice versa.

Format: PORTABLE

Csv

Comma-separated values. Each record is written to one line
in the file. By default, a header is not written. The default
character which is used to separate the data fields is a
semicolon (;).

For further information, see Work Files in the Configuration
Utility documentation.

ATTRIBUTES
{operand3}. ..

ATTRIBUTES Clause:

operand3 specifies a work file attribute.

Several attributes separated by a comma or a blank can be specified, for example:

DEFINE WORK FILE ATTRIBUTES 'APPEND,KEEP'

If multiple values for the same attribute type are specified, the last value is taken, for

example:

290

Statements



DEFINE WORK FILE

Syntax Element

Description

DEFINE WORK FILE ATTRIBUTES '"APPEND,NOAPPEND'
In this case, NOAPPEND will be taken.

Example for BOM/NOBOM usage:

DEFINE WORK FILE 11 '"x.tmp' ATTRIBUTES 'BOM'

*

* write work file with BOM

*

DEFINE WORK FILE 11 "x.tmp' ATTRIBUTES "NOBOM'

*

* write work file without BOM

Note: If operand3is omitted, the corresponding value defined in the parameter file, as

created by the Configuration Utility, is implicitly used.

The following is an overview of the attribute types and their possible values:

Append Mode:

NOAPPEND Activates the append mode. In this mode, new records are
added at the end of the file.
APPEND Deactivates the append mode. The file is rewritten from the

start. This is the default value.

Keep/Delete File after Work File Close:

DELETE The work file is deleted after a close work file operation.

KEEP The work file is kept after a close work file operation. This
is the default value.

Write Byte Order Mark (BOM):

BOM A byte order mark is written in front of the work file data.

Only available for the work file types which write code page
data: ASCII, ASCIT-COMPRESSED, UNFORMATTED and CSV.
For these work file types, the attribute BOM can only be set,
if the code page UTF-8 is defined for the work file (see the
description of the TYPE clause).

If a work file of another type is written or a code page other
than UTF-8 is defined, the specification of the attribute BOM
is ignored during runtime.

See also Work Files and Print Files on Windows, UNIX and
OpenVMS Platforms in the Unicode and Code Page Support
documentation.

Statements

291



DEFINE WORK FILE

Syntax Element

Description

NOBOM

No byte order mark is written in front of the work file data.
This is the default value.

Remove/Keep Carriage Return:

KEEPCR

Carriage return characters are kept when reading an ASCII
work file.

This attribute is only relevant for ASCII work files. If a work
file of another type than ASCII or ASCII-COMPRESSED is
read, the specification of the attribute KEEPCR is ignored
during runtime.

Caution: Use KEEPCR with care. ASCII format is only

recommended for alphanumeric data. Binary data should
not be processed with ASCII work files. When you use
KEEPCR, the work file record may include carriage return
characters.

The use of KEEPCR only makes sense when reading ASCII
work files which have been written on UNIX or OpenVMS.
It does not make sense to use KEEPCR with ASCII work files
which have been written on Windows.

REMOVECR

Carriage return characters are removed when reading an
ASCII work file. This is the default value.

This attribute is only relevant for ASCII work files. If a work
file of another type than ASCIT or ASCIT-COMPRESSED is
read, the specification of the attribute REMOVECR is ignored
during runtime.

For further information on work files, see Work File Formats.

292

Statements




VI

B A0 DELETE Lo 295
B 00 ISP LAY s 299
B ST DIVIDE ... 321
B 52 DOMDOEND ... 327
B D BB T s 331
B DA END e 337
® 55 END TRANSACTION ...t 341
B 00 ESCAPE ..o 347
B DT EXAMINE s 353
B OB EXPAND ... 377

293



294



49 DELETE

LI V1ot o PSP PPPPURSR PP 296
L =Y 1410 ) OSSR PUPPPPPRRR 296
B SYNEAX DESCIIPHON ...ttt e 296
= Database-Specific CONSIABIAtIONS ... ...eiiii e e e e e e 297
L 1] 0] (- 297

295



DELETE

DELETE [RECORD] [IN][STATEMENT][( )]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | END TRANSACTION | FIND | GET | GET SAME | GET
TRANSACTION DATA | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY |
STORE | UPDATE

Belongs to Function Group: Database Access and Update

Function

The DELETE statement is used to delete a record from a database.
Hold Status

The use of the DELETE statement causes each record selected in the corresponding FIND or READ
statement to be placed in exclusive hold.

Record hold logic is explained in the section Database Update - Transaction Processing (in the Pro-
gramming Guide).

Restriction

A DELETE statement cannot be specified in the same statement line asa FIND, READ, or GET statement.

Syntax Description

Syntax Element|Description

(r) Statement Reference:

The notation ( r) is used to reference the statement which was used to select/read the record
to be deleted.

If no statement reference is specified, the DELETE statement will reference the innermost
active processing loop in which a database record was selected/read.

296 Statements



DELETE

Database-Specific Considerations

SQL Databases |The DELFTFE statement is used to delete a row from the database table. It corresponds with
the SQL statement DELETE WHERE CURRENT OF CURSOR-NAME, thatis, only the row which
was read last can be deleted.

With most SQL databases, a row that was read witha FIND SORTED BY or READ LOGICAL
statement cannot be deleted.

XML Databases | The DE L ETE statement is used to delete an XML object from a database. For XML databases,
this implies that only the record which was read last can be deleted.

Examples

= Example 1
= Example 2

Example 1
In this example, all records with the name ALDEN are deleted.

** Example 'DELEX1': DELETE

* %
* %
CAUTION: Executing this example will modify the database records!
R i b b i i b B B i i i e e S i e i b i i i g b e i b b e b e i i g b o e b e e b b B e i b b i b e e g
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
END-DEFINE
*
FIND EMPLOY-VIEW WITH NAME = 'ALDEN'
/*
DELETE
END TRANSACTION
/*
AT END OF DATA
WRITE NOTITLE *NUMBER 'RECORDS DELETED'
END-ENDDATA
END-FIND
END ©

Statements 297



DELETE

Example 2

If no records are found in the VEHICLES file for the person named ALDEN, the EMPLOYEE record
for ALDEN is deleted.

** Example 'DELEX2': DELETE

* %
* %
CAUTION: Executing this example will modify the database records!
khkhkkhkhhkhkhhkhkhhkhkhhkkhkhhkhhhkhkhhkhkhkhkhkhkhhhhkhhkhkhhkhkhhkhhhkhkhhkhhhkhkhhkhhhkkhkhkhhhkhkhhkkhhkhkhikxkx
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
END-DEFINE
*
EMPL. FIND EMPLOY-VIEW WITH NAME = "ALDEN'
/*
VEHC. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMPL.)
IF NO RECORDS FOUND

/*
DELETE (EMPL.)
/*
END TRANSACTION
END-NOREC
END-FIND
/%
END-FIND
END

298 Statements



50 DISPLAY

L V101 1o PP P PP PO PPPPRPPPPPPR 300
B SYNEAX DESCIIPHON ...ttt et 300
= Defaults Applicable for a DISPLAY Statement ............ooiiiiiiiiiiiee e 312
L e 11T P URT R SUPPPRPRR 313

299



DISPLAY

DISPLAY [(rep)] [options]{[/..][output-format] output-element}..

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER EJECT
| FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE
TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The DISPLAY statement is used to specify the fields to be output on a report in column format. A
column is created for each field and a field header is placed over the column.

| Note: The statements WRITE and PRINT can be used to produce output in free (non-column)

format.

See also the following topics (in the Programming Guide):

Controlling Data Output
= Statements DISPLAY and WRITE

Index Notation for Multiple-Value Fields and Periodic Groups

Column Headers

Layout of an Output Page

Syntax Description

Syntax Element Description

(rep) Report Specification:

The notation ( rep) may be used to specify the identification of the report for which
the DISPLAY statement is applicable.

As report identification, a value in the range 0 - 31 or a logical name which has been
assigned using the DEFINE PRINTER statement may be specified.

If (rep) is not specified, the statement will apply to the first report (Report 0).

If this printer file is defined to Natural as PC, the report will be downloaded to the PC,
see Example 8.

300 Statements



DISPLAY

Syntax Element

Description

For information on how to control the format of an output report created with Natural,
see Controlling Data Output in the Programming Guide.

options

Display Options:

For details, see Display Options below.

output-format

Output Format Definitions:

For details, see Output Format Definitions below.

Line Advance - Slash Notation:

When specified within a text element, a slash (/) causes a line advance for the text
displayed.

When specified between output elements, it causes the output element specified by the
slash (/) to be placed vertically within the same column. The header for this column
will be constructed by placing the headers of the vertically displayed elements vertically
above the column.

See also the following topics in the Programming Guide:

" Line Advance - Slash Notation
® Example 1 - Line Advance in DISPLAY Statement
" Suppressing Column Headers - Slash Notation

output-element

Output Element:

For details, see Output Element below.

Display Options

[NOTITLE] [NOHDR]

[AND][GIVE] [SYSTEM] FUNCTIONS [(statement-parameters)]

Syntax Element Description:

Syntax Element

Description

NOTITLE

Default Page Title Suppression:

By default, Natural generates a single title line for each page resulting from a
DISPLAY statement. This title contains the page number, the time of day, and
the date. Time of day is set at the beginning of the program execution or at the
beginning of the job (batch mode). The default title line may be overridden by
using a WRITE TITLE statement, or it may be suppressed by specifying the
keyword NOTITLE in the DISPLAY statement.

Examples:

Statements

301



DISPLAY

Syntax Element

Description

= Default title will be produced:

DISPLAY NAME
= User title will be produced:

DISPLAY NAME WRITE TITLE 'user-title’
® No title will be produced:

DISPLAY NOTITLE NAME

Note: Ifthe NOTITLE optionisused, itappliestoall DISPLAY, PRINT and WRITE

statements within the same object which write data to the same report.

NOHDR

Column Headers:

Column headers are produced for each field specified in the DISPLAY statement
using the following rules:

® The header text may be explicitly specified in the DISPLAY statement before
the field name. For example:

DISPLAY '"EMPLOYEE' NAME 'SALARY' SALARY

® If you do not specify an explicit header for a field, the header as defined in
the DEFINE DATA statement will be used.

= [If for a database field no header is defined in the DEFINE DATA statement,
the default header as defined in the DDM will be used.

" If no default header is defined in the DDM, the field name will be used as
header.

= [If for a user-defined variable no header is defined in the DEFINE DATA
statement, the variable name will be used as header. See also the DEFINE
DATA statement for header definition.

DISPLAY NAME SALARY #NEW-SALARY

® Natural always underlines column headings and generates one blank line
between the underlining and the data being displayed.

= If there are multiple DISPLAY statements in a program, the first DISPLAY
statement determines the column header(s) to be used; this is evaluated at
compilation time.

Column Header Suppression:

To suppress the column header for a single field

302

Statements



DISPLAY

Syntax Element

Description

" Specify the following characters (apostrophe-slash-apostrophe) before the
field name:

’/l
For example:

DISPLAY '/' NAME 'SALARY' SALARY

To suppress all column headers

® Specify the keyword NOHDR:

DISPLAY NOHDR NAME SALARY

Note:

1. NOHDR only takes effect for the first DISPLAY statement, as subsequent
DISPLAY statements cannot create column headers anyhow.

2. If both NOTITLE and NOHDR are used, they must be specified in the following
order: DISPLAY NOTITLE NOHDR NAME SALARY

GIVE SYSTEM
FUNCTIONS

Natural System Function Usage:

The GIVE SYSTEM FUNCTIONS clause is used to make available the following
Natural system functions: AVER, COUNT, MAX, MIN, NAVER, NCOUNT, NMIN, SUM,
TOTAL. These are evaluated when the DISPLAY statement containing the GIVE
SYSTEM FUNCTIONS clause is executed.

These functions may then be referred to in a statement executed as a result of
an end-of-page condition.

Note:

1. Only one DISPLAY statement per report may containa GIVE SYSTEM
FUNCTIONS clause. When system functions are evaluated from a DISPLAY
statement, they are evaluated on a page basis, which means that all functions
(except TOTAL) are reset to zero when a new page is initiated.

2. When system functions are used within a DISPLAY statement within a
subroutine, the end-of-page processing must occur within the same routine.

3. In place of the keyword GIVE, the keyword GIVING may be used.

See also Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS
Clause.

statement-parameters

Parameter Definition at Statement Level:

Statements

303



DISPLAY

Syntax Element

Description

One or more parameters, enclosed within parentheses, may be specified at
statement level, that is, immediately after the DISPLAY statement.

Each parameter specified will override the corresponding parameter previously
specified in a GLOBALS command, SET GLOBALS (Reporting Mode only) or
FORMAT statement.

If more than one parameter is specified, they must be separated by one or more
blanks from one another. Each parameter specification must not be split between
two statement lines.

Note: The parameter settings applied here will only be regarded for variable

fields, but they have no effect on text-constants. If you would like to set field
attributes for a text-constant, they have to be set explicitly for this element, see
Parameter Definition at Element (Field) Level.

See also:

® List of Parameters
® Example of Parameter Usage at Statement and Element (Field) Level

® Example 7 - DISPLAY Statement Using Parameters on Statement/Element
Level

List of Parameters

The following parameters can be specified with the DISPLAY statement

Parameter Name |Explanation Specification possible at statement level (S), at element
level (E) or both (SE)

AD Attribute Definition SE

AL Alphanumeric Length for Output SE

CD Color Definition SE

cv Control Variable SE

DF Date Format SE

DL Display Length for Output SE

DY Dynamic Attributes SE

EM Edit Mask SE

EMU Unicode Edit Mask

ES Empty Line Suppression

FC Filler Character SE

FL Floating Point Mantissa Length SE

GC Filler Character for Group Headers SE
304 Statements



DISPLAY

Parameter Name |Explanation Specification possible at statement level (S), at element
level (E) or both (SE)
HC Header Centering SE
HW Heading Width SE
IC Insertion Character SE
ICU Unicode Insertion Character SE
IS Identical Suppress SE
LC Leading Characters SE
LCU Unicode Leading Characters SE
LS Line Size
MC Multiple-Value Field Count
MP Maximum Number of Pages of a Report
NL Numeric Length for Output SE
PC Periodic Group Count S
PM Print Mode SE
PS Page Size S
SF Spacing Factor SE
SG Sign Position SE
TC Trailing Characters SE
TCU Unicode Trailing Characters SE
ucC Underlining Character SE
ZP Zero Printing SE

The individual parameters are described in the Parameter Reference (session parameters).

See also the following topics in the Programming Guide:

= Centering of Column Headers - HC Parameter

® Width of Column Headers - HW Parameter

= Filler Characters for Headers - Parameters FC and GC

® Underlining Character for Titles and Headers - UC Parameter

Statements

305



DISPLAY

Example of Parameter Usage at Statement and Element (Field) Level

DEFINE DATA LOCAL

1 VARI (A4) INIT <'1234'> % OQutput

END-DEFINE /% Produced
* /* _________
DISPLAY NOHDR '"Text' ‘=" VARI s Text 1234
DISPLAY NOHDR (AD=U) "Text' =" VARI [ Text 1234
DISPLAY NOHDR '"Text' (AD=U) '=' VART (AD=U) s Text 1234
DISPLAY NOHDR 'Text' (AD=U) '=' VARI A Text 1234

END

Output Format Definitions

nX
nT
x/y

T*field-name

P*field-name

"text' [(attributes)] [CAPTIONED]
VERTICALLY { } [/..]
[CAPTIONED]
[HORIZONTALLY]

[ "text' [(attributes)] ]
'c'"(n) [(attributes)]

Field Positioning Notations

Syntax Element

Description

nX Column Spacing:

This notation inserts 17 spaces between columns.

Example:

DISPLAY NAME 5X SALARY

See also:

® Example 1 - DISPLAY Statement Using nX and nT Notation (below)

® Column Spacing - SF Parameter and nX Notation (in the Programming Guide)
nT Tab Setting:

The nT notation causes positioning (tabulation) to display position 1. Backward
positioning is not permitted.

306

Statements



DISPLAY

Syntax Element

Description

In the following example, NAME is displayed beginning in position 25, and SALARY
beginning in position 50:

DISPLAY 25T NAME 50T SALARY
See also:

® Example 1 - DISPLAY Statement Using nX and nT Notation (below)
= Tab Setting - nT Notation (in the Programming Guide)

Xy

x/y Positioning:

The X/ y notation causes the next element to be placed x lines below the output of the
last statement, beginning in column y. y must not be zero. Backward positioning is not
permitted.

T*field-name

Field Related Positioning:

The T* notation is used to position to a specific print position of a field used in a previous
DISPLAY statement. Backward positioning is not permitted.

P*field-name

Field and Line Related Positioning;:

The P* notation is used to position to a specific print position and line of a field used in
aprevious DISPLAY statement. It is most often used in conjunction with vertical display
mode. Backward positioning is not permitted.

See also:

® Example 3 - DISPLAY Statement Using P* Notation (below)
® ‘Tab Notation P*field (in the Programming Guide)

Override Column Heading Assignment

Syntax Element|Description

"text' Text Assignment:
A If placed immediately before a field, the text enclosed by single quotes overrides the column
heading.

The slash character '/ ' before a field causes the header for the field to be suppressed.

Statements

307



DISPLAY

Syntax Element | Description

DISPLAY "EMPLOYEE' NAME "MARITAL/STATUS' MAR-STAT

If multiple ' text' elements are specified before a field name, the last ' text' element will
be used as the column header and the other text elements will be placed before the value of
the field within the column.

See also:

® Define Your Own Column Headers (in the Programming Guide)
= ‘Text Notation, Defining a Text to Be Used with a Statement (in the Programming Guide)
® Example 4 - DISPLAY Statement Using 'text’, 'c(n)’ and Attribute Notation (below)

"c¢'(n) Character Repetition:

The character enclosed by single quotes is displayed n times immediately before the field
value. For example:

DISPLAY '*' (5) '=" NAME

results in

*kkxkxx SMITH
See also:

= ‘Text Notation, Defining a Character to Be Displayed n Times before a Field Value (in the
Programming Guide)

® Example 4 - DISPLAY Statement Using 'text’, 'c(n)’ and Attribute Notation (below)

Output Attributes

attributes indicates the output attributes to be used for text display. Attributes may be:

AD=AD-value ...
CD=CD-value...
PM=PM-value ...

AD-value ...
CD-value...

For the possible session parameter values, refer to the corresponding sections in the Parameter
Reference documentation:

" AD - Attribute Definition, section Field Representation
® CD - Color Definition

308 Statements




DISPLAY

= PM - Print Mode

| Note: The compiler actually accepts more than one attribute value for an output field. For
example, you may specify: AD=BDI. In such a case, however, only the last value applies. In
the given example, only the value I will become effective and the output field will be dis-
played intensified.

Vertical/Horizontal Display

The VERT clause may be used to cause multiple field values to be positioned underneath one an-
other in the same column. In vertical mode, a new column may be initiated by specifying the
keyword VERT or HORIZ.

The column heading in vertical mode is controlled using the entry or entries specified with the AS
clause as described below.

Syntax Element Description

VERTICALLY DISPLAY VERT without AS Clause:
Vertical column orientation. No column heading is produced if the AS clause is
omitted.

DISPLAY VERT NAME SALARY

For an example, see DISPLAY VERT without AS Clause in the Programming Guide.

AS 'text' DISPLAY VERT AS 'text' Clause:
Vertical column orientation. If AS ' text' is specified, the text enclosed by single
quotes is used as the column heading.

For an example, see DISPLAY VERT AS ’'text’ in the Programming Guide.

The slash character / in the character string of ' text"' will cause multiple lines of
column headings.

DISPLAY VERT AS 'LAST/NAME' NAME

Statements 309



DISPLAY

Syntax Element Description
AS "text' DISPLAY VERT AS 'text' CAPTIONED Clause:
CAPTIONED Vertical column orientation. If AS " text" CAPTIONED is specified, ' text' isused

as the column heading and the standard heading text or field name is inserted
immediately before the field value in each detail display line.

DISPLAY VERT AS 'PERSONS/SELECTED' CAPTIONED NAME FIRST-NAME <

For an example, see DISPLAY VERT AS "text’ CAPTIONED in the Programming
Guide.

AS CAPTIONED DISPLAY VERT AS CAPTIONED Clause:

Vertical column orientation. If AS CAPTIONED is specified, the standard heading
text for the field (either heading text or the field name) will be used as the column
heading.

DISPLAY VERT AS CAPTIONED NAME FIRST-NAME

HORIZONTALLY DISPLAY HORIZ Clause:
Horizontal column orientation. This is the default display mode.

Vertical and horizontal column orientation may be intermixed by using the respective keyword.

To suspend vertical display for a single output element, you may place a dash (-) in front of the
element. For example:

DISPLAY VERT NAME - FIRST-NAME SALARY

In the above example, FIRST-NAME will be output horizontally next to NAME, while SALARY will be
output vertically again, i.e. below NAME.

The standard display mode is horizontal. A column is constructed for each field to be displayed.
Column headings are obtained and used by Natural according to the following priority:

1. heading ' text' supplied in the DISPLAY statement;
2. the default heading defined in the DDM (database fields), or the name of a user-defined variable;
3. the field name as defined in the DDM (if no heading text was defined for the database field).

For group names, a group heading is produced for the entire group. When specifying a group,
only the heading for the entire group may be overridden by a user-specified heading.

The maximum number of column header lines is 15.

Line size overflow is not permitted for output resulting from a DISPLAY statement. If a line overflow
occurs, an error message is issued.

For more information about vertical/horizontal display usage, see:

310 Statements




DISPLAY

® Example 5 - DISPLAY Statement Using Horizontal Display
® Example 6 - DISPLAY Statement Using Vertical and Horizontal Display
® DISPLAY VERT AS CAPTIONED and HORIZ (in the Programming Guide)

Output Element

{ "text' [(attributes)] }
'c'(n) [(attributes)]
nx ['="]{operandl [(parameters)]}
nT

x/y

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted
operandl S |A |G |N |A|N|P|T[F[B|D|T|L|[G|O] yes no

Syntax Element Description

Syntax Element |Description

nX Column Spacing;

This is the same as under Output Format Definitions (see above).

nT Tab Setting:

This is the same as under Output Format Definitions (see above).

x/y x/y Positioning:

This is the same as under Output Format Definitions (see above).

"text' Text Assignment:

This is the same as under Output Format Definitions (see above).

"c¢'(n) Character Repetition:

This is the same as under Output Format Definitions (see above).

Statements 311



DISPLAY

Syntax Element |Description

"text"' '=' |If "text' '='isplaced immediately before the field, text is output immediately before

the field value. This applies analogously with "¢ (n) '=".

¢t (n) =

DISPLAY ‘"**xxx' '=' NAME

attributes |Output Attributes:

This is the same as under Output Format Definitions (see above).

operandl The field to be displayed.

parameters |Parameter Definition at Element (Field) Level:

One or more parameters, enclosed within parentheses, may be specified at element (field)
level, that is, immediately after operandl. Each parameter specified in this manner will
override the corresponding parameter previously specified at statement level or in a
GLOBALS command, SET GLOBALS (in Reporting Mode only) or FORMAT statement.

If more than one parameter is specified, one or more blanks must be placed between each
entry. An entry must not be split between two statement lines.

See also:

® List of Parameters

® Example of Parameter Usage at Statement and Element (Field) Level

Defaults Applicable for a DISPLAY Statement

The following defaults are applicable for a DISPLAY statement:

* Report Width
The width of the report defaults to the value set when Natural is installed. This default value
isnormally 132 in batch mode or the line length of the terminal in TP mode. It may be overridden
with the session parameter LS. In TP mode, line size (LS) and page size (PS) parameters are set
by Natural based on the physical characteristics of the terminal type in use.

® Terminal Screen Output
When the DISPLAY output is displayed on a terminal (emulation) screen, the output begins in
physical Column 2 (because Column 1 must be reserved for possible use as an attribute position
on a 3270-type terminal).

® Printout on Paper

When the DISPLAY outputis printed on paper, the printout begins in the leftmost column (Column
1).

312 Statements



DISPLAY

® Spacing Factor
The default spacing factor between elements is one position. There is a minimum of one space
between columns (reserved for terminal attributes). This default may be overridden with the
session parameter SF.

* Field Output
The length of the field or the field heading, whichever is greater, determines the column width
for the report (unless the HW parameter is used).

= If the field is longer than the heading, the heading will be centered over the column unless
the HC=L or HC=R parameter is used to produce a left-justified or right-justified heading.

® If the heading is longer than the field, the field will be left-justified under the heading.

® The values contained in the field are left-justified for alphanumeric fields and right-justified
for numeric fields.

® Numeric fields may be displayed left-justified by specifying AD=L.
® Alphanumeric fields may be displayed right-justified by specifying AD=R.

* Ina vertical display, the longest data value or heading among all fields determines the column
width (unless the HW parameter is used).

" Sign
One extra high-order print position is reserved for a sign when printing a numeric field. The
session parameter SG may be used to suppress the sign position.

® Page Overflow
Page overflow is checked before execution of a DISPLAY statement. No new page title or trailer
information is generated during the execution of a DISPLAY statement.

Examples

Example 1 - DISPLAY Statement Using nX and nT Notation

Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS Clause
Example 3 - DISPLAY Statement Using P* Notation

Example 4 - DISPLAY Statement Using 'text ', 'c(n)' and Attribute Notation
Example 5 - DISPLAY Statement Using Horizontal Display

Example 6 - DISPLAY Statement Using Vertical and Horizontal Display

= Example 7 - DISPLAY Statement Using Parameters on Statement/Element Level

Statements 313



DISPLAY

= Example 8 - Report Specification with Output File Defined to Natural as PC

Example 1 - DISPLAY Statement Using nX and nT Notation

** Example 'DISEX1': DISPLAY (with nX, nT notation)
R R R R R R b e e R R R b b e e e e e R R b b e e e e e R R e e e e e e R R e e e e S i b e e e e e
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE 5X NAME 50T JOB-TITLE
END-READ

*

END o

Output of Program DISEX1:

NAME CURRENT
POSITION
ABELLAN MAQUINISTA
ACHIESON DATA BASE ADMINISTRATOR
ADAM CHEF DE SERVICE
ADKINSON PROGRAMMER ©

Example 2 - DISPLAY Statement Using GIVE SYSTEM FUNCTIONS Clause

** Example 'DISEX2': DISPLAY (with GIVE SYSTEM FUNCTIONS)
RRA R R B b R R e I b b R e b b e e b b e b b e e b b b e e b b S e b b R e I b b R e b b S e e b e R e b b b e b b S
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-1ID
2 NAME
2 FIRST-NAME
2 SALARY (1)
2 CURR-CODE (1)
END-DEFINE
*
LIMIT 15
FORMAT PS=15
*
READ EMPLOY-VIEW
DISPLAY GIVE SYSTEM FUNCTIONS
PERSONNEL-ID NAME FIRST-NAME SALARY (1) CURR-CODE (1)
AT END OF PAGE

314

Statements



DISPLAY

WRITE

END-READ

*

END

Output of Program DISEX2:

Page

PERSONNEL
ID

50005500
50005300
50004900
50004600
50004200
50004100
50003800
50006900
50007600

SALARY STA
MAX
MIN
AVE

/ "SALARY STATISTICS:'

/ 7X "MAXIMUM:' MAX(SALARY (1))
/ 7X "MINIMUM:" MINCSALARY (1))
/ 7X "AVERAGE:' AVER(SALARY (1)) CURR-CODE (1)
END-ENDPAGE

BLOND
MAIZIERE
CAOUDAL
VERDIE
VAUZELLE
CHAPUIS
JOUSSELIN
BATLLET
MARX

TISTICS:
IMUM:
IMUM:
RAGE :

365700 FRA
159790 FRA
192414 FRA

FIRST-NAME

ALEXANDRE
ELISABETH
ALBERT
BERNARD
BERNARD
ROBERT
DANTEL
PATRICK
JEAN-MARTE

Example 3 - DISPLAY Statement Using P* Notation

** Example 'DISEX3': DISPLAY (with P* notation)

CURR-CODE (1)
CURR-CODE (1)

05-01-12

ANNUAL
SALARY

172000
166900
167350
170100
159790
169900
171990
188000
365700

CURRENCY
CODE

FRA
FRA
FRA
FRA
FRA
FRA
FRA
FRA
FRA

09:47:48

R R R e b e b e b b e R e b b e b e b e e I e b e e S e e e b e b (e e b e b e b e e b e b e b S b e b e b e b i e b o 4

DEFINE DAT

1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME

2 SALARY

2 BIRTH

2 CITY
END-DEFINE

*

LIMIT 2

READ EMPL-VIEW BY CITY FROM "N’
DISPLAY NOTITLE NAME CITY

SKIP 1

A LOCAL

(1)

VERT AS 'BIRTH/SALARY' BIRTH (EM=YYYY-MM-DD) SALARY (1)

AT BREAK OF CITY
DISPLAY P*SALARY (1) AVER(SALARY (1))

Statements

315



DISPLAY

SKIP 1
END-BREAK
END-READ
END <

Output of Program DISEX3:

NAME CITY
WILCOX NASHVILLE
MORRISON NASHVILLE

BIRTH
SALARY

1970-01-01
38000

1949-07-10
36000

37000

Example 4 - DISPLAY Statement Using 'text ', 'c(n)' and Attribute Notation

** Example 'DISEX4': DISPLAY (with 'c(n)' notation and attribute)

R R R o R R b R R b b e b e e b R R R i b b e b b R e i b i R i b b R e i i b S b R R e i b b e S b b

DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 DEPT
2 LEAVE-DUE
2 NAME
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY DEPT FROM 'T'
IF LEAVE-DUE GT 40
DISPLAY NOTITLE
"EMPLOYEE' NAME

"LEAVE ACCUMULATED' LEAVE-DUE

'AT(10)(I)

ELSE
DISPLAY NAME LEAVE-DUE
END-IF

/* OVERRIDE STANDARD HEADER
/* OVERRIDE STANDARD HEADER
/* DISPLAY 10 '*' INTENSIFIED

END-READ
*

END ©
316

Statements



DISPLAY

Output of Program DISEX4:

EMPLOYEE LEAVE ACCUMULATED
LAVENDA 33
BOYER 33
CORREARD 45 * %k kkkk kKK
BOUVIER 19 ©

Example 5 - DISPLAY Statement Using Horizontal Display

** Example 'DISEX5': DISPLAY (horizontal display)
AR A AR AR KR AR K AR A AR AR KA R KA KA A KA A KA KNI AR KA KA AR AR KA KRR A I A AR AR h A kA kA kA A kA hkkxK
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE
2 SALARY (1:2)
2 CURR-CODE (1:2)
END-DEFINE
*
LIMIT 4
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE NAME JOB-TITLE SALARY (1:2) CURR-CODE (1:2)
SKIP 1
END-READ

*

END <

Output of Program DISEX5:

NAME CURRENT ANNUAL ~ CURRENCY
POSITION SALARY CODE
ABELLAN MAQUINISTA 1450000 PTA

1392000 PTA

ACHIESON DATA BASE ADMINISTRATOR 11300 UKL

10500 UKL

ADAM CHEF DE SERVICE 159980 FRA
0

ADKINSON PROGRAMMER 34500 USD

31700 USD ©

Statements 317



DISPLAY

Example 6 - DISPLAY Statement Using Vertical and Horizontal Display

** Example 'DISEX6': DISPLAY (vertical and horizontal display)
R R R R R R e e R R R R b e e e B e R e e e e e R e R e e e e e e R R R e e e e e e
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 CITY
2 JOB-TITLE
2 SALARY (1:2)
2 CURR-CODE (1:2)
END-DEFINE
*
LIMIT 1
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE VERT AS CAPTIONED
NAME CITY 'POSITION' JOB-TITLE
HORIZ 'SALARY' SALARY (1:2) 'CURRENCY' CURR-CODE (1:2)
/*
SKIP 1
END-READ
END

Output of Program DISEXé:

NAME SALARY CURRENCY
CITY
POSITION
ABELLAN 1450000 PTA
MADRID 1392000 PTA
MAQUINISTA ©

Example 7 - DISPLAY Statement Using Parameters on Statement/Element Level

** Example 'DISEX7': DISPLAY (with parameters for statement/element)
Khkhkkhkhkkhkhkkhhkkhhkhhkkhkhkhhkkhkhkhhkkhkhkhhkhkhkhhkkhhkhhkkhkhkhhkhrkhhkhrkhhkhrkhhkhkrkhhkhrkhhkhkrkhhkhkrkhrkhkrkhkrkhxk
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES
2 NAME
2 PERSONNEL-ID
2 TELEPHONE
3 AREA-CODE
3 PHONE
END-DEFINE
*
LIMIT 3
READ EMPL-VIEW BY NAME
DISPLAY NOTITLE (AL=16 GC=+ NL=8 SF=3 UC==

318

Statements



DISPLAY

PERSONNEL-ID NAME TELEPHONE (LC=< TC=>)
END-READ

END o

Output of Program DISEX7:

PERSONNEL NAME F++++++++++++++TELEPHON E+++++++++ :
ID
AREA TELEPHONE
CODE
60008339 ABELLAN <1 > <4356726 >
30000231 ACHTIESON <0332 > <523341 >
50005800 ADAM <1033 > <44864858 >

Example 8 - Report Specification with Output File Defined to Natural as PC

** Example 'PCDIEX1': DISPLAY and WRITE to PC

**

** NOTE: Example requires that Natural Connection is installed.
KhkhkAhhkkhhkhhkkhhkhhkkhhkhhkhkhkhhkkhhkhhkhhkhhkkhhkhhkhhkhhkhhkhhkhrkhhkhrkhhkhrkhhkhrkhhkhrkhhkhrkhrkhkrkhrkhxk
DEFINE DATA LOCAL
01 PERS VIEW OF EMPLOYEES

02 PERSONNEL-ID

02 NAME
02 CITY
END-DEFINE
S
FIND PERS WITH CITY = 'NEW YORK' /* Data selection
WRITE (7) TITLE LEFT 'List of employees in New York' /
DISPLAY (7) /* (7) designates the output file (here the PC).

"Location' CITY
'Surname’ NAME
"ID' PERSONNEL-ID
END-FIND
END

Statements

319



320



51 DIVIDE

LI V1ot o PSP PPPPURSR PP 322
= Syntax 1 - DIVIDE Statement without GIVING ClauSe .............oviiiiiiiiieiiiiieccee e 322
= Syntax 2 - DIVIDE Statement with GIVING ClauSE ...........cuvvviiiiiieiiiiiiecce e 323
= Syntax 3 - DIVIDE Statement with REMAINDER ClaUSe ...........ooiviiiiiiiiiiiie e 324
B EXAMIPDIE 1ot 326

321



DIVIDE

Related Statements: ADD | COMPRESS | COMPUTE | EXAMINE | MOVE | MOVE ALL | MULTIPLY | RESET |
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function

The DIVIDE statement is used to divide two operands.

] Note: Concerning Division by Zero: If an attempt is made to use a divisor (operandl) which

is zero, either an error message or a result equal to zero will be returned; this depends on
the setting of the session parameter 7D (described in the Parameter Reference documentation).

Syntax 1 - DIVIDE Statement without GIVING Clause

‘DIVIDE [ROUNDED] operandl INTO operand? \

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols .

Operand Definition Table:

Operand Possible Structure  Possible Formats  Referencing Dynamic Definition
Permitted

operandl |C |S |A N NPIF yes no

operandz |C |S |A M NPIF yes no

Syntax Element Description:

Syntax Element Description

operandl INTO Operands:

operandZ
operandl is the divisor, operand?is the dividend. The result is stored in operand?

(result field), hence the statement is equivalent to:

322 Statements



DIVIDE

Syntax Element

Description

<oper?z> := <oper?z> /| <operl>
The result field may be a database field or a user-defined variable.

If operand?is a constant or a non-modifiable Natural system variable, the GIVING
clause is required.

The number of decimal positions for the result of the division is evaluated from the
result field (that is, operand?).

For the precision of the result, see Rules for Arithmetic Assignments, Precision of Results
of Arithmetic Operations in the Programming Guide.

ROUNDED

ROUNDED Option:
If you specify the keyword ROUNDED, the result will be rounded.

For information on rounding, see Rules for Arithmetic Assignment, Field Truncation and
Field Rounding in the Programming Guide.

Syntax 2 - DIVIDE Statement with GIVING Clause

‘DIVIDE[ROUNDED] operandl INTO operand? [GIVING operand3] ‘

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C A N N|P|I|F yes no
operandz |C A N N|P|I|F yes no
operand3 A A|UIN|P|I|F|B* yes yes

* Format B of operand3 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Statements

323



DIVIDE

Syntax Element

Description

operandl INTO
operand2 GIVING
operand3

Operands:
operand] is the divisor, operand? is the dividend.

The result of the division is stored in operand3, hence the statement is equivalent
to:

<oper3> := <operZz> /| <operl>

If a database field is used as the result field, the division only results in an update
to the internal value of the field as used within the program. The value for the
field in the database remains unchanged.

The number of decimal positions for the result of the division is evaluated from
the result field (that is, operand3).

For the precision of the result, see Rules for Arithmetic Assignments, Precision of
Results of Arithmetic Operations in the Programming Guide.

ROUNDED

ROUNDED Option:
If you specify the keyword ROUNDED, the result will be rounded.

For information on rounding, see Rules for Arithmetic Assignment, Field Truncation
and Field Rounding in the Programming Guide.

Syntax 3 - DIVIDE Statement with REMAINDER Clause

‘DIVIDE operandl INTO operand? [GIVING operand3] REMAINDER operand4

For an explanation of the symbols used in the syntax diagrams, see Syntax Symbols.

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Dynamic
Permitted Definition
operandl |C |S |A N NPI yes no
operandz |C |S |A N NPI yes no
operand3 S |A AUNPIFB* T yes yes
operand4 S |A AUNPIFB* T yes yes

* Format B of operand3 and operand4 may be used only with a length of less than or equal to 4.

Syntax Element Description:

324

Statements




DIVIDE

Syntax Element Description
operandl Operands:
operand?

operandl is the divisor; that is, the number or quantity by which the dividend is to be
divided to produce the quotient.

operand? is the dividend.

If the GIVING clause is not used, the result is stored in operandZ2. The result field may
be a database field or a user-defined variable.

If operand?Zis a constant or a non-modifiable Natural system variable, the GIVING
clause is required.

GIVING operand3

GIVING Clause:

If this clause is used, operandZ? will not be modified and the result will be stored in
operand3.

If a database field is used as the result field, the division only results in an update to
the internal value of the field as used within the program. The value for the field in the
database remains unchanged.

The number of decimal positions for the result of the division is evaluated from the
result field (that is, operandZif no GIVING clause is used, or operand3if the GIVING
clause is used).

For the precision of the result, see Rules for Arithmetic Assignments, Precision of Results
of Arithmetic Operations (in the Programming Guide).

REMAINDER
operand4

REMAINDER Clause:
The remainder of the division is placed into the field specified in operand4.

If the GIVING and REMAINDER clause are used together, none of the four operands may
be an array range.

Internally, the remainder is computed as follows:

1. The quotient of the division of operandI into operandZ is computed.
2. The quotient is multiplied by operandl.

3. The product of this multiplication is subtracted from operand?.

4. The result of this subtraction is assigned to operand4.

For each of these steps, the rules described in Precision of Results of Arithmetic Operations
in the Programming Guide apply.

Statements

325



DIVIDE

Example

** Example 'DIVEX1': DIVIDE

R R R R R R e b R R b b e b e e I b R e i b b e e b e i b R e b b R e i b b S b R R e i b b e b b

DEFINE DATA LOCAL
1 fA (N7) INIT <20>

#B (N7)
#iC (N3.2)

fFE (N1) INIT <3>

1
1
1 4D (N1)
1
1

#F(ND)

END-DEFINE

*

DIVIDE 5 INTO
WRITE NOTITLE
*

RESET INITIAL
DIVIDE 5 INTO

{FA

"DIVIDE 5 INTO #A"' 20X '=" {tA

1A
##A GIVING #B

WRITE 'DIVIDE 5 INTO #A GIVING #B' 10X '=' #8

*

DIVIDE 3 INTO 3.10 GIVING #C

WRITE 'DIVIDE 3 INTO 3.10 GIVING #C' 8X '=' #C

*

DIVIDE 3 INTO 3.1 GIVING D

WRITE 'DIVIDE 3 INTO 3.1 GIVING #D' 9X '=' #D

*

DIVIDE 2 INTO #E REMAINDER #F

WRITE 'DIVIDE 2 INTO #E REMAINDER #F' 7X '=' #E '=' #F
*

END

Output of Program DIVEX1:

DIVIDE 5 INTO #A #A :

DIVIDE 5 INTO ffA GIVING B 1B

DIVIDE 3 INTO 3.10 GIVING #C #C: 1.03
DIVIDE 3 INTO 3.1 GIVING {D #D: 1

DIVIDE 2 INTO ffE REMAINDER fF #E: 1 #F: 1
326

Statements



52 DO/DOEND

B UN G 0N et 328
B RSOt ONS e ettt ettt e 328
LI 1o [ PSPPSR 329

327



DO/DOEND

DO statement .. DOEND

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Belongs to Function Group: Reporting Mode Statements

Function

The DO and DOEND statements are used in reporting mode to specify a group of statements to be
executed based on a logical condition as specified in any of the statements listed below.
® AT BREAK

® AT END OF DATA

= AT END OF PAGE

® AT START OF DATA

= AT TOP OF PAGE

® BEFORE BREAK PROCESSING

® FIND ... IF NO RECORDS FOUND

= IF

® TF SELECTION

® ON ERROR

® READ WORK FILE ... AT END OF FILE

] Note: If you specify a only single statement to be executed based on a logical condition, you

can omit the DO and DOEND statements. But with respect to good coding practice, you are
not recommended to do so.

Restrictions

® The DO and DOEND statements are only valid in reporting mode.

® WRITE TITLE, WRITE TRAILER, and the AT condition statements AT BREAK, AT END OF DATA, AT
END OF PAGE, AT START OF DATA, AT TOP OF PAGE are not permitted within a DO/DOEND statement
group.

® A loop-initiating statement may be used within a D0O/DOEND statement group provided that the
loop is closed prior to the DOEND statement.

328 Statements



DO/DOEND

Example

** Example 'DOEEX1': DO/DOEND

R R R R R R b R R b b e b e e I b R e i b e b b e i b i R e b b R e b b b e b R R e i b b e b b

*

EMP. FIND EMPLOYEES WITH CITY = "MILWAUKEE'
VEH. FIND VEHICLES WITH PERSONNEL-ID = PERSONNEL-ID
IF NO RECORDS FOUND DO
ESCAPE
DOEND
DISPLAY PERSONNEL-ID (EMP.) NAME (EMP.)
SALARY (EMP.,1)
MAKE (VEH.) MAINT-COST (VEH.,1)
AT END OF DATA DO
WRITE NOTITLE
/ 10X "AVG SALARY:'
T*SALARY (1) AVER(SALARY (1))
/ 10X "AVG MAINTENANCE (ZERO VALUES EXCLUDED):'
T*MAINT-COST (1) NAVER(MAINT-COST (1))
DOEND
/%
LOOP
LOOP
END

Output of Program DOEEX1:

PERSONNEL NAME ANNUAL MAKE
ID SALARY
20021100 JONES 31000 GENERAL MOTORS
20027800 LAWLER 29000 GENERAL MOTORS
20027800 LAWLER 29000 TOYOTA
20030600 NORDYKE 47000 FORD
AVG SALARY: 35666

AVG MAINTENANCE (ZERO VALUES EXCLUDED):

MAINT-COST

140

86
194

140

Statements

329



330



53 EJECT

B OFUNCHON Lo

& SYAK DESCIIDON oo s
e 332
h Bl o

331



EJECT

Related Statements: AT END OF PAGE | AT TOP OF PAGE | CLOSE PRINTER | DEFINE PRINTER |
DISPLAY | FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND IDENTICAL SUPPRESS | WRITE | WRITE TITLE
| WRITE TRAILER

Belongs to Function Group: Creation of Output Reports

Function

The EJECT statement may be used to control page advance/page ejection.

Syntax Description

Two different structures are possible for this statement.

= EJECT - Syntax 1
= EJECT - Syntax 2

For an explanation of the symbols used in the syntax diagrams below, see Syntax Symbols.

EJECT - Syntax 1

rep

Syntax Element Description:

Syntax Description
Element

EJECT  |With Report Specification - Online and Batch Modes:

ON/OFF TEJECT OFF ( rep) Causes no page advance (except as specified with Syntax
(rep) 2 of the EJECT statement) for the specified report to be
executed.
EJECT ON (rep) Causes page advances for the specified report to be
executed.
EJECT  |Without Report Specification - Batch Mode only:
ON/OFF

Without report notation ( rep), EJECT ON/OFF may be used in batch mode to control page
ejection between the output listings created during the execution of a program.

332 Statements



EJECT

Syntax Description
Element

EJECT ON Causes Natural to generate a page eject between the
source program listing, the output report and the
message

EXECUTION COMPLETED

. This is the default setting.

EJECT OFF Causes Natural to suppress page breaks between the
above output. EJECT OFF remains in effect until
revoked with a subsequent EJECT ON statement.

(rep) Report Specification:

The notation ( rep) may be used to specify the identification of the report for which the EJECT
statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using the DEFINE PRINTER
statement may be specified.

If (rep) is not specified, the EJECT statement will be applicable to the first report (Report 0).

For information on how to control the format of an output report created with Natural, see
Controlling Data Output in the Programming Guide.

EJECT - Syntax 2

This form of the EJECT statement may be used to cause a page advance without a title or heading
line being generated on the next page and without TOP/END PAGE processing.

IF
EJECT [(rep)] [ [ WHEN] LESS [THAN] operandl [LINES][LEFT] ]

Operand Definition Table:

Operand Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

operandl |C \s \ | \ ‘N‘P‘I‘ \ \ \ \ | | \ yes no

Syntax Element Description:

Statements 333



EJECT

Syntax Element Description

(rep) Report Specification:

The notation ( rep) may be used to specify the identification of the report for which
the EJECT statement is applicable.

A value in the range 0 - 31 or a logical name which has been assigned using the
DEFINE PRINTER statement may be specified.

If (rep) is not specified, the EJECT statement will be applicable to the first report
(Report 0).

For information on how to control the format of an output report created with
Natural, see Controlling Data Output in the Programming Guide.

IF LESS THAN IF LESS THAN ... LINES LEFT Clause:
operandl LINES
LEFT A page advance will be performed only when the current line for the page is greater

than the page size minus operandl. The value for operandl may be specified as
a numeric constant or as a variable.

Processing

The execution of an EJECT statement does not cause any statements used with an AT TOP 0F PAGE,
AT END OF PAGE,WRITE TITLEor WRITE TRAILER statement to be executed. It does not affect system
functions evaluated by DISPLAY GIVE SYSTEM FUNCTIONS.

EJECT causes a new physical page only. It causes the Natural system variable *LINE-COUNT to be
set to 1 but has no effect on the setting of the Natural system variable *PAGE - NUMBER.

Example

** Example 'EJTEX1': EJECT
R R o R R R R b I b e I b R i b b e b e b i R e i i R e i i b b S b b R e i b b e b b i 4
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 CITY
2 NAME
2 JOB-TITLE
END-DEFINE

*

FORMAT PS=15

LIMIT 9
READ EMPLOY-VIEW BY CITY
/%

AT START OF DATA

334 Statements



EJECT

EJECT
WRITE /// 20T "%" (29) /
20T "%%" 47T %%/
20T "%%" 3X 'REPORT OF EMPLOYEES' 47T '"%%' /
20T "%%"' 3X ' SORTED BY CITY 47T "Rk
20T "%%" 47T "Bh'/
20T "%' (29) /
EJECT
END-START
EJECT WHEN LESS THAN 3 LINES LEFT
/%

WRITE '*' (64)
DISPLAY NOTITLE NOHDR CITY NAME JOB-TITLE 5X *LINE-COUNT
WRITE '*' (64)

END-READ

END

Output of Program EJTEX1:

b bhldododo %% %% %% %% %% %% %% %% % % % %

%% %%
%% REPORT OF EMPLOYEES %%
%% SORTED BY CITY %%
%% %%

bhhlhbbllbbbbllhbblkbblldhbhb

After pressing ENTER:

khkkkhkkhkhkhkhkkhkhhkhkhkkhkhhhkhkhkhhhhkhkhhhhkkhkkhhhhkhkhhhhhkkhkkhhhhkhkkhhhhkhkhhrrkkhkhrrkkhkhikx
ATKEN SENKO PROGRAMMER

R R R R R R R I R b R i b b b e b b R e S b R i b b R e b b i b b
R R R R e R b e R b e b e R e R R i R e e b e b e S e i e e e b e e b e e b e b e i e e i i 4
AIX EN OTHE GODEFROY COMPTABLE

R R R e R b e R b e R e b e b e b e b e i b e e b e e B e e B e I e e e e b e e b e e b e b e b e e i i 4
R R B R b b e b R e b b e I b b e i b b e b e S b b R e i b b e b b R e b b b e i i b
AJACCIO CANALE CONSULTANT

RR R b R e b b b R e b b R e b b e b b R e b b e e b e e b b R e i b b e b b R e b b b e e b b
R R b b e b e b e b b e b e b e b b e e b e e b e e S e b e B e i e e e e e b e e b e b e i e e i i 4
ALBERTSLUND PLOUG KONTORASSISTENT
khkkkhkkhkhkhkhkkhkhhhkkhkkhkhhhkhkkhkkhhhhkhkkhhhhkhkkhhhhkhkhhhhhkhkhhhrhkhkkhhrhkkhhrrkkhkhrirkkhkhkik
RR AR b R R e b b b R e e b b e e b b S e b b i e S b b b S e e b i S b b R S e b b e e b b S e b b R e S b b

ALBUQUERQUE HAMMOND SECRETARY

RRA R b b R e B b b R e e b b e e b b S e b e S b b e S b b S e b b B e e b b b e e b R e b b R e b b

11

14

Statements

335



EJECT

After pressing ENTER:

RR R b R R e b b b e b R e b b e e b b R e b b e b b e e b b R e e b b e e b b e b b b e b b
ALBUQUERQUE ROLLING MANAGER

RR AR b R R e b b b R e S b b e e b b e e b R e b b e b b b e b I e e b b b e e b R R e e b b b e b b
khkkkhkkhkhkhkhkkhkhhhkkhkkhkhhhkhkkhkkhhhhkkhkkhhhhkkhkkhhhhkkhhhhhkhkhhhhkkhkhhrhkkhhrrkkhkhrrkkhkhkik
ALBUQUERQUE FREEMAN MANAGER

R R R R b R b R I b R b b e b R e b R i i b b R e b b i b
RRA R e b R R e b b b R e S b b e o b b S e b e S b b b e e b b S e b b I e e b b e e b R S e b b b e b b
ALBUQUERQUE LINCOLN ANALYST

R R R e R b R b e R e b e b e b e b e e b e e S e e B e b e S e b e o e B e b e I e e b e b e i e e i i 4
R R b R b b i b R e b e I b R e i b b e i b e b b R e i b b e b b R e b b b e i b b

ALFRETON GOLDBERG JUNIOR

RR R b R R b b b R e b R e b R e b b R e i b b e e b b e e b b R e e i b b e b b R e b b b e e b b

11

336

Statements



54 END

L V101 1o PP P PP PO PPPPRPPPPPPR 338
B SYNEAX DESCIIPHON ...ttt et 338
L =11 OO URP R PUPPPPPRRR 339

337



END

L)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Function

The END statement is used to mark the physical end of a Natural program. No symbols may follow
the END statement.

In reporting mode, any processing loop which is currently active (that is, which has not been closed
with a LOOP statement) is closed by the END statement.

Considerations for Program Execution

When an END statement is executed in a main program (that is, a program executing on Level 1),
final end-page processing is performed as well as final break processing for user-initiated breaks
(PERFORM BREAK PROCESSING) which have not been associated with a processing loop by specifying
a reference notation (r).

When an END statement is executed in a subprogram, or in a program invoked with FETCH RETURN,
control will be returned to the invoking program without any final processing.

Syntax Description

Syntax Element|Description

END Keyword:

The Natural reserved keyword END is normally used to mark the physical end of a Natural
program.

Period:

Instead of the Natural reserved keyword END, a period (.) may be used. It must be preceded
by at least one blank if other statements are contained in the same line.

338 Statements



END

Examples

For some typical examples, see Examples of DEFINE DATA Statement Usage.

Statements 339



340



55 END TRANSACTION

LI V1ot o PSP PPPPURSR PP 342
L =Y 1410 ) OSSR PUPPPPPRRR 342
B SYNEAX DESCIIPHON ...ttt e 343
B Databases AffECIEA ... ... i e 343
m Database-Specific CONSIABIALIONS ... ....iiiiiiiiiiii e 344
B EXAMPIES .ottt et e ettt et e e e ettt e e e e e e e et e e aeaaa e 344

341



END TRANSACTION

END [OF] TRANSACTION [operandl ..]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | FIND | GET | GET SAME | GET TRANSACTION
DATA | FIND HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE |

UPDATE

Belongs to Function Group: Database Access and Update

Function

The END TRANSACTION statement is used to indicate the end of a logical transaction. A logical
transaction is the smallest logical unit of work (as defined by the user) which must be performed
in its entirety to ensure that the information contained in the database is logically consistent.

Successful execution of an END TRANSACTION statement ensures that all updates performed during
the transaction have been or will be physically applied to the database regardless of subsequent
user, Natural, database or operating system interruption. Updates performed within a transaction
for which the END TRANSACTION statement has not been successfully completed will be backed out
automatically.

The END TRANSACTION statement also results in the release of all records placed in hold status
during the transaction.

The END TRANSACTION statement can be executed based upon a logical condition.

For further information, see the section Database Update - Transaction Processing (in the Programming
Guide).

Restriction

This statement cannot be used with Entire System Server.

342 Statements



END TRANSACTION

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic Definition
Permitted
operandl |C \s \ | ‘N A‘U‘N‘PMF‘B‘D‘T‘ ‘ ‘ ] yes no

Syntax Element Description:

Syntax Element

Description

operandl

Storage of Transaction Data:

For a transaction applied to an Adabas database, you may also use this statement to store
transaction-related information. These transaction data must not exceed 2000 bytes. They
may be read with a GET TRANSACTION DATA statement.

The transaction data are written to the database specified with the profile parameter ETDB.

If the ETDB parameter is not specified, the transaction data are written to the database
specified with the profile parameter UDB, except on mainframe computers: here, they are
written to the database where the Natural Security system file (FSEC) is located (if FSEC is
not specified, it is considered to be identical to the Natural system file, FNAT; if Natural
Security is not installed, the transaction data are written to the database where FNAT is
located).

Databases Affected

An END TRANSACTION statement without transaction data (that is, without operandI) will only be
executed if a database transaction under control of Natural has taken place. Depending on the
setting of the Natural profile parameter ET, the statement will be executed only for the database
affected by the transaction (ET=0FF), or for all databases that have been referenced since the last
execution of a BACKOUT TRANSACTION or END TRANSACTION statement (ET=0N).

An END TRANSACTION statement w7 th transaction data (that is, with specifying operandI) will always
be executed and the transaction data be stored in a database as described in the following section.
It depends on the setting of the ET parameter (see above) for which other databases the END
TRANSACTION statement will be executed.

Statements

343



END TRANSACTION

Database-Specific Considerations

SQL Databases | As most SQL databases close all cursors when a logical unit of work ends, an END
TRANSACTION statement must not be placed within a database modification loop; instead,
it has to be placed after such a loop.

XML Databases | An END TRANSACTION statement must not be placed within a database modification loop;
instead, it has to be placed after such a loop.

Examples

= Example 1- END TRANSACTION
= Example 2 - END TRANSACTION with ET Data

Example 1 - END TRANSACTION

** Example "ETREX1': END TRANSACTION

**

** CAUTION: Executing this example will modify the database records!
khkhkkhkkhkhkhkhhkhkhhkhkhkhkkhkhhkhhkhkhkhhkhhkhkhkhkhhrhkhkhhhhhkhkhhkhhhkkhkhhkhhkhkhkhhkhhkhkhkhkhhhkhkhkhhkhhkhkhixk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

2 COUNTRY
END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = 'BOSTON'

ASSIGN COUNTRY = '"USA'

UPDATE

END TRANSACTION

/*

AT END OF DATA

WRITE NOTITLE *NUMBER 'RECORDS UPDATED'

END-ENDDATA

/*
END-FIND
END <

344 Statements



END TRANSACTION

Output of Program ETREX1:

7 RECORDS UPDATED

Example 2 - END TRANSACTION with ET Data

** Example "ETREX2': END TRANSACTION (with ET data)

**

**% CAUTION: Executing this example will modify the database records!
KAk hkkhhkhkhkhkhkhhkhkhhkhkhhkhhhkhkhhkhkhkhkhkhkhhhhkhhkhkhkhkhkhhkhrhhkhkhhkhhkhkhkhhkhhkhkhhkhhhkhkhkhkkhhkhkhixk
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 PERSONNEL-ID
2 NAME
2 FIRST-NAME
2 CITY
*
1 #fPERS-NR (A8) INIT <' '>
END-DEFINE
*
REPEAT
INPUT 'ENTER PERSONNEL NUMBER TO BE UPDATED:' #PERS-NR
IF #f/PERS-NR = " '
ESCAPE BOTTOM
END-IF
/*
FIND EMPLOY-VIEW PERSONNEL-ID = #fPERS-NR
INPUT (AD=M) NAME / FIRST-NAME / CITY
UPDATE
END TRANSACTION #PERS-NR
END-FIND
/*
END-REPEAT
END ©

Output of Program ETREX2:

ENTER PERSONNEL NUMBER TO BE UPDATED: 20027800

After entering and confirming the personnel number:

NAME LAWLER
FIRST-NAME SUNNY
CITY MILWAUKEE

Statements

345



346



56 ESCAPE

L V101 1o PP P PP PO PPPPRPPPPPPR 348
B SYNEAX DESCIIPHON ...ttt et 349
LI 1o [ PSPPSR 350

347



ESCAPE

Structured Mode Syntax

TOP [REPOSITION]
BOTTOM [(r)] [IMMEDIATE]
ROUTINE [IMMEDIATE]
MODULE [IMMEDIATE]

ESCAPE

Reporting Mode Syntax

TOP [REPOSITION]
BOTTOM [(r)] [IMMEDIATE]
ROUTINE [IMMEDIATE]
MODULE [IMMEDIATE]

ESCAPE

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Related Statements:

® FQR | REPEAT | PROCESS PAGE MODAL
® CALL | CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | FETCH | PERFORM

Belongs to Function Group:

® Loop Execution

® Invoking Programs and Routines

Function

The ESCAPE statement is used to interrupt the linear flow of execution of a processing loop or a
routine.

With the keywords T0P, BOTTOM and ROUTINE you indicate where processing is to continue when
the ESCAPE statement is encountered.

An ESCAPE TOP/BOTTOM statement, when encountered for processing, will internally refer to the
innermost active processing loop. The ESCAPE statement need not be physically placed within the
processing loop.

If an ESCAPE TOP/BOTTOM statement is placed in a routine (subroutine, subprogram, or program
invoked with FETCH RETURN), the routine(s) entered during execution of the processing loop will
be terminated automatically.

348 Statements



ESCAPE

Additional Considerations

More than one ESCAPE statement may be contained within the same processing loop.

The execution of an ESCAPE statement may be based on a logical condition. If an ESCAPE statement
is encountered during processing of an AT END OF DATA, AT BREAK or AT END OF PAGE block, the
execution of the special condition block will be terminated and ESCAPE processing will continue

as required.

If an ESCAPE statement is encountered during processing of an if-no-records-found condition, no
loop-end processing will be performed (equivalent to ESCAPE IMMEDIATE).

Syntax Description

Syntax Element Description

ESCAPE TOP Top Option:
TOP indicates that processing is to continue at the top of the processing loop. This starts
the next repetition of the processing loop.

REPOSITION Top Reposition Option:

Whenan ESCAPE TOP REPOSITION statement is executed, Natural immediately continues
processing at the top of the active READ loop, using the current value of the search variable
as new start value.

At the same time, ESCAPE TOP REPOSITION resets the system variable *COUNTER to
zero.

ESCAPE TOP REPOSITION can be specified within a READ statement loop accessing an
Adabas database. The READ statement concerned must contain the option WITH
REPOSITION.

ESCAPE BOTTOM

Bottom Option:

BOTTOM indicates that processing is to continue with the first statement following the
processing loop. The loop is terminated and loop-end processing (final BREAK and END
DATA) is executed for all loops being terminated.

In reporting mode, ESCAPE BOTTOM is the default.

(r)

Statement Reference:

Notation ( r): If BOTTOM is followed by a label or reference number, processing will
continue with the first statement following the processing loop identified by the label or
reference number.

A label or a reference number can only be specified if the ESCAPE BOTTOM statement is
physically placed within the referenced processing loop.

Statements

349



ESCAPE

Syntax Element

Description

IMMEDIATE Immediate Option:

If you specify the keyword IMMEDIATE, no loop-end processing will be performed.
ESCAPE Routine Option:
ROUTINE

This option indicates that the current Natural routine, which may have been invoked
viaa PERFORM, CALLNAT, FETCH RETURN, or as a main program, is to relinquish control.

In the case of a subroutine, processing will continue with the first statement after the
statement used to invoke the subroutine. In the case of a main program, Natural command
mode will be entered.

Allloops currently active within the routine will be terminated and loop-end processing
performed as well as final processing for user-initiated (PERFORM BREAK) processing. If
the program containing the ESCAPE ROUTINE is executed as a main program (Level 1),
final end-page processing is performed.

ESCAPE MODULE

Module Option:

This option indicates that the entire current program level, with all internal subroutines,
is to relinquish control. The control is then returned to the object of the former program
level. If ESCAPE MODULE isused in a hierarchy of internal subroutines, it allows to escape
all routines working at this level at once. If no internal subroutine is active, ESCAPE
MODULE has the same result as ESCAPE ROUTINE.

ESCAPE MODULE is only relevant in inline subroutines. In external subroutines,
subprograms and invoked programes, it has the same effect as ESCAPE ROUTINE.

As with ESCAPE ROUTINE, loop-end processing will be performed. However, if you
specify the keyword IMMEDIATE, no loop-end processing will be performed.

Example

** Example 'ESCEXI1': ESCAPE

R R R o R R b b R e b b e b e e I b R e i b e e b S e i b b R e b b R e i i b e b R R i b b e b b 4

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY

NAME
AREA-CODE
PHONE

N N NN

*

FIRST-NAME

1 #CITY (A20) INIT <" '>

1 #CNTL (A1)
END-DEFINE

*

REPEAT

INIT <" '

350

Statements



ESCAPE

INPUT "ENTER VALUE FOR CITY: " #CITY
/ '"OR ''.'' TO TERMINATE
IF #CITY = '.°
ESCAPE BOTTOM
END-IF
/*
FND. FIND EMPLOY-VIEW WITH CITY = #CITY
/*

IF NO RECORDS FOUND
WRITE 'NO RECORDS FOUND'
ESCAPE BOTTOM (FND.)
END-NOREC
AT START OF DATA

INPUT (AD=0) 'RECORDS FOUND:' *NUMBER //

"ENTER "'D"' TO DISPLAY RECORDS' #CNTL (AD=M)

IF #CNTL NE 'D"
ESCAPE BOTTOM (FND.)
END-IF
END-START
/*
DISPLAY NOTITLE NAME FIRST-NAME PHONE
END-FIND
END-REPEAT

Output of Program ESCEX1:

ENTER VALUE FOR CITY: PARIS
(OR ".' TO TERMINATE)

After entering and confirming city name:

RECORDS FOUND: 26
ENTER 'D' TO DISPLAY RECORDS D

Result after entering and confirming D:

NAME FIRST-NAME TELEPHONE
MATZIERE ELISABETH 46758304
MARX JEAN-MARIE 40738871
REIGNARD JACQUELINE 48472153
RENAUD MICHEL 46055008
REMOUE GERMAINE 36929371
LAVENDA SALOMON 40155905
BROUSSE GUY 37502323
GIORDA LOUIS 37497316
STECA FRANCOIS 40487413
Statements 351



ESCAPE

CENSTER
DUC
CAHN
MAZUY
FAURIE
VALLY
BRETON
GIGLEUX
KORAB-BRZOZOWSKI
XOLIN
LEGRIS
VVVV

BERNARD
JEAN-PAUL
RAYMOND
ROBERT
HENRI
ALAIN
JEAN-MARIE
JACQUES
BOGDAN
CHRISTIAN
ROGER

38070268
38065261
43723961
44286899
44341159
47326249
48467146
40477399
45288048
46060015
39341509

352

Statements



57 EXAMINE

B SYNEAX 1 - EXAMINE .o 354
m Syntax 2 - EXAMINE TRANSLATE ... 362
= Syntax 3 - EXAMINE for Unicode GraphemMesS ............uveiiiiiiiiieeiiiie e 364
L e 11T P URT R SUPPPRPRR 366

353



EXAMINE

Related Statements: ADD | COMPRESS | COMPUTE | DIVIDE | MOVE | MOVE ALL | MULTIPLY | RESET
SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Syntax 1 - EXAMINE

EXAMINE [DIRECTION-cTausel

operandl

[FULL [VALUE [OF]]] { SUBSTRING
(operandl,operandZ,operand3)

POSITION-clause

[FOR][FULL [VALUE [OF]]]1 [PATTERN] operand4

[DELIMITERS-option]

DELETE-REPLACE-cTlause

GIVING-clause ’
DELETE-REPLACE-clause GIVING-clause

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Description - Syntax 1

The EXAMINE statement is used to inspect the content of an alphanumeric or binary field, or a range
of fields within an array, and to

return the number of how many times a search-pattern was found;

return the byte position where a search-pattern appears first;

return the significant content length of a field; that is, the field length without trailing blanks;
return the occurrence number (indices) of an array field, where a pattern was found first;
replace a pattern by another pattern;

delete a pattern.

Operand Definition Table:

354 Statements



EXAMINE

Operand Possible Structure Possible Formats Referencing| Dynamic
Permitted |Definition
operandl |C*|S |A AU B yes no
operandZ |C |S N|PI| |B* yes no
operand3 |C |S N|P|I| |B* yes no
operand4 |C |S [A* A|U B yes no

* operandI can only be a constant if the GIVING clause is used, but not if the DELETE/REPLACE clause

is used.

* operand4 can also be used as an array, see Search and Replace with Multiple Values.

* Format B of operand2 and operand3 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element

Description

DIRECTION-clause

DIRECTION Clause:

This clause determines the search direction. For details, see DIRECTION Clause
below.

operandl

Field to be Examined:
operandl is the field whose content is to be examined.

If operandlisa DYNAMIC variable, a REPLACE operation may cause its length
to be increased or decreased; a DELETE operation may cause its length to be
set to zero. The current length of a DYNAMIC variable can be ascertained by
using the system variable *LENGTH. For general information on DYNAMIC
variables, see the section Large and Dynamic Variables/Fields.

POSITION-clause

POSITION Clause:

This clause may be used to specify a starting and ending position within
operandl (or the substring of operand1) for the examination. For details, see
POSITION Clause below.

operand4 Value to be Used for EXAMINE Operation:
operand4 is the value which is searched for in the examined field(s). You may
search for a single value or for multiple values.
For more information on operand4 and operand6, see operandb6, which is
used in the DELETE REPLACE Clause described below.

FULL FULL Option:
If FULL is specified for an operand, the entire value, including trailing blanks,
will be processed. If FULL is not specified, trailing blanks in the operand will
be ignored.

Statements 355



EXAMINE

Syntax Element Description
SUBSTRING SUBSTRING Option:

Normally, the content of a field is examined from the beginning of the field to

the end or to the last non-blank character.

With the SUBSTRING option, you examine only a certain part of the field. After

the field name (operandl) in the SUBSTRING clause, you specify first the

starting position (0perandZ) and then the length (operand3) of the field portion
to be examined.

For example, to examine the 5th to 12th position inclusive of a field #A, you

would specify:

EXAMINE SUBSTRING(#A,5,8).

Note:

1. If you omit operandZ, the starting position is assumed to be 1.

2. If you omit operand3, thelength is assumed to be from the starting position
to the end of the field.

3. If SUBSTRING is used in conjunction with a DYNAMIC variable, the field
behaves like a fixed length variable; that is, the length (*LENGTH) does not
change as a result of the EXAMINE operation, regardless of whethera DELETE
or REPLACE operation was executed or not.

PATTERN PATTERN Option:

If you wish to examine the field for a value which contains “wild characters”,
that is symbols for positions not to be examined, you use the PATTERN option.
operand4 may then include the following symbols for positions to be ignored:

® A period (.), question mark (?) or underscore (_) indicates a single position
that is not to be examined.

® An asterisk (¥) or a percent sign (%) indicates any number of positions not
to be examined.

Example: With PATTERN "NAT*AL" you could examine the field for any value
which contains NAT and AL no matter which and how many other characters
are between NAT and AL (this would include the values NATURAL and NATIONAL
as well as NATAL).

DELIMITERS-option

DELIMITERS Option:

This option is used to scan for a value which exhibits delimiters. For details,
see DELIMITERS Option below.

DELETE-REPLACE-clause

DELETE REPLACE Clause:

The DELETE option of this clause is used to delete each search-value (operand4)
found in operandl, whereas the REPLACE option is used to replace each

356

Statements



EXAMINE

Syntax Element Description

search-value (operand4) found in operand]l by the value specified in
operandé6. For details, see DELETE REPLACE Clause below.

GIVING-clause For details, see GIVING Clause below.

DIRECTION Clause

The direction clause determines the search direction.

FORWARD
DIRECTION ‘ BACKWARD ]

operand8

Operand Definition Table:

Operand Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

oversnse (€ [5 | | | [m[[[[[[[[I[[] s -

Syntax Element Description:

Syntax Element | Description

FORWARD Examine in Left-to-Right Direction:

If you specify FORWARD, the contents of the field are examined from left to right.
BACKWARD Examine in Right-to-Left Direction:

If you specify BACKWARD, the contents of the field are examined from right to left.

operand8  |Alternative Specification:

If you specify operands, the search direction is determined by the contents of operands.
operand8 must be defined with format/length Al. If operand§ contains an F, then the
search direction is FORWARD, if operand8 contains a B, the search direction is BACKWARD. All
other values are invalid and are rejected at compile time if operand8is a constant, or at run
time if operand8is a variable.

] Note: If the DIRECTION clause is not specified, the default direction is FORWARD.

Statements 357



EXAMINE

POSITION Clause

The POSITION clause may be used to specify a starting and ending position within operandI (or
the substring of operandI) for the examination.

ENDING AT
[[STARTING] FROM [POSITION] operanddl { THRU } [POSITION] operandl0
Operand Definition Table:
Operand Possible Structure | Possible Formats |Referencing| Dynamic Definition

Permitted

operand9 |C |S N|P|I yes no
operandl0 |C |S N|P|I yes no
Syntax Element Description:
Syntax Element Description
FROM operand9 Starting Position:

operand9isused to define the starting position for the examination.
ENDING AT / THRU operandl0 |Ending Position:

operandl0isused to define the ending position for the examination.

The starting position (operand9) and the ending position (operand10) are relative to operandI or
the substring of operandl, and both are processed.

The search is performed starting from the starting position and ending at the ending position.

If the starting and/or ending position are not specified, the default position value applies. This
value is determined by the search direction:

Direction |Default Starting Position Default Ending Position
FORWARD |1 (first character) length of operandI (last character)
BACKWARD|length of operandI (last character)|1 (first character)

With this solution, EXAMINE BACKWARD ... isidentical to EXAMINE BACKWARD ... FROM
*LENGTH(...) THRU 1, and works as expected.

| Note: If the search direction is FORWARD and the start position is greater than the end position,

or if the search direction is BACKWARD and the start position is less than the end position, no
search is performed.

358 Statements



EXAMINE

DELIMITERS Option

ABSOLUTE
[WITH DELIMITERS]
[WITH DELIMITERS] operand5

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

oversnss (5 | | | [ [[[[B[[[[[[] s T

Syntax Element Description:

Syntax Element Description

ABSOLUTE Absolute Scan Option:

This is the default option. It results in an absolute scan of the field for the
specified value regardless of what other characters may surround the value.

WITH DELIMITERS WITH DELIMITERS Option:

This option is used to scan for a value which is delimited by blanks or by any
character that is neither a letter nor a numeric character.

WITH DELIMITERS Specific Delimiter Option:
operandb

This option is used to scan for a value which is delimited by the character or
any of the characters specified in operandb. If the search value was found at
the beginning or end of the examined field, only the right or left side has to be
delimited by one of the operand5 characters.

DELETE/REPLACE Clause
Ao { DELETE [FIRST] }
REPLACE [FIRST] [WITH] [FULL [VALUE [OF]]] operandé

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Permitted | Dynamic Definition

operand6 |C ‘S ‘A* ‘ A‘U‘ | | ‘B‘ ‘ ‘ ‘ ‘ | yes no

* operandé6 can also be used as an array, see Search and Replace with Multiple Values.

Syntax Element Description:

Statements 359



EXAMINE

Syntax Element | Description

DELETE DELETE Option:

This option is used to delete the first (or all) occurrence(s) of the search-value (operand4)
in the content of operandl.

REPLACE REPLACE Option:

This option is used to replace the first (or all) occurrence(s) of the search-value (operand4)
in operand1 by the replace value specified in operandé.

FIRST FIRST Option:

If you specify the keyword FIRST, only the first identical value will be deleted/replaced.

] Notes:

1. If the REPLACE operation results in more characters being generated than will fit into operandl,
you will receive an error message.

2. If operandl is a dynamic variable, a REPLACE operation may cause its length to be increased
or decreased; a DELETE operation may cause its length to be set to zero. The current length of a
dynamic variable can be ascertained by using the system variable *LENGTH. For general inform-
ation on dynamic variables, see Using Dynamic Variables.

Search and Replace with Multiple Values

The search (operand4) and replace value (operand6) may also be defined as array fields. This allows
to substitute multiple different patterns in the examined field (operandI), all with an unique
EXAMINE statement. It is not necessary to have the same number of occurrences for the search and
replace operand. All what is required is the transfer compatibility between these fields; that is,
operand4:=operand6 must be a valid operation; see Assignment Operations with Arrays in the Pro-
gramming Guide.

The operation logic for the multi-value search is as follows:
® The field to be examined (operandl) is passed through only a single time, either from left to

right for direction FORWARD or from right to left for direction BACKWARD.

® Beginning with the first position, the values in the search array (operand4) are tested for a match,
one after the other, starting with the array occurrence with the lowest index.

* If no search value was found, the comparison repeats on the next field position.

® If one of the searched patterns is detected in the examined field (operandI), itis substituted with
the value of the replace array (operand6), which overlays the matching pattern in operand4, if
a operand4:=operandé would be executed.

" After a pattern replacement was performed, the compare process continues with the first occur-
rence for the search array, immediately after the inserted value. This means, a replaced pattern
is skipped and may not be replaced a second time.

360 Statements



EXAMINE

Example:

This example shows an HTML translation for the characters less than (<), greater than (>), and

ampersand (&).

DEFINE DATA LOCAL

1 #HTML  (A/1:3) DYNAMIC INIT <'&1t;','&gt;"', '&amp;'>
1 #fTAB (A/1:3) DYNAMIC INIT <'<','>",'&"'>

1 #DOC(A) DYNAMIC /* document to be replaced
END-DEFINE

#DOC := 'a&lt;&1t;b&amp;b&gt;cégt;"

WRITE #DOC (AL=30) 'before’

/* Replace #D0OC using ffHTML to #TAB (n:1 replacement)
EXAMINE ~ #DOC FOR #HTML(*) REPLACE #TAB(*)

/* '&1t;" is replaced by '<'" (4:1 replacement)

/* '&gt;"' is replaced by '>'" (4:1 replacement)

/* '&amp;" is replaced by '&" (5:1 replacement)
WRITE #DOC (AL=30) 'after'

END

See also Example 3 - EXAMINE AND REPLACE WITH MULTIPLE VALUES.

GIVING Clause

GIVING[IN] operand7
[ { [GIVINGI NUMBER[IN] operand7} ]
[[GIVING] POSITION[IN] operand’]
[[GIVING] LENGTH [IN] operand7]
[[GIVING] INDEX [IN] operand7 ...3]

Operand Definition Table:

Operand Possible Structure | Possible Formats | Referencing Permitted | Dynamic Definition

oversnd? | 5 | | | [INERIIIIIIIL v

Syntax Element Description:

Syntax Element Description

GIVING GIVING Clause:

If only the keyword GIVING is specified, this corresponds to GIVING NUMBER (default).

NUMBER GIVING NUMBER Clause:

found in the field (operandl) whose content is to be examined.

Is used to obtain information on how many times the search value (operand4) was

Statements

361




EXAMINE

Syntax Element

Description

POSITION

GIVING POSITION Clause:

Is used to obtain the byte position within operand1 (or the substring of operandl)
where the first value identical to operand4 was found.

LENGTH

GIVING LENGTH Clause:

Is used to obtain the remaining content length of operandI (or the substring of
operandl) after all delete/replace operations have been performed. Trailing blanks
are ignored.

operand7

Number of Occurrences:

The number of occurrences of the search-value. If the REPLACE FIRST or DELETE
FIRST option is also used, the number will not exceed 1.

INDEX operand’
.3

GIVING INDEX Clause:
This option is only applicable if the underlying field to be examined is an array field.

GIVING INDEX is used to obtain the array occurrence number (index) of operandl
in which the first search-value (operand4) was found.

operand/ must be specified as many times as there are dimensions in operandI
(maximum three times). operand/ will return 0 if the search-value is found in none
of the occurrences.

Note: If the index range of operandI includes the occurrence 0 (for example, 0:5),

a value of 0 in operand’ is ambiguous. In this case, an additional GIVING NUMBER
clause should be used to ascertain whether the search-value was actually found or
not.

Syntax 2 - EXAMINE TRANSLATE

EXAMINE{

operandl

TRANSLATE ‘

AND
SUBSTRING (operandl,operandZ,operand3) } [AND]
UPPER
INTO { } [CASE]
LOWER
USING[INVERTED] operand4

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

362

Statements



EXAMINE

Syntax Description - Syntax 2

The EXAMINE TRANSLATE statement is used to translate the characters contained in a field into upper-
case or lower-case, or into other characters.

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl S |A A|U B yes no
operandZ |C |S N|P|I| |B* yes no
operand3 |C |S N|P|I| |B* yes no
operand4 S |A A|U B yes no

*Format B of operand? and operand3 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element Description

EXAMINE operandl Complete Field Content Translation:

operandl is the field whose content is to be translated.

EXAMINE SUBSTRING Partial Field Content Translation:
operandl  operand?
operand3 Normally, the entire content of a field is translated.

With the SUBSTRING option, you translate only a certain part of the field.
After the field name (operandl) in the SUBSTRING clause, you specify first
the starting position (operand?2) and then the length (operand3) of the field
portion to be examined.

For example, to translate the 5th to 12th position inclusive of a field #A, you
would specify:

EXAMINE SUBSTRING(#A,5,8) AND TRANSLATE ...

Note: If you omit operand?, the starting position is assumed to be 1. If you

omit operand3, the length is assumed to be from the starting position to
the end of the field.

TRANSLATE INTO UPPER Upper Case Translation:
CASE

The content of operandl will be translated into upper case.

TRANSLATE INTO LOWER Lower Case Translation:
CASE

The content of operandl will be translated into lower case.

TRANSLATE USING operand4|Translation Table:

Statements 363



EXAMINE

Syntax Element Description

operand4 is the translation table to be used for character translation. The
table must be of format/length A2, U2 or B2.

Note: If for a character to be translated more than one translation is defined
in the translation table, the last of these translations applies.
INVERTED INVERTED Option:

If you specify the keyword INVERTED, the translation table (operand4) will
be used inverted; that is, the translation direction will be reversed.

Syntax 3 - EXAMINE for Unicode Graphemes

EXAMINE [FULL [VALUE { operandl }
[OFII] SUBSTRING (operandl, operand?,operand3)

[POSITION-clause]
CHARPOSITION operand4 CHARLENGTH

operandb
[FORI ‘ CHARPOSITION operand4 ]

CHARLENGTH operand5
[GIVING] POSITION IN operand6[[GIVING] LENGTH IN operand’]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.
Syntax Description - Syntax 3

A “grapheme” is what a user normally thinks of as a character. In most cases, a UTF-16 code unit
(=U format character) is a grapheme, however, a grapheme can also consist of several code units.
Examples are: a sequence of a base character followed by combining characters or a surrogate
pair. For more information on graphemes and other Unicode terms, see The Unicode Standard at
http:/[www.unicode.org/.

The EXAMINE statement for U format operands in general operates on code units. However, with

the CHARPOSITION and CHARLENGTH clauses it is possible to obtain the starting position and length
(in terms of code units) of a graphemes sequence. The returned code unit values can then be used
in other statements/clauses which require code unit operands (for example, in a SUBSTRING clause).

For further information on this syntax of the EXAMINE statement, see also Unicode and Code Page
Support in the Natural Programming Language, section Statements, EXAMINE.

Operand Definition Table:

364 Statements


http://www.unicode.org/

EXAMINE

Operand Possible Structure Possible Formats Referencing | Dynamic
Permitted |Definition
operandl |C |S |A U yes no
operandZ |C |S N|P|I| |B* yes no
operand3 |C |S N|P|I| |B* yes no
operand4 |C |S N|P|I yes no
operand5 |C |S N|P|I yes no
operand6 |C |S N|P|I yes no
operand/ |C |S N|P|I yes no

* Format B of operandz and operand3 may be used only with a length of less than or equal to 4.

Syntax Element Description:

Syntax Element

Description

FULL

FULL Option:

If FULL is specified for an operand, the entire value, including trailing blanks, will
be processed. If FULL is not specified, trailing blanks in the operand will be ignored.

SUBSTRING operandl
operand? operand3

SUBSTRING Clause:

Normally, the content of a field is examined from the beginning of the field to the
end or to the last non-blank character.

With the SUBSTRING option, you examine only a certain part of the field. After the
field name (operandl) in the SUBSTRING clause, you specify first the starting
position (operand?Z) and then the length (operand3) of the field portion to be
examined. operandZ and operand3 are specified in terms of code units.

For example, to examine the 5th to 12th position inclusive of a field #A, you would
specify:

EXAMINE SUBSTRING (#A,5,8)

Note:

1. If you omit operandZ, the starting position is assumed to be 1.

2. If you omit operand3, the length is assumed to be from the starting position to
the end of the field.

3. If SUBSTRING is used in conjunction with a DYNAMIC variable, the field behaves
like a fixed length variable; that is, the length (*LENGTH) does not change as a
result of the EXAMINE operation, regardless of whether a DELETE or REPLACE
operation was executed or not.

POSITION-clause

POSITION Clause:

Statements

365



EXAMINE

Syntax Element

Description

FROM and THRU positions are given in terms of code units. For further information,
see POSITION Clause under Syntax 1.

CHARPOSITION CHARPOSITION Clause:

operand4
operand4 defines the starting position (in terms of Unicode graphemes) of the
grapheme sequence. The according position in terms of code units is returned in
operandb. This clause can be omitted if the CHARLENGTH clause is specified; in
this case the starting position 1 is assumed.

CHARLENGTH CHARLENGTH Clause:

operand5

operand5 defines the length (in terms of Unicode graphemes) of the grapheme
sequence. The length of the grapheme sequence in terms of code units is returned
in operand/. This clause can be omitted if the CHARPOSITION clause is specified;
in this case the length from the starting position up to the end of the string is
returned.

GIVING POSITION IN
operandé

GIVING POSITION Clause:

operandb receives the starting position (in terms of code units) of the grapheme
sequence defined by operand4and operand5.1f operandIhasless than operand4
graphemes, 0 is returned. This clause can be omitted if the GIVING LENGTH clause
is specified.

GIVING LENGTH IN
operand7

GIVING LENGTH Clause:

operand/ receives the length (in terms of code units) of the grapheme sequence
defined by operand4 and operand5.1f operandI has less than
operand4+operand5 graphemes, 0 is returned. This clause can be omitted if the
GIVING POSITION clause is specified.

] Notes:

1. Either the CHARPOSITION or the CHARLENGTH clause or both must be specified.

2. Either the GIVING POSITION or GIVING LENGTH clause or both must be specified.

Examples

= Example 1 - EXAMINE
= Example 2 - EXAMINE TRANSLATE
= Example 3 - EXAMINE AND REPLACE WITH MULTIPLE VALUES

366

Statements



EXAMINE

= Example 4 - EXAMINE for Unicode Graphemes

Example 1 - EXAMINE

** Example "EXMEX1': EXAMINE

ko o ok e ok ok ok ok ok ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok
DEFINE DATA LOCAL

1 JfTEXT (A45)

1 #ARRAY  (A5/1:3)
1 A (A3)

1 #START (N2)

1 {FNUM (N2)

1 #INUMI  (N2)

1 §NUM2  (N2)

1 #INUM3  (N2)

1 #P0OS (N2)

1 #fPOS1  (N2)

1 JILENG  (N2)

1 #INDEX (N2)
END-DEFINE

*

MOVE 'ABC A BC .A. .B. .C. -A-  -B- -C- " TO {fTEXT

*

WRITE / "EXAMPLE 1 (DELIMITER, GIVING NUMBER)'
WRITE NOTITLE '#TEXT: ' #TEXT
EXAMINE #fTEXT FOR 'A' GIVING NUMBER #NUM1
EXAMINE #TEXT FOR 'A' WITH DELIMITER GIVING NUMBER #NUM2
EXAMINE #fTEXT FOR 'A' WITH DELIMITER '.' GIVING NUMBER #NUM3
WRITE 'EXAMINE #TEXT FOR "A" ' 57T 'Number found:' #NUM1
WRITE 'EXAMINE #TEXT FOR "A" WITH DELIMITER' 57T 'Number found:' FNUM?2
WRITE 'EXAMINE #TEXT FOR "A" WITH DELIMITER "."'
57T 'Number found:' #NUM3

*

WRITE / '"EXAMPLE 2 (DELIMITER, REPLACE, GIVING NUMBER)'

WRITE '"EXAMINE #TEXT FOR "A"™ WITH DELIMITER "-" REPLACE WITH "*"'
WRITE 'Before:' #TEXT
EXAMINE #fTEXT FOR 'A' WITH DELIMITER '-' REPLACE WITH '=*'

GIVING NUMBER #NUM
WRITE 'After: ' #fTEXT 57T 'Number found:' #NUM

*
*

NEWPAGE

*

WRITE / '"EXAMPLE 3 (REPLACE, GIVING NUMBER)'

WRITE "EXAMINE #TEXT FOR " " REPLACE WITH "+"°
WRITE 'Before:' #TEXT
EXAMINE #TEXT FOR ' ' REPLACE WITH '+' GIVING NUMBER #NUM

WRITE 'After: ' #TEXT 57T 'Number found:' #NUM

*

WRITE / 'EXAMPLE 4 (FULL, REPLACE, GIVING NUMBER)'
WRITE 'EXAMINE FULL #TEXT FOR " " REPLACE WITH "+"'

Statements 367



EXAMINE

WRITE 'Before:' F#TEXT

EXAMINE FULL ffTEXT FOR ' ' REPLACE WITH '+' GIVING NUMBER #NUM
WRITE 'After: ' #TEXT 57T 'Number found:' #NUM

*

WRITE / "EXAMPLE 5 (DELETE, GIVING POSITION)'

WRITE 'EXAMINE #TEXT FOR "+" DELETE GIVING POSITION #POS"'
WRITE 'Before:' FTEXT

EXAMINE #TEXT FOR '+' DELETE GIVING POSITION #POS

WRITE 'After: ' #fTEXT 57T 'Position found:' #POS

*

WRITE / "EXAMPLE 6 (DELETE, GIVING LENGTH)'

WRITE 'EXAMINE #TEXT FOR "A" DELETE GIVING LENGTH FFLENG'
WRITE 'Before:' #TEXT

EXAMINE #TEXT FOR 'A' DELETE GIVING LENGTH #LENG

WRITE 'After: ' #fTEXT 57T 'Length found:' #LENG

*

*

NEWPAGE

*

MOVE 'ABC A B C AL 0B LG -A-  -B-  -C- ' TO #TEXT

*

WRITE / '"EXAMPLE 7 (PATTERN, REPLACE, GIVING NUMBER)'

WRITE 'EXAMINE #TEXT FOR ".A." AND REPLACE "x*x*"'

WRITE 'Before:' #fTEXT

EXAMINE ffTEXT FOR ".A.' AND REPLACE '***' GIVING NUMBER #NUM

WRITE 'After: ' #fTEXT 57T 'Number found:' #NUM

*

MOVE "ABC A B C AL 0B LC. -A-  -B- -C- ' TO #TEXT

*

WRITE 'EXAMINE #TEXT FOR PATTERN ".A." AND REPLACE "***"'

WRITE 'Before:' #TEXT

EXAMINE #TEXT FOR PATTERN '.A."' AND REPLACE '***' GIVING NUMBER #NUM
WRITE 'After: ' #fTEXT 57T 'Number found:' #NUM

*

MOVE 'ABC ABC AL UB. LC. -A- -B-  -C- ' TO HTEXT
*

#A =B C

##POS := 6

JLENG:= 25

*

WRITE / 'EXAMPLE 8 (SUBSTRING, REPLACE, GIVING POSITION)'
WRITE '#A := "B C" ; {fPOS := 6 ; fLENG:= 25 '
WRITE 'EXAMINE SUBSTRING(#TEXT,#POS,#LENG) FOR #fA AND REPLACE "#**="'
WRITE 'Before:' #TEXT
EXAMINE SUBSTRING(#TEXT,#POS,fLENG) FOR #A AND REPLACE '***’
GIVING POSITION #P0OS1
WRITE 'After: ' #TEXT 57T 'Position found:' #P0S1

*
*

NEWPAGE

*

MOVE "ABC A B C A 0B LC. -A-  -B- -C- ' TO #TEXT

368 Statements



EXAMINE

*

WRITE / '"EXAMPLE 9 (DELETE, GIVING NUMBER, GIVING POSITION, '-

"GIVING LENGTH)'

WRITE "EXAMINE #TEXT FOR "." DELETE GIVING NUMBER

WRITE 30T 'GIVING POSITION #POS'
WRITE 30T 'GIVING LENGTH  LENG"
WRITE 'Before:' #TEXT

EXAMINE #TEXT FOR '.' DELETE GIVING NUMBER #NUM
GIVING POSITION #POS
GIVING LENGTH  {fLENG

WRITE "After: ' #fTEXT

WRITE 'Number found: ' #NUM
WRITE 'Position found:' #POS
WRITE 'Length found: ' #LENG

*
*

*

MOVE 'ABC ' TO #fARRAY (1)
MOVE '.A.B.' TO ffARRAY (2)
MOVE '-A-B-' TO #fARRAY (3)

*

WRITE / '"EXAMPLE 10 (GIVING NUMBER, GIVING POSITION,

WRITE 'fFARRAY(1):' #ARRAY(1)

WRITE 'fFARRAY(2):' FARRAY(2)

WRITE '#ARRAY(3):' #ARRAY(3)

WRITE 'EXAMINE #ARRAY(*) FOR "B" GIVING NUMBER

WRITE 27T 'GIVING POSITION #POS'

WRITE 27T 'GIVING INDEX FFINDEX"

EXAMINE FARRAY(*) FOR 'B' GIVING NUMBER  #NUM
GIVING POSITION #POS

GIVING INDEX F#INDEX

WRITE 'Number found: ' #NUM
WRITE 'Position found:' #P0S
WRITE 'Index found: " JFINDEX
END <«

Output of Program EXMEX1:

EXAMPLE 1 (DELIMITER, GIVING NUMBER)

#fITEXT: ABC A B C AL .BL LG -A- -B-

EXAMINE #TEXT FOR "A’
EXAMINE #TEXT FOR 'A' WITH DELIMITER
EXAMINE #TEXT FOR 'A' WITH DELIMITER '.'

EXAMPLE 2 (DELIMITER, REPLACE, GIVING NUMBER)

EXAMINE #TEXT FOR 'A' WITH DELIMITER '-' REPLACE WITH
Before: ABC ABC A 0B LC. A= =[g=
After: ABC ABC .A. .B. .C. =%w= =[§=

EXAMPLE 3 (REPLACE, GIVING NUMBER)

FENUM"

Number
Number
Number

(N}

Number

GIVING INDEX)'

found:
found:
found:

found:

EXAMINE #TEXT FOR ' ' REPLACE WITH '+'
Before: ABC A B C A, .B. .C. =%= =[§=
Statements 369



EXAMINE

After: ABCH++A+B+CH+++ A .++.B.++.C.++++-*-++-B-++-C- Number found:

EXAMPLE 4 (FULL, REPLACE, GIVING NUMBER)

EXAMINE FULL #TEXT FOR ' ' REPLACE WITH '+

Before: ABCHHHA+BHCH+ A 4+ B.++.C +Ht-*-++-B-++-C-

After: ABCHHHA+B+CH++. A ++. B.++.C.4+++-*-++-B-++-C-+  Number found:

EXAMPLE 5 (DELETE, GIVING POSITION)
EXAMINE #TEXT FOR '+' DELETE GIVING POSITION #POS
Before: ABCH++A+B+CH++ A ++ B . ++ C.++++-%-++-B-++-C-+

After: ABCABC.A..B..C.-*--B--C- Position found:

EXAMPLE 6 (DELETE, GIVING LENGTH)
EXAMINE #TEXT FOR 'A' DELETE GIVING LENGTH #LENG
Before: ABCABC.A..B..C.-*--B--C-

After: BCBC...B..C.-*--B--C- Length found:
EXAMPLE 7 (PATTERN, REPLACE, GIVING NUMBER)

EXAMINE #TEXT FOR ".A.'" AND REPLACE '#**x*'

Before: ABC ABC .A. .B. .C. =A= =B= =C-=

After: ABC ABC w B, oCo -A- -B- -C- Number found:
EXAMINE #TEXT FOR PATTERN '.A.' AND REPLACE '***'

Before: ABC A B C AL B .C. =A= =B= =C-

After: ABC ***B C 2ol B .C. were  =B=  =C- Number found:

EXAMPLE 8 (SUBSTRING, REPLACE, GIVING POSITION)

#A := 'B C' ; #POS := 6 ; {LENG:= 25

EXAMINE SUBSTRING(#TEXT,#POS,#LENG) FOR #A AND REPLACE '#***'

Before: ABC A B C A, .B. .C. SASECBER

After: ABC A S .A.  .B. .C. == == =(- Position found:

EXAMPLE 9 (DELETE, GIVING NUMBER, GIVING POSITION, GIVING LENGTH)
EXAMINE #TEXT FOR '.' DELETE GIVING NUMBER  #NUM

GIVING POSITION #P0S

GIVING LENGTH  4LENG

Before: ABC A B C A, .B. .C. =A= =B= =C-
After: ABC ABC A B C =M= =B= =C-
Number found: 6

Position found: 15

Length found: 38

EXAMPLE 10 (GIVING NUMBER, GIVING POSITION, GIVING INDEX)
#FARRAY (1) : ABC
#FARRAY (2): .A.B.
#FARRAY (3): -A-B-
EXAMINE #ARRAY(*) FOR 'B' GIVING NUMBER  {NUM
GIVING POSITION #POS
GIVING INDEX #FINDEX

Number found: 3

Position found: 2

Index found: 1 ©

370 Statements



EXAMINE

Example 2 - EXAMINE TRANSLATE

** Example "EXMEX2': EXAMINE TRANSLATE ©
S e e Lt N
DEFINE DATA LOCAL ©
1 #/TEXT  (A50) ©
1 4fTAB (A2/1:10) =
1 #POS (N2) ©
1 #fLENG (N2) ©
END-DEFINE ©
* o
MOVE "ABC ABC Ao .B. .C. -A- -B-  -C- ' TO #TEXT ©
* o
MOVE 'AX' TO #TAB(1) “
MOVE 'BY' TO #TAB(2) “
MOVE 'CZ' TO #TAB(3) =
* o
* o
WRITE NOTITLE / '"EXAMPLE 1 (WITH TRANSLATION TABLE)' <
WRITE 'EXAMINE #TEXT TRANSLATE USING #TAB(*)"' ©
WRITE 'Before:' #TEXT ©

EXAMINE ffTEXT TRANSLATE USING #TAB(*)

WRITE 'After: ' #TEXT o
* o
WRITE / "EXAMPLE 2 (WITH INVERTED TRANSLATION TABLE)' <
WRITE 'EXAMINE #TEXT TRANSLATE USING INVERTED #TAB(*)' <
WRITE 'Before:' #TEXT ©

Statements 371



EXAMINE

EXAMINE ffTEXT TRANSLATE USING INVERTED #TAB(*)

WRITE 'After:

*

JEPOS

#FLENG:

WRITE /

" FTEXT
13
15
"EXAMPLE 3 (WITH LOWER CASE TRANSLATION)'

WRITE '#P0OS := 13 ; #LENG:= 15 '

WRITE 'EXAMINE SUBSTRING(#TEXT,#POS,#fLENG) TRANSLATE INTO LOWER CASE'

WRITE 'Before:' #TEXT

EXAMINE SUBSTRING(#TEXT,#POS,ffLENG) TRANSLATE INTO LOWER CASE
WRITE 'After:

*

END

" HTEXT

Output of Program EXMEX2:

EXAMPLE 1 (WITH TRANSLATION TABLE)

EXAMINE #TEXT TRANSLATE USING #TAB(*)

Before: ABC ABC A 0B LC. =M= =B= =C-=

After: XYZ X Y Z XY, L. =X= =V= =Z-

EXAMPLE 2 (WITH INVERTED TRANSLATION TABLE)

EXAMINE TEXT TRANSLATE USING INVERTED #TAB(*)

Before: XYZ X VY Z XYL, L. X= =V= =Z-

After: ABC A B C A, .B. .C. =A=  =B= =C-

EXAMPLE 3 (WITH LOWER CASE TRANSLATION)

#POS := 13 ; FLENG:= 15

EXAMINE SUBSTRING(HTEXT,#POS,#LENG) TRANSLATE INTO LOWER CASE
Before: ABC ABC A 0B LC. =A= =B= =(C-=

After: ABC A B C .a. .b. .c. =A=  =B= =C-

372 Statements



EXAMINE

Example 3 - EXAMINE AND REPLACE WITH MULTIPLE VALUES

* EXAMPLE '"EXMEX3': EXAMINE AND REPLACE WITH MULTIPLE VALUES

R R B b R R e e b b R e S b b e e b b S b b e e i b b e e b b S e b b R e I b b b b S S e b b R e b b e e b b b S 4

* This example shows a translation of the pattern

* "AA', 'A3' and 'aA' into '++',
* 'BB', 'Bb' and 'bB' into '--' and
* 'CC', 'Cc" and 'cC' into '**'",

R R R o R R b b R b b e b e e I b R e i b e e b R e b i R e i b R e i b e b R e i b b e S b b i

DEFINE DATA LOCAL

1 SV (A2/1:3,1:3) INIT (1,V) <"AA','BB','CC'>
(2,V) <'Aa','Bb','Cc'>
(3,V) <'aA','bB",'cC'>

1 4RV (A2/1:3) INIT QUAHED D=0 DOy

1 #STRING (A20) INIT <'AAABbbbbBCCCcccCaaaA'>
1 #ENUM (N2)

END-DEFINE

*
*

WRITE NOTITLE / 'EXAMINE #STRING FOR #SV(*,*) AND REPLACE WITH #RV(*)' /

*

WRITE 'Before:' #STRING /* shows "AAABbbbbBCCCcccCaaaA’

*

EXAMINE #STRING FOR #SV(*,*) AND REPLACE WITH {fRV(*)
GIVING NUMBER {fNUM

*

WRITE '"After: ' #STRING /* shows T = =[glh = = F R g G
40T 'Number found:' #NUM

*

Output of Program EXMEX3:

EXAMINE #STRING FOR #SV(*,*) AND REPLACE WITH #RV(*)

Before: AAABbbbbBCCCcccCaaaA
ATERIF S A= =[BlD= =35 E g G Number found: 7 <

Example 4 - EXAMINE for Unicode Graphemes

This example demonstrates the analysis of a Unicode string containg the characters & und . Both
characters are defined as base character followed by a combining character: & is coded with U+0061
followed by U+0308, and U is coded with U+0075 followed by U+0308.

Statements 373



EXAMINE

DEFINE DATA LOCAL

1 40U (U20)

1 /START (I2)

1 4POS (12)

1 #LLEN (I2)

END-DEFINE

f#U := U'AB'-UH'00610308'-U'CD'-UH'00750308"-U"'EF"
*

REPEAT
#FSTART := #START + 1
EXAMINE #U FOR CHARPOSITION #START
CHARLENGTH 1

GIVING POSITION IN #POS
LENGTH IN #tLEN

INPUT (AD=0) MARK POSITION #P0OS IN FIELD *#U
: UNICODE-STRING: "' #U (AD=MI)

/] CHARACTER NO.:' #START (EM=9)
/ 'STARTS AT BYTE POSITION:' #POS (EM=9)
/! AND THE LENGTH IS:' 4fLEN (EM=9)
WHILE #POS NE O
END-REPEAT
END «
Output:
Mainframe Environments: Windows, UNIX and OpenVMS Environments (with Natural
Web 1/O Interface):
UNICODE-STRING: ABa?CDu?EF UNICODE-STRING: ABECDUEF
CHARACTER NO.: 1 CHARACTER NO.: 1
STARTS AT BYTE POSITION: 1 STARTS AT BYTE POSITION: 1
AND THE LENGTH IS: 1 AND THE LENGTH IS: 1
Press ENTER to continue. Press ENTER to continue.
UNICODE-STRING: ABa?CDu?EF UNICODE-STRING: ABECDUEF
CHARACTER NO.: 2 CHARACTER NO.: 2
STARTS AT BYTE POSITION: 2 STARTS AT BYTE POSITION: 2
AND THE LENGTH IS: 1 AND THE LENGTH IS: 1
Press ENTER to continue. Press ENTER to continue.

Note that the character in position 3 is a combining character sequence and is two code units long.

374




EXAMINE

Mainframe Environments:

Windows, UNIX and OpenVMS Environments (with Natural
Web I/O Interface):

UNICODE-STRING:
AB<b>a</b>?CDu?EF

t

UNICODE-STRING: AB<b>d</b>CDUEF

CHARACTER NO.: 3

CHARACTER NO.: 3 STARTS AT BYTE POSITION: 3
STARTS AT BYTE POSITION: 3 AND THE LENGTH IS: 2
AND THE LENGTH IS: 2
And so on. And so on.
Statements 375



376



5 8 EXPAND

L V101 1o PP P PP PO PPPPRPPPPPPR 378
B SYNEAX DESCIIPHON ...ttt et 378

377



EXPAND

dynamic-clause

EXPAND { } [GIVING operand5]

array-clause

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related statements: REDUCE | RESIZE

Belongs to Function Group: Memory Management Control for Dynamic Variables or X-Arrays

Function

The EXPAND statement is used to expand:

® the allocated length of a dynamic variable (dynamic-clause), or

® the number of occurrences of X-arrays (array-clause).
For further information, see the following sections in the Programming Guide:

® Using Dynamic Variables

= Allocating/Freeing Memory Space for a Dynamic Variable
" X-Arrays

= Storage Management of X-Group Arrays

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic
Permitted |Definition
operandl S |A A|U B no no
operand? |C|S I no no
operand3 A G A|UIN|P|I |[F|B|D|T|L|C|G|O yes no
operand4 |C|S N|P|I no no
operandb S 14 no yes

Syntax Element Description:

378 Statements



EXPAND

Syntax Element

Description

dynamic-clause

Dynamic Clause:

The EXPAND DYNAMIC VARIABLE statement expands the allocated length of a dynamic
variable (operandl) to the value specified with operandZ. For more information,
see Dynamic Clause below.

operandl Dynamic Variable:
operandl is the dynamic variable for which the size is to be expanded.
operandz Target Length of Dynamic Variable:

operand? is used to specify the length to which the dynamic variable is to be
expanded. The value specified must be a non-negative integer constant or a variable
of type integer.

array-clause

Array Clause:

The EXPAND ARRAY statement increases the number of occurrences of the X-array
(operand3) to the upper and lower bound specified with (dim[, dim[,dim]]). For
more information, see Array Clause below.

operand3 X-Array:
operand3is the X-array for which the number of occurrences may be increased. The
index notation of the array is optional. As index notation only the complete range
notation * is allowed for each dimension.

dim Dimension:

operand4 The lower and upper bound notation (operand4 or asterisk) to which the X-array

should be expanded is specified here. If the current value of the upper or lower bound
should be used, an asterisk (*) may be specified in place of operand4. For more
information, see Dimension below.

GIVING operand5

GIVING Clause:

If the GIVING clause is not specified, Natural runtime error processing is triggered if
an error occurs.

If the GIVING clause is specified, operand5 contains the Natural message number if
an error occurred, or zero upon success.

Statements

379



EXPAND

Dynamic Clause

’[SIZE OF] DYNAMIC [VARIABLE] operandl TO operandZ?

The EXPAND DYNAMIC VARIABLE statement expands the allocated size of a dynamic variable (oper-
andI) to the value specified with operandz.

If operand?Z is less than the currently allocated length of operandi, the statement will be ignored
for this dynamic variable. The currently allocated length (*LENGTH) of the dynamic variable is not
modified.

Array Clause

[AND RESET] [OCCURRENCES OF] ARRAY operand3 TO (diml,diml[,dimll)

The EXPAND ARRAY statement increases the number of occurrences of the X-array (operand3) to the
upper and lower bound specified with T0 (dim [,dim[,dim]]).

The RESET option resets all occurrences of the expanded X-array to its default zero value. By default
(no RESET option), the actual values are kept and the expanded (new) occurrences are reset.

When using the EXPAND statement, it is only possible to increase the number of occurrences. If the
requested number is smaller than the currently allocated number of occurrences, it will simply be
ignored.

An upper or lower bound used in an EXPAND statement must be exactly the same as the correspond-
ing upper or lower bound defined for the array.

Example:

DEFINE DATA LOCAL
1 #fa(I4/1:%)
1 ffg(1:*)

2 #ga(l4/1:%)

1 #i(id)
END-DEFINE

/* allocating #a(1:10)
EXPAND ARRAY #a TO (1:10) /* ffa is allocated 10
EXPAND ARRAY Hfa TO (*:10) /* occurrences.

/* allocating #fga(1:10,1:20)
EXPAND ARRAY g TO (1:10) /* 1st dimension is set to (1:10)
EXPAND ARRAY Hfga TO (*:*,1:20) /* 1st dimension is dependent and
/* therefore kept with (*:%*)
/* 2nd dimension is set to (1:20)

380 Statements



EXPAND

EXPAND ARRAY 4fa TO (5:10) /* This is rejected because the lower index
/* must be 1 or *
EXPAND ARRAY #fa TO (4i:10) /* This is rejected because the lower index

/* must be 1 or *

EXPAND ARRAY #fga TO (1:10,1:20) /* (1:10) for the 1st dimension is rejected
/* because the dimension is dependent and
/* must be specified with (*:*).

For further information, see the following topics in the Programming Guide:

= Storage Management of X-Arrays
= Storage Management of X-Group Arrays

Dimension

Each of the dimensions (d7m) specified in the Array Clause is defined using the following syntax:

* *

{ operand4 } { operand4 }

The lower and upper bound notation (operand4 or asterisk) to which the X-array should be expan-
ded is specified here. If the current value of the upper or lower bound should be used, an asterisk
(*) may be specified in place of operand4. Instead of *: *, you may also specify a single asterisk.

The number of dimensions (d7m) must exactly match the defined number of dimensions of the X-
array (1,2 or 3).

If the number of occurrences for a specified dimension is less than the number of the currently
allocated occurrences, the number of occurrences is not changed for the corresponding dimension.

Statements 381



382



VII

B 0 FE T CH s 385
B B0 FIND Lo 391
B BT PO R e 425
B 02 FORMAT e 431
B B3 G e 437
B 04 GET SAME ..o e 443
® 65 GET TRANSACTION DATA ..ot 447
B 66 HISTOGRAM ...ttt 451
BT I s 463
B B8 IF SELECTION ... 467
BB IGNORE ..o s 471
B 70 INCLUDE ... 473

383



384



59 FETCH

L V101 1o PP P PP PO PPPPRPPPPPPR 386
B SYNEAX DESCIIPHON ...ttt et 386
LI 1o [ PSPPSR 388

385



FETCH

REPEAT
FETCH [ { RETURN } ] operandl [operandZ [(parameter)]] ..

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Related Statements: CALL | CALL FILE | CALL LOOP | CALLNAT | DEFINE SUBROUTINE | ESCAPE |
FETCH | PERFORM

Belongs to Function Group: Invoking Programs and Routines

Function

The FETCH statement is used to execute a Natural object program written as a main program. The
program to be loaded must have been previously stored in the Natural system file with a CATALOG
or STOW command. Execution of the FETCH statement does not overwrite any source program in
the Natural source work area.

For Natural RPC: See Notes on Natural Statements on the Server (in the Natural Remote Procedure Call
(RPC) documentation).

Additional Considerations

In addition to the parameters passed explicitly with FETCH, the fetched program also has access
to the established global data area.

The FETCH statement may cause the internal execution of an END TRANSACTION statement based on
the setting of the Natural profile parameter 0PRB (Database Open/Close Processing) as set by the
Natural administrator. If a logical transaction is to span multiple Natural programs, the Natural
administrator should be consulted to ensure that the 0PRB parameter is set correctly.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing| Dynamic Definition
Permitted

operandl |C A yes no

operand? |C |S |A |G A|UIN|P|I|FB|D|T|L| |G yes yes

Syntax Element Description:

386 Statements



FETCH

Syntax
Element

Description

REPEAT

REPEAT Option:

The REPEAT option causes Natural to suppress the prompt for user input for each INPUT
statement issued during the execution of the FETCHed program. It may be used to send
information about the execution of the program to the terminal without the user having to
reply with ENTER.

RETURN

RETURN Option:

Without the specification of RETURN, the execution of the program issuing the FETCH statement
will be terminated immediately and the fetched program will be activated as a “main
program” (Level 1).

If a program is invoked with FETCH RETURN, the execution of the invoking program will be
suspended - not terminated - and the FETCHed program will be activated as a “subordinate
program” on a higher level. Control is returned to the invoking program when an END or
ESCAPE ROUTINE statement is encountered in the FETCHed program. Processing is continued
with the statement following the FETCH RETURN statement.

operandl

Program Name:

The name of the program module (maximum 8 characters) can be specified as an alphanumeric
constant or the content of an alphanumeric variable of length 1 to 8.

Natural will attempt to locate the program in the library currently active at the time the
FETCH statement is issued. If the program is not found, Natural will attempt to locate the
program in the steplibs. If the program is still not found, an error message will be issued.

The program name may contain an ampersand (&); at execution time, this character will be
replaced by the one-character code corresponding to the current value of the system variable
*LANGUAGE. This makes it possible, for example, to invoke different programs for the
processing of input, depending on the language in which input is provided.

operand?

Passing Parameter Fields:

The FETCH statement may also be used to pass parameter fields to the invoked program. A
parameter field may be defined with any format. The parameters are converted to a format
suitable for a corresponding INPUT field. All parameters are placed on the top of the Natural
stack.

The parameter fields can be read by the FETCHed program using an INPUT statement. The
first INPUT statement will result in the insertion of all parameter field values into the fields
specified in the INPUT statement. The INPUT statement must have the sign position
specification (session parameter SG=0N) for parameter fields defined with numeric format,
because each parameter field defined with numeric format in the FETCH statement will receive
a sign position if its value is negative.

If more parameters are passed than are read by the next INPUT statement, the extra parameters
are ignored. The number of parameters may be obtained with the Natural system variable
*DATA.

Statements

387



FETCH

Syntax Description
Element

content is passed, but not the date component.

Note: If operand?is a time variable (format T), only the time component of the variable

parameter |Date Format:

parameter for this variable.

If operand?is a date variable, you can specify the session parameter DF (Date Format) as

Example

Invoking Program:

** Example 'FETEX1': FETCH (with parameter)
Khkhkkhhkkhhkkhhkkhkhkhhkkhkhkhhkkhkhkhhkkhkhkhhkhkhkhhkkhhkhhkhhkhhkhhkhhkhhkhhkhhkhhkhkrkhhkhkrkhhkhkrkhhkhkrkhrkhkrkhkrkhxk
DEFINE DATA LOCAL
1 #fPNUM (N8)
1 #FNC (A1)
END-DEFINE
*
INPUT 10X "SELECTION MENU FOR EMPLOYEES SYSTEM' /
10X '-" (35) //
10X 'ADD (A)" /
10X 'UPDATE (u)y' /
10X 'DELETE (D))" /
10X 'STOP )" 7/
10X 'PLEASE ENTER FUNCTION: " #FNC ///
10X 'PERSONNEL NUMBER:"' #PNUM
*
DECIDE ON EVERY VALUE OF #FNC
VALUE "A', 'U', 'D'

IF #PNUM = 0
REINPUT 'PLEASE ENTER A VALID NUMBER' MARK *#PNUM
END-IF
VALUE 'A’
FETCH 'FETEXAD' #PNUM
VALUE 'U"
FETCH 'FETEXUP' #PNUM
VALUE 'D"
FETCH 'FETEXDE' #PNUM
VALUE '
STOP
NONE
REINPUT 'PLEASE ENTER A VALID FUNCTION' MARK *#FNC
END-DECIDE
*
END o

388

Statements




FETCH

Invoked Program FETEXAD:

** Example 'FETEXAD': FETCH (called by FETEX1)

Sk ok o o o oo ok ok ok kK K Kk o ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok ok ok ok ko ko ok ok ok ok ok
DEFINE DATA LOCAL

1 #fPERS-NR (N8)

END-DEFINE

*

INPUT {fFPERS-NR

*

WRITE *PROGRAM 'Record added with personnel number:' #PERS-NR

*

END o

Invoked Program FETEXUP:

** Example 'FETEXUP': FETCH (called by FETEX1)

KA A h A A A A A A A A AR A A AR AR AR A KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA KA R Ak
DEFINE DATA LOCAL

1 ffPERS-NR (N8)

END-DEFINE

*

INPUT #PERS-NR

*

WRITE *PROGRAM 'Record updated with personnel number:' #PERS-NR

*

END <

Invoked Program FETEXDE:

** Example 'FETEXDE': FETCH (called by FETEXI1)

Sk ok ok o o ok ok ok ok ok ko o o o ok o ok ok ok ok ok ko ko ok ok o ok ok ok ok ok ok ok ok ko ok o o ok o o ok ok ok ok ok ok ok ko ko ok ok ok ok ok ok ok ok
DEFINE DATA LOCAL

1 #PERS-NR (N8)

END-DEFINE

*

INPUT #PERS-NR

*

WRITE *PROGRAM 'Record deleted with personnel number:' #PERS-NR

*

END ©

Statements

389



FETCH

Output of Program FETEX1:

SELECTION MENU FOR EMPLOYEES SYSTEM

ADD (A)
UPDATE (U)
DELETE (D)
STOP (.)

PLEASE ENTER FUNCTION: D

PERSONNEL NUMBER: 1150304

After entering and confirming function and personnel number:

Page 1 05-01-13 11:58:46

FETEXDE Record deleted with personnel number: 1150304

390 Statements



60 FIND

L V101 1o PP P PP PO PPPPRPPPPPPR 392
L =1 (47 o PSPPSR 394
= Syntax 1 - FIND Statement with ProCessing LOOP .........vvvviiiiiiiieeeiiiee e 394
= Syntax 2 - FIND Statement without Processing LOOD ..........c.uvviiiiiiiiiiiiiiic e 394
B SYNEAX DESCIIPHION ©..vviii e e e e e e a e 395
B EXAMPIES .ottt et e ettt et e e e ettt e e e e e e e et e e aeaaa e 415

391



FIND

Related Statements: ACCEPT/REJECT | AT BREAK | AT START OF DATA | AT END OF DATA | BACKOUT
TRANSACTION | BEFORE BREAK PROCESSING | DELETE | END TRANSACTION | GET | GET SAME | GET
TRANSACTION | HISTOGRAM | LIMIT | PASSW | PERFORM BREAK PROCESSING | READ | RETRY | STORE
| UPDATE

Belongs to Function Group: Database Access and Update

Function

The FIND statement is used to select a set of records from the database based on a search criterion
consisting of fields defined as descriptors (keys).

This statement causes a processing loop to be initiated and then executed for each record selected.
Each field in each record may be referenced within the processing loop. It is not necessary to issue
a READ statement following the FIND in order to reference the fields within each record selected.

See also the following sections in the Programming Guide:

® FIND Statement
® Loop Processing

" Referencing of Database Fields Using (r) Notation

Database-Specific Considerations

Database |Explanation

SQL FIND FIRST as well as the PASSWORD, CIPHER, COUPLED and RETAIN clauses are not permitted.
FIND UNIQUE is not permitted.
The SORTED BY clause corresponds with the SQL clause ORDER BY.

The basic search criterion for an SQL-database table may be specified in the same manner as for
an Adabas file. The term record used in this context corresponds with the SQL term “row”.

XML FIND FIRST, as well as the PASSWORD, CIPHER, COUPLED and RETAIN clauses are not permitted.

FIND UNIQUE is not permitted.

The basic search criterion for an XML-database may be specified in the same manner as for an
Adabas file. The term record used in this context corresponds with the XML term “XML object”.

392 Statements



FIND

System Variables Available with the FIND Statement

The Natural system variables *ISN, *NUMBER, and *COUNTER are automatically created for each FIND
statement issued. A reference number must be supplied if the system variable was referenced
outside the current processing loop or through a FIND UNIQUE, FIND FIRST, or FIND NUMBER
statement. The format/length of each of these system variables is P10; this format/length cannot
be changed.

System Variable |Availability/Usage

*ISN = Adabas

*ISN contains the Adabas internal sequence number (ISN) of the record currently being
processed.

*ISN is not available for the FIND NUMBER statement.

® Tamino

*ISN contains the XML object ID.
= SQL

*ISN is not available.

= Entire System Server

*ISN is not available.

*NUMBER See system variable *NUMBER in the System Variables documentation.

With Entire System Server, *NUMBER is not available.

*COUNTER The system variable *COUNTER contains the number of times the processing loop has been
entered.

See also Example 13 - Using System Variables with the FIND Statement.
Issuing Multiple FIND Statements

Multiple FIND statements may be issued to create nested loops whereby an inner loop is entered
for each record selected in the outer loop.

See also Example 14 - Multiple FIND Statements.

Statements 393



FIND

Restrictions

With Entire System Server, FIND NUMBER and FIND UNIQUE as well as the PASSWORD, CIPHER, COUPLED
and RETAIN clauses are not permitted.

Syntax 1 - FIND Statement with Processing Loop

ALL .
FIND [ { (operandl) } ] [MULTI-FETCH-clause][RECORDS][IN][FILE] view-name

[PASSWORD=o0perand?]
[CIPHER=0perand3]
[WITH][[LIMIT] (operand4)] basic-search-criterion
[COUPLED-clause]... 4/42
[STARTING WITH ISN=operand5]
[SORTED-BY-clause]
[RETAIN-clause]
[WHERE-clause]
[IF-NO-RECORDS-FOUND-clause]
statement ...
END-FIND (structured mode only)
LOOP (reporting mode only)

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax 2 - FIND Statement without Processing Loop

FIRST
FIND NUMBER [RECORDS] [IN][FILE] view-name
UNIQUE

[PASSWORD=0perand?]

[CIPHER=0perand3]

[WITH][[LIMIT] (operand4)] basic-search-criterion
[COUPLED-cTause]... 4/42

[SORTED-BY-clause] (only for FIND FIRST)
[RETAIN-clause]

394 Statements



FIND

[WHERE-clause]

For an explanation of the symbols used in the syntax diagram, see Syntax Symbols.

Syntax Description

Operand Definition Table:

Operand Possible Structure Possible Formats Referencing Dynamic
Permitted Definition
operandl |C |S NPI B* yes no
operand? |C |S A yes no
operand3 |C |S N yes no
operand4 |C |S NPI B* yes no
operand5 |C |S NPI B* yes no

* Format B of operandl, operand4 and operand5 may be used only with a length of less than or

equal to 4.

Syntax Element Description:

Syntax Element Description
ALL/operandl Processing Limit:

The number of records to be processed from the selected set may be
limited by specifying operand1I (enclosed in parentheses, immediately
after the keyword FIND) - either as a numeric constant (in the range from
0 to 4294967295) or as the name of a numeric variable.
ALL may be optionally specified. It emphasizes that all selected records
are to be processed.
If you specify a limit with operandl, this limit applies to the FIND loop
being initiated. Records rejected for processing by the WHERE clause are
not counted against this limit.
FIND (5) IN EMPLOYEES WITH ...
MOVE 10 TO #CNT(N2)
FIND (#CNT) EMPLOYEES WITH ...
For this statement, the specified limit has priority over a limit set with
a LIMIT statement.
If a smaller limit is set with the LT parameter, the LT limit applies.

Statements 395



FIND

Syntax Element

Description

Note:

1. If you wish to process a 4-digit number of records, specify it with a
leading zero: (011nnn); because Natural interprets every 4-digit number
enclosed in parentheses as a line-number reference to a statement.

2. operandl has no influence on the size of an ISN set that is to be
retained by a RETAIN clause. operandl is evaluated when the FIND
loop is entered. If the value of operand1l is modified within the FIND
loop, this does not affect the number of records processed.

FIND FIRST | FIND NUMBER |
FIND UNIQUE

FIND FIRST, FIND NUMBER, FIND UNIQUE Option:
These options are used

® to select the first record of a selected set (see FIND FIRST),

B to determine the number of records in a selected set (see FIND
NUMBER), or

® to ensure that only one record satisfies a selection criterion (see FIND
UNIQUE).

For a detailed description of these options, see below.

MULTI-FETCH-clause

MULTI-FETCH Clause:

For Adabas databases, Natural offersaMULTI - FETCH clause that allows
you to read more than one record per database access. For further
information, see MULTI-FETCH Clause.

view-name

View Name:

The name of a view as defined either within a DEFINE DATA block or
in a separate global or local data.

In reporting mode, view-name is the name of a DDM if no DEFINE
DATA LOCAL statement is used.

PASSWORD=operand?

PASSWORD Clause:

The PASSWORD clause applies only for Adabas databases. This clause is
not permitted with Entire System Server.

The PASSWORD clause is used to provide a password (operandZ) when
reading/writing data from an Adabas file which is password protected.
If you require access to a password-protected file, contact the person

responsible for database security concerning password usage/assignment.

If the password is specified as a constant, the PASSWORD clause should
always be coded at the very beginning of a source-code line; and there
should be no blank between the keyword PASSWORD and the equal sign;
this ensures that the password is not visible/displayable in the source
code of the program.

396

Statements



FIND

Syntax Element

Description

In TP mode, you may enter the PASSWORD clause invisible by entering
the terminal command %* before you type in the PASSWORD clause.

If the PASSWORD clause is omitted, the default password specified with
the PASSW statement applies.

The password value must not be changed during the execution of a
processing loop.

See also Example 1 - PASSWORD Clause.

CIPHER=o0perand3

CIPHER Clause:

The CIPHER clause only applies to Adabas databases. This clause is not
permitted with Entire System Server.

The CIPHER clause is used to provide a cipher key (operand3) when
retrieving data from Adabas files which are enciphered. If you require
access to an enciphered file, contact the person responsible for database
security concerning cipher key usage/assignment.

The cipher key may be specified as a numeric constant with 8 digits or
as a user-defined variable with format/length NS8.

If the cipher key is specified as a constant, the CIPHER clause should
always be coded at the very beginning of a source-code line; this ensures
that the cipher key is not visible/displayable in the source code of the
program. In TP mode, you may enter the CIPHER clause invisible by
entering the Natural terminal command %* before you type in the
CIPHER clause.

The value of the cipher key must not be changed during the processing
of a loop initiated by a FIND statement.

See also Example 2 - CIPHER Clause.

WITH LIMIT operand4
basic-search-criterion

WITH Clause:

The WITH clause is required. It is used to specify the basic-search-criterion
(see Search Criterion for Adabas Files) consisting of key fields
(descriptors) defined in the database.

The following database-specific consideration applies.

You may use Adabas descriptors, subdescriptors, superdescriptors,
hyperdescriptors, and phonetic descriptors within a WITH clause. A
non-descriptor (that is, a field marked in the DDM with N) can also be
specified.

The number of records to be selected as a result of a WITH clause may
be limited by specifying the keyword LIMIT together with a numeric
constant or a user-defined variable, enclosed within parentheses, which

Statements

397



FIND

Syntax Element

Description

contains the limit value (operand4). If the number of records selected
exceeds the limit, the program will be terminated with an error message.

Note: If the limit is to be a 4-digit number, specify it with a leading zero

(Onnnn); because Natural interprets every 4-digit number enclosed in
parentheses as a line-number reference to a statement.

COUPLED-clause

COUPLED Clause:

This clause may be used used to specify a search which involves the use
of the Adabas coupling facility. See COUPLED Clause.

STARTING WITH ISN=operand5

STARTING WITH Clause:

This clause may be used for repositioning within a FIND loop whose
processing has been interrupted. See STARTING WITH Clause.

SORTED-BY-clause

SORTED BY Clause:

This clause may be used to cause Adabas to sort the selected records
based on the sequence of one to three descriptors. See SORTED BY
Clause.

RETAIN-clause

RETAIN Clause:

This clause may be used to retain the result of an extensive search in
large files for further processing. See RETAIN Clause.

WHERE-clause

WHERE Clause:

This clause may be used to specify an additional selection criterion
(Togical-condition). See WHERE Clause.

IF-NO-RECORDS-FOUND-clause

IF NO RECORDS FOUND Clause:

This clause may be used to cause a processing loop initiated witha FIND
statement to be entered in the event that no records meet the selection
criteria specified in the WITH clause and the WHERE clause. See IF NO
RECORDS FOUND Clause.

END-FIND

LOOP

End of FIND Statement:

In structured mode with processing loop, the Natural reserved keyword
END-FIND must be used to end the FIND statement.

In reporting mode with processing loop, the Natural statement L0OOP is
used to end the FIND statement.

398

Statements



FIND

FIND FIRST

The FIND FIRST statement may be used to select and process the first record which meets the WITH
and WHERE criteria.

For Adabas databases, the record processed will be the record with the lowest Adabas ISN from
the set of qualifying records.

This statement does not initiate a processing loop.

Restrictions with FIND FIRST

® FIND FIRST can only be used in reporting mode.
y P 2]

® FIND FIRST is not available for SQL databases.
System Variables Availabe with FIND FIRST

The following Natural system variables are available with the FIND FIRST statement:

System Variable |Explanation

*ISN The system variable *I SN contains the Adabas ISN of the selected record. *I SN will be zero
if no record is found after the evaluation of the WITH and WHERE criteria.

* SN is not available with Entire System Server.

*NUMBER The system variable *NUMBER contains the number of records found after the evaluation of
the WITH criterion and before evaluation of any WHERE criterion. *NUMBER will be zero if no
record meets the WITH criterion.

*NUMBER is not available with Entire System Server.

*COUNTER The system variable *COUNTER contains 1 if a record was found; contains 0 if no record was
found.

Example of FIND FIRST Statement: See the program FNDFIR (reporting mode)
FIND NUMBER

The FIND NUMBER statement is used to determine the number of records which satisfy the WITH/WHERE
criteria specified. It does not result in the initiation of a processing loop and no data fields from the
database are made available.

| Note: Use of the WHERE clause may result in significant overhead.

Restrictions with FIND NUMBER

® The WHERE clause can only be used in reporting mode.

" FIND NUMBER is not available with Entire System Server.

Statements 399



FIND

System Variables Available with FIND NUMBER

The following Natural system variables are available with the FIND NUMBER statement:

System Variable | Explanation

*NUMBER The system variable *NUMBER contains the number of records found after the evaluation of
the WITH criterion.

*COUNTER The system variable *COUNTER contains the number of records found after the evaluation
of the WHERE criterion.

*COUNTER is only available if the FIND NUMBER statement contains a WHERE clause.

Example for FIND NUMBER: See the program FNDNUM (reporting mode).
FIND UNIQUE

The FIND UNIQUE statement may be used to ensure that only one record is selected for processing.
It does not result in the initiation of a processing loop. If a WHERE clause is specified, an automatic
internal processing loop is created to evaluate the WHERE clause.

If no records or more than one record satisfy the criteria, an error message will be issued. This
condition can be tested with the ON ERROR statement.

Restrictions with FIND UNIQUE

" FIND UNIQUE can only be used in reporting mode.
® FIND UNIQUE is not available with Entire System Server.

® For SQL databases, FIND UNIQUE cannot be used. (Exception: On mainframe computers, FIND
UNIQUE can be used for primary keys; however, this is only permitted for compatibility reasons
and should not be used.)

System Variables Available with FIND UNIQUE

System Variable |Explanation

*ISN The system variable *I SN contains the unique ISN number of the record, which itself must
be unique.
*NUMBER The system variable *NUMBER always contains 1 for a valid FIND UNIQUE execution.

*NUMBER may contain any other positive value (= 0 or >= 2) if an error has occurred. This
error condition may be used by the ON ERROR statement. *NUMBER is not allowed if the
WHERE clause is missing.

*COUNTER The system variable *COUNTER contains the number of records found after