
Natural

Programming Guide

Version 6.3.13 for Windows

October 2012

This document applies to Natural Version 6.3.13 for Windows.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2012 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: NATWIN-NNATPROGRAMMING-6313-20121005

Table of Contents

Preface ... xxi
I Natural Programming Modes .. 1

1 Natural Programming Modes ... 3
Purpose of Programming Modes ... 4
Setting/Changing the Programming Mode ... 5
Functional Differences ... 5

II Object Types .. 11
2 Using Natural Programming Objects .. 13

Types of Programming Objects .. 14
Creating and Maintaining Programming Objects .. 14

3 Data Areas ... 17
Use of Data Areas ... 18
Local Data Area .. 18
Global Data Area .. 19
Parameter Data Area .. 28

4 Programs, Functions, Subprograms and Subroutines .. 33
A Modular Application Structure .. 34
Multiple Levels of Invoked Objects ... 34
Program .. 36
Function .. 39
Subroutine .. 41
Subprogram .. 46
Processing Flow when Invoking a Routine .. 48

5 Processing a Rich GUI Page - Adapter .. 51
6 Maps .. 53

Benefits of Using Maps .. 54
Types of Maps .. 54
Creating Maps .. 55
Starting/Stopping Map Processing ... 55

7 Helproutines .. 57
Invoking Help .. 58
Specifying Helproutines ... 58
Programming Considerations for Helproutines .. 59
Passing Parameters to Helproutines .. 59
Equal Sign Option .. 60
Array Indices .. 61
Help as a Window .. 61

8 Multiple Use of Source Code - Copycode ... 63
Use of Copycode .. 64
Processing of Copycode ... 64

9 Documenting Natural Objects - Text ... 65
Use of Text Objects ... 66
Writing Text .. 66

iii

10 Creating Event Driven Applications - Dialog ... 67
11 Creating Component Based Applications - Class ... 69
12 Using Non-Natural Files - Resource .. 71

Use of Resources .. 72
Shared Resources ... 72
Private Resources ... 73
API for Processing Resources ... 73

III Defining Fields ... 75
13 Use and Structure of DEFINE DATA Statement ... 77

Field Definitions in DEFINE DATA Statement .. 78
Defining Fields within a DEFINE DATA Statement .. 78
Defining Fields in a Separate Data Area .. 79
Structuring a DEFINE DATA Statement Using Level Numbers 79

14 User-Defined Variables .. 83
Definition of Variables .. 84
Referencing of Database Fields Using (r) Notation ... 85
Renumbering of Source-Code Line Number References 86
Format and Length of User-Defined Variables .. 87
Special Formats .. 88
Index Notation ... 91
Referencing a Database Array .. 93
Referencing the Internal Count for a Database Array (C* Notation) 101
Qualifying Data Structures ... 104
Examples of User-Defined Variables .. 105

15 Function Call .. 107
Calling User-Defined Functions ... 108
Function Result ... 109
Evaluation Sequence .. 109
Restrictions ... 109
Syntax Description ... 110
Example .. 114

16 Introduction to Dynamic Variables and Fields .. 119
Purpose of Dynamic Variables ... 120
Definition of Dynamic Variables .. 120
Value Space Currently Used for a Dynamic Variable 121
Size Limitation Check ... 121
Allocating/Freeing Memory Space for a Dynamic Variable 122

17 Using Dynamic and Large Variables ... 125
General Remarks .. 126
Assignments with Dynamic Variables ... 127
Initialization of Dynamic Variables .. 129
String Manipulation with Dynamic Alphanumeric Variables 129
Logical Condition Criterion (LCC) with Dynamic Variables 130
AT/IF-BREAK of Dynamic Control Fields ... 132
Parameter Transfer with Dynamic Variables ... 132

Programming Guideiv

Programming Guide

Work File Access with Large and Dynamic Variables 135
DDM Generation and Editing for Varying Length Columns 136
Accessing Large Database Objects ... 138
Performance Aspects with Dynamic Variables .. 139
Outputting Dynamic Variables .. 140
Dynamic X-Arrays .. 141

18 User-Defined Constants ... 143
Numeric Constants ... 144
Alphanumeric Constants ... 145
Unicode Constants ... 146
Date and Time Constants ... 149
Hexadecimal Constants .. 150
Logical Constants ... 152
Floating Point Constants .. 152
Attribute Constants .. 153
Handle Constants ... 154
Defining Named Constants .. 154

19 Initial Values (and the RESET Statement) .. 157
Default Initial Value of a User-Defined Variable/Array 158
Assigning an Initial Value to a User-Defined Variable/Array 158
Resetting a User-Defined Variable to its Initial Value 160

20 Redefining Fields ... 163
Using the REDEFINE Option of DEFINE DATA ... 164
Example Program Illustrating the Use of a Redefinition 165

21 Arrays .. 167
Defining Arrays .. 168
Initial Values for Arrays ... 169
Assigning Initial Values to One-Dimensional Arrays 169
Assigning Initial Values to Two-Dimensional Arrays 170
A Three-Dimensional Array ... 174
Arrays as Part of a Larger Data Structure .. 176
Database Arrays ... 177
Using Arithmetic Expressions in Index Notation .. 177
Arithmetic Support for Arrays ... 178

22 X-Arrays ... 181
Definition .. 182
Storage Management of X-Arrays .. 183
Storage Management of X-Group Arrays .. 183
Referencing an X-Array .. 185
Parameter Transfer with X-Arrays ... 186
Parameter Transfer with X-Group Arrays .. 187
X-Array of Dynamic Variables ... 188
Lower and Upper Bound of an Array .. 189

IV User-Defined Functions ... 191
23 User-Defined Functions ... 193

vProgramming Guide

Programming Guide

Introduction to User-Defined Functions .. 194
Restrictions ... 195
Function Call versus Subprogram Call .. 195
Function Definition (DEFINE FUNCTION) ... 198
Symbolic and Variable Function Call ... 198
Function Result and Parameters .. 198
Explicit Prototype Definition (DEFINE PROTOTYPE) 199
Implicit (Automatic) Prototype Definition ... 199
Prototype Cast (PT Clause) .. 200
Intermediate Result Definition (IR Clause) .. 200
Combinations of Possible Prototype Definitions ... 200
Evaluation Sequence of Functions in Statements ... 202
Using a Function as a Statement .. 204

V Accessing Data in a Database ... 207
24 Natural and Database Access .. 209

Database Management Systems Supported by Natural 210
Profile Parameters Influencing Database Access ... 211
Access through Data Definition Modules .. 211
Natural's Data Manipulation Language .. 212
Natural's Special SQL Statements .. 213

25 Accessing Data in an Adabas Database ... 215
Adabas Database Management Interfaces ADA and ADA2 216
Data Definition Modules - DDMs .. 216
Database Arrays ... 218
Defining a Database View .. 224
Statements for Database Access ... 227
Multi-Fetch Clause ... 239
Database Processing Loops .. 240
Database Update - Transaction Processing .. 246
Selecting Records Using ACCEPT/REJECT ... 253
AT START/END OF DATA Statements .. 257
Unicode Data .. 259

26 Accessing Data in an SQL Database .. 261
Generating Natural DDMs ... 262
Setting Natural Profile Parameters ... 262
Natural DML Statements ... 263
Natural SQL Statements ... 269
Flexible SQL .. 277
RDBMS-Specific Requirements and Restrictions ... 278
Data-Type Conversion .. 281
Date/Time Conversion ... 281
Obtaining Diagnostic Information about Database Errors 283
SQL Authorization ... 283

27 Accessing Data in a Tamino Database ... 285
Prerequisite ... 286

Programming Guidevi

Programming Guide

DDM and View Definitions with Natural for Tamino 286
Natural Statements for Tamino Database Access .. 290
Natural for Tamino Restrictions ... 294

VI Controlling Data Output ... 297
28 Report Specification - (rep) Notation ... 299

Use of Report Specifications ... 300
Statements Concerned .. 300
Examples of Report Specification ... 300

29 Layout of an Output Page .. 301
Statements Influencing a Report Layout .. 302
General Layout Example .. 302

30 Statements DISPLAY and WRITE .. 305
DISPLAY Statement .. 306
WRITE Statement ... 307
Example of DISPLAY Statement .. 308
Example of WRITE Statement .. 308
Column Spacing - SF Parameter and nX Notation ... 309
Tab Setting - nT Notation ... 310
Line Advance - Slash Notation ... 311
Further Examples of DISPLAY and WRITE Statements 314

31 Index Notation for Multiple-Value Fields and Periodic Groups 315
Use of Index Notation .. 316
Example of Index Notation in DISPLAY Statement 316
Example of Index Notation in WRITE Statement .. 317

32 Page Titles, Page Breaks, Blank Lines .. 319
Default Page Title ... 320
Suppress Page Title - NOTITLE Option ... 320
Define Your Own Page Title - WRITE TITLE Statement 321
Logical Page and Physical Page ... 324
Page Size - PS Parameter .. 326
Page Advance ... 326
New Page with Title ... 329
Page Trailer - WRITE TRAILER Statement .. 330
Generating Blank Lines - SKIP Statement .. 332
AT TOP OF PAGE Statement ... 333
AT END OF PAGE Statement ... 334
Further Example ... 336

33 Column Headers .. 337
Default Column Headers ... 338
Suppress Default Column Headers - NOHDR Option 338
Define Your Own Column Headers ... 339
Combining NOTITLE and NOHDR ... 340
Centering of Column Headers - HC Parameter ... 340
Width of Column Headers - HW Parameter .. 340
Filler Characters for Headers - Parameters FC and GC 341

viiProgramming Guide

Programming Guide

Underlining Character for Titles and Headers - UC Parameter 342
Suppressing Column Headers - Slash Notation .. 343
Further Examples of Column Headers .. 344

34 Parameters to Influence the Output of Fields .. 345
Overview of Field-Output-Relevant Parameters ... 346
Leading Characters - LC Parameter ... 346
Unicode Leading Characters - LCU Parameter .. 347
Insertion Characters - IC Parameter ... 347
Unicode Insertion Characters - ICU Parameter ... 348
Trailing Characters - TC Parameter .. 348
Unicode Trailing Characters - TCU Parameter .. 348
Output Length - AL and NL Parameters ... 349
Display Length for Output - DL Parameter ... 349
Sign Position - SG Parameter .. 351
Identical Suppress - IS Parameter ... 353
Zero Printing - ZP Parameter ... 355
Empty Line Suppression - ES Parameter ... 355
Further Examples of Field-Output-Relevant Parameters 357

35 Code Page Edit Masks - EM Parameter ... 359
Use of EM Parameter .. 360
Edit Masks for Numeric Fields ... 360
Edit Masks for Alphanumeric Fields ... 361
Length of Fields .. 361
Edit Masks for Date and Time Fields ... 362
Customizing Separator Character Displays ... 362
Examples of Edit Masks ... 364
Further Examples of Edit Masks .. 366

36 Unicode Edit Masks - EMU Parameter .. 367
37 Vertical Displays .. 369

Creating Vertical Displays .. 370
Combining DISPLAY and WRITE .. 370
Tab Notation - T*field ... 371
Positioning Notation x/y .. 372
DISPLAY VERT Statement ... 373
Further Example of DISPLAY VERT with WRITE Statement 379

VII Further Programming Aspects ... 381
38 End of Statement, Program or Application ... 383

End of Statement .. 384
End of Program .. 384
End of Application ... 384

39 Processing of Application Errors ... 387
Natural's Default Error Processing .. 388
Application Specific Error Processing .. 388
Using an ON ERROR Statement Block .. 389
Using an Error Transaction Program ... 390

Programming Guideviii

Programming Guide

Error Processing Related Features ... 393
40 Conditional Processing - IF Statement .. 397

Structure of IF Statement .. 398
Nested IF Statements .. 400

41 Loop Processing ... 403
Use of Processing Loops ... 404
Limiting Database Loops ... 404
Limiting Non-Database Loops - REPEAT Statement 406
Example of REPEAT Statement .. 407
Terminating a Processing Loop - ESCAPE Statement 408
Loops Within Loops ... 408
Example of Nested FIND Statements ... 408
Referencing Statements within a Program ... 409
Example of Referencing with Line Numbers ... 411
Example with Statement Reference Labels .. 412

42 Control Breaks ... 415
Use of Control Breaks ... 416
AT BREAK Statement ... 416
Automatic Break Processing .. 421
Example of System Functions with AT BREAK Statement 422
Further Example of AT BREAK Statement .. 424
BEFORE BREAK PROCESSING Statement ... 424
Example of BEFORE BREAK PROCESSING Statement 424
User-Initiated Break Processing - PERFORM BREAK PROCESSING
Statement .. 425
Example of PERFORM BREAK PROCESSING Statement 427

43 Data Computation ... 429
COMPUTE Statement ... 430
Statements MOVE and COMPUTE .. 431
Statements ADD, SUBTRACT, MULTIPLY and DIVIDE 432
Example of MOVE, SUBTRACT and COMPUTE Statements 432
COMPRESS Statement ... 433
Example of COMPRESS and MOVE Statements ... 434
Example of COMPRESS Statement .. 435
Mathematical Functions ... 436
Further Examples of COMPUTE, MOVE and COMPRESS Statements 437

44 System Variables and System Functions ... 439
System Variables ... 440
System Functions .. 441
Example of System Variables and System Functions 442
Further Examples of System Variables ... 443
Further Examples of System Functions .. 444

45 Stack ... 445
Use of Natural Stack ... 446
Stack Processing ... 446

ixProgramming Guide

Programming Guide

Placing Data on the Stack ... 447
Clearing the Stack ... 448

46 Processing of Date Information ... 449
Edit Masks for Date Fields and Date System Variables 450
Default Edit Mask for Date - DTFORM Parameter .. 450
Date Format for Alphanumeric Representation - DF Parameter 451
Date Format for Output - DFOUT Parameter .. 453
Date Format for Stack - DFSTACK Parameter ... 454
Year Sliding Window - YSLW Parameter ... 455
Combinations of DFSTACK and YSLW ... 457
Year Fixed Window .. 459
Date Format for Default Page Title - DFTITLE Parameter 459

47 Text Notation ... 461
Defining a Text to Be Used with a Statement - the 'text' Notation 462
Defining a Character to Be Displayed n Times before a Field Value - the
'c'(n) Notation ... 463

48 User Comments ... 465
Using an Entire Source Code Line for Comments ... 466
Using the Latter Part of a Source Code Line for Comments 467

49 Logical Condition Criteria ... 469
Introduction .. 470
Relational Expression ... 471
Extended Relational Expression ... 475
Evaluation of a Logical Variable ... 476
Fields Used within Logical Condition Criteria .. 477
Logical Operators in Complex Logical Expressions 479
BREAK Option - Compare Current Value with Value of Previous Loop
Pass ... 480
IS Option - Check whether Content of Alphanumeric or Unicode Field can
be Converted .. 482
MASK Option - Check Selected Positions of a Field for Specific Content 484
MASK Option Compared with IS Option .. 491
MODIFIED Option - Check whether Field Content has been Modified 493
SCAN Option - Scan for a Value within a Field ... 494
SPECIFIED Option - Check whether a Value is Passed for an Optional
Parameter .. 496

50 Rules for Arithmetic Assignment .. 499
Field Initialization .. 500
Data Transfer .. 500
Field Truncation and Field Rounding .. 503
Result Format and Length in Arithmetic Operations 503
Arithmetic Operations with Floating-Point Numbers 504
Arithmetic Operations with Date and Time .. 506
Performance Considerations for Mixed Format Expressions 510
Precision of Results of Arithmetic Operations ... 510

Programming Guidex

Programming Guide

Error Conditions in Arithmetic Operations ... 511
Processing of Arrays ... 512

51 Invoking Natural Subprograms from 3GL Programs 519
Passing Parameters from the 3GL Program to the Subprogram 520
Example of Invoking a Natural Subprogram from a 3GL Program 521

52 Issuing Operating System Commands from within a Natural Program 523
Syntax ... 524
Parameters .. 524
Parameter Options .. 524
Return Codes .. 525
Examples .. 525

53 Statements for Internet and XML Access .. 527
Statements Available .. 528
Further References .. 529

VIII Portable Natural Generated Programs ... 531
54 Portable Natural Generated Programs .. 533

Compatibility .. 534
Endian Mode Considerations ... 534
ENDIAN Parameter ... 535
Transferring Natural Generated Programs .. 535
Portable FILEDIR.SAG and Error Message Files ... 537

IX Introduction to Event-Driven Programming ... 539
55 What is an Event-Driven Application? .. 541

Introduction .. 542
Program-Driven Applications .. 543
Event Driven Applications ... 544
What is Happening Here? .. 545
Writing Event-Driven Code .. 545
Components of an Event Driven Application .. 546

56 GUI Development Environments .. 549
57 GUI Design Tips .. 551

Introduction .. 552
Do Your Research ... 552
Screen Design ... 553
Menu Design .. 554
Color Usage .. 555
Consistency Check ... 555

58 Tasks Involved in Creating an Application ... 557
59 Tutorial ... 559

Creating a Dialog .. 560
Assigning Attributes to the Dialog .. 561
Creating Dialog Elements Inside the Dialog .. 563
Assigning Attributes to the Dialog Elements ... 565
Creating the Application's Local Data Area ... 566
Attaching Event Handler Code to the Dialog Element 567

xiProgramming Guide

Programming Guide

Checking, Stowing and Running the Application ... 568
60 Basic Terminology .. 569

Attribute ... 570
Base Dialog ... 570
Control .. 571
Dialog ... 571
Dialog Box .. 571
Dialog Editor .. 571
Dialog Element ... 571
Event ... 572
Event Handler .. 572
Handle .. 572
Item ... 572
MDI - Multiple Document Interface ... 572
MDI Child Window .. 573
MDI Frame Window .. 573
Modal Window ... 573
SDI - Single Document Interface .. 573
Popup ... 573
Window .. 573

X Event-Driven Programming Techniques .. 575
61 Introduction ... 577
62 How To Open and Close Dialogs .. 579

Opening a Dialog ... 580
Operands .. 580
Passing Parameters to the Dialog ... 581
Permanence in Creating, Passing and Checking Data 582
Processing Steps When Opening a Dialog ... 583
Closing Dialogs .. 584
Initializing Attribute Values ... 584

63 How To Edit a Dialog's Enhanced Source Code .. 587
What Is The Enhanced Source Code Format? .. 588
Avoiding Incompatibilities Between Dialog Editor And Program Editor 589
How To Use The Enhanced Source Code Format .. 590

64 How Dialogs, Controls and Items Are Related Hierarchically 591
65 How To Define Dialog Elements ... 593

Introduction .. 594
HANDLE OF GUI .. 595
NULL-HANDLE .. 595

66 How To Manipulate Dialog Elements ... 597
Introduction .. 598
Querying, Setting and Modifying Attribute Values 598
Querying and Modifying Unicode Attribute Values 599
Restrictions ... 600
Numeric/Alphanumeric Assignment ... 600

Programming Guidexii

Programming Guide

67 How To Create and Delete Dialog Elements Dynamically 603
Introduction .. 604
Global Attribute List ... 604
Creating Dialog Elements Statically and Dynamically 604
How to Handle Events of Dynamically Created Dialog Elements 606

68 How To Enable and Disable Dialog Elements ... 609
69 Defining and Using Context Menus .. 611

Introduction .. 612
Construction ... 612
Association ... 613
Invocation ... 614
Manual Invocation ... 617
Sharing of Context Menus .. 618

70 Using the Clipboard and Drag and Drop .. 621
Introduction .. 622
Clipboard Specifics ... 624
Drag and Drop Specifics ... 625
Drag and Drop Insertion Marks ... 627
Drag-Drop Checklist .. 628

71 System Variables .. 631
72 Generated Variables ... 633

#DLG$PARENT .. 634
#DLG$WINDOW ... 634

73 Using the TERMINATE or STOP Statements within Dialog-based
Applications ... 635

Introduction .. 636
Solution ... 636
Example .. 636

74 Message Files and Variables as Sources of Attribute Values 639
75 Triggering User-Defined Events .. 641

Introduction .. 642
Passing Parameters to the Dialog ... 643

76 Suppressing Events .. 645
77 Menu Structures, Toolbars and the MDI ... 647

Creating a Menu Structure ... 648
Parent-Child Hierarchy in Menu Structures .. 650
Creating a Toolbar .. 650
Sharing Menu Structures, Toolbars and DILs (MDI Application) 651

78 Executing Standardized Procedures .. 653
Introduction .. 654
PROCESS GUI Statement ... 654

79 Linking Dialog Elements to Natural Variables .. 655
80 Validating Input in a Dialog Element .. 657
81 Storing and Retrieving Client Data for a Dialog Element 659

Introduction .. 660

xiiiProgramming Guide

Programming Guide

Integer Data .. 660
Handle Data ... 661
Keyed Alphanumeric Client Data .. 661
Keyed Client Data in Native Format .. 664
Key Enumeration .. 667

82 Creating Dialog Elements on a Canvas Control .. 669
83 Label Editing in Tree View and List View Controls .. 673

Introduction .. 674
Label Editing .. 674
Changing an Item's Label Programmatically ... 676

84 Working with ActiveX Controls .. 677
Terminology ... 678
How To Define an ActiveX Control ... 678
How To Create an ActiveX Control .. 678
Accessing Simple Properties .. 679
Colors .. 680
Pictures ... 681
Fonts ... 681
Variants ... 683
Arrays ... 684
Using the PROCESS GUI Statement .. 684

85 Working with Arrays of Dialog Elements ... 691
86 Working with Control Boxes ... 693

Introduction .. 694
Purpose of Exclusive Control Boxes ... 694
Examples of Use of Exclusive Control Boxes ... 695
Creation of the Wizard Pages ... 696

87 Working with Date and Time Picker (DTP) Controls .. 701
Introduction .. 702
Date and Time Formats .. 702
Inputting Dates and Times ... 703
Null Values ... 704
Calendar Colors and Font .. 704

88 Working with Dialog Bar Controls .. 705
Introduction .. 706
Creating a Dialog Bar Control .. 706
Types of Dialog Bar Control ... 706
UI Transparency ... 709
Client-Size Event .. 709
Close Button ... 710
Sample Code ... 710

89 Working with Error Events .. 715
90 Working with a Group of Radio Button Controls ... 717
91 Working with Image List Controls .. 719

Introduction .. 720

Programming Guidexiv

Programming Guide

Creating the Image List Control ... 720
Adding Images ... 720
Composite Images .. 721
Scaling and Transparency .. 721
Bitmaps vs. Icons .. 722
Using an Image List .. 723
Referencing Images from the Image List ... 723
Overlay Images ... 724
Modifying Images .. 725
Deleting Images .. 726
Deleting the Image List Control ... 726

92 Working with List Box Controls and Selection Box Controls 729
93 Working with List View Controls .. 733

Introduction .. 734
View Modes .. 734
Setting Item Images .. 736
Item Placement ... 736
Item Selection ... 738
Item Activation ... 739
List View Columns and Sub-items ... 740
Sorting .. 743
Label Editing .. 745
Multiple Context Menus .. 747
Drag and Drop ... 748

94 Working with Nested Controls .. 753
Introduction .. 754
Which Control Types can be Containers? .. 755
Creating a Nested Control .. 755
Multiple Selection, Control Sequence and Clipboard Operations 756

95 Working with a Dynamic Information Line .. 759
96 Working with Spin Controls .. 761

Introduction .. 762
Up-Down Control ... 762
Buddy Control .. 762
Date and Time Formats .. 763
Inputting Dates and Times ... 764
Null Values ... 765
Calendar Colors and Font .. 765

97 Working with a Status Bar ... 767
98 Working with Status Bar Controls ... 769

Introduction .. 770
Creating a Status Bar Control ... 770
Using Status Bar Controls without Panes .. 770
Outputting Text to a Status Bar Control ... 771
Sharing a Status Bar in an MDI Application .. 772

xvProgramming Guide

Programming Guide

Pane-specific Context Menus ... 773
99 Working with Tab Controls ... 775

Creating a Tab Control ... 776
Assigning Controls to Tabs .. 776
Use of Control Boxes as Tab Control Pages .. 777
Switching Between Controls Belonging To Different Tabs 778
Mixing Tab-dependent and Tab-independent Controls 779
Keyboard Navigation ... 779
Tab Switching Events ... 780

100 Working with Tree View Controls ... 781
Introduction .. 782
Setting Item Images .. 782
Item Selection ... 783
Item Activation ... 783
Item Data .. 784
Sorting .. 784
Label Editing .. 785
Multiple Context Menus .. 786
Dynamic Item Creation .. 786
Drag and Drop ... 788

101 Working with Dynamic Information Line and Status Bar 791
102 Adding a Maximize/Minimize/System Button .. 793
103 Defining Color ... 795
104 Adding Text in a Certain Font ... 797
105 Adding Online Help .. 799
106 Defining Mnemonic and Accelerator Keys .. 803

Introduction .. 804
Defining a Mnemonic Key ... 804
Defining an Accelerator Key .. 805
Displaying Accelerator Keys in Menus .. 805

107 Dynamic Data Exchange - DDE ... 807
Concepts ... 808
Developing a DDE Server Application .. 809
Developing a DDE Client Application ... 810
Return Codes .. 811

108 Object Linking and Embedding - OLE .. 815
What is OLE in the Natural Context? ... 816
OLE Documents Support ... 816
Embedding and Linking .. 816
Visual Editing - In-place Activation ... 817
ActiveX Controls Support .. 818
OLE Container Control .. 818
Attributes, Events and PROCESS GUI Statement Actions 821

XI Results Interface ... 823
109 Results Interface ... 825

Programming Guidexvi

Programming Guide

Purpose of the Results Interface ... 826
Results Window Control Bar Access .. 826
Tab Handling .. 827
Image Handling .. 827
Context Menu Handling .. 828
Command Handling .. 828
Column Handling .. 829
Row Handling .. 829
Data Handling .. 830
Selection Handling ... 830

XII Designing Character-Based User Interfaces for Your Application 831
110 Screen Design ... 833

Control of the Message Line - Terminal Command %M 834
Assigning Colors to Fields - Terminal Command %= 834
Infoline - Terminal Command %X ... 835
Windows ... 836
Standard/Dynamic Layout Maps ... 842
Multilingual User Interfaces ... 842
Skill-Sensitive User Interfaces .. 847

111 Dialog Design ... 849
Field-Sensitive Processing .. 850
Simplifying Programming .. 852
Line-Sensitive Processing ... 853
Column-Sensitive Processing ... 854
Processing Based on Function Keys ... 854
Processing Based on Function-Key Names .. 855
Processing Data Outside an Active Window ... 856
Copying Data from a Screen .. 859
Statements REINPUT/REINPUT FULL ... 862
Object-Oriented Processing - The Natural Command Processor 863

XIII Natural Native Interface .. 865
112 Introduction ... 867
113 Interface Library and Location .. 869
114 Interface Versioning ... 871
115 Interface Access .. 873
116 Interface Instances and Natural Sessions ... 875
117 Interface Functions ... 877

nni_get_interface .. 879
nni_free_interface ... 880
nni_initialize ... 880
nni_is_initialized .. 882
nni_uninitialize ... 882
nni_enter ... 883
nni_try_enter .. 883
nni_leave ... 884

xviiProgramming Guide

Programming Guide

nni_logon .. 885
nni_logoff ... 885
nni_callnat .. 886
nni_create_object .. 887
nni_send_method ... 888
nni_get_property .. 890
nni_set_property .. 891
nni_delete_object .. 893
nni_create_parm ... 894
nni_create_module_parm .. 895
nni_create_method_parm .. 896
nni_create_prop_parm ... 897
nni_parm_count ... 898
nni_init_parm_s .. 898
nni_init_parm_sa .. 899
nni_init_parm_d ... 901
nni_init_parm_da ... 901
nni_get_parm_info ... 903
nni_get_parm ... 903
nni_get_parm_array ... 905
nni_get_parm_array_length ... 906
nni_put_parm ... 907
nni_put_parm_array .. 908
nni_resize_parm_array ... 909
nni_delete_parm ... 910
nni_from_string .. 911
nni_to_string ... 912

118 Parameter Description Structure ... 915
119 Natural Data Types .. 917
120 Flags ... 919
121 Return Codes .. 921
122 Natural Exception Structure .. 923
123 Interface Usage ... 925
124 Threading Issues .. 927

XIV NaturalX .. 929
125 Introduction to NaturalX ... 931

Why NaturalX? ... 932
Programming Techniques .. 933

126 Developing NaturalX Applications ... 937
Development Environments .. 938
Defining Classes ... 938
Using Classes and Objects .. 943

127 Distributing NaturalX Applications .. 947
General ... 948
Globally Unique Identifiers - GUIDs ... 950

Programming Guidexviii

Programming Guide

128 ActiveX Component SoftwareAG.NaturalX.Utilities 951
Purpose ... 952
Interfaces .. 954

129 Interface INaturalXUtilities .. 955
Purpose ... 956
Methods .. 956

130 Interface IRunningObjects ... 959
Purpose ... 960
Methods .. 962

131 ActiveX Component SoftwareAG.NaturalX.Enumerator 963
Purpose ... 964
Interface .. 965

132 Interface IEnumerator .. 967
Purpose ... 968
Methods .. 968

XV .. 971
133 Natural Reserved Keywords .. 973

Alphabetical List of Natural Reserved Keywords ... 974
Performing a Check for Natural Reserved Keywords 989

134 Referenced Example Programs .. 991
READ Statement ... 992
FIND Statement .. 993
Nested READ and FIND Statements ... 997
ACCEPT and REJECT Statements .. 999
AT START OF DATA and AT END OF DATA Statements 1001
DISPLAY and WRITE Statements .. 1004
DISPLAY Statement .. 1008
Column Headers ... 1009
Field-Output-Relevant Parameters ... 1011
Edit Masks .. 1017
DISPLAY VERT with WRITE Statement .. 1020
AT BREAK Statement ... 1021
COMPUTE, MOVE and COMPRESS Statements .. 1022
System Variables ... 1025
System Functions .. 1028

xixProgramming Guide

Programming Guide

xx

Preface

This guide is complemental to the Natural reference documentation in that it provides basic
information and some longer, in-depth articles on various aspects of programming with Natural.
You should be familiar with this information before you start to write Natural applications. See
also First Steps. This tutorial contains a series of sessionswhich introduce you to some of the basics
of Natural programming.

Describes the differences between the two Natural programming modes:
Reporting Mode and Structured Mode.

Generally, it is recommended to use structured mode exclusively, because it
provides formore clearly structured applications. Therefore, all explanations

Natural Programming
Modes

and examples in this documentation refer to structured mode. Any
peculiarities of reporting mode will not be taken into consideration.

Within an application, you can use several types of programming objects to
achieve an efficient application structure. This document discusses the various

Object Types

types of Natural programming objects, such as data areas, programs,
subprograms, subroutines, helproutines, maps.

Describes how you define the fields you wish to use in a program.Defining Fields

Explains the benefits of using the Natural programming object “function”,
shows the difference between using function calls and subprogram calls and
describes the methods available for defining and calling a function.

User-Defined Functions

Describes various aspects of using Natural to access data in an Adabas
database and in various non-Adabas databases supported by Natural.

On principle, the features and examples described for Adabas also apply to
other database management systems. Differences, if any, are described in the

Accessing Data in a
Database

relevant interface documentation and in the Statements documentation or
Parameter Reference.

Discusses various aspects of how you can control the format of an output
report created with Natural, that is, the way in which the data are displayed.

Controlling Data Output

Discusses various other aspects of programming with Natural.Further Programming
Aspects

As of Natural 5, generated programs are portable across the platforms UNIX,
OpenVMS and Windows.

PortableNaturalGenerated
Programs

Provides fundamental information on event-driven programming.Introduction to
Event-DrivenProgramming

Addresses the more experienced GUI programmer and describes essential
programming techniques.

Event-DrivenProgramming
Techniques

The Results Interface enables programmers to display data within the results
window of Natural Studio.

Results Interface

xxi

Provides information on components of Natural which you can use to design
character-based user interfaces for your applications.

Designing Character-Based
User Interfaces for Your
Application

Describes theNaturalNative Interfacewhich enables a non-Natural application
to execute Natural code using C function calls.

Natural Native Interface

Describes how to develop and distribute object-based applications.NaturalX

Contains a list of all keywords and words that are reserved in the Natural
programming language.

NaturalReservedKeywords

The preceding sections of the Programming Guide contain several examples of
Natural programs. In addition, links are provided there to further example

Referenced Example
Programs

programs (mainly for reporting mode) which are contained in this separate
section.

Note:

1. All example programs shown in the Programming Guide are also provided
in source-code form in theNatural library SYSEXPG. The example programs
use data from the files EMPLOYEES and VEHICLES, which are supplied by
Software AG for demonstration purposes. The Natural library SYSEXPG
also includes example programs for Natural Functions.

2. Further example programs of using Natural statements are provided in
theNatural library SYSEXSYN and are documented in the sectionReferenced
Example Programs in the Statements documentation.

3. Please ask yourNatural administrator about the availability of the libraries
SYSEXPG and SYSEXSYN at your site.

4. To use any Natural example program to access an Adabas database, the
Adabas nucleus parameter OPTIONSmust be set to TRUNCATION.

Notation vrs or vr

When used in this documentation, the notation vrs or vr represents the relevant product version
(see also Version in the Glossary).

Note: For information onNatural Application Programming Interfaces (APIs), see: SYSEXT
- Natural Application Programming Interfaces and SYSAPI - APIs of Natural Add-On Products
in the Utilities documentation.

Programming Guidexxii

Preface

I Natural Programming Modes

1

2

1 Natural Programming Modes

■ Purpose of Programming Modes .. 4
■ Setting/Changing the Programming Mode .. 5
■ Functional Differences ... 5

3

Purpose of Programming Modes

Natural offers two ways of programming:

■ Reporting Mode
■ Structured Mode

Note: Generally, it is recommended to use structuredmode exclusively, because it provides
for more clearly structured applications.

Reporting Mode

Reporting mode is only useful for the creation of adhoc reports and small programs which do not
involve complex data and/or programming constructs. (If youdecide towrite a program in reporting
mode, be aware that small programs may easily become larger and more complex.)

Please note that certain Natural statements are available only in reporting mode, whereas others
have a specific structure when used in reporting mode. For an overview of the statements that
can be used in reporting mode, see Reporting Mode Statements in the Statements documentation.

Structured Mode

Structured mode is intended for the implementation of complex applications with a clear and
well-defined program structure. The major benefits of structured mode are:

■ The programs have to be written in a more structured way and are therefore easier to read and
consequently easier to maintain.

■ As all fields to be used in a program have to be defined in one central location (instead of being
scattered all over the program, as is possible in reportingmode), overall control of the data used
is much easier.

With structured mode, you also have to make more detail planning before the actual programs
can be coded, thereby avoiding many programming errors and inefficiencies.

For an overview of the statements that can be used in structured mode, see Statements Grouped by
Functions in the Statements documentation.

Programming Guide4

Natural Programming Modes

Setting/Changing the Programming Mode

The default programmingmode is set by the Natural administrator with the profile parameter SM.

You can change the mode by using the Natural system command GLOBALS and the session para-
meter SM:

System CommandMode

GLOBALS SM=ONStructured

GLOBALS SM=OFFReporting

For further information on the Natural profile and session parameter SM, see SM - Programming in
Structured Mode in the Parameter Reference.

For information on how to change the programming mode, see SM - Programming in Structured
Mode in the Parameter Reference.

Functional Differences

The following major functional differences exist between reporting mode and structured mode:

■ Syntax Related to Closing Loops and Functional Blocks
■ Closing a Processing Loop in Reporting Mode
■ Closing a Processing Loop in Structured Mode
■ Location of Data Elements in a Program
■ Database Reference

Note: For detailed information on functional differences that exist between the twomodes,
see the Statementsdocumentation. It provides separate syntax diagrams and syntax element
descriptions for eachmode-sensitive statement. For a functional overview of the statements
that can be used in reporting mode, see Reporting Mode Statements in the Statements docu-
mentation.

5Programming Guide

Natural Programming Modes

Syntax Related to Closing Loops and Functional Blocks

(CLOSE) LOOP and DO ... DOEND statements are used for this purpose.

END-... statements (except END-DEFINE, END-DECIDE and END-SUBROUTINE) cannot be
used.

Reporting Mode:

Every loop or logical construct must be explicitly closed with a corresponding END-...
statement. Thus, it becomes immediately clear, which loop/logical constructs ends where.

LOOP and DO/DOEND statements cannot be used.

Structured Mode:

The two examples below illustrate the differences between the twomodes in constructingprocessing
loops and logical conditions.

Reporting Mode Example:

The reporting mode example uses the statements DO and DOEND to mark the beginning and end of
the statement block that is based on the AT END OF DATA condition. The END statement closes all
active processing loops.

READ EMPLOYEES BY PERSONNEL-ID
DISPLAY NAME BIRTH
AT END OF DATA

DO
SKIP 2
WRITE / 'LAST SELECTED:' OLD(NAME)

DOEND
END

Structured Mode Example:

The structuredmode example uses an END-ENDDATA statement to close the AT END OF DATA condi-
tion, and an END-READ statement to close the READ loop. The result is a more clearly structured
program in which you can see immediately where each construct begins and ends:

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 BIRTH

END-DEFINE
READ MYVIEW BY PERSONNEL-ID

DISPLAY NAME BIRTH
AT END OF DATA

SKIP 2
WRITE / 'LAST SELECTED:' OLD(NAME)

END-ENDDATA

Programming Guide6

Natural Programming Modes

END-READ
END

Closing a Processing Loop in Reporting Mode

The statements END, LOOP (or CLOSE LOOP) or SORTmay be used to close a processing loop.

The LOOP statement can be used to close more than one loop, and the END statement can be used
to close all active loops. These possibilities of closing several loopswith a single statement constitute
a basic difference to structured mode.

A SORT statement closes all processing loops and initiates another processing loop.

Example 1 - LOOP:

FIND ...
FIND ...
...
...
LOOP /* closes inner FIND loop

LOOP /* closes outer FIND loop
...
...

Example 2 - END:

FIND ...
FIND ...
...
...

END /* closes all loops and ends processing

Example 3 - SORT:

FIND ...
FIND ...
...
...

SORT ... /* closes all loops, initiates loop
...
END /* closes SORT loop and ends processing

7Programming Guide

Natural Programming Modes

Closing a Processing Loop in Structured Mode

Structured mode uses a specific loop-closing statement for each processing loop. Also, the END
statement does not close any processing loop. The SORT statementmust be preceded by an END-ALL
statement, and the SORT loop must be closed with an END-SORT statement.

Example 1 - FIND:

FIND ...
FIND ...
...
...
END-FIND /* closes inner FIND loop

END-FIND /* closes outer FIND loop
...

Example 2 - READ:

READ ...
AT END OF DATA
...
END-ENDDATA
...

END-READ /* closes READ loop
...
...
END

Example 3 - SORT:

READ ...
FIND ...
...
...

END-ALL /* closes all loops
SORT /* opens loop
...
...
END-SORT /* closes SORT loop
END

Programming Guide8

Natural Programming Modes

Location of Data Elements in a Program

In reporting mode, you can use database fields without having to define them in a DEFINE DATA
statement; also, you can define user-defined variables anywhere in a program, which means that
they can be scattered all over the program.

In structured mode, all data elements to be used have to be defined in one central location (either
in the DEFINE DATA statement at the beginning of the program, or in a data area outside the pro-
gram).

Database Reference

Reporting Mode:

In reportingmode, database fields and data definitionmodules (DDMs)may be referencedwithout
having been defined in a data area.

Structured Mode:

In structured mode, each database field to be used must be specified in a DEFINE DATA statement
as described in Defining Fields and Accessing Data in an Adabas Database.

9Programming Guide

Natural Programming Modes

Programming Guide10

Natural Programming Modes

II Object Types

This part describes the various types of Natural programming objects that can be used to achieve
an efficient application structure. AllNatural objects are stored inNatural libraries. Natural libraries
are contained in Natural system files.

Using Natural Programming Objects

Data Areas

Programs, Functions, Subprograms and Subroutines

Processing a Rich GUI Page - Adapter

Maps

Helproutines

Multiple Use of Source Code - Copycode

Documenting Natural Objects - Text

Creating Event Driven Applications - Dialog

Creating Component Based Applications - Class

Using Non-Natural Files - Resource

11

12

2 Using Natural Programming Objects

■ Types of Programming Objects .. 14
■ Creating and Maintaining Programming Objects .. 14

13

Types of Programming Objects

Within a Natural application, you can use the following types of programming objects:

■ Program
■ Class
■ Subprogram
■ Function
■ Adapter
■ Subroutine
■ Copycode
■ Helproutine
■ Text
■ Dialog
■ Map
■ Local Data Area
■ Global Data Area
■ Parameter Data Area
■ Resource

Creating and Maintaining Programming Objects

To create and maintain the programming objects, you use the Natural editors.

■ Local data areas, global data areas and parameter data areas are created and maintained with
the data area editor.

■ Maps are created and maintained with the map editor.
■ Dialogs are created and maintained with the dialog editor.
■ Classes are created and maintained with the Class Builder.
■ All other types of objects listed above are created and maintained with the program editor.

For information about the naming conventions that apply to Natural objects, see Object Naming
Conventions.

Programming Guide14

Using Natural Programming Objects

For detailed information on using these objects, see Creating, Maintaining and Executing Natural
Objects in Using Natural Studio.

15Programming Guide

Using Natural Programming Objects

16

3 Data Areas

■ Use of Data Areas ... 18
■ Local Data Area .. 18
■ Global Data Area ... 19
■ Parameter Data Area ... 28

17

Use of Data Areas

As explained in Defining Fields, all fields that are to be used in a program have to be defined in
a DEFINE DATA statement.

The fields can be defined within the DEFINE DATA statement itself; or they can be defined outside
the program in a separate data area, with the DEFINE DATA statement referencing that data area.

A separate data area is a Natural object that can be used by multiple Natural programs, subpro-
grams, subroutines, helproutines, dialogs or classes. A data area contains data element definitions,
such as user-defined variables, constants and database fields from adata definitionmodule (DDM).

All data areas are created and edited with the data area editor.

Natural supports three types of data area:

■ Local Data Area
■ Global Data Area
■ Parameter Data Area

Local Data Area

Variables defined as local are used only within a single Natural programming object. There are
two options for defining local data:

■ Define local data within a program.
■ Define local data outside a program in a separate Natural programming object, a local data area
(LDA).

Such a local data area is initialized when a program, subprogram or external subroutine that
uses this local data area starts to execute.

For a clear application structure and for easier maintainability, it is usually better to define fields
in data areas outside the programs.

Example 1 - Fields Defined Directly within a DEFINE DATA Statement:

In the following example, the fields are defined directly within the DEFINE DATA statement of the
program.

Programming Guide18

Data Areas

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

1 #VARI-A (A20)
1 #VARI-B (N3.2)
1 #VARI-C (I4)
END-DEFINE
...

Example 2 - Fields Defined in a Separate Data Area:

In the following example, the same fields are not defined in the DEFINE DATA statement of the
program, but in an LDA, named LDA39, and the DEFINE DATA statement in the program contains
only a reference to that data area.

Program:

DEFINE DATA LOCAL
USING LDA39

END-DEFINE
...

Local Data Area LDA39:

I T L Name F Length Miscellaneous
All -- -------------------------------- - ---------- ------------------------->
 V 1 VIEWEMP EMPLOYEES
 2 PERSONNEL-ID A 8
 2 FIRST-NAME A 20
 2 NAME A 20
 1 #VARI-A A 20
 1 #VARI-B N 3.2
 1 #VARI-C I 4 ↩

Global Data Area

The following topics are covered below:

■ Creating and Referencing a GDA
■ Creating and Deleting GDA Instances

19Programming Guide

Data Areas

■ Data Blocks

Creating and Referencing a GDA

GDAs are created and modified with the data area editor. For further information, refer to Data
Area Editor in the Editors documentation.

A GDA that is referenced by a Natural programming object must be stored in the same Natural
library (or a steplib defined for this library) where the object that references this GDA is stored.

Note: Using a GDA named COMMON for startup:
If a GDAnamed COMMON exists in a library, the programnamed ACOMMON is invoked automat-
ically when you LOGON to that library.

Important: When you build an application where multiple Natural programming objects
reference a GDA, remember that modifications to the data element definitions in the GDA
affect all Natural programming objects that reference that data area. Therefore these objects
must be recompiled by using the CATALOG or STOW command after the GDA has been modi-
fied.

To use a GDA, a Natural programming object must reference it with the GLOBAL clause of the
DEFINE DATA statement. Each Natural programming object can reference only one GDA; that is,
a DEFINE DATA statement must not contain more than one GLOBAL clause.

Creating and Deleting GDA Instances

The first instance of aGDA is created and initialized at runtimewhen the firstNatural programming
object that references it starts to execute.

Once a GDA instance has been created, the data values it contains can be shared by all Natural
programming objects that reference thisGDA (DEFINE DATA GLOBAL statement) and that are invoked
by a PERFORM, INPUT or FETCH statement. All objects that share a GDA instance are operating on
the same data elements.

A new GDA instance is created if the following applies:

■ A subprogram that references a GDA (any GDA) is invoked with a CALLNAT statement.
■ A subprogram that does not reference a GDA invokes a programming object that references a
GDA (any GDA).

If a new instance of a GDA is created, the current GDA instance is suspended and the data values
it contains are stacked. The subprogram then references the data values in the newly created GDA
instance. The data values in the suspended GDA instance or instances is inaccessible. A program-
ming object only refers to one GDA instance and cannot access any previous GDA instances. A
GDA data element can only be passed to a subprogram by defining the element as a parameter
in the CALLNAT statement.

Programming Guide20

Data Areas

When the subprogram returns to the invoking programming object, the GDA instance it references
is deleted and the GDA instance suspended previously is resumed with its data values.

A GDA instance and its contents is deleted if any of the following applies:

■ The next LOGON is performed.
■ Another GDA is referenced on the same level (levels are described later in this section).
■ A RELEASE VARIABLES statement is executed. In this case, the data values in a GDA instance are
reset either when a program at the level 1 finishes executing, or if the program invokes another
program via a FETCH or RUN statement.

The following graphics illustrate how programming objects reference GDAs and share data
elements in GDA instances.

Sharing GDA Instances

The graphic below illustrates that a subprogram referencing a GDA cannot share the data values
in a GDA instance referenced by the invoking program. A subprogram that references the same
GDA as the invoking program creates a new instance of this GDA. The data elements defined in
aGDA that is referenced by a subprogram can, however, be shared by a subroutine or a helproutine
invoked by the subprogram.

The graphic below shows three GDA instances of GDA1 and the final values each GDA instance is

assigned by the data element #GLOB1. The numbers to indicate the hierarchical levels of
the programming objects.

21Programming Guide

Data Areas

Using FETCH or FETCH RETURN

The graphic below illustrates that programs referencing the same GDA and invoking one another
with the FETCH or FETCH RETURN statement share the data elements defined in this GDA. If any of
these programs does not reference a GDA, the instance of the GDA referenced previously remains
active and the values of the data elements are retained.

The numbers and indicate the hierarchical levels of the programming objects.

Programming Guide22

Data Areas

Using FETCH with different GDAs

The graphic below illustrates that if a programuses the FETCH statement to invoke another program
that references a different GDA, the current instance of the GDA (here: GDA1) referenced by the
invoking program is deleted. If this GDA is then referenced again by another program, a new in-
stance of this GDA is created where all data elements have their initial values.

You cannot use the FETCH RETURN statement to invoke another program that references a different
GDA.

The number indicates the hierarchical level of the programming objects.

The invoking programs PROG3 and PROG4 affect the GDA instances as follows:

■ The statement GLOBAL USING GDA2 in PROG3 creates an instance of GDA2 and deletes the current
instance of GDA1.

■ The statement GLOBAL USING GDA1 in PROG4 deletes the current instance of GDA2 and creates a
new instance of GDA1. As a result, the WRITE statement displays the value zero (0).

23Programming Guide

Data Areas

Data Blocks

To save data storage space, you can create a GDA with data blocks.

The following topics are covered below:

■ Example of Data Block Usage
■ Defining Data Blocks
■ Block Hierarchies

Example of Data Block Usage

Data blocks can overlay each other during program execution, thereby saving storage space.

For example, given the following hierarchy, Blocks B and C would be assigned the same storage
area. Thus it would not be possible for Blocks B and C to be in use at the same time. Modifying
Block B would result in destroying the contents of Block C.

Programming Guide24

Data Areas

Defining Data Blocks

You define data blocks in the data area editor. You establish the block hierarchy by specifying
which block is subordinate to which: you do this by entering the name of the “parent” block in
the comment field of the block definition.

In the following example, SUB-BLOCKB and SUB-BLOCKC are subordinate to MASTER-BLOCKA;
SUB-BLOCKD is subordinate to SUB-BLOCKB.

The maximum number of block levels is 8 (including the master block).

Example:

Global Data Area G-BLOCK:

I T L Name F Leng Index/Init/EM/Name/Comment
- - - -------------------------------- - ---- ---------------------------------

B MASTER-BLOCKA
1 MB-DATA01 A 10

B SUB-BLOCKB MASTER-BLOCKA
1 SBB-DATA01 A 20

B SUB-BLOCKC MASTER-BLOCKA
1 SBC-DATA01 A 40

B SUB-BLOCKD SUB-BLOCKB

25Programming Guide

Data Areas

1 SBD-DATA01 A 40

To make the specific blocks available to a program, you use the following syntax in the DEFINE
DATA statement:

Program 1:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA

END-DEFINE

Program 2:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKB

END-DEFINE

Program 3:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKC

END-DEFINE

Program 4:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKB.SUB-BLOCKD

END-DEFINE

With this structure, Program 1 can share the data in MASTER-BLOCKAwith Program 2, Program 3
or Program 4. However, Programs 2 and 3 cannot share the data areas of SUB-BLOCKB and
SUB-BLOCKC because these data blocks are defined at the same level of the structure and thus occupy
the same storage area.

Programming Guide26

Data Areas

Block Hierarchies

Care needs to be taken when using data block hierarchies. Let us assume the following scenario
with three programs using a data block hierarchy:

Program 1:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKB

END-DEFINE
*
MOVE 1234 TO SBB-DATA01
FETCH 'PROGRAM2'
END

Program 2:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA

END-DEFINE
*
FETCH 'PROGRAM3'
END

Program 3:

DEFINE DATA GLOBAL
USING G-BLOCK
WITH MASTER-BLOCKA.SUB-BLOCKB

END-DEFINE
*
WRITE SBB-DATA01
END

Explanation:

■ Program1uses the global data area G-BLOCKwith MASTER-BLOCKA and SUB-BLOCKB. The program
modifies a field in SUB-BLOCKB and fetches Program 2 which specifies only MASTER-BLOCKA in
its data definition.

■ Program 2 resets (deletes the contents of) SUB-BLOCKB. The reason is that a program on Level 1
(for example, a program calledwith a FETCH statement) resets any data blocks that are subordinate
to the blocks it defines in its own data definition.

■ Program 2 now fetches Program 3 which is to display the field modified in Program 1, but it
returns an empty screen.

For details on program levels, seeMultiple Levels of Invoked Objects.

27Programming Guide

Data Areas

Parameter Data Area

A subprogram is invoked with a CALLNAT statement. With the CALLNAT statement, parameters can
be passed from the invoking object to the subprogram.

These parameters must be defined with a DEFINE DATA PARAMETER statement in the subprogram:

■ they can be defined in the PARAMETER clause of the DEFINE DATA statement itself; or
■ they can be defined in a separate parameter data area,with the DEFINE DATA PARAMETER statement
referencing that PDA.

The following topics are covered below:

■ Parameters Defined within DEFINE DATA PARAMETER Statement

Programming Guide28

Data Areas

■ Parameters Defined in Parameter Data Area

Parameters Defined within DEFINE DATA PARAMETER Statement

29Programming Guide

Data Areas

Parameters Defined in Parameter Data Area

In the same way, parameters that are passed to an external subroutine via a PERFORM statement
must be defined with a DEFINE DATA PARAMETER statement in the external subroutine.

In the invoking object, the parameter variables passed to the subprogram/subroutine need not be
defined in a PDA; in the illustrations above, they are defined in the LDA used by the invoking
object (but they could also be defined in a GDA).

The sequence, format and length of the parameters specified with the CALLNAT/PERFORM statement
in the invoking object must exactly match the sequence, format and length of the fields specified
in the DEFINE DATA PARAMETER statement of the invoked subprogram/subroutine. However, the
names of the variables in the invoking object and the invoked subprogram/subroutine need not
be the same (as the parameter data are transferred by address, not by name).

To guarantee that the data element definitions used in the invoking program are identical to the
data element definitions used in the subprogram or external subroutine, you can specify a PDA

Programming Guide30

Data Areas

in a DEFINE DATA LOCAL USING statement. By using a PDAas an LDAyou can avoid the extra effort
of creating an LDA that has the same structure as the PDA.

31Programming Guide

Data Areas

32

4 Programs, Functions, Subprograms and Subroutines

■ A Modular Application Structure ... 34
■ Multiple Levels of Invoked Objects .. 34
■ Program .. 36
■ Function .. 39
■ Subroutine ... 41
■ Subprogram ... 46
■ Processing Flow when Invoking a Routine .. 48

33

This document discusses those object typeswhich can be invoked as routines; that is, as subordinate
programs.

Helproutines and maps, although they are also invoked from other objects, are strictly speaking
not routines as such, and are therefore discussed in separate documents; see Helproutines and
Maps.

A Modular Application Structure

Typically, a Natural application does not consist of a single huge program, but is split into several
modules. Each of these modules will be a functional unit of manageable size, and each module is
connected to the other modules of the application in a clearly defined way. This provides for a
well structured application, which makes its development and subsequent maintenance a lot
easier and faster.

During the execution of amain program, other programs, subprograms, subroutines, helproutines
andmaps can be invoked. These objects can in turn invoke other objects (for example, a subroutine
can itself invoke another subroutine). Thus, the modular structure of an application can become
quite complex and extend over several levels.

Multiple Levels of Invoked Objects

Each invoked object is one level below the level of the object from which it was invoked; that is,
with each invocation of a subordinate object, the level number is incremented by 1.

Anyprogram that is directly executed is at Level 1; any subprogram, subroutine,map or helproutine
directly invoked by themain program is at Level 2; when such a subroutine in turn invokes another
subroutine, the latter is at Level 3.

A program invoked with a FETCH statement from within another object is classified as a main
program, operating from Level 1. A program that is invoked with FETCH RETURN, however, is
classified as a subordinate program and is assigned a level one below that of the invoking object.

The following illustration is an example of multiple levels of invoked objects and also shows how
these levels are counted:

Programming Guide34

Programs, Functions, Subprograms and Subroutines

If you wish to ascertain the level number of the object that is currently being executed, you can
use the system variable *LEVEL (which is described in the System Variables documentation).

This document discusses the following Natural object types, which can be invoked as routines
(that is, subordinate programs):

■ program
■ function
■ subroutine
■ subprogram

Helproutines and maps, although they are also invoked from other objects, are strictly speaking
not routines as such, and are therefore discussed in separate documents; see Helproutines and
Maps.

Basically, programs, subprograms and subroutines differ from one another in the way data can
be passed between them and in their possibilities of sharing each other's data areas. Therefore the
decision which object type to use for which purpose depends very much on the data structure of
your application.

35Programming Guide

Programs, Functions, Subprograms and Subroutines

Program

A program can be executed - and thus tested - by itself.

■ To compile and execute a source program, you use the system command RUN.
■ To execute a program that already exists in compiled form, you use the system command
EXECUTE.

A program can also be invoked from another object with a FETCH or FETCH RETURN statement. The
invoking object can be another program, a subprogram, function, subroutine or helproutine.

■ When a program is invoked with FETCH RETURN, the execution of the invoking object will be
suspended - not terminated - and the fetched programwill be activated as a subordinate program.
When the execution of the FETCHed program is terminated, the invoking objectwill be re-activated
and its execution continued with the statement following the FETCH RETURN statement.

■ When a program is invoked with FETCH, the execution of the invoking object will be terminated
and the FETCHed program will be activated as a main program. The invoking object will not be
re-activated upon termination of the fetched program.

The following topics are covered below:

■ Program Invoked with FETCH RETURN

Programming Guide36

Programs, Functions, Subprograms and Subroutines

■ Program Invoked with FETCH

Program Invoked with FETCH RETURN

Aprogram invokedwith FETCH RETURN can access the global data area used by the invoking object.

In addition, every program can have its own local data area, in which the fields that are to be used
only within the program are defined.

37Programming Guide

Programs, Functions, Subprograms and Subroutines

However, a program invoked with FETCH RETURN cannot have its own global data area.

Program Invoked with FETCH

A program invoked with FETCH as a main program usually establishes its own global data area
(as shown in the illustration above). However, it could also use the same global data area as estab-
lished by the invoking object.

Note: A source program can also be invoked with a RUN statement; see the RUN statement
in the Statements documentation.

Programming Guide38

Programs, Functions, Subprograms and Subroutines

Function

The Natural object of type function contains one DEFINE FUNCTION statement for the definition of
a single function and the END statement. The function itself can be invoked using the function call
syntax.

The basic structure of the DEFINE FUNCTION statement is like this:

DEFINE FUNCTION function-name
RETURNS ...
DEFINE DATA
...
END-DEFINE

statements ...

END-FUNCTION

And the function call has the structure:

function-name (< ... >)

The DEFINE FUNCTION statement offers the keyword RETURNS for the result value of a function.
With the DEFINE DATA statement, the parameters for the function call aswell as local and independ-
ent variables for the function logic can be defined. A global data area (for example, GDA1) cannot
be referenced inside the function definition.

The block of statements after the RETURNS keyword and the DEFINE DATA statement must contain
all those statements which are to be executed when the function is called.

Parameter data areas (for example, PDA1) may be used to access parameters for function calls and
function definitions in order to minimize the maintainance effort when changing parameters.

The function call can be used either as an operand within a Natural statement or stand-alone in
place of a Natural statement. The arguments of the function call must be specified using a special
bracket notation: (<...>).

The DEFINE PROTOTYPE statement may be used to define the result and parameter layouts for a
certain function. This may be considered if the function is not yet available or if a variable function
call is to be used. At compilation time, the type of the result variable and the parameters will be
checked.

The DEFINE PROTOTYPE statement may be included in a copycode object if the function call, and
therefore the prototype definition can be used in several programming objects.

For further information, see the section User-Defined Functions.

39Programming Guide

Programs, Functions, Subprograms and Subroutines

Programming Guide40

Programs, Functions, Subprograms and Subroutines

Subroutine

The statements that make up a subroutine must be defined within a DEFINE SUBROUTINE ...
END-SUBROUTINE statement block.

A subroutine is invoked with a PERFORM statement.

A subroutine may be an inline subroutine or an external subroutine:

■ Inline Subroutine
An inline subroutine is defined within the object which contains the PERFORM statement that in-
vokes it.

■ External Subroutine
An external subroutine is defined in a separate object - of type subroutine - outside the object
which invokes it.

If you have a block of code which is to be executed several times within an object, it is useful to
use an inline subroutine. You then only have to code this block once within a DEFINE SUBROUTINE
statement block and invoke it with several PERFORM statements.

The following topics are covered below:

■ Inline Subroutine
■ Data Available to an Inline Subroutine
■ External Subroutine

41Programming Guide

Programs, Functions, Subprograms and Subroutines

■ Data Available to an External Subroutine

Inline Subroutine

Programming Guide42

Programs, Functions, Subprograms and Subroutines

43Programming Guide

Programs, Functions, Subprograms and Subroutines

An inline subroutine can be contained within a programming object of type program, function,
subprogram, subroutine or helproutine.

If an inline subroutine is so large that it impairs the readability of the object inwhich it is contained,
you may consider putting it into an external subroutine, so as to enhance the readability of your
application.

Data Available to an Inline Subroutine

An inline subroutine has access to the local data area and the global data area used by the object
in which it is contained.

Programming Guide44

Programs, Functions, Subprograms and Subroutines

External Subroutine

An external subroutine - that is, an object of type subroutine - cannot be executed by itself. It must
be invoked from another object. The invoking object can be a program, function, subprogram,
subroutine or helproutine.

45Programming Guide

Programs, Functions, Subprograms and Subroutines

Data Available to an External Subroutine

An external subroutine can access the global data area used by the invoking object.

Moreover, parameters can be passed with the PERFORM statement from the invoking object to the
external subroutine. These parameters must be defined either in the DEFINE DATA PARAMETER
statement of the subroutine, or in a parameter data area used by the subroutine.

In addition, an external subroutine can have its local data area, in which the fields that are to be
used only within the subroutine are defined.

However, an external subroutine cannot have its own global data area.

Subprogram

Typically, a subprogram would contain a generally available standard function that is used by
various objects in an application.

A subprogram cannot be executed by itself. It must be invoked from another object. The invoking
object can be a program, function, subprogram, subroutine or helproutine.

A subprogram is invoked with a CALLNAT statement.

When the CALLNAT statement is executed, the execution of the invoking object will be suspended
and the subprogram executed. After the subprogram has been executed, the execution of the in-
voking object will be continued with the statement following the CALLNAT statement.

Data Available to a Subprogram

With the CALLNAT statement, parameters can be passed from the invoking object to the subprogram.
These parameters are the only data available to the subprogram from the invoking object. They
must be defined either in the DEFINE DATA PARAMETER statement of the subprogram, or in a para-
meter data area used by the subprogram.

Programming Guide46

Programs, Functions, Subprograms and Subroutines

In addition, a subprogram can have its own local data area, in which the fields to be used within
the subprogram are defined.

If a subprogram in turn invokes a subroutine or helproutine, it can also establish its own global
data area to be shared with the subroutine/helproutine.

47Programming Guide

Programs, Functions, Subprograms and Subroutines

Processing Flow when Invoking a Routine

When the CALLNAT, PERFORM or FETCH RETURN statement that invokes a routine - a subprogram, an
external subroutine, or a program respectively - is executed, the execution of the invoking object
is suspended and the execution of the routine begins.

The execution of the routine continues until either its END statement is reached or processing of
the routine is stopped by an ESCAPE ROUTINE statement being executed.

In either case, processing of the invoking object will then continue with the statement following
the CALLNAT, PERFORM or FETCH RETURN statement used to invoke the routine.

Programming Guide48

Programs, Functions, Subprograms and Subroutines

Example:

49Programming Guide

Programs, Functions, Subprograms and Subroutines

50

5 Processing a Rich GUI Page - Adapter

TheNatural object of type “adapter” is used to represent a rich GUI page in a Natural application.
This object type plays a similar role for the processing of a rich GUI page as the object type map
plays for terminal I/O processing. But it is different from a map in that it does not contain layout
information.

An object of type adapter is generated from an external page layout. It serves as an interface that
enables a Natural application to send data to an external I/O system for presentation andmodific-
ation, using an externally defined and stored page layout. The adapter contains the Natural code
necessary to perform this task.

An application program refers to an adapter in the PROCESS PAGE USING statement.

For information on the object type “adapter”, see the Natural for Ajax documentation.

51

52

6 Maps

■ Benefits of Using Maps ... 54
■ Types of Maps .. 54
■ Creating Maps .. 55
■ Starting/Stopping Map Processing .. 55

53

As an alternative to specifying screen layouts dynamically, the INPUT statement offers the possib-
ility to use predefined map layouts which makes use of the Natural object type “map”.

Benefits of Using Maps

Using predefined map layouts rather than dynamic screen-layout specifications offers various
advantages such as:

■ Clearly structured applications as a result of a consequent separation of program logic and
display logic.

■ Map layout modifications possible without making changes to the main programs.
■ The language of an applications's user interface can be easily adapted for internationalization
or localization.

The benefit of using programming objects such as maps will become obvious when it comes to
maintaining existing Natural applications.

Types of Maps

Maps (screen layouts) are those parts of an application which the users see on their screens.

The following types of maps exist:

■ Input Map
The dialog with the user is carried out via input maps.

■ Output Map
If an application produces any output report, this report can be displayed on the screen by using
an output map.

■ Help Map
Helpmaps are, in principle, like any othermaps, but when they are assigned as help, additional
checks are performed to ensure their usability for help purpose.

The object type “map” comprises

■ the map body which defines the screen layout and
■ an associated parameter data area (PDA) which, as a sort of interface, contains data definitions
such as name, format, length of each field presented on a specific map.

Related Topics:

Programming Guide54

Maps

■ For information on selection boxes that can be attached to input fields, see SB - Selection Box in
the INPUT statement documentation and SB - Selection Box in the Parameter Reference.

■ For information on split screen maps where the upper portion may be used as an output map
and the lower portion as an inputmap, see Split-Screen Feature in the INPUT statement document-
ation.

Creating Maps

Maps and help map layouts are created and edited in the map editor.

The appropriate local data area (LDA) is created and maintained in the data area editor.

Depending on the platform on which Natural is installed, these editors have either a character
user interface or a graphical user interface.

Related Topics:

■ For information on using the data area editor, seeData Area Editor in the platform-specific Editors
documentation.

■ For information on using the map editor, seeMap Editor in the platform-specific Editors docu-
mentation.

■ For information on input processing using screen layouts specified dynamically, see Syntax 1 -
Dynamic Screen Layout Specification in the INPUT statement documentation.

■ For information on input processing using amap layout createdwith themap editor, see Syntax
2 - Using Predefined Map Layout in the INPUT statement documentation.

Starting/Stopping Map Processing

An input map is invoked with an INPUT USING MAP statement.

An output map is invoked with a WRITE USING MAP statement.

Processing of a map can be stopped with an ESCAPE ROUTINE statement in a processing rule.

55Programming Guide

Maps

56

7 Helproutines

■ Invoking Help ... 58
■ Specifying Helproutines .. 58
■ Programming Considerations for Helproutines ... 59
■ Passing Parameters to Helproutines ... 59
■ Equal Sign Option ... 60
■ Array Indices .. 61
■ Help as a Window ... 61

57

Helproutines have specific characteristics to facilitate the processing of help requests. They may
be used to implement complex and interactive help systems. They are created with the program
editor.

Invoking Help

A Natural user can invoke a Natural helproutine either by entering the help character in a field,
or by pressing the help key (usually PF1). The default help character is a question mark (?).

■ The help character must be entered only once.
■ The help character must be the only character modified in the input string.
■ The help character must be the first character in the input string.

If a helproutine is specified for a numeric field, Natural will allow a question mark to be entered
for the purpose of invoking the helproutine for that field. Natural will still check that valid numeric
data are provided as field input.

If not already specified, the help key may be specified with the SET KEY statement:

SET KEY PF1=HELP

A helproutine can only be invoked by a user if it has been specified in the program ormap from
which it is to be invoked.

Specifying Helproutines

A helproutine may be specified:

■ in a program: at statement level and at field level;
■ in a map: at map level and at field level.

If a user requests help for a field for which no help has been specified, or if a user requests help
without a field being referenced, the helproutine specified at the statement ormap level is invoked.

Ahelproutinemay also be invoked byusing a REINPUT USING HELP statement (either in the program
itself or in a processing rule). If the REINPUT USING HELP statement contains a MARK option, the
helproutine assigned to the marked field is invoked. If no field-specific helproutine is assigned,
the map helproutine is invoked.

A REINPUT statement in a helproutine may only apply to INPUT statements within the same hel-
proutine.

Programming Guide58

Helproutines

The name of a helproutine may be specified either with the session parameter HE of an INPUT
statement:

INPUT (HE='HELP2112')

or by using the extended field editing facility of themap editor (seeCreatingMaps and the Editors
documentation).

The name of a helproutine may be specified as an alphanumeric constant or as an alphanumeric
variable containing the name. If it is a constant, the name of the helproutine must be specified
within apostrophes.

Programming Considerations for Helproutines

Processing of a helproutine can be stopped with an ESCAPE ROUTINE statement.

Be careful when using END OF TRANSACTION or BACKOUT TRANSACTION statements in a helproutine,
because this will affect the transaction logic of the main program.

Passing Parameters to Helproutines

A helproutine can access the currently active global data area (but it cannot have its own global
data area). In addition, it can have its own local data area.

Data may also be passed from/to a helproutine via parameters. A helproutine may have up to 20
explicit parameters and one implicit parameter. The explicit parameters are specified with the HE
operand after the helproutine name:

HE='MYHELP','001'

The implicit parameter is the field for which the helproutine was invoked:

INPUT #A (A5) (HE='YOURHELP','001')

where 001 is an explicit parameter and #A is the implicit parameter/the field.

This is specified within the DEFINE DATA PARAMETER statement of the helproutine as:

59Programming Guide

Helproutines

DEFINE DATA PARAMETER
1 #PARM1 (A3) /* explicit parameter
1 #PARM2 (A5) /* implicit parameter
END-DEFINE

Please note that the implicit parameter (#PARM2 in the above example)may be omitted. The implicit
parameter is used to access the field for which help was requested, and to return data from the
helproutine to the field. For example, youmight implement a calculator program as a helproutine
and have the result of the calculations returned to the field.

When help is called, the helproutine is called before the data are passed from the screen to the
program data areas. This means that helproutines cannot access data entered within the same
screen transaction.

Once help processing is complete, the screen data will be refreshed: any fields which have been
modified by the helproutine will be updated - excluding fields which had been modified by the
user before the helproutine was invoked, but including the field for which help was requested.
Exception: If the field forwhich helpwas requested is split into several parts by dynamic attributes
(DY session parameter), and the part in which the question mark is entered is after a part modified
by the user, the field content will not be modified by the helproutine.

Attribute control variables are not evaluated again after the processing of the helproutine, even
if they have been modified within the helproutine.

Equal Sign Option

The equal sign (=) may be specified as an explicit parameter:

INPUT PERSONNEL-NUMBER (HE='HELPROUT',=)

This parameter is processed as an internal field (format/lengthA65)which contains the field name
(or map name if specified at map level). The corresponding helproutine starts with:

DEFINE DATA PARAMETER
1 FNAME (A65) /* contains 'PERSONNEL-NUMBER'
1 FVALUE (N8) /* value of field (optional)
END-DEFINE

This option may be used to access one common helproutine which reads the field name and
provides field-specific help by accessing the application online documentation or the Predict data
dictionary.

Programming Guide60

Helproutines

Array Indices

If the field selected by the help character or the help key is an array element, its indices are supplied
as implicit parameters (1 - 3 depending on rank, regardless of the explicit parameters).

The format/length of these parameters is I2.

INPUT A(*,*) (HE='HELPROUT',=)

The corresponding helproutine starts with:

DEFINE DATA PARAMETER
1 FNAME (A65) /* contains 'A'
1 FVALUE (N8) /* value of selected element
1 FINDEX1 (I2) /* 1st dimension index
1 FINDEX2 (I2) /* 2nd dimension index
END-DEFINE
...

Help as a Window

The size of a help to be displayedmay be smaller than the screen size. In this case, the help appears
on the screen as a window, enclosed by a frame, for example:

PERSONNEL INFORMATION

PLEASE ENTER NAME: ?_________________
PLEASE ENTER CITY: __________________

+---------------------------+
! !
! Type in the name of an !
! employee in the first !
! field and press ENTER. !
! You will then receive !
! a list of all employees !
! of that name. !
! !
! For a list of employees !
! of a certain name who !
! live in a certain city, !
! type in a name in the !
! first field and a city !
! in the second field !
! and press ENTER. !

61Programming Guide

Helproutines

*******************! !*******************************
+---------------------------+

Within a helproutine, the size of the window may be specified as follows:

■ by a FORMAT statement (for example, to specify the page size and line size: FORMAT PS=15 LS=30);
■ by an INPUT USING MAP statement; in this case, the size defined for the map (in its map settings)
is used;

■ by a DEFINE WINDOW statement; this statement allows you to either explicitly define a window
size or leave it to Natural to automatically determine the size of the window depending on its
contents.

The position of a help window is computed automatically from the position of the field for which
help was requested. Natural places the window as close as possible to the corresponding field
without overlaying the field. With the DEFINE WINDOW statement, you may bypass the automatic
positioning and determine the window position yourself.

For further information on window processing, please refer to the DEFINE WINDOW statement in
the Statements documentation and the terminal command %W in the Terminal Commands document-
ation.

Programming Guide62

Helproutines

8 Multiple Use of Source Code - Copycode

■ Use of Copycode ... 64
■ Processing of Copycode ... 64

63

This chapter describes the advantages and the use of copycode.

Use of Copycode

Copycode is a portion of source code which can be included in another object via an INCLUDE
statement.

So, if you have a statement block which is to appear in identical form in several objects, you may
use copycode instead of coding the statement block several times. This reduces the coding effort
and also ensures that the blocks are really identical.

Processing of Copycode

The copycode is included at compilation; that is, the source-code lines from the copycode are not
physically inserted into the object that contains the INCLUDE statement, but they will be included
in the compilation process and are thus part of the resulting object module.

Consequently, when you modify the source code of copycode, you also have to catalog all objects
which use that copycode using the CATALOG system command.

Attention:

■ Copycode cannot be executed on its own. It cannot be stowed with a STOW system command,
but only saved using the SAVE system command.

■ An END statement must not be placed within a copycode.

For further information, refer to the description of the INCLUDE statement (in the Statements docu-
mentation).

Programming Guide64

Multiple Use of Source Code - Copycode

9 Documenting Natural Objects - Text

■ Use of Text Objects .. 66
■ Writing Text .. 66

65

The Natural object type “text” is used to write text rather than programs.

Use of Text Objects

You can use this type of object to documentNatural objects inmore detail than you can, for example,
within the source code of a program.

Text objects may also be useful at sites where Predict is not available for program documentation
purposes.

Writing Text

You write the text using the program editor.

The only difference in handling as opposed to writing programs is that there is no lower to upper
case translation, that is, the text you write stays as it is.

You can write any text you wish (there is no syntax check).

Text objects can only be saved with the system command SAVE, they cannot be stowed with the
systemcommand STOW. They cannot be executedusing the systemcommand RUN, but only displayed
in the editor.

Programming Guide66

Documenting Natural Objects - Text

10 Creating Event Driven Applications - Dialog

Dialogs are used in conjunctionwith event-drivenprogrammingwhen creatingNatural applications
for graphical user interfaces (GUIs).

For information on dialogs and event-driven programming, refer to Event-Driven Programming.

67

68

11 Creating Component Based Applications - Class

Classes are used to create and distribute component based applications in a client/server environ-
ment.

For details, refer to theNaturalX section of the Programming Guide and to the Class Builder section
of the Editors documentation.

69

70

12 Using Non-Natural Files - Resource

■ Use of Resources .. 72
■ Shared Resources ... 72
■ Private Resources ... 73
■ API for Processing Resources ... 73

71

This section describes the Natural object of type resource.

Use of Resources

Natural distinguishes two kinds of resources:

■ Shared Resources
A shared resource is any non-Natural file that is used in aNatural application and ismaintained
in the Natural library system.

■ Private Resources
A private resource is a file that is assigned to one and only one Natural object and is considered
to be part of that object. An object can have at most one private resource file. At the moment,
onlyNatural dialogs have private resources.

Both shared and private resources belonging to a Natural library are maintained in a subdirectory
named ..\RES in the directory that represents the Natural library in the file system.

Shared Resources

A shared resource is any non-Natural file that is used in a Natural application and is maintained
in the Natural library system. A non-Natural file that is to be used as a shared resource must be
contained in the subdirectory named ..\RES of a Natural library.

Example of Using a Shared Resource

The bitmapMYPICTURE.BMP is to be displayed in a bitmap control in a dialog MYDLG, contained
in a library MYLIB. First the bitmap is put into the Natural library MYLIB by moving it into the dir-
ectory ..\MYLIB\RES. The following code snippet from the dialog MYDLG shows how it is then
assigned to the bitmap control:

DEFINE DATA LOCAL
01 #BM-1 HANDLE OF BITMAP
...
END-DEFINE
* (Creation of the Bitmap control omitted.)
...
#BM-1.BITMAP-FILE-NAME := "MYPICTURE.BMP" ... ↩

The advantages of using the bitmap as a shared resource are:

■ The file name can be specified in the Natural dialog without a path name.
■ The file can be kept in a Natural library together with the Natural object that uses it.

Programming Guide72

Using Non-Natural Files - Resource

Note: In previous Natural versions non-Natural files were usually kept in a directory that
was defined with the environment variable NATGUI_BMP. Existing applications that use this
approachwill work in the sameway as before, becauseNatural always searches for a shared
resource file in this directory, if it was not found in the current library.

Private Resources

Private resources are used internally byNatural to store binary data that is part of Natural objects.
These files are recognized by the file name extension NR*, where * is a character that depends on
the type of theNatural object. Naturalmaintains private resource files and their contents automat-
ically. A Natural object can have a maximum of one private resource file.

Currently, onlyNatural dialogs have a private resource file. This file is used to store the configur-
ation of ActiveX controls that are defined in a dialog and are configured with their own property
pages.

For information on how to configure an ActiveX control, see Attributes Windows for Dialogs and
Dialog Elements, ActiveX Control Property Pages.

Example of Private Resources

The name of the private resource file of the dialog MYDLG isMYDLG.NR3.

Natural creates, modifies and deletes this file automatically as needed, when the dialog is created,
modified, deleted, etc.

The private resource file is used to store binary data related to the dialog MYDLG.

API for Processing Resources

In the library SYSEXT, the following application programming interface (API) exists, which gives
user applications access to resources' unique user exit routines:

PurposeAPI

Write, read, delete a resource by using short or long name.USR4208N

73Programming Guide

Using Non-Natural Files - Resource

74

III Defining Fields

This part describes how you define the fields you wish to use in a program. These fields can be
database fields and user-defined fields.

Use and Structure of DEFINE DATA Statement

User-Defined Variables

Function Call

Introduction to Dynamic Variables and Fields

Using Dynamic and Large Variables

User-Defined Constants

Initial Values (and the RESET Statement)

Redefining Fields

Arrays

X-Arrays

Please note that only the major options of the DEFINE DATA statement are discussed here. Further
options are described in the Statements documentation.

The particulars of database fields are described in Accessing Data in an Adabas Database. On
principle, the features and examples described there for Adabas also apply to other database
management systems. Differences, if any, are described in the relevant database interface docu-
mentation and in the Statements documentation or Parameter Reference.

75

76

13 Use and Structure of DEFINE DATA Statement

■ Field Definitions in DEFINE DATA Statement .. 78
■ Defining Fields within a DEFINE DATA Statement .. 78
■ Defining Fields in a Separate Data Area ... 79
■ Structuring a DEFINE DATA Statement Using Level Numbers .. 79

77

The first statement in a Natural program written in structured modemust always be a DEFINE
DATA statement which is used to define fields for use in a program.

For information on structural indentation of a source program, see the Natural system command
STRUCT.

Field Definitions in DEFINE DATA Statement

In the DEFINE DATA statement, you define all the fields - database fields as well as user-defined
variables - that are to be used in the program.

There are two ways to define the fields:

■ The fields can be defined within the DEFINE DATA statement itself (see below).
■ The fields can be defined outside the program in a local or global data area, with the DEFINE
DATA statement referencing that data area (see below).

If fields are used bymultiple programs/routines, they should be defined in a data area outside the
programs.

For a clear application structure, it is usually better to define fields in data areas outside the pro-
grams.

Data areas are created and maintained with the data area editor.

In thefirst example below, the fields are definedwithin the DEFINE DATA statement of the program.
In the second example, the same fields are defined in a local data area (LDA), and the DEFINE
DATA statement only contains a reference to that data area.

Defining Fields within a DEFINE DATA Statement

The following example illustrates howfields can be definedwithin the DEFINE DATA statement itself:

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

1 #VARI-A (A20)
1 #VARI-B (N3.2)
1 #VARI-C (I4)
END-DEFINE
...

Programming Guide78

Use and Structure of DEFINE DATA Statement

Defining Fields in a Separate Data Area

The following example illustrates how fields can be defined in a local data area (LDA):

Program:

DEFINE DATA LOCAL
USING LDA39

END-DEFINE
... ↩

Local Data Area LDA39:

I T L Name F Leng Index/Init/EM/Name/Comment
- - - -------------------------------- - ---- ---------------------------------
 V 1 VIEWEMP EMPLOYEES
 2 NAME A 20
 2 FIRST-NAME A 20
 2 PERSONNEL-ID A 8
 1 #VARI-A A 20
 1 #VARI-B N 3.2
 1 #VARI-C I 4
 ↩

Structuring a DEFINE DATA Statement Using Level Numbers

The following topics are covered:

■ Structuring and Grouping Your Definitions
■ Level Numbers in View Definitions
■ Level Numbers in Field Groups
■ Level Numbers in Redefinitions

Structuring and Grouping Your Definitions

Level numbers are used within the DEFINE DATA statement to indicate the structure and grouping
of the definitions. This is relevant with:

■ view definitions
■ field groups
■ redefinitions

Level numbers are 1- or 2-digit numbers in the range from 01 to 99 (the leading zero is optional).

79Programming Guide

Use and Structure of DEFINE DATA Statement

Generally, variable definitions are on Level 1.

The level numbering in view definitions, redefinitions and groups must be sequential; no level
numbers may be skipped.

Level Numbers in View Definitions

If you define a view, the specification of the view namemust be on Level 1, and the fields the view
is comprised of must be on Level 2. (For details on view definitions, see Database Access.)

Example of Level Numbers in View Definition:

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 BIRTH

...
END-DEFINE

Level Numbers in Field Groups

The definition of groups provides a convenient way of referencing a series of consecutive fields.
If you define several fields under a common group name, you can reference the fields later in the
program by specifying only the group name instead of the names of the individual fields.

The group name must be specified on Level 1, and the fields contained in the group must be one
level lower.

For group names, the same naming conventions apply as for user-defined variables.

Example of Level Numbers in Group:

DEFINE DATA LOCAL
1 #FIELDA (N2.2)
1 #FIELDB (I4)
1 #GROUPA

2 #FIELDC (A20)
2 #FIELDD (A10)
2 #FIELDE (N3.2)

1 #FIELDF (A2)
...
END-DEFINE ↩

In this example, the fields #FIELDC, #FIELDD and #FIELDE are defined under the common group
name #GROUPA. The other three fields are not part of the group. Note that #GROUPA only serves as
a group name and is not a field in its own right (and therefore does not have a format/length
definition).

Programming Guide80

Use and Structure of DEFINE DATA Statement

Level Numbers in Redefinitions

If you redefine a field, the REDEFINE option must be on the same level as the original field, and the
fields resulting from the redefinition must be one level lower. For details on redefinitions, see
Redefining Fields.

Example of Level Numbers in Redefinition:

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF STAFFDDM

2 BIRTH
2 REDEFINE BIRTH

3 #YEAR-OF-BIRTH (N4)
3 #MONTH-OF-BIRTH (N2)
3 #DAY-OF-BIRTH (N2)

1 #FIELDA (A20)
1 REDEFINE #FIELDA

2 #SUBFIELD1 (N5)
2 #SUBFIELD2 (A10)
2 #SUBFIELD3 (N5)

...
END-DEFINE ↩

In this example, the database field BIRTH is redefined as three user-defined variables, and the user-
defined variable #FIELDA is redefined as three other user-defined variables.

81Programming Guide

Use and Structure of DEFINE DATA Statement

82

14 User-Defined Variables

■ Definition of Variables ... 84
■ Referencing of Database Fields Using (r) Notation ... 85
■ Renumbering of Source-Code Line Number References ... 86
■ Format and Length of User-Defined Variables ... 87
■ Special Formats .. 88
■ Index Notation .. 91
■ Referencing a Database Array ... 93
■ Referencing the Internal Count for a Database Array (C* Notation) .. 101
■ Qualifying Data Structures ... 104
■ Examples of User-Defined Variables .. 105

83

User-defined variables are fields which you define yourself in a program. They are used to store
values or intermediate results obtained at some point in program processing for additional pro-
cessing or display.

See also Naming Conventions for User-Defined Variables in Using Natural Studio.

Definition of Variables

You define a user-defined variable by specifying its name and its format/length in the DEFINE
DATA statement.

You define the characteristics of a variable with the following notation:

(r,format-length/index)

This notation follows the variable name, optionally separated by one or more blanks.

No blanks are allowed between the individual elements of the notation.

The individual elements may be specified selectively as required, but when used together, they
must be separated by the characters as indicated above.

Example:

In this example, a user-defined variable of alphanumeric format and a length of 10 positions is
defined with the name #FIELD1.

DEFINE DATA LOCAL
1 #FIELD1 (A10)
...
END-DEFINE

Notes:

1. If operating in structuredmode or if a program contains a DEFINE DATA LOCAL clause, variables
cannot be defined dynamically in a statement.

2. This does not apply to application-independent variables (AIVs); see also Defining Application-
Independent Variables

Programming Guide84

User-Defined Variables

Referencing of Database Fields Using (r) Notation

A statement label or the source-code line number can be used to refer to a previous Natural
statement. This can be used to override Natural's default referencing (as described for each state-
ment, where applicable), or for documentation purposes. See also Loop Processing, Referencing
Statements within a Program.

The following topics are covered below:

■ Default Referencing of Database Fields
■ Referencing with Statement Labels
■ Referencing with Source-Code Line Numbers

Default Referencing of Database Fields

Generally, the following applies if you specify no statement reference notation:

■ By default, the innermost active database loop (FIND, READ or HISTOGRAM) in which the database
field in question has been read is referenced.

■ If the field is not read in any active database loop, the last previous GET statement (in reporting
mode also FIND FIRST or FIND UNIQUE statement) is referenced which is not contained in an
already closed loop and which has read the field.

Referencing with Statement Labels

AnyNatural statement which causes a processing loop to be initiated and/or causes data elements
to be accessed in the database may be marked with a symbolic label for subsequent referencing.

A label may be specified either in the form label. before the referencing object or in parentheses
(label.) after the referencing object (but not both simultaneously).

The naming conventions for labels are identical to those for variables. The period after the label
name serves to identify the entry as a label.

Example:

...
RD. READ PERSON-VIEW BY NAME STARTING FROM 'JONES'

FD. FIND AUTO-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FD.)
DISPLAY NAME (RD.) FIRST-NAME (RD.) MAKE (FD.)

END-FIND
END-READ
...

85Programming Guide

User-Defined Variables

Referencing with Source-Code Line Numbers

A statement may also be referenced by using the number of the source-code line in which the
statement is located.

All four digits of the line number must be specified (leading zeros must not be omitted).

Example:

...
0110 FIND EMPLOYEES-VIEW WITH NAME = 'SMITH'
0120 FIND VEHICLES-VIEW WITH MODEL = 'FORD'
0130 DISPLAY NAME (0110) MODEL (0120)
0140 END-FIND
0150 END-FIND
...

Renumbering of Source-Code Line Number References

Numeric four-digit source-code line numbers that reference a statement (see Referencing of
Database Fields Using (r) Notation and also Referencing Statements within a Program) are also
renumbered if the Natural source program is renumbered. For the user's convenience and to aid
in readability and debugging, all source code line number references that occur in a statement, an
alphanumeric constant or a comment are renumbered. The position of the source code line number
reference in the statement or alphanumeric constant (start, middle, end) does not matter.

The following patterns are recognized as being a valid source code line number reference and are
renumbered (nnnn is a four-digit number):

Sample StatementPattern

ESCAPE BOTTOM (0150)(nnnn)

DISPLAY ADDRESS-LINE(0010/1:5)(nnnn/

DISPLAY NAME(0010,A10/1:5)(nnnn,

If the left parenthesis or the four-digit number nnnn is followed by a blank, or the four-digit
number nnnn is followed by a period, the pattern is not considered to be a valid source code line
number reference.

To avoid that a four-digit number that is contained in an alphanumeric constant is unintentionally
renumbered, the constant should be split up and the different parts should be concatenated to
form a single value by use of a hyphen.

Example:

Programming Guide86

User-Defined Variables

Z := 'XXXX (1234,00) YYYY'

should be replaced by

Z := 'XXXX (1234' - ',00) YYYY'

Format and Length of User-Defined Variables

Format and length of a user-defined variable are specified in parentheses after the variable name.

Fixed-length variables can be defined with the following formats and corresponding lengths.

For the definition of Format and Length in dynamic variables, seeDefinition ofDynamic Variables.

Internal Length (in Bytes)Definable LengthExplanationFormat

1 - 10737418241 - 1073741824 (1GB)AlphanumericA

1 - 10737418241 - 1073741824 (1GB)BinaryB

2-Attribute ControlC

4-DateD

4 or 84 or 8Floating PointF

1, 2 or 41 , 2 or 4IntegerI

1-LogicalL

1 - 291 - 29Numeric (unpacked)N

1 - 151 - 29Packed numericP

7-TimeT

2 - 10737418241 - 536870912 (0.5 GB)Unicode (UTF-16)U

Length can only be specified if format is specified. With some formats, the length need not be ex-
plicitly specified (as shown in the table above).

For fields defined with format N or P, you can use decimal position notation in the form nn.m,
where nn represents the number of positions before the decimal point, and m represents the number
of positions after the decimal point. The sum of the values of nn and mmust not exceed 29, and
the value of mmust not exceed 7.

Notes:

1. When a user-defined variable of format P is output with a DISPLAY, WRITE, or INPUT statement,
Natural internally converts the format to N for the output.

87Programming Guide

User-Defined Variables

2. In reportingmode, if format and length are not specified for a user-defined variable, the default
format/length N7 will be used, unless this default assignment has been disabled by the pro-
file/session parameter FS.

For a database field, the format/length as defined for the field in the data definitionmodule (DDM)
apply. (In reporting mode, it is also possible to define in a program a different format/length for
a database field.)

In structured mode, format and length may only be specified in a data area definition or with a
DEFINE DATA statement.

Example of Format/Length Definition - Structured Mode:

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME

1 #NEW-SALARY (N6.2)
END-DEFINE
...
FIND EMPLOY-VIEW ...
...
COMPUTE #NEW-SALARY = ...
...

In reporting mode, format/length may be defined within the body of the program, if no DEFINE
DATA statement is used.

Example of Format/Length Definition - Reporting Mode:

...

...
FIND EMPLOYEES

... ... COMPUTE #NEW-SALARY(N6.2) = ...

...

Special Formats

In addition to the standard alphanumeric (A) and numeric (B, F, I, N, P) formats, Natural supports
the following special formats:

■ Format C - Attribute Control
■ Formats D - Date, and T - Time
■ Format L - Logical

Programming Guide88

User-Defined Variables

■ Format: Handle

Format C - Attribute Control

A variable defined with format C may be used to assign attributes dynamically to a field used in
a DISPLAY, INPUT, PRINT, PROCESS PAGE or WRITE statement.

For a variable of format C, no length can be specified. The variable is always assigned a length of
2 bytes by Natural.

Example:

DEFINE DATA LOCAL
1 #ATTR (C)
1 #A (N5)
END-DEFINE
...
MOVE (AD=I CD=RE) TO #ATTR
INPUT #A (CV=#ATTR)
...

For further information, see the session parameter CV.

Formats D - Date, and T - Time

Variables defined with formats D and T can be used for date and time arithmetic and display.
Format D can contain date information only. Format T can contain date and time information; in
otherwords, date information is a subset of time information. Time is counted in tenths of seconds.

For variables of formats D and T, no length can be specified. A variable with format D is always
assigned a length of 4 bytes (P6) and a variable of format T is always assigned a length of 7 bytes
(P12) byNatural. If the profile parameter MAXYEAR is set to 9999, a variable with format D is always
assigned a length of 4 bytes (P7) and a variable of format T is always assigned a length of 7 bytes
(P13) by Natural.

Example:

DEFINE DATA LOCAL
1 #DAT1 (D)
END-DEFINE
*
MOVE *DATX TO #DAT1
ADD 7 TO #DAT1
WRITE '=' #DAT1
END

For further information, see the session parameter EM and the system variables *DATX and *TIMX.

89Programming Guide

User-Defined Variables

The value in a date field must be in the range from 1st January 1582 to 31st December 2699.

Format L - Logical

A variable defined of format L may be used as a logical condition criterion. It can take the value
TRUE or FALSE.

For a variable of format L, no length can be specified. A variable of format L is always assigned a
length of 1 byte by Natural.

Example:

DEFINE DATA LOCAL
1 #SWITCH(L)
END-DEFINE
MOVE TRUE TO #SWITCH
...
IF #SWITCH

...
MOVE FALSE TO #SWITCH

ELSE
...
MOVE TRUE TO #SWITCH

END-IF

For further information on logical value presentation, see the session parameter EM.

Format: Handle

A variable defined as HANDLE OF OBJECT can be used as an object handle.

For further information on object handles, see the section NaturalX.

A variable defined as HANDLE OF dialog-element-type can be used as a GUI handle.

For further information on GUI handles, see HANDLE OF GUI (in Event-Driven Programming
Technics).

Programming Guide90

User-Defined Variables

Index Notation

An index notation is used for fields that represent an array.

An integer numeric constant or user-defined variable may be used in index notations. A user-
defined variable can be specified using one of the following formats: N (numeric), P (packed), I
(integer) or B (binary), where format B may be used only with a length of less than or equal to 4.

A system variable, system function or qualified variable cannot be used in index notations.

Array Definition - Examples:

1. #ARRAY (3)
Defines a one-dimensional array with three occurrences.

2. FIELD (label.,A20/5) orlabel.FIELD(A20/5)
Defines an array from a database field referencing the statementmarked by label.with format
alphanumeric, length 20 and 5 occurrences.

3. #ARRAY (N7.2/1:5,10:12,1:4)
Defines an array with format/length N7.2 and three array dimensions with 5 occurrences in the
first, 3 occurrences in the second and 4 occurrences in the third dimension.

4. FIELD (label./i:i + 5) orlabel.FIELD(i:i + 5)
Defines an array from a database field referencing the statement marked by label..

FIELD represents a multiple-value field or a field from a periodic group where i specifies the
offset indexwithin the database occurrence. The size of the arraywithin the program is defined
as 6 occurrences (i:i + 5). The database offset index is specified as a variable to allow for the
positioning of the program array within the occurrences of the multiple-value field or periodic
group. For any repositioning of i, a new access must be made to the database using a GET or
GET SAME statement.

Natural allows for the definition of arrays where the index does not have to begin with 1. At
runtime, Natural checks that index values specified in the reference do not exceed the maximum
size of dimensions as specified in the definition.

Notes:

1. For compatibilitywith earlierNatural versions, an array rangemay be specified using a hyphen
(-) instead of a colon (:).

2. A mix of both notations, however, is not permitted.

3. The hyphen notation is only allowed in reporting mode (but not in a DEFINE DATA statement).

The maximum index value is 1,073,741,824. The maximum size of a data area per programming
object is 1,073,741,824 bytes (1 GB).

91Programming Guide

User-Defined Variables

Simple arithmetic expressions using the plus (+) and minus (-) operators may be used in index
references. When arithmetic expressions are used as indices, these operators must be preceded
and followed by a blank.

Arrays in group structures are resolved by Natural field by field, not group occurrence by group
occurrence.

Example of Group Array Resolution:

DEFINE DATA LOCAL
1 #GROUP (1:2)
2 #FIELDA (A5/1:2)
2 #FIELDB (A5)

END-DEFINE
...

If the group defined above were output in a WRITE statement:

WRITE #GROUP (*)

the occurrences would be output in the following order:

#FIELDA(1,1) #FIELDA(1,2) #FIELDA(2,1) #FIELDA(2,2) #FIELDB(1) #FIELDB(2)

and not:

#FIELDA(1,1) #FIELDA(1,2) #FIELDB(1) #FIELDA(2,1) #FIELDA(2,2) #FIELDB(2)

Array Referencing - Examples:

1. #ARRAY (1)
References the first occurrence of a one-dimensional array.

2. #ARRAY (7:12)
References the seventh to twelfth occurrence of a one-dimensional array.

3. #ARRAY (i + 5)
References the i+fifth occurrence of a one-dimensional array.

4. #ARRAY (5,3:7,1:4)
Reference is made within a three dimensional array to occurrence 5 in the first dimension, oc-
currences 3 to 7 (5 occurrences) in the second dimension and 1 to 4 (4 occurrences) in the third
dimension.

5. An asterisk may be used to reference all occurrences within a dimension:

Programming Guide92

User-Defined Variables

DEFINE DATA LOCAL
1 #ARRAY1 (N5/1:4,1:4)
1 #ARRAY2 (N5/1:4,1:4)
END-DEFINE
...
ADD #ARRAY1 (2,*) TO #ARRAY2 (4,*)
... ↩

Using a Slash before an Array Occurrence

If a variable name is followed by a 4-digit number enclosed in parentheses, Natural interprets this
number as a line-number reference to a statement. Therefore a 4-digit array occurrence must be
preceded by a slash (/) to indicate that it is an array occurrence; for example:

#ARRAY(/1000)

not:

#ARRAY(1000)

because the latter would be interpreted as a reference to source code line 1000.

If an index variable name could bemisinterpreted as a format/length specification, a slash (/) must
be used to indicate that an index is being specified. If, for example, the occurrence of an array is
defined by the value of the variable N7, the occurrence must be specified as:

#ARRAY (/N7)

not:

#ARRAY (N7)

because the latter would be misinterpreted as the definition of a 7-byte numeric field.

Referencing a Database Array

The following topics are covered below:

■ Referencing Multiple-Value Fields and Periodic-Group Fields
■ Referencing Arrays Defined with Constants
■ Referencing Arrays Defined with Variables
■ Referencing Multiple-Defined Arrays

Note: Before executing the following example programs, please run the program INDEXTST

in the library SYSEXPG to create an example record that uses 10 different language codes.

93Programming Guide

User-Defined Variables

Referencing Multiple-Value Fields and Periodic-Group Fields

Amultiple-value field or periodic-group fieldwithin a view/DDMmay be defined and referenced
using various index notations.

For example, the first to tenth values and the Ith to Ith+10 values of the same multiple-value
field/periodic-group field of a database record:

DEFINE DATA LOCAL
1 I (I2)
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 LANG (1:10)
2 LANG (I:I+10)

END-DEFINE

or:

RESET I (I2)
...
READ EMPLOYEES
OBTAIN LANG(1:10) LANG(I:I+10)

Notes:

1. The same lower bound index may only be used once per array (this applies to constant indexes
as well as variable indexes).

2. For an array definition using a variable index, the lower bound must be specified using the
variable by itself, and the upper boundmust be specified using the same variable plus a constant.

Referencing Arrays Defined with Constants

An array definedwith constants may be referenced using either constants or variables. The upper
bound of the array cannot be exceeded. The upper boundwill be checked byNatural at compilation
time if a constant is used.

Reporting Mode Example:

** Example 'INDEX1R': Array definition with constants (reporting mode)

*
READ (1) EMPLOYEES WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

OBTAIN LANG (1:10)
/*
WRITE 'LANG(1:10):' LANG (1:10) //
WRITE 'LANG(1) :' LANG (1) / 'LANG(5:9) :' LANG (5:9)

LOOP
*
END

Programming Guide94

User-Defined Variables

Structured Mode Example:

** Example 'INDEX1S': Array definition with constants (structured mode)

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 LANG (1:10)

END-DEFINE
*
READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

WRITE 'LANG(1:10):' LANG (1:10) //
WRITE 'LANG(1) :' LANG (1) / 'LANG(5:9) :' LANG (5:9)

END-READ
END

If a multiple-value field or periodic-group field is defined several times using constants and is to
be referenced using variables, the following syntax is used.

Reporting Mode Example:

** Example 'INDEX2R': Array definition with constants (reporting mode)
** (multiple definition of same database field)

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 LANG (1:5)
2 LANG (4:8)

END-DEFINE
*
READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

DISPLAY 'NAME' NAME
'LANGUAGE/1:3' LANG (1.1:3)
'LANGUAGE/6:8' LANG (4.3:5)

LOOP
*
END

95Programming Guide

User-Defined Variables

Structured Mode Example:

** Example 'INDEX2S': Array definition with constants (structured mode)
** (multiple definition of same database field)

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 LANG (1:5)
2 LANG (4:8)

END-DEFINE
*
READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

DISPLAY 'NAME' NAME
'LANGUAGE/1:3' LANG (1.1:3)
'LANGUAGE/6:8' LANG (4.3:5)

END-READ
*
END

Referencing Arrays Defined with Variables

Multiple-value fields or periodic-group fields in arrays definedwith variables must be referenced
using the same variable.

Reporting Mode Example:

** Example 'INDEX3R': Array definition with variables (reporting mode)

RESET I (I2)
*
I := 1
READ (1) EMPLOYEES WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

OBTAIN LANG (I:I+10)
/*
WRITE 'LANG(I) :' LANG (I) /

'LANG(I+5:I+7):' LANG (I+5:I+7)
LOOP
*
END

Programming Guide96

User-Defined Variables

Structured Mode Example:

** Example 'INDEX3S': Array definition with variables (structured mode)

DEFINE DATA LOCAL
1 I (I2)
*
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 LANG (I:I+10)

END-DEFINE
*
I := 1
READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

WRITE 'LANG(I) :' LANG (I) /
'LANG(I+5:I+7):' LANG (I+5:I+7)

END-READ
END

If a different index is to be used, an unambiguous reference to the first encountered definition of
the array with variable index must be made. This is done by qualifying the index expression as
shown below.

Reporting Mode Example:

** Example 'INDEX4R': Array definition with variables (reporting mode)

RESET I (I2) J (I2)
*
I := 2
J := 3
*
READ (1) EMPLOYEES WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

OBTAIN LANG (I:I+10)
/*
WRITE 'LANG(I.J) :' LANG (I.J) /

'LANG(I.1:5):' LANG (I.1:5)
LOOP
*
END

97Programming Guide

User-Defined Variables

Structured Mode Example:

** Example 'INDEX4S': Array definition with variables (structured mode)

DEFINE DATA LOCAL
1 I (I2)
1 J (I2)
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 LANG (I:I+10)

END-DEFINE
*
I := 2
J := 3
READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

WRITE 'LANG(I.J) :' LANG (I.J) /
'LANG(I.1:5):' LANG (I.1:5)

END-READ
END

The expression I. is used to create an unambiguous reference to the array definition and “positions”
to the first value within the read array range (LANG(I.1:5)).

The current content of I at the time of the database access determines the starting occurrence of
the database array.

Referencing Multiple-Defined Arrays

For multiple-defined arrays, a reference with qualification of the index expression is usually ne-
cessary to ensure an unambiguous reference to the desired array range.

Reporting Mode Example:

** Example 'INDEX5R': Array definition with constants (reporting mode)
** (multiple definition of same database field)

DEFINE DATA LOCAL /* For reporting mode programs
1 EMPLOY-VIEW VIEW OF EMPLOYEES /* DEFINE DATA is recommended

2 NAME /* to use multiple definitions
2 CITY /* of same database field
2 LANG (1:10)
2 LANG (5:10)

*
1 I (I2)
1 J (I2)
END-DEFINE
*
I := 1
J := 2

Programming Guide98

User-Defined Variables

*
READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

WRITE 'LANG(1.1:10) :' LANG (1.1:10) /
'LANG(1.I:I+2):' LANG (1.I:I+2) //

WRITE 'LANG(5.1:5) :' LANG (5.1:5) /
'LANG(5.J) :' LANG (5.J)

LOOP
END

Structured Mode Example:

** Example 'INDEX5S': Array definition with constants (structured mode)
** (multiple definition of same database field)

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 LANG (1:10)
2 LANG (5:10)

*
1 I (I2)
1 J (I2)
END-DEFINE
*
*
I := 1
J := 2
*
READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'

WRITE 'LANG(1.1:10) :' LANG (1.1:10) /
'LANG(1.I:I+2):' LANG (1.I:I+2) //

WRITE 'LANG(5.1:5) :' LANG (5.1:5) /
'LANG(5.J) :' LANG (5.J)

END-READ
END

A similar syntax is also used if multiple-value fields or periodic-group fields are defined using
index variables.

Reporting Mode Example:

** Example 'INDEX6R': Array definition with variables (reporting mode)
** (multiple definition of same database field)

DEFINE DATA LOCAL
1 I (I2) INIT <1>
1 J (I2) INIT <2>
1 N (I2) INIT <1>
1 EMPLOY-VIEW VIEW OF EMPLOYEES /* For reporting mode programs

2 NAME /* DEFINE DATA is recommended

99Programming Guide

User-Defined Variables

2 CITY /* to use multiple definitions
2 LANG (I:I+10) /* of same database field
2 LANG (J:J+5)
2 LANG (4:5)

*
END-DEFINE
*
READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'
*

WRITE 'LANG(I.I) :' LANG (I.I) /
'LANG(1.I:I+2):' LANG (I.I:I+10) //

*
WRITE 'LANG(J.N) :' LANG (J.N) /

'LANG(J.2:4) :' LANG (J.2:4) //
*

WRITE 'LANG(4.N) :' LANG (4.N) /
'LANG(4.N:N+1):' LANG (4.N:N+1) /

LOOP
END

Structured Mode Example:

** Example 'INDEX6S': Array definition with variables (structured mode)
** (multiple definition of same database field)

DEFINE DATA LOCAL
1 I (I2) INIT <1>
1 J (I2) INIT <2>
1 N (I2) INIT <1>
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 LANG (I:I+10)
2 LANG (J:J+5)
2 LANG (4:5)

*
END-DEFINE
*
READ (1) EMPLOY-VIEW WITH NAME = 'WINTER' WHERE CITY = 'LONDON'
*

WRITE 'LANG(I.I) :' LANG (I.I) /
'LANG(1.I:I+2):' LANG (I.I:I+10) //

*
WRITE 'LANG(J.N) :' LANG (J.N) /

'LANG(J.2:4) :' LANG (J.2:4) //
*

WRITE 'LANG(4.N) :' LANG (4.N) /
'LANG(4.N:N+1):' LANG (4.N:N+1) /

END-READ
END

Programming Guide100

User-Defined Variables

Referencing the Internal Count for a Database Array (C* Notation)

It is sometimes necessary to reference a multiple-value field and/or a periodic group without
knowing how many values/occurrences exist in a given record. Adabas maintains an internal
count of the number of values of each multiple-value field and the number of occurrences of each
periodic group. This countmay be referenced by specifying C* immediately before the field name.

Note concerning databases other than Adabas:

With XML databases, the C* notation cannot be used.Tamino

With SQL databases, the C* notation cannot be used.SQL

The explicit format and length permitted to declare a C* field is either

■ integer (I) with a length of 2 bytes (I2) or 4 bytes (I4),
■ numeric (N) or packed (P) with only integer (but no precision) digits; for example (N3).

If no explicit format and length is supplied, format/length (N3) is assumed as default.

Examples:

Returns the count of the number of values for the multiple-value field LANG.C*LANG

Returns the count of the number of occurrences for the periodic group INCOME.C*INCOME

Returns the count of the number of values for the multiple-value field BONUS in periodic
group occurrence 1 (assuming that BONUS is amultiple-value fieldwithin a periodic group.)

C*BONUS(1)

Example Program Using the C* Variable:

** Example 'CNOTX01': C* Notation
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 C*INCOME
2 INCOME

3 SALARY (1:5)
3 C*BONUS (1:2)
3 BONUS (1:2,1:2)

2 C*LANG
2 LANG (1:2)

*
1 #I (N1)
END-DEFINE
*

101Programming Guide

User-Defined Variables

LIMIT 2
READ EMPL-VIEW BY CITY

/*
WRITE NOTITLE 'NAME:' NAME /

'NUMBER OF LANGUAGES SPOKEN:' C*LANG 5X
'LANGUAGE 1:' LANG (1) 5X
'LANGUAGE 2:' LANG (2)

/*
WRITE 'SALARY DATA:'
FOR #I FROM 1 TO C*INCOME

WRITE 'SALARY' #I SALARY (1.#I)
END-FOR
/*
WRITE 'THIS YEAR BONUS:' C*BONUS(1) BONUS (1,1) BONUS (1,2)

/ 'LAST YEAR BONUS:' C*BONUS(2) BONUS (2,1) BONUS (2,2)
SKIP 1

END-READ
END

Output of Program CNOTX01:

NAME: SENKO
NUMBER OF LANGUAGES SPOKEN: 1 LANGUAGE 1: ENG LANGUAGE 2:
SALARY DATA:
SALARY 1 36225
SALARY 2 29900
SALARY 3 28100
SALARY 4 26600
SALARY 5 25200
THIS YEAR BONUS: 0 0 0
LAST YEAR BONUS: 0 0 0

NAME: CANALE
NUMBER OF LANGUAGES SPOKEN: 2 LANGUAGE 1: FRE LANGUAGE 2: ENG
SALARY DATA:
SALARY 1 202285
THIS YEAR BONUS: 1 23000 0
LAST YEAR BONUS: 0 0 0

C* for Multiple-Value Fields Within Periodic Groups

For a multiple-value field within a periodic group, you can also define a C* variable with an index
range specification.

The following examples use the multiple-value field BONUS, which is part of the periodic group
INCOME. All three examples yield the same result.

Programming Guide102

User-Defined Variables

Example 1 - Reporting Mode:

** Example 'CNOTX02': C* Notation (multiple-value fields)
**
*
LIMIT 2
READ EMPLOYEES BY CITY

OBTAIN C*BONUS (1:3)
BONUS (1:3,1:3)

/*
DISPLAY NAME C*BONUS (1:3) BONUS (1:3,1:3)

LOOP
*
END

Example 2 - Structured Mode:

** Example 'CNOTX03': C* Notation (multiple-value fields)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 INCOME (1:3)

3 C*BONUS
3 BONUS (1:3)

END-DEFINE
*
LIMIT 2
READ EMPL-VIEW BY CITY

/*
DISPLAY NAME C*BONUS (1:3) BONUS (1:3,1:3)

END-READ
*
END

Example 3 - Structured Mode:

** Example 'CNOTX04': C* Notation (multiple-value fields)
**
DEFINE DATA LOCAL
1 EMPL-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 C*BONUS (1:3)
2 INCOME (1:3)

3 BONUS (1:3)
END-DEFINE
*
LIMIT 2
READ EMPL-VIEW BY CITY

103Programming Guide

User-Defined Variables

/*
DISPLAY NAME C*BONUS (*) BONUS (*,*)

END-READ
*
END

Caution: As the Adabas format buffer does not permit ranges for count fields, they are
generated as individual fields; therefore a C* index range for a large array may cause an
Adabas format buffer overflow.

Qualifying Data Structures

To identify a field when referencing it, you may qualify the field; that is, before the field name,
you specify the name of the level-1 data element in which the field is located and a period.

If a field cannot be identified uniquely by its name (for example, if the same field name is used in
multiple groups/views), you must qualify the field when you reference it.

The combination of level-1 data element and field name must be unique.

Example:

DEFINE DATA LOCAL
1 FULL-NAME

2 LAST-NAME (A20)
2 FIRST-NAME (A15)

1 OUTPUT-NAME
2 LAST-NAME (A20)
2 FIRST-NAME (A15)

END-DEFINE
...
MOVE FULL-NAME.LAST-NAME TO OUTPUT-NAME.LAST-NAME
...

The qualifier must be a level-1 data element.

Example:

DEFINE DATA LOCAL
1 GROUP1

2 SUB-GROUP
3 FIELD1 (A15)
3 FIELD2 (A15)

END-DEFINE
...
MOVE 'ABC' TO GROUP1.FIELD1
...

Programming Guide104

User-Defined Variables

Qualifying a Database Field:

If you use the same name for a user-defined variable and a database field (which you should not
do anyway), you must qualify the database field when you want to reference it

Caution: If you do not qualify the database field when you want to reference it, the user-
defined variable will be referenced instead.

Examples of User-Defined Variables

DEFINE DATA LOCAL
1 #A1 (A10) /* Alphanumeric, 10 positions.
1 #A2 (B4) /* Binary, 4 positions.
1 #A3 (P4) /* Packed numeric, 4 positions and 1 sign position.
1 #A4 (N7.2) /* Unpacked numeric,
 /* 7 positions before and 2 after decimal point.
1 #A5 (N7.) /* Invalid definition!!!
1 #A6 (P7.2) /* Packed numeric, 7 positions before and 2 after decimal point
 /* and 1 sign position.
1 #INT1 (I1) /* Integer, 1 byte.
1 #INT2 (I2) /* Integer, 2 bytes.
1 #INT3 (I3) /* Invalid definition!!!
1 #INT4 (I4) /* Integer, 4 bytes.
1 #INT5 (I5) /* Invalid definition!!!
1 #FLT4 (F4) /* Floating point, 4 bytes.
1 #FLT8 (F8) /* Floating point, 8 bytes.
1 #FLT2 (F2) /* Invalid definition!!!
1 #DATE (D) /* Date (internal format/length P6).
1 #TIME (T) /* Time (internal format/length P12).
1 #SWITCH (L) /* Logical, 1 byte (TRUE or FALSE).
 /*
END-DEFINE ↩

105Programming Guide

User-Defined Variables

106

15 Function Call

■ Calling User-Defined Functions .. 108
■ Function Result ... 109
■ Evaluation Sequence ... 109
■ Restrictions .. 109
■ Syntax Description ... 110
■ Example .. 114

107

call-name

(< [([prototype-cast] [intermediate-result-definition])] [parameter] [,[parameter]] ... >)

[array-index-expression]

Related topics:

■ Object type Function
■ User-defined Functions
■ DEFINE FUNCTION statement
■ DEFINE PROTOTYPE statement

Calling User-Defined Functions

A function call performs an invocation of a user-defined function, a special kind of a subroutine
which is implemented in a separate programming object of type function.

Usually, a function call is provided with parameters and returns a result. It may be used within
aNatural statement instead of a read-only operand. In this case, the function has to return a result,
which is then processed by the statement like a field containing the same value.

It is also possible to use a function call stand-alone in place of a Natural statement. Then the
function call need not return a result value.

There are different ways to call a function:

■ Symbolic Function Call
■ Variable Function Call

Symbolic Function Call

When the specified call-name represents the name of the function to be executed, the function
call is denoted as a symbolic function call. Be aware, the function name is defined in the DEFINE
FUNCTION statement and does not necessarily have to match the name of the module in which the
function is defined. The function interface result and parameter layouts used to resolve a function
call are either specified by a DEFINE PROTOTYPE statement with the same name or loaded automat-
ically if the cataloged version of the called function exists.

Programming Guide108

Function Call

Variable Function Call

A function can also be called in an indirect form, denoted as a variable function call. In this case,
the specified call-name is an alphanumeric variable, which contains the name of the called function
at execution time. This variable has to be referenced in a prototype definition (DEFINE PROTOTYPE
statement) in conjunction with the keyword VARIABLE. If this prototype does not contain the right
result layout or parameter layout, another prototype can be assigned with the (PT=) option.

Function Result

According to the function definition, a function call may return a single result field. This can be a
scalar value or an array field, which is processed like a temporary field in the statement where
the function call is embedded. If the result is an array, the function call must be immediately fol-
lowed by an array-index-expression addressing the required occurrences.

For example, to access the first occurrence of the array returned:

#FCT(<#A,#B>)(1)

Evaluation Sequence

If a single or multiple function calls are used within a statement, the evaluation of all functions is
performed in a separate step before the statement execution will be started. The function calls are
executed in the same order in which they appear in the statement.

Restrictions

Function calls are not allowed in the following situations:

■ in positions where the operand value is changed by the Natural statement (for example, MOVE
1 TO #FCT(<..>));

■ in a DEFINE DATA statement;
■ in a database access statement (READ, FIND, SELECT, UPDATE, STORE, etc.);
■ in an AT BREAK or IF BREAK statement;
■ as an argument of Natural system functions (AVER, SUM, *TRIM, etc.);
■ as an array index notation;
■ as a parameter of a function call.

109Programming Guide

Function Call

If a function call is used in an INPUT statement, the return value will be treated like a constant
value. This leads to an automatic assignment of attribute (AD=O) to make this field write-protected
(for output only).

Syntax Description

A function call may consist of the following syntax elements:

■ call-name
■ prototype-cast
■ intermediate-result-definition
■ Parameter(s)
■ array-index-expression

call-name

function-name

variable-name

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesUAASvariable-name

Syntax Element Description:

DescriptionSyntax Element

Function Name:function-name

function-name is the name of the function to be called. Be aware, the function name
is defined in the DEFINE FUNCTION statement and does not necessarily have to match
the name of the module in which the function is defined. If a prototype with the same
name has already been defined before, this prototype is used to pick up the function
interface; that is, the result layout definition and the required parameters.

Variable Function Name:variable-name

variable-name is the name of the variable containing the real name of the function to
be called at runtime. In order to declare the call name as a variable name, a prototype
with the same name, which is classified with keyword VARIABLE, must be defined
before.

Programming Guide110

Function Call

prototype-cast

prototype-name
PT=

prototype-variable-name

For every function call, Natural tries to get information on the function result and the calling
parameters. This leads to a search for a prototype with the same name as the call name. If such a
prototype is not available or if this prototype does not contain the right result layout or parameter
layout, another prototype can be linked to the function call with a (PT=) clause. In this case, the
referenced prototype steps in place and is used to define the function result layout and the para-
meter layout. The calling mode (symbolic or variable) declared in the referenced prototype is ig-
nored.

Syntax Element Description:

DescriptionSyntax Element

Prototype Name:prototype-name

prototype-name is the identifier of the prototype whose result and
parameters layouts are to be used.

Prototype Variable Name:prototype-variable-name

prototype-variable-name is the name of an alphanumeric field used as
function name in a function call. At execution time it has to contain the name
of the function to be called.

The name has to follow the same rules which apply for a variable reference,
including field qualification, but without array index references.

intermediate-result-definition

format-length [/array-definition]

IR=

[(array-definition)] HANDLE OF OBJECT

[/array-definition]) DYNAMIC(
A
U
B

This clause can be used to specify the format-length/array-definition of the return value for
a function call without using an explicit or implicit prototype definition, that is, it enables the ex-
plicit specification of the function result layout. If a prototype is available for this function call or
if the cataloged version of the called function exists, the result format given in the (IR=) clause is
checked for move compatibility.

Syntax Element Description:

111Programming Guide

Function Call

DescriptionSyntax Element

Format/Length Definition:format-length

The format and length of the field.

For information on format/length definition of user-defined variables, see Format
and Length of User-Defined Variables.

Array Dimension Definition:array-definition

With an array-definition, you define the lower and upper bounds of the
dimensions in an array definition.

See Array Dimension Definition in the Statements documentation.

Handle of Object:HANDLE OF OBJECT

Used in conjunction with NaturalX.

For further information, see NaturalX in the Programming Guide.

Data Format:A, B or U

Possible formats are alphanumeric, binary or Unicode for dynamic variables.

Dynamic Variable:DYNAMIC

A field may be defined as DYNAMIC.

For further information onprocessingdynamic variables, see Introduction toDynamic
Variables and Fields.

Parameter(s)

Parameters are the data values passed to the function. They can be provided as a constant value
or a variable, depending onwhat is defined in the DEFINE DATA PARAMETER section of the function
definition. The semantic and syntactic rules which apply to the function parameters are the same
as described in the parameters section of subprograms; see Parameters in the description of the
CALLNAT statement.

nX

M
O)(AD=operand

A

Operand Definition Table:

Programming Guide112

Function Call

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesOGCLTDBFIPNAGASCoperand

Syntax Element Description:

DescriptionSyntax
Element

Parameters to be Skipped:nX

With the notation nX you can specify that the next n parameters are to be skipped (for example,
1X to skip the next parameter, or 3X to skip the next three parameters); this means that for the next
n parameters no values are passed to the function.

A parameter that is to be skipped must be defined with the keyword OPTIONAL in the function's
DEFINE DATA PARAMETER statement. OPTIONALmeans that a value can - but need not - be passed
from the invoking object to such a parameter.

Attribute Definition:AD=

If operand is a variable, you can mark it in one of the following ways:

Non-modifiable:AD=O

See session parameter AD=O.

Note: Internally, AD=O is processed in the same way as
BY VALUE (see the section
parameter-data-definition in the description of
the DEFINE DATA statement).

Modifiable:AD=M

See session parameter AD=M.

This is the default setting.

Input only:AD=A

See session parameter AD=A.

Note: If operand is a constant, the attribute definition AD cannot be explicitly specified. For
constants, AD=O always applies.

113Programming Guide

Function Call

array-index-expression

If the result returned by the function call is an array, an index notationmust be provided to address
the demanded array occurrences.

For details, refer to Index Notation in User-Defined Variables in the Programming Guide.

Example

The example FUNCEX01 uses the functions F#ADDITION, F#CHAR, F#EVEN and F#TEXT, which are
defined in the sample functions FUNCEX02, FUNCEX03, FUNCEX04 and FUNCEX05.

** Example 'FUNCEX01': Function call (Program)
**
DEFINE DATA LOCAL

1 #NUM (I2) INIT <5>
1 #A (I2) INIT <1>
1 #B (I2) INIT <2>
1 #C (I2) INIT <3>
1 #CHAR (A1) INIT <'A'>

END-DEFINE
*
IF #NUM = F#ADDITION(<#A,#B,#C>) /* Function with three parameters.

WRITE 'Sum of #A,#B,#C' #NUM
ELSE

IF #NUM = F#ADDITION(<1X,#B,#C>) /* Function with optional parameters.
WRITE 'Sum of #B,#C' #NUM

END-IF
END-IF
*
DECIDE ON FIRST #CHAR

VALUE F#CHAR (<>)(1) /* Function with result array.
WRITE 'Character A found'

VALUE F#CHAR (<>)(2)
WRITE 'Character B found'

NONE
IGNORE

END-DECIDE
*
IF F#EVEN(<#B>) /* Function with logical result value.

WRITE #B 'is an even number'
END-IF
*
F#TEXT(<'Hello', '*'>) /* Function used as a statement.
*
WRITE F#TEXT(<(IR=A12) 'Good'>) /* Function with intermediate result.
*
END

Programming Guide114

Function Call

The function F#ADDITION is defined in the sample function FUNCEX02 in library SYSEXPG.

** Example 'FUNCEX02': Function call (Function)
**
DEFINE FUNCTION F#ADDITION

RETURNS (I2)
DEFINE DATA PARAMETER

1 #PARM1 (I2) OPTIONAL
1 #PARM2 (I2) OPTIONAL
1 #PARM3 (I2) OPTIONAL

END-DEFINE
 /*
 RESET F#ADDITION
 IF #PARM1 SPECIFIED
 F#ADDITION := F#ADDITION + #PARM1 ↩

 END-IF
 IF #PARM2 SPECIFIED
 F#ADDITION := F#ADDITION + #PARM2 ↩

 END-IF
 IF #PARM3 SPECIFIED
 F#ADDITION := F#ADDITION + #PARM3 ↩

 END-IF
 /*
END-FUNCTION
*
END ↩

The function F#CHAR is defined in the example function FUNCEX03 in library SYSEXPG.

** Example 'FUNCEX03': Function call (Function)
**
DEFINE FUNCTION F#CHAR

RETURNS (A1/1:2)
/*
F#CHAR(1) := 'A'
F#CHAR(2) := 'B'
/*

END-FUNCTION
*
END ↩

The function F#EVEN is defined in the example function FUNCEX04 in library SYSEXPG.

115Programming Guide

Function Call

** Example 'FUNCEX04': Function call (Function)
**
DEFINE FUNCTION F#EVEN

RETURNS (L)
DEFINE DATA
PARAMETER

1 #NUM (N4) BY VALUE
LOCAL

1 #REST (I2)
END-DEFINE
/*
DIVIDE 2 INTO #NUM REMAINDER #REST
/*
IF #REST = 0

F#EVEN := TRUE
ELSE

F#EVEN := FALSE
END-IF
/*

END-FUNCTION
*
END ↩

The function F#TEXT is defined in the sample function FUNCEX05 in library SYSEXPG.

** Example 'FUNCEX05': Function call (Function)
**
DEFINE FUNCTION F#TEXT

RETURNS (A20) BY VALUE
DEFINE DATA
PARAMETER

1 #TEXT1 (A5) BY VALUE
1 #TEXT2 (A1) BY VALUE OPTIONAL

LOCAL
1 #FRAME (A3)

END-DEFINE
/*
IF #TEXT2 SPECIFIED

MOVE ALL #TEXT2 TO #FRAME
/*
COMPRESS #FRAME #TEXT1 'world' #FRAME INTO F#TEXT
/*
WRITE F#TEXT

ELSE
COMPRESS #TEXT1 'morning' INTO F#TEXT
/*

END-IF
/*

END-FUNCTION
*
END ↩

Programming Guide116

Function Call

Output of Program FUNCEX01

Sum of #B,#C 5
Character A found

2 is an even number
*** Hello world ***
Good morning

117Programming Guide

Function Call

118

16 Introduction to Dynamic Variables and Fields

■ Purpose of Dynamic Variables .. 120
■ Definition of Dynamic Variables .. 120
■ Value Space Currently Used for a Dynamic Variable ... 121
■ Size Limitation Check ... 121
■ Allocating/Freeing Memory Space for a Dynamic Variable .. 122

119

Purpose of Dynamic Variables

In that the maximum size of large data structures (for example, pictures, sounds, videos) may not
exactly be known at application development time, Natural additionally provides for the definition
of alphanumeric and binary variables with the attribute DYNAMIC. The value space of variables
which are defined with this attribute will be extended dynamically at execution time when it be-
comes necessary (for example, during an assignment operation: #picture1 := #picture2). This
means that large binary and alphanumeric data structures may be processed in Natural without
the need to define a limit at development time. The execution-time allocation of dynamic variables
is of course subject to available memory restrictions. If the allocation of dynamic variables results
in an insufficent memory condition being returned by the underlying operating system, the ON
ERROR statement can be used to intercept this error condition; otherwise, an error message will be
returned by Natural.

The Natural system variable *LENGTH can be used obtain the length (in terms of code units) of the
value space which is currently used for a given dynamic variable. For A and B formats, the size
of one code unit is 1 byte. For U format, the size of one code unit is 2 bytes (UTF-16). Natural
automatically sets *LENGTH to the length of the source operand during assignments in which the
dynamic variable is involved. *LENGTH(field) therefore returns the length (in terms of code units)
currently used for a dynamic Natural field or variable.

If the dynamic variable space is no longer needed, the REDUCE or RESIZE statements can be used
to reduce the space used for the dynamic variable to zero (or any other desired size). If the upper
limit of memory usage is known for a specific dynamic variable, the EXPAND statement can be used
to set the space used for the dynamic variable to this specific size.

If a dynamic variable is to be initialized, the MOVE ALL UNTIL statement should be used for this
purpose.

Definition of Dynamic Variables

Because the actual size of large alphanumeric and binary data structuresmay not be exactly known
at application development time, the definition of dynamic variables of format A, B or U can be
used to manage these structures. The dynamic allocation and extension (reallocation) of large
variables is transparent to the application programming logic. Dynamic variables are defined
without any length.Memorywill be allocated either implicitly at execution time,when the dynamic
variable is used as a target operand, or explicitly with an EXPAND or RESIZE statement.

Dynamic variables can only be defined in a DEFINE DATA statement using the following syntax:

Programming Guide120

Introduction to Dynamic Variables and Fields

level variable-name (A) DYNAMIC

level variable-name (B) DYNAMIC

level variable-name (U) DYNAMIC

Restrictions:

The following restrictions apply to a dynamic variable:

■ A redefinition of a dynamic variable is not allowed.
■ A dynamic variable may not be contained in a REDEFINE clause.

Value Space Currently Used for a Dynamic Variable

The length (in terms of code units) of the currently used value space of a dynamic variable can be
obtained from the systemvariable *LENGTH. *LENGTH is set to the (used) length of the source operand
during assignments automatically.

Caution: Due to performance considerations, the storage area that is allocated to hold the
value of the dynamic variable may be larger than the value of *LENGTH (used size available
to the programmer). You should not rely on the storage that is allocated beyond the used
length as indicated by *LENGTH: it may be released at any time, even if the respective dynamic
variable is not accessed. It is not possible for theNatural programmer to obtain information
about the currently allocated size. This is an internal value.

*LENGTH(field) returns the used length (in terms of code units) of a dynamic Natural field or
variable. For A and B formats, the size of one code unit is 1 byte. For U format, the size of one code
unit is 2 bytes (UTF-16). *LENGTHmay be used only to get the currently used length for dynamic
variables.

Size Limitation Check

Profile Parameter USIZE

For dynamic variables, a size limitation check at compile time is not possible because no length is
defined for dynamic variables. The size of user buffer area (USIZE) indicates the size of the user
buffer in virtual memory. The user buffer contains all data dynamically allocated by Natural. If a
dynamic variable is allocated or extended at execution time and the USIZE limitation is exceeded,
an error message will be returned.

121Programming Guide

Introduction to Dynamic Variables and Fields

Allocating/Freeing Memory Space for a Dynamic Variable

The statements EXPAND, REDUCE and RESIZE are used to explicitly allocate and free memory space
for a dynamic variable.

Syntax:

EXPAND [SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2

REDUCE [SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2

RESIZE [SIZE OF] DYNAMIC [VARIABLE] operand1 TO operand2

- where operand1 is a dynamic variable and operand2 is a non-negative numeric size value.

EXPAND

Function

The EXPAND statement is used to increase the allocated length of the dynamic variable (operand1)
to the specified length (operand2).

Changing the Specified Size

The length currently used (as indicated by the Natural system variable *LENGTH, see above) for
the dynamic variable is not modified.

If the specified length (operand2) is less than the allocated length of the dynamic variable, the
statement will be ignored.

REDUCE

Function

The REDUCE statement is used to reduce the allocated length of the dynamic variable (operand1)
to the specified length (operand2).

The storage allocated for the dynamic variable (operand1) beyond the specified length (operand2)
may be released at any time, when the statement is executed or at a later time.

Changing the Specified Length

If the length currently used (as indicated by the Natural system variable *LENGTH, see above) for
the dynamic variable is greater than the specified length (operand2), the system variable *LENGTH
of this dynamic variable is set to the specified length. The content of the variable is truncated, but
not modified.

Programming Guide122

Introduction to Dynamic Variables and Fields

If the given length is larger than the currently allocated storage of the dynamic variable, the
statement will be ignored.

RESIZE

Function

The RESIZE statement adjusts the currently allocated length of the dynamic variable (operand1)
to the specified length (operand2).

Changing the Specified Length

If the specified length is smaller then the used length (as indicated by the Natural system variable
*LENGTH, see above) of the dynamic variable, the used length is reduced accordingly.

If the specified length is larger than the currently allocated length of the dynamic variable, the al-
located length of the dynamic variable is increased. The currently used length (as indicated by the
system variable *LENGTH) of the dynamic variable is not affected and remains unchanged.

If the specified length is the same as the currently allocated length of the dynamic variable, the
execution of the RESIZE statement has no effect.

123Programming Guide

Introduction to Dynamic Variables and Fields

124

17 Using Dynamic and Large Variables

■ General Remarks .. 126
■ Assignments with Dynamic Variables ... 127
■ Initialization of Dynamic Variables ... 129
■ String Manipulation with Dynamic Alphanumeric Variables ... 129
■ Logical Condition Criterion (LCC) with Dynamic Variables .. 130
■ AT/IF-BREAK of Dynamic Control Fields .. 132
■ Parameter Transfer with Dynamic Variables .. 132
■ Work File Access with Large and Dynamic Variables ... 135
■ DDM Generation and Editing for Varying Length Columns .. 136
■ Accessing Large Database Objects ... 138
■ Performance Aspects with Dynamic Variables ... 139
■ Outputting Dynamic Variables .. 140
■ Dynamic X-Arrays .. 141

125

General Remarks

Generally, the following rules apply:

■ A dynamic alphanumeric field may be used wherever an alphanumeric field is allowed.
■ A dynamic binary field may be used wherever a binary field is allowed.
■ A dynamic Unicode field may be used wherever a Unicode field is allowed.

Exception:

Dynamic variables are not allowed within the SORT statement. To use dynamic variables in a
DISPLAY, WRITE, PRINT, REINPUT or INPUT statement, you must use either the session parameter AL
or EM to define the length of the variable.

The used length (as indicated by the Natural system variable *LENGTH, see Value Space Currently
Used for a Dynamic Variable) and the size of the allocated storage of dynamic variables are equal
to zero until the variable is accessed as a target operand for the first time. Due to assignments or
othermanipulation operations, dynamic variablesmay be firstly allocated or extended (reallocated)
to the exact size of the source operand.

The size of a dynamic variablemay be extended if it is used as amodifiable operand (target operand)
in the following statements:

operand1 (destination operand in an assignment).ASSIGN

See Parameter Transfer with Dynamic Variables (except if AD=O, or if BY VALUE exists in
the corresponding parameter data area).

CALLNAT

operand2, see Processing.COMPRESS

operand1 in the DELETE REPLACE clause.EXAMINE

operand2 (destination operand), see Function.MOVE

(except if AD=O, or if BY VALUE exists in the corresponding parameter data area).PERFORM

operand1 and operand2, see Handling of Large and Dynamic Variables.READ WORK FILE

operand4.SEPARATE

parameter in the INTO Clause.SELECT (SQL)

operand3 (except if AD=O).SEND METHOD

Currently, there is the following limit concerning the usage of large variables:

Programming Guide126

Using Dynamic and Large Variables

Parameter size less than 64 KB per parameter (no limit for CALLwith INTERFACE4 option).CALL

In the following sections, the use of dynamic variables is discussed in more detail on the basis of
examples.

Assignments with Dynamic Variables

Generally, an assignment is done in the current used length (as indicated by the Natural system
variable *LENGTH) of the source operand. If the destination operand is a dynamic variable, its
current allocated size is possibly extended in order tomove the source operandwithout truncation.

Example:

#MYDYNTEXT1 := OPERAND
MOVE OPERAND TO #MYDYNTEXT1
/* #MYDYNTEXT1 IS AUTOMATICALLY EXTENDED UNTIL THE SOURCE OPERAND CAN BE COPIED ↩

MOVE ALL, MOVE ALL UNTILwith dynamic target operands are defined as follows:

■ MOVE ALLmoves the source operand repeatedly to the target operand until the used length
(*LENGTH) of the target operand is reached. The system variable *LENGTH is not modified. If
*LENGTH is zero, the statement will be ignored.

■ MOVE ALL operand1 TO operand2 UNTIL operand3moves operand1 repeatedly to operand2
until the length specified in operand3 is reached. If operand3 is greater than *LENGTH(operand2),
operand2 is extended and *LENGTH(operand2) is set to operand3. If operand3 is less than
*LENGTH(operand2), the used length is reduced to operand3. If operand3 equals
*LENGTH(operand2), the behavior is equivalent to MOVE ALL.

Example:

#MYDYNTEXT1 := 'ABCDEFGHIJKLMNO' /* *LENGTH(#MYDYNTEXT1) = 15
MOVE ALL 'AB' TO #MYDYNTEXT1 /* CONTENT OF #MYDYNTEXT1 = ↩
'ABABABABABABABA';
 /* *LENGTH IS STILL 15
MOVE ALL 'CD' TO #MYDYNTEXT1 UNTIL 6 /* CONTENT OF #MYDYNTEXT1 = 'CDCDCD';
 /* *LENGTH = 6
MOVE ALL 'EF' TO #MYDYNTEXT1 UNTIL 10 /* CONTENT OF #MYDYNTEXT1 = 'EFEFEFEFEF';
 /* *LENGTH = 10

MOVE JUSTIFIED is rejected at compile time if the target operand is a dynamic variable.

MOVE SUBSTR and MOVE TO SUBSTR are allowed. MOVE SUBSTRwill lead to a runtime error if a sub-
string behind the used length of a dynamic variable (*LENGTH) is referenced. MOVE TO SUBSTRwill
lead to a runtime error if a sub-string position behind *LENGTH + 1 is referenced, because this
would lead to an undefined gap in the content of the dynamic variable. If the target operand

127Programming Guide

Using Dynamic and Large Variables

should be extended by MOVE TO SUBSTR (for example if the second operand is set to *LENGTH+1),
the third operand is mandatory.

Valid syntax:

#OP2 := *LENGTH(#MYDYNTEXT1)
MOVE SUBSTR (#MYDYNTEXT1, #OP2) TO OPERAND /* MOVE LAST CHARACTER ↩
TO OPERAND
#OP2 := *LENGTH(#MYDYNTEXT1) + 1
MOVE OPERAND TO SUBSTR(#MYDYNTEXT1, #OP2, #lEN_OPERAND) /* CONCATENATE OPERAND ↩
TO #MYDYNTEXT1 ↩

Invalid syntax:

#OP2 := *LENGTH(#MYDYNTEXT1) + 1
MOVE SUBSTR (#MYDYNTEXT1, #OP2, 10) TO OPERAND /* LEADS TO RUNTIME ERROR; ↩
UNDEFINED SUB-STRING
#OP2 := *LENGTH(#MYDYNTEXT1 + 10)
MOVE OPERAND TO SUBSTR(#MYDYNTEXT1, #OP2, #EN_OPERAND) /* LEADS TO RUNTIME ERROR; ↩
UNDEFINED GAP
#OP2 := *LENGTH(#MYDYNTEXT1) + 1
MOVE OPERAND TO SUBSTR(#MYDYNTEXT1, #OP2) /* LEADS TO RUNTIME ERROR; ↩
UNDEFINED LENGTH

Assignment Compatibility

Example:

#MYDYNTEXT1 := #MYSTATICVAR1
#MYSTATICVAR1 := #MYDYNTEXT2 ↩

If the source operand is a static variable, the used length of the dynamic destination operand
(*LENGTH(#MYDYNTEXT1)) is set to the format length of the static variable and the source value is
copied in this length including trailing blanks (alphanumeric and Unicode fields) or binary zeros
(for binary fields).

If the destination operand is static and the source operand is dynamic, the dynamic variable is
copied in its currently used length. If this length is less than the format length of the static variable,
the remainder is filled with blanks (for alphanumeric and Unicode fields) or binary zeros (for
binary fields). Otherwise, the value will be truncated. If the currently used length of the dynamic
variable is 0, the static target operand is filled with blanks (for alphanumeric and Unicode fields)
or binary zeros (for binary fields).

Programming Guide128

Using Dynamic and Large Variables

Initialization of Dynamic Variables

Dynamic variables can be initialized with blanks (alphanumeric and Unicode fields) or zeros
(binary fields) up to the currently used length (= *LENGTH) using the RESET statement. The system
variable *LENGTH is not modified.

Example:

DEFINE DATA LOCAL
1 #MYDYNTEXT1 (A) DYNAMIC
END-DEFINE
#MYDYNTEXT1 := 'SHORT TEXT'
WRITE *LENGTH(#MYDYNTEXT1) /* USED LENGTH = 10
RESET #MYDYNTEXT1 /* USED LENGTH = 10, VALUE = 10 BLANKS ↩

To initialize a dynamic variable with a specified value in a specified size, the MOVE ALL UNTIL
statement may be used.

Example:

MOVE ALL 'Y' TO #MYDYNTEXT1 UNTIL 15 /* #MYDYNTEXT1 CONTAINS 15 'Y'S, USED ↩
LENGTH = 15 ↩

String Manipulation with Dynamic Alphanumeric Variables

If a modifiable operand is a dynamic variable, its current allocated size is possibly extended in
order to perform the operation without truncation or an error message. This is valid for the con-
catenation (COMPRESS) and separation of dynamic alphanumeric variables (SEPARATE).

Example:

** Example 'DYNAMX01': Dynamic variables (with COMPRESS and SEPARATE)
**
DEFINE DATA LOCAL
1 #MYDYNTEXT1 (A) DYNAMIC
1 #TEXT (A20)
1 #DYN1 (A) DYNAMIC
1 #DYN2 (A) DYNAMIC
1 #DYN3 (A) DYNAMIC
END-DEFINE
*
MOVE ' HELLO WORLD ' TO #MYDYNTEXT1
WRITE #MYDYNTEXT1 (AL=25) 'with length' *LENGTH (#MYDYNTEXT1)
/* dynamic variable with leading and trailing blanks
*

129Programming Guide

Using Dynamic and Large Variables

MOVE ' HELLO WORLD ' TO #TEXT
*
MOVE #TEXT TO #MYDYNTEXT1
WRITE #MYDYNTEXT1 (AL=25) 'with length' *LENGTH (#MYDYNTEXT1)
/* dynamic variable with whole variable length of #TEXT
*
COMPRESS #TEXT INTO #MYDYNTEXT1
WRITE #MYDYNTEXT1 (AL=25) 'with length' *LENGTH (#MYDYNTEXT1)
/* dynamic variable with leading blanks of #TEXT
*
*
#MYDYNTEXT1 := 'HERE COMES THE SUN'
SEPARATE #MYDYNTEXT1 INTO #DYN1 #DYN2 #DYN3 IGNORE
*
WRITE / #MYDYNTEXT1 (AL=25) 'with length' *LENGTH (#MYDYNTEXT1)
WRITE #DYN1 (AL=25) 'with length' *LENGTH (#DYN1)
WRITE #DYN2 (AL=25) 'with length' *LENGTH (#DYN2)
WRITE #DYN3 (AL=25) 'with length' *LENGTH (#DYN3)
/* #DYN1, #DYN2, #DYN3 are automatically extended or reduced
*
EXAMINE #MYDYNTEXT1 FOR 'SUN' REPLACE 'MOON'
WRITE / #MYDYNTEXT1 (AL=25) 'with length' *LENGTH (#MYDYNTEXT1)
/* #MYDYNTEXT1 is automatically extended or reduced
*
END

Note: In case of non-dynamic variables, an error message may be returned.

Logical Condition Criterion (LCC) with Dynamic Variables

Generally, a read-only operation (such as a comparison) with a dynamic variable is done with its
currently used length. Dynamic variables are processed like static variables if they are used in a
read-only (non-modifiable) context.

Example:

IF #MYDYNTEXT1 = #MYDYNTEXT2 OR #MYDYNTEXT1 = "**" THEN ...
IF #MYDYNTEXT1 < #MYDYNTEXT2 OR #MYDYNTEXT1 < "**" THEN ...
IF #MYDYNTEXT1 > #MYDYNTEXT2 OR #MYDYNTEXT1 > "**" THEN ...

Trailing blanks for alphanumeric andUnicode variables or leading binary zeros for binary variables
are processed in the same way for static and dynamic variables. For example, alphanumeric vari-
ables containing the values AA and AA followed by a blank will be considered being equal, and
binary variables containing the values H’0000031’ and H’3031’will be considered being equal.
If a comparison result should only be TRUE in case of an exact copy, the used lengths of the dynamic
variables have to be compared in addition. If one variable is an exact copy of the other, their used
lengths are also equal.

Programming Guide130

Using Dynamic and Large Variables

Example:

#MYDYNTEXT1 := 'HELLO' /* USED LENGTH IS 5
#MYDYNTEXT2 := 'HELLO ' /* USED LENGTH IS 10
IF #MYDYNTEXT1 = #MYDYNTEXT2 THEN ... /* TRUE
IF #MYDYNTEXT1 = #MYDYNTEXT2 AND

*LENGTH(#MYDYNTEXT1) = *LENGTH(#MYDYNTEXT2) THEN ... /* FALSE

Two dynamic variables are compared position by position (from left to right for alphanumeric
variables, and right to left for binary variables) up to the minimum of their used lengths. The first
position where the variables are not equal determines if the first or the second variable is greater
than, less than or equal to the other. The variables are equal if they are equal up to the minimum
of their used lengths and the remainder of the longer variable contains only blanks for alphanu-
meric dynamic variables or binary zeros for binary dynamic variables. To compare two Unicode
dynamic variables, trailing blanks are removed fromboth values before the ICU collation algorithm
is used to compare the two resulting values. See also Logical Condition Criteria in the Unicode and
Code Page Support documentation.

Example:

#MYDYNTEXT1 := 'HELLO1' /* USED LENGTH IS 6
#MYDYNTEXT2 := 'HELLO2' /* USED LENGTH IS 10
IF #MYDYNTEXT1 < #MYDYNTEXT2 THEN ... /* TRUE
#MYDYNTEXT2 := 'HALLO'
IF #MYDYNTEXT1 > #MYDYNTEXT2 THEN ... /* TRUE

Comparison Compatibility

Comparisons between dynamic and static variables are equivalent to comparisons between dy-
namic variables. The format length of the static variable is interpreted as its used length.

Example:

#MYSTATTEXT1 := 'HELLO' /* FORMAT LENGTH OF MYSTATTEXT1 IS ↩
A20
#MYDYNTEXT1 := 'HELLO' /* USED LENGTH IS 5
IF #MYSTATTEXT1 = #MYDYNTEXT1 THEN ... /* TRUE
IF #MYSTATTEXT1 > #MYDYNTEXT1 THEN ... /* FALSE

131Programming Guide

Using Dynamic and Large Variables

AT/IF-BREAK of Dynamic Control Fields

The comparison of the break control fieldwith its old value is performed position by position from
left to right. If the old and the new value of the dynamic variable are of different length, then for
comparison, the value with shorter length is padded to the right (with blanks for alphanumeric
and Unicode dynamic values or binary zeros for binary values).

In case of an alphanumeric or Unicode break control field, trailing blanks are not significant for
the comparison, that is, trailing blanks do not mean a change of the value and no break occurs.

In case of a binary break control field, trailing binary zeros are not significant for the comparison,
that is, trailing binary zeros do not mean a change of the value and no break occurs.

Parameter Transfer with Dynamic Variables

Dynamic variables may be passed as parameters to a called program object (CALLNAT, PERFORM).
A call-by-reference is possible because the value space of a dynamic variable is contiguous. A call-
by-value causes an assignment with the variable definition of the caller as the source operand and
the parameter definition as the destination operand. A call-by-value result causes in addition the
movement in the opposite direction.

For a call-by-reference, both definitionsmust be DYNAMIC. If only one of them is DYNAMIC, a runtime
error is raised. In the case of a call-by-value (result), all combinations are possible. The following
table illustrates the valid combinations:

Call By Reference

ParameterCaller
DynamicStatic

NoYesStatic

YesNoDynamic

The formats of dynamic variables A or B must match.

Programming Guide132

Using Dynamic and Large Variables

Call by Value (Result)

ParameterCaller
DynamicStatic

YesYesStatic

YesYesDynamic

Note: In the case of static/dynamic or dynamic/static definitions, a value truncation may
occur according to the data transfer rules of the appropriate assignments.

Example 1:

** Example 'DYNAMX02': Dynamic variables (as parameters)
**
DEFINE DATA LOCAL
1 #MYTEXT (A) DYNAMIC
END-DEFINE
*
#MYTEXT := '123456' /* extended to 6 bytes, *LENGTH(#MYTEXT) = 6
*
CALLNAT 'DYNAMX03' USING #MYTEXT
*
WRITE *LENGTH(#MYTEXT) /* *LENGTH(#MYTEXT) = 8
*
END ↩

Subprogram DYNAMX03:

** Example 'DYNAMX03': Dynamic variables (as parameters)
**
DEFINE DATA PARAMETER
1 #MYPARM (A) DYNAMIC BY VALUE RESULT
END-DEFINE
*
WRITE *LENGTH(#MYPARM) /* *LENGTH(#MYPARM) = 6
#MYPARM := '1234567' /* *LENGTH(#MYPARM) = 7
#MYPARM := '12345678' /* *LENGTH(#MYPARM) = 8
EXPAND DYNAMIC VARIABLE #MYPARM TO 10 /* 10 bytes are allocated
*
WRITE *LENGTH(#MYPARM) /* *LENGTH(#MYPARM) = 8
*
/* content of #MYPARM is moved back to #MYTEXT
/* used length of #MYTEXT = 8
*
END ↩

133Programming Guide

Using Dynamic and Large Variables

Example 2:

** Example 'DYNAMX04': Dynamic variables (as parameters)
**
DEFINE DATA LOCAL
1 #MYTEXT (A) DYNAMIC
END-DEFINE
*
#MYTEXT := '123456' /* extended to 6 bytes, *LENGTH(#MYTEXT) = 6
*
CALLNAT 'DYNAMX05' USING #MYTEXT
*
WRITE *LENGTH(#MYTEXT) /* *LENGTH(#MYTEXT) = 8
 /* at least 10 bytes are
 /* allocated (extended in DYNAMX05)
*
END ↩

Subprogram DYNAMX05:

** Example 'DYNAMX05': Dynamic variables (as parameters)
**
DEFINE DATA PARAMETER
1 #MYPARM (A) DYNAMIC
END-DEFINE
*
WRITE *LENGTH(#MYPARM) /* *LENGTH(#MYPARM) = 6
#MYPARM := '1234567' /* *LENGTH(#MYPARM) = 7
#MYPARM := '12345678' /* *LENGTH(#MYPARM) = 8
EXPAND DYNAMIC VARIABLE #MYPARM TO 10 /* 10 bytes are allocated
*
WRITE *LENGTH(#MYPARM) /* *LENGTH(#MYPARM) = 8
*
END ↩

CALL 3GL Program

Dynamic and large variables can sensibly be used with the CALL statement when the option
INTERFACE4 is used. Using this option leads to an interface to the 3GL program with a different
parameter structure.

This usage requires someminor changes in the 3GLprogram, but provides the following significant
benefits as compared with the older FINFO structure.

■ No limitation on the number of passed parameters (former limit 40).
■ No limitation on the parameter's data size (former limit 64 KB per parameter).

Programming Guide134

Using Dynamic and Large Variables

■ Full parameter information can be passed to the 3GL program including array information.
Exported functions are providedwhich allow secure access to the parameter data (formerly you
had to take care not to overwrite memory inside of Natural)

For further information on the FINFO structure, see the CALL INTERFACE4 statement.

Before calling a 3GLprogramwith dynamic parameters, it is important to ensure that the necessary
buffer size is allocated. This can be done explicitly with the EXPAND statement.

If an initialized buffer is required, the dynamic variable can be set to the initial value and to the
necessary size by using the MOVE ALL UNTIL statement. Natural provides a set of functions that
allow the 3GL program to obtain information about the dynamic parameter and to modify the
length when parameter data is passed back.

Example:

MOVE ALL ' ' TO #MYDYNTEXT1 UNTIL 10000
/* a buffer of length 10000 is allocated
/* #MYDYNTEXT1 is initialized with blanks
/* and *LENGTH(#MYDYNTEXT1) = 10000

CALL INTERFACE4 'MYPROG' USING #MYDYNTEXT1
WRITE *LENGTH(#MYDYNTEXT1)

/* *LENGTH(#MYDYNTEXT1) may have changed in the 3GL program

For a more detailed description, refer to the CALL statement in the Statements documentation.

Work File Access with Large and Dynamic Variables

The following topics are covered below:

■ PORTABLE and UNFORMATTED
■ ASCII, ASCII-COMPRESSED and SAG
■ Special Conditions for TRANSFER and ENTIRE CONNECTION

PORTABLE and UNFORMATTED

Large and dynamic variables can be written into work files or read from work files using the two
work file types PORTABLE and UNFORMATTED. For these types, there is no size restriction for dynamic
variables. However, large variablesmay not exceed amaximumfield/record length of 32766 bytes.

For the work file type PORTABLE, the field information is stored within the work file. The dynamic
variables are resized during READ if the field size in the record is different from the current size.

The work file type UNFORMATTED can be used, for example, to read a video from a database and
store it in a file directly playable by other utilities. In the WRITE WORK statement, the fields are
written to the file with their byte length. All data types (DYNAMIC or not) are treated the same. No

135Programming Guide

Using Dynamic and Large Variables

structural information is inserted.Note thatNatural uses a bufferingmechanism, so you can expect
the data to be completely written only after a CLOSE WORK. This is especially important if the file
is to be processed with another utility while Natural is running.

With the READ WORK statement, fields of fixed length are read with their whole length. If the end-
of-file is reached, the remainder of the current field is filled with blanks. The following fields are
unchanged. In the case of DYNAMIC data types, all the remainder of the file is read unless it exceeds
1073741824 bytes. If the end of file is reached, the remaining fields (variables) are kept unchanged
(normal Natural behavior).

ASCII, ASCII-COMPRESSED and SAG

Theworkfile typesASCII,ASCII-COMPRESSEDandSAG (binary) cannot handledynamic variables
and will produce an error. Large variables for these work file types pose no problem unless the
maximum field/record length of 32766 bytes is exceeded.

Special Conditions for TRANSFER and ENTIRE CONNECTION

In conjunctionwith the READ WORK FILE statement, thework file type TRANSFER can handle dynamic
variables. There is no size limit for dynamic variables. The work file type ENTIRE CONNECTION
cannot handle dynamic variables. They can both, however, handle large variableswith amaximum
field/record length of 1073741824 bytes.

In conjunction with the WRITE WORK FILE statement, the work file type TRANSFER can handle dy-
namic variables with a maximum field/record length of 32766 bytes. The work file type ENTIRE
CONNECTION cannot handle dynamic variables. They can both, however, handle large variables
with a maximum field/record length of 1073741824 bytes.

DDM Generation and Editing for Varying Length Columns

Depending on the data types, the related database format A or format B is generated. For the
databases' data type VARCHAR the Natural length of the column is set to the maximum length of
the data type as defined in theDBMS. If a data type is very large, the keyword DYNAMIC is generated
at the length field position.

For all varying length columns, an LINDICATOR field L@<column-name>will be generated. For the
databases' data type VARCHAR, an LINDICATOR field with format/length I2 will be generated. For
large data types (see list below) the format/length will be I4.

In the context of database access, the LINDICATOR handling offers the chance to get the length of
the field to be read or to set the length of the field to be written independent of a defined buffer
length (or independent of *LENGTH). Usually, after a retrieval function, *LENGTHwill be set to the
corresponding length indicator value.

Programming Guide136

Using Dynamic and Large Variables

Example DDM:

 T L Name F Leng S D Remark
 :
 1 L@PICTURE1 I 4 /* ↩
length indicator
 1 PICTURE1 B DYNAMIC IMAGE
 1 N@PICTURE1 I 2 /* NULL ↩
indicator
 1 L@TEXT1 I 4 /* ↩
length indicator
 1 TEXT1 A DYNAMIC TEXT
 1 N@TEXT1 I 2 /* NULL ↩
indicator
 1 L@DESCRIPTION I 2 /* ↩
length indicator
 1 DESCRIPTION A 1000 VARCHAR(1000)
 :
 :
  ~~~~~~~~~~~~~~~~~~~~~~Extended Attributes~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/* ↩
concerning PICTURE1
   Header               :    ---
   Edit Mask            :    ---
   Remarks              :   IMAGE

The generated formats are varying length formats. The Natural programmer has the chance to
change the definition from DYNAMIC to a fixed length definition (extended field editing) and can
change, for example, the corresponding DDMfield definition for VARCHAR data types to amultiple
value field (old generation).

Example:

  T  L  Name                  F   Leng          S   D   Remark
     :
     1  L@PICTURE1            I   4                                         /* ↩
length indicator
     1  PICTURE1              B   1000000000            IMAGE
     1  N@PICTURE1            I   2                                         /* NULL ↩
indicator
     1  L@TEXT1               I   4                                         /* ↩
length indicator
     1  TEXT1                 A   5000                  TEXT
     1  N@TEXT1               I   2                                         /* NULL ↩
indicator
     1  L@DESCRIPTION         I   2                                         /* ↩
length indicator
  M  1  DESCRIPTION           A   100                   VARCHAR(1000) 
       :
       :
  ~~~~~~~~~~~~~~~~~~~~Extended Attributes~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/* ↩
concerning PICTURE1

137Programming Guide

Using Dynamic and Large Variables

 Header : ---
 Edit Mask : ---
 Remarks : IMAGE

Accessing Large Database Objects

To access a database with large objects (CLOBs or BLOBs), a DDMwith corresponding large al-
phanumeric, Unicode or binary fields is required. If a fixed length is defined and if the database
large object does not fit into this field, the large object is truncated. If the programmer does not
know the definitive length of the database object, it will make sense to work with dynamic fields.
As many reallocations as necessary are done to hold the object. No truncation is performed.

Example Program:

DEFINE DATA LOCAL

1 person VIEW OF xyz-person
 2 last_name
 2 first_name_1
 2 L@PICTURE1 /* I4 length indicator for PICTURE1
 2 PICTURE1 /* defined as dynamic in the DDM
 2 TEXT1 /* defined as non-dynamic in the DDM

END-DEFINE

SELECT * INTO VIEW person FROM xyz-person /* PICTURE1 will be ↩
read completely
 WHERE last_name = 'SMITH' /* TEXT1 will be ↩
truncated to fixed length 5000

 WRITE 'length of PICTURE1: ' L@PICTURE1 /* the L-INDICATOR will ↩
contain the length
 /* of PICTURE1 (= ↩
*LENGTH(PICTURE1)
 /* do something with PICTURE1 and TEXT1

 L@PICTURE1 := 100000
 INSERT INTO xyz-person (*) VALUES (VIEW person) /* only the first 100000 ↩
Bytes of PICTURE1
 /* are inserted
END-SELECT ↩

If a format-length definition is omitted in the view, this is taken from theDDM. In reportingmode,
it is now possible to specify any length, if the corresponding DDMfield is defined as DYNAMIC. The
dynamic field will be mapped to a field with a fixed buffer length. The other way round is not
possible.

Programming Guide138

Using Dynamic and Large Variables

VIEW format / length definitionDDM format/length definition

valid-(An)

valid(An)

only valid in reporting mode(Am)

invalid(A) DYNAMIC

valid-(A) DYNAMIC

valid(A) DYNAMIC

only valid in reporting mode(An)

only valid in reporting mode(Am / i : j)

(equivalent for Format B variables)

Parameter with LINDICATOR Clause in SQL Statements

If the LINDICATOR field is defined as an I2 field, the SQL data type VARCHAR is used for sending or
receiving the corresponding column. If the LINDICATOR host variable is specified as I4, a large object
data type (CLOB/BLOB) is used.

If the field is defined as DYNAMIC, the column is read in an internal loop up to its real length. The
LINDICATOR field and the system variable *LENGTH are set to this length. In the case of a fixed-length
field, the column is read up to the defined length. In both cases, the field is written up to the value
defined in the LINDICATOR field.

Performance Aspects with Dynamic Variables

If a dynamic variable is to be expanded in small quantitiesmultiple times (for example, byte-wise),
use the EXPAND statement before the iterations if the upper limit of required storage is (approxim-
ately) known. This avoids additional overhead to adjust the storage needed.

Use the REDUCE or RESIZE statement if the dynamic variable will no longer be needed, especially
for variables with a high value of the system variable *LENGTH. This enables Natural you to release
or reuse the storage. Thus, the overall performance may be improved.

The amount of the allocated memory of a dynamic variable may be reduced using the REDUCE
DYNAMIC VARIABLE statement. In order to (re)allocate a variable to a specified length, the EXPAND
statement can be used. (If the variable should be initialized, use the MOVE ALL UNTIL statement.)

139Programming Guide

Using Dynamic and Large Variables

Example:

** Example 'DYNAMX06': Dynamic variables (allocated memory)
**
DEFINE DATA LOCAL
1 #MYDYNTEXT1 (A) DYNAMIC
1 #LEN (I4)
END-DEFINE
*
#MYDYNTEXT1 := 'a' /* used length is 1, value is 'a'

/* allocated size is still 1
WRITE *LENGTH(#MYDYNTEXT1)
*
EXPAND DYNAMIC VARIABLE #MYDYNTEXT1 TO 100

/* used length is still 1, value is 'a'
/* allocated size is 100

*
CALLNAT 'DYNAMX05' USING #MYDYNTEXT1
WRITE *LENGTH(#MYDYNTEXT1)

/* used length and allocated size
/* may have changed in the subprogram

*
#LEN := *LENGTH(#MYDYNTEXT1)
REDUCE DYNAMIC VARIABLE #MYDYNTEXT1 TO #LEN

/* if allocated size is greater than used length,
/* the unused memory is released

*
REDUCE DYNAMIC VARIABLE #MYDYNTEXT1 TO 0
WRITE *LENGTH(#MYDYNTEXT1)

/* free allocated memory for dynamic variable
END

Rules:

■ Use dynamic operands where it makes sense.
■ Use the EXPAND statement if upper limit of memory usage is known.
■ Use the REDUCE statement if the dynamic operand will no longer be needed.

Outputting Dynamic Variables

Dynamic variables may be used inside output statements such as the following:

Programming Guide140

Using Dynamic and Large Variables

NotesStatement

With these statements, you must set the format of the output or input of dynamic variables
using the AL (Alphanumeric Length for Output) or EM (Edit Mask) session parameters.

DISPLAY

WRITE

INPUT

--REINPUT

Because the output of the PRINT statement is unformatted, the output of dynamic variables in
the PRINT statement need not be set using AL and EM parameters. In other words, these
parameters may be omitted.

PRINT

Dynamic X-Arrays

A dynamic X-array may be allocated by first specifying the number of occurrences and then ex-
panding the length of the previously allocated array occurrences.

Example:

DEFINE DATA LOCAL
1 #X-ARRAY(A/1:*) DYNAMIC
END-DEFINE
*
EXPAND ARRAY #X-ARRAY TO (1:10) /* Current boundaries (1:10)
#X-ARRAY(*) := 'ABC'
EXPAND ARRAY #X-ARRAY TO (1:20) /* Current boundaries (1:20)
#X-ARRAY(11:20) := 'DEF'

141Programming Guide

Using Dynamic and Large Variables

142

18 User-Defined Constants

■ Numeric Constants .. 144
■ Alphanumeric Constants ... 145
■ Unicode Constants ... 146
■ Date and Time Constants .. 149
■ Hexadecimal Constants .. 150
■ Logical Constants .. 152
■ Floating Point Constants ... 152
■ Attribute Constants .. 153
■ Handle Constants .. 154
■ Defining Named Constants .. 154

143

Constants can be used throughout Natural programs. This document discusses the types of con-
stants that are supported and how they are used.

Numeric Constants

The following topics are covered below:

■ Numeric Constants
■ Validation of Numeric Constants

Numeric Constants

A numeric constant may contain 1 to 29 numeric digits, a special character as decimal separator
(period or comma) and a sign.

Examples:

1234 +1234 -1234

12.34 +12.34 -12.34

MOVE 3 TO #XYZ
COMPUTE #PRICE = 23.34
COMPUTE #XYZ = -103
COMPUTE #A = #B * 6074

Note: Internally, numeric constants without decimal digits are represented in integer form
(format I), while numeric constantswith decimal digits, aswell as numeric constantswithout
decimal digits that are too large to fit into format I, are represented in packed form (format
P).

Example:

LengthFormatNumeric Constant
ToFrom

>=10P<= -2147483649

4I-32769-2147483648

2I32767-32768

4I214748364732768

>=10P>= 2147483648

Programming Guide144

User-Defined Constants

Validation of Numeric Constants

When numeric constants are used within one of the statements COMPUTE, MOVE, or DEFINE DATA
with INIT option, Natural checks at compilation timewhether a constant value fits into the corres-
ponding field. This avoids runtime errors in situations where such an error condition can already
be detected during compilation.

Alphanumeric Constants

The following topics are covered below:

■ Alphanumeric Constants
■ Apostrophes Within Alphanumeric Constants
■ Concatenation of Alphanumeric Constants

Alphanumeric Constants

An alphanumeric constantmay contain 1 to 1 1073741824 bytes (1 GB) of alphanumeric characters.

An alphanumeric constant must be enclosed in either apostrophes (')

'text'

or quotation marks (")

"text"

Examples:

MOVE 'ABC' TO #FIELDX
MOVE '% INCREASE' TO #TITLE
DISPLAY "LAST-NAME" NAME

Note: An alphanumeric constant that is used to assign a value to a user-defined variable
must not be split between statement lines.

145Programming Guide

User-Defined Constants

Apostrophes Within Alphanumeric Constants

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in apostrophes,
you must write this as two apostrophes or as a single quotation mark.

If you want an apostrophe to be part of an alphanumeric constant that is enclosed in quotation
marks, you write this as a single apostrophe.

Example:

If you want the following to be output:

HE SAID, 'HELLO'

you can use any of the following notations:

WRITE 'HE SAID, ''HELLO'''
WRITE 'HE SAID, "HELLO"'
WRITE "HE SAID, ""HELLO"""
WRITE "HE SAID, 'HELLO'"

Note: If quotation marks are not converted to apostrophes as shown above, this is due to
the setting of profile parameter TQMARK (Translate Quotation Marks); ask your Natural ad-
ministrator for details.

Concatenation of Alphanumeric Constants

Alphanumeric constants may be concatenated to form a single value by use of a hyphen.

Examples:

MOVE 'XXXXXX' - 'YYYYYY' TO #FIELD
MOVE "ABC" - 'DEF' TO #FIELD

In this way, alphanumeric constants can also be concatenated with hexadecimal constants.

Unicode Constants

The following topics are covered below:

■ Unicode Text Constants
■ Apostrophes Within Unicode Text Constants
■ Unicode Hexadecimal Constants

Programming Guide146

User-Defined Constants

■ Concatenation of Unicode Constants

Unicode Text Constants

A Unicode text constant must be preceded by the character U and enclosed in either apostrophes
(')

U'text'

or quotation marks (")

U"text"

Example:

U'HELLO'

The compiler stores this text constant in the generated program in Unicode format (UTF-16).

Apostrophes Within Unicode Text Constants

If you want an apostrophe to be part of a Unicode text constant that is enclosed in apostrophes,
you must write this as two apostrophes or as a single quotation mark.

If youwant an apostrophe to be part of aUnicode text constant that is enclosed in quotationmarks,
you write this as a single apostrophe.

Example:

If you want the following to be output:

HE SAID, 'HELLO'

you can use any of the following notations:

WRITE U'HE SAID, ''HELLO'''
WRITE U'HE SAID, "HELLO"'
WRITE U"HE SAID, ""HELLO"""
WRITE U"HE SAID, 'HELLO'"

Note: If quotation marks are not converted to apostrophes as shown above, this is due to
the setting of the profile parameter TQ (Translate Quotation Marks); ask your Natural ad-
ministrator for details.

147Programming Guide

User-Defined Constants

Unicode Hexadecimal Constants

The following syntax is used to supply a Unicode character or a Unicode string by its hexadecimal
notation:

UH'hhhh...'

where h represents a hexadecimal digit (0-9, A-F). Since a UTF-16 Unicode character consists of a
double-byte, the number of hexadecimal characters supplied has to be a multiple of four.

Example:

This example defines the string 45.

UH'00340035'

Concatenation of Unicode Constants

Concatenation of Unicode text constants (U) andUnicode hexadecimal constants (UH) is allowed.

Valid Example:

MOVE U'XXXXXX' - UH'00340035' TO #FIELD

Unicode text constants or Unicode hexadecimal constants cannot be concatenated with code page
alphanumeric constants or H constants.

Invalid Example:

MOVE U'ABC' - 'DEF' TO #FIELD
MOVE UH'00340035' - H'414243' TO #FIELD

Further Valid Example:

DEFINE DATA LOCAL
1 #U10 (U10) /* Unicode variable with 10 (UTF-16) characters, total ↩
byte length = 20
1 #UD (U) DYNAMIC /* Unicode variable with dynamic length
END-DEFINE
*
#U10 := U'ABC' /* Constant is created as X'004100420043' in the object, ↩
the UTF-16 representation for string 'ABC'.

#U10 := UH'004100420043' /* Constant supplied in hexadecimal format only, ↩
corresponds to U'ABC'

#U10 := U'A'-UH'0042'-U'C' /* Constant supplied in mixed formats, corresponds to ↩
U'ABC'.
END

Programming Guide148

User-Defined Constants

Date and Time Constants

The following topics are covered below:

■ Date Constant
■ Time Constant
■ Extended Time Constant

Date Constant

A date constant may be used in conjunction with a format D variable.

Date constants may have the following formats:

International date formatD'yyyy-mm-dd'

German date formatD'dd.mm.yyyy'

European date formatD'dd/mm/yyyy'

US date formatD'mm/dd/yyyy'

where dd represents the number of the day, mm the number of the month and yyyy the year.

Example:

DEFINE DATA LOCAL
1 #DATE (D)
END-DEFINE
...
MOVE D'2004-03-08' TO #DATE
...

The default date format is controlled by the profile parameter DTFORM (Date Format) as set by the
Natural administrator.

Time Constant

A time constant may be used in conjunction with a format T variable.

A time constant has the following format:

149Programming Guide

User-Defined Constants

T'hh:ii:ss'

where hh represents hours, iiminutes and ss seconds.

Example:

DEFINE DATA LOCAL
1 #TIME (T)
END-DEFINE
...
MOVE T'11:33:00' TO #TIME
...

Extended Time Constant

A time variable (format T) can contain date and time information, date information being a subset
of time information; however, with a “normal” time constant (prefix T) only the time information
of a time variable can be handled:

T'hh:ii:ss'

With an extended time constant (prefix E), it is possible to handle the full content of a time variable,
including the date information:

E'yyyy-mm-dd hh:ii:ss'

Apart from that, the use of an extended time constant in conjunction with a time variable is the
same as for a normal time constant.

Note: The format in which the date information has to be specified in an extended time
constant depends on the setting of the profile parameter DTFORM. The extended time constant
shown above assumes DTFORM=I (international date format).

Hexadecimal Constants

The following topics are covered below:

■ Hexadecimal Constants

Programming Guide150

User-Defined Constants

■ Concatenation of Hexadecimal Constants

Hexadecimal Constants

A hexadecimal constant may be used to enter a value which cannot be entered as a standard key-
board character.

A hexadecimal constant may contain 1 to 1073741824 bytes (1 GB) of alphanumeric characters.

A hexadecimal constant is prefixed with an H. The constant itself must be enclosed in apostrophes
andmay consist of the hexadecimal characters 0 - 9, A - F. Two hexadecimal characters are required
to represent one byte of data.

The hexadecimal representation of a character varies, depending on whether your computer uses
anASCII or EBCDIC character set.When you transfer hexadecimal constants to another computer,
you may therefore have to convert the characters.

ASCII examples:

H'313233' (equivalent to the alphanumeric constant '123')
H'414243' (equivalent to the alphanumeric constant 'ABC')

EBCDIC examples:

H'F1F2F3' (equivalent to the alphanumeric constant '123')
H'C1C2C3' (equivalent to the alphanumeric constant 'ABC')

When a hexadecimal constant is transferred to another field, it will be treated as an alphanumeric
value (format A).

The data transfer of an alphanumeric value (format A) to a field which is defined with a format
other than A,U or B is not allowed. Therefore, a hexadecimal constant used as initial value in a
DEFINE DATA statement is rejected with the syntax error NAT0094 if the corresponding variable
is not of format A, U or B.

Example:

DEFINE DATA LOCAL
1 #I(I2) INIT <H'000F'> /* causes a NAT0094 syntax error
END-DEFINE ↩

151Programming Guide

User-Defined Constants

Concatenation of Hexadecimal Constants

Hexadecimal constants may be concatenated by using a hyphen between the constants.

ASCII example:

H'414243' - H'444546' (equivalent to 'ABCDEF')

EBCDIC example:

H'C1C2C3' - H'C4C5C6' (equivalent to 'ABCDEF')

In this way, hexadecimal constants can also be concatenated with alphanumeric constants.

Logical Constants

The logical constants TRUE and FALSEmay be used to assign a logical value to a field defined with
Format L.

Example:

DEFINE DATA LOCAL
1 #FLAG (L)
END-DEFINE
...
MOVE TRUE TO #FLAG
...
IF #FLAG ...

statement ...
MOVE FALSE TO #FLAG

END-IF
...

Floating Point Constants

Floating point constants can be used with variables defined with format F.

Example:

Programming Guide152

User-Defined Constants

DEFINE DATA LOCAL
1 #FLT1 (F4)
END-DEFINE
...
COMPUTE #FLT1 = -5.34E+2
...

Attribute Constants

Attribute constants can be usedwith variables definedwith format C (control variables). This type
of constant must be enclosed within parentheses.

The following attributes may be used:

DescriptionAttribute

defaultAD=D

blinkingAD=B

intensifiedAD=I

non-displayAD=N

reverse videoAD=V

underlinedAD=U

cursive/italicAD=C

dynamic attributeAD=Y

protectedAD=P

blueCD=BL

greenCD=GR

neutralCD=NE

pinkCD=PI

redCD=RE

turquoiseCD=TU

yellowCD=YE

See also session parameters AD and CD.

Example:

153Programming Guide

User-Defined Constants

DEFINE DATA LOCAL
1 #ATTR (C)
1 #FIELD (A10)
END-DEFINE
...
MOVE (AD=I CD=BL) TO #ATTR
...
INPUT #FIELD (CV=#ATTR)
...

Handle Constants

The handle constant NULL-HANDLE can be used with GUI handles and object handles.

For further information on GUI handles, see How To Define Dialog Elements.

For further information on object handles, see the section NaturalX.

Defining Named Constants

If you need to use the same constant value several times in a program, you can reduce the main-
tenance effort by defining a named constant:

■ Define a field in the DEFINE DATA statement,
■ assign a constant value to it, and
■ use the field name in the program instead of the constant value.

Thus, when the value has to be changed, you only have to change it once in the DEFINE DATA
statement and not everywhere in the program where it occurs.

You specify the constant value in angle brackets with the keyword CONSTANT after the field defin-
ition in the DEFINE DATA statement.

■ If the value is alphanumeric, it must be enclosed in apostrophes.
■ If the value is text inUnicode format, it must be preceded by the character U andmust be enclosed
in apostrophes.

■ If the value is in hexadecimal Unicode format, it must be preceded by the characters UH and
must be enclosed in apostrophes.

Example:

Programming Guide154

User-Defined Constants

DEFINE DATA LOCAL
1 #FIELDA (N3) CONSTANT <100>
1 #FIELDB (A5) CONSTANT <'ABCDE'>
1 #FIELDC (U5) CONSTANT <U'ABCDE'>
1 #FIELDD (U5) CONSTANT <UH'00410042004300440045'>
END-DEFINE
...

During the execution of the program, the value of such a named constant cannot be modified.

155Programming Guide

User-Defined Constants

156

19 Initial Values (and the RESET Statement)

■ Default Initial Value of a User-Defined Variable/Array .. 158
■ Assigning an Initial Value to a User-Defined Variable/Array ... 158
■ Resetting a User-Defined Variable to its Initial Value ... 160

157

This chapter describes the default initial values of user-defined variables, explains how you can
assign an initial value to a user-defined variable and how you can use the RESET statement to reset
the field value to its default initial value or the initial value defined for that variable in the DEFINE
DATA statement.

Default Initial Value of a User-Defined Variable/Array

If you specify no initial value for a field, the field will be initialized with a default initial value
depending on its format:

Default Initial ValueFormat

0B, F, I, N, P

blankA, U

F(ALSE)L

D' 'D

T'00:00:00'T

(AD=D)C

NULL-HANDLEGUI Handle

NULL-HANDLEObject Handle

Assigning an Initial Value to a User-Defined Variable/Array

In the DEFINE DATA statement, you can assign an initial value to a user-defined variable. If the
initial value is alphanumeric, it must be enclosed in apostrophes.

■ Assigning a Modifiable Initial Value
■ Assigning a Constant Initial Value
■ Assigning a Natural System Variable as Initial Value

Programming Guide158

Initial Values (and the RESET Statement)

■ Assigning Characters as Initial Value for Alphanumeric Variables

Assigning a Modifiable Initial Value

If the variable/array is to be assigned a modifiable initial value, you specify the initial value in
angle brackets with the keyword INIT after the variable definition in the DEFINE DATA statement.
The value(s) assignedwill be used each time the variable/array is referenced. The value(s) assigned
can be modified during program execution.

Example:

DEFINE DATA LOCAL
1 #FIELDA (N3) INIT <100>
1 #FIELDB (A20) INIT <'ABC'>
END-DEFINE
...

Assigning a Constant Initial Value

If the variable/array is to be treated as a named constant, you specify the initial value in angle
brackets with the keyword CONSTANT after the variable definition in the DEFINE DATA statement.
The constant value(s) assignedwill be used each time the variable/array is referenced. The value(s)
assigned cannot be modified during program execution.

Example:

DEFINE DATA LOCAL
1 #FIELDA (N3) CONST <100>
1 #FIELDB (A20) CONST <'ABC'>
END-DEFINE
...

Assigning a Natural System Variable as Initial Value

The initial value for a field may also be the value of a Natural system variable.

Example:

In this example, the system variable *DATX is used to provide the initial value.

159Programming Guide

Initial Values (and the RESET Statement)

DEFINE DATA LOCAL
1 #MYDATE (D) INIT <*DATX>
END-DEFINE
...

Assigning Characters as Initial Value for Alphanumeric Variables

As initial value, a variable can also be filled, entirely or partially, with a specific single character
or string of characters (only possible for alphanumeric variables).

■ Filling an entire field:
With the option FULL LENGTH <character(s)>, the entire field is filled with the specified char-
acter(s).

In this example, the entire field will be filled with asterisks.

DEFINE DATA LOCAL
1 #FIELD (A25) INIT FULL LENGTH <'*'>
END-DEFINE
...

■ Filling the firstn positions of a field:
With the option LENGTH n <character(s)>, the first n positions of the field are filled with the
specified character(s).

In this example, the first 4 positions of the field will be filled with exclamation marks.

DEFINE DATA LOCAL
1 #FIELD (A25) INIT LENGTH 4 <'!'>
END-DEFINE
...

Resetting a User-Defined Variable to its Initial Value

The RESET statement is used to reset the value of a field. Two options are available:

■ Reset to Default Initial Value
■ Reset to Initial Value Defined in DEFINE DATA

Notes:

1. A field declared with a CONSTANT clause in the DEFINE DATA statement may not be referenced
in a RESET statement, since its content cannot be changed.

Programming Guide160

Initial Values (and the RESET Statement)

2. In reporting mode, the RESET statement may also be used to define a variable, provided that
the program contains no DEFINE DATA LOCAL statement.

Reset to Default Initial Value

RESET (without INITIAL) sets the content of each specifiedfield to itsdefault initial valuedepending
on its format.

Example:

DEFINE DATA LOCAL
1 #FIELDA (N3) INIT <100>
1 #FIELDB (A20) INIT <'ABC'>
1 #FIELDC (I4) INIT <5>
END-DEFINE
...
...
RESET #FIELDA /* resets field value to default initial value
... ↩

Reset to Initial Value Defined in DEFINE DATA

RESET INITIAL sets each specified field to the initial value as defined for the field in the DEFINE
DATA statement.

For a field declared without INIT clause in the DEFINE DATA statement, RESET INITIAL has the
same effect as RESET (without INITIAL).

Example:

DEFINE DATA LOCAL
1 #FIELDA (N3) INIT <100>
1 #FIELDB (A20) INIT <'ABC'>
1 #FIELDC (I4) INIT <5>
END-DEFINE
...
RESET INITIAL #FIELDA #FIELDB #FIELDC /* resets field values to initial values as ↩
defined in DEFINE DATA
...

161Programming Guide

Initial Values (and the RESET Statement)

162

20 Redefining Fields

■ Using the REDEFINE Option of DEFINE DATA .. 164
■ Example Program Illustrating the Use of a Redefinition .. 165

163

Redefinition is used to change the format of a field, or to divide a single field into segments.

Using the REDEFINE Option of DEFINE DATA

The REDEFINE option of the DEFINE DATA statement can be used to redefine a single field - either
a user-defined variable or a database field - as one or more new fields. A group can also be re-
defined.

Important: Dynamic variables are not allowed in a redefinition.

The REDEFINE option redefines byte positions of a field from left to right, regardless of the format.
Byte positions must match between original field and redefined field(s).

The redefinition must be specified immediately after the definition of the original field.

Example 1:

In the following example, the database field BIRTH is redefined as three newuser-defined variables:

DEFINE DATA LOCAL
01 EMPLOY-VIEW VIEW OF STAFFDDM

02 NAME
02 BIRTH
02 REDEFINE BIRTH

03 #BIRTH-YEAR (N4)
03 #BIRTH-MONTH (N2)
03 #BIRTH-DAY (N2)

END-DEFINE
...

Example 2:

In the following example, the group #VAR2, which consists of two user-defined variables of format
N and P respectively, is redefined as a variable of format A:

DEFINE DATA LOCAL
01 #VAR1 (A15)
01 #VAR2

02 #VAR2A (N4.1)
02 #VAR2B (P6.2)

01 REDEFINE #VAR2
02 #VAR2RD (A10)

END-DEFINE
...

With the notation FILLER nX you can define n filler bytes - that is, segments which are not to be
used - in the field that is being redefined. (The definition of trailing filler bytes is optional.)

Programming Guide164

Redefining Fields

Example 3:

In the following example, the user-defined variable #FIELD is redefined as three new user-defined
variables, each of format/length A2. The FILLER notations indicate that the 3rd and 4th and 7th to
10th bytes of the original field are not be used.

DEFINE DATA LOCAL
1 #FIELD (A12)
1 REDEFINE #FIELD

2 #RFIELD1 (A2)
2 FILLER 2X
2 #RFIELD2 (A2)
2 FILLER 4X
2 #RFIELD3 (A2)

END-DEFINE
...

Example Program Illustrating the Use of a Redefinition

The following program illustrates the use of a redefinition:

** Example 'DDATAX01': DEFINE DATA
**
DEFINE DATA LOCAL
01 VIEWEMP VIEW OF EMPLOYEES

02 NAME
02 FIRST-NAME
02 SALARY (1:1)

*
01 #PAY (N9)
01 REDEFINE #PAY

02 FILLER 3X
02 #USD (N3)
02 #OOO (N3)

END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'

MOVE SALARY (1) TO #PAY
DISPLAY NAME FIRST-NAME #PAY #USD #OOO

END-READ
END

Output of Program DDATAX01:

Note how #PAY and the fields resulting from its definition are displayed:

165Programming Guide

Redefining Fields

Page 1 04-11-11 14:15:54

 NAME FIRST-NAME #PAY #USD #OOO
-------------------- -------------------- ---------- ---- ----

JONES VIRGINIA 46000 46 0
JONES MARSHA 50000 50 0
JONES ROBERT 31000 31 0
 ↩

Programming Guide166

Redefining Fields

21 Arrays

■ Defining Arrays ... 168
■ Initial Values for Arrays ... 169
■ Assigning Initial Values to One-Dimensional Arrays .. 169
■ Assigning Initial Values to Two-Dimensional Arrays .. 170
■ A Three-Dimensional Array .. 174
■ Arrays as Part of a Larger Data Structure ... 176
■ Database Arrays .. 177
■ Using Arithmetic Expressions in Index Notation ... 177
■ Arithmetic Support for Arrays ... 178

167

Natural supports the processing of arrays. Arrays are multi-dimensional tables, that is, two or
more logically related elements identified under a single name. Arrays can consist of single data
elements ofmultiple dimensions or hierarchical data structureswhich contain repetitive structures
or individual elements.

Defining Arrays

In Natural, an array can be one-, two- or three-dimensional. It can be an independent variable,
part of a larger data structure or part of a database view.

Important: Dynamic variables are not allowed in an array definition.

To define a one-dimensional array

■ After the format and length, specify a slash followed by a so-called “index notation”, that is,
the number of occurrences of the array.

For example, the following one-dimensional array has three occurrences, each occurrence
being of format/length A10:

DEFINE DATA LOCAL
1 #ARRAY (A10/1:3)
END-DEFINE
...

To define a two-dimensional array

■ Specify an index notation for both dimensions:

DEFINE DATA LOCAL
1 #ARRAY (A10/1:3,1:4)
END-DEFINE
...

A two-dimensional array can be visualized as a table. The array defined in the example above
would be a table that consists of 3 “rows” and 4 “columns”:

Programming Guide168

Arrays

Initial Values for Arrays

To assign initial values to one or more occurrences of an array, you use an INIT specification,
similar to that for “ordinary” variables, as shown in the following examples.

Assigning Initial Values to One-Dimensional Arrays

The following examples illustrate how initial values are assigned to a one-dimensional array.

■ To assign an initial value to one occurrence, you specify:

1 #ARRAY (A1/1:3) INIT (2) <'A'>

A is assigned to the second occurrence.
■ To assign the same initial value to all occurrences, you specify:

1 #ARRAY (A1/1:3) INIT ALL <'A'>

A is assigned to every occurrence. Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT (*) <'A'>

■ To assign the same initial value to a range of several occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (2:3) <'A'>

A is assigned to the second to third occurrence.
■ To assign a different initial value to every occurrence, you specify:

169Programming Guide

Arrays

1 #ARRAY (A1/1:3) INIT <'A','B','C'>

A is assigned to the first occurrence, B to the second, and C to the third.
■ To assign different initial values to some (but not all) occurrences, you specify:

1 #ARRAY (A1/1:3) INIT (1) <'A'> (3) <'C'>

A is assigned to the first occurrence, and C to the third; no value is assigned to the second occur-
rence.

Alternatively, you could specify:

1 #ARRAY (A1/1:3) INIT <'A',,'C'>

■ If fewer initial values are specified than there are occurrences, the last occurrences remain empty:

1 #ARRAY (A1/1:3) INIT <'A','B'>

A is assigned to the first occurrence, and B to the second; no value is assigned to the third occur-
rence.

Assigning Initial Values to Two-Dimensional Arrays

This section illustrates how initial values are assigned to a two-dimensional array. The following
topics are covered:

■ Preliminary Information
■ Assigning the Same Value
■ Assigning Different Values

Preliminary Information

For the examples shown in this section, let us assume a two-dimensional array with three occur-
rences in the first dimension (“rows”) and four occurrences in the second dimension (“columns”):

1 #ARRAY (A1/1:3,1:4)

Programming Guide170

Arrays

Vertical: First Dimension (1:3), Horizontal: Second Dimension (1:4):

(1,4)(1,3)(1,2)(1,1)

(2,4)(2,3)(2,2)(2,1)

(3,4)(3,3)(3,2)(3,1)

The first set of examples illustrates how the same initial value is assigned to occurrences of a two-
dimensional array; the second set of examples illustrates how different initial values are assigned.

In the examples, please note in particular the usage of the notations * and V. Both notations refer
to all occurrences of the dimension concerned: * indicates that all occurrences in that dimension
are initialized with the same value, while V indicates that all occurrences in that dimension are
initialized with different values.

Assigning the Same Value

■ To assign an initial value to one occurrence, you specify:

1 #ARRAY (A1/1:3,1:4) INIT (2,3) <'A'>

A

■ To assign the same initial value to one occurrence in the second dimension - in all occurrences
of the first dimension - you specify:

1 #ARRAY (A1/1:3,1:4) INIT (*,3) <'A'>

A

A

A

■ To assign the same initial value to a range of occurrences in the first dimension - in all occurrences
of the second dimension - you specify:

171Programming Guide

Arrays

1 #ARRAY (A1/1:3,1:4) INIT (2:3,*) <'A'>

AAAA

AAAA

■ To assign the same initial value to a range of occurrences in each dimension, you specify:

1 #ARRAY (A1/1:3,1:4) INIT (2:3,1:2) <'A'>

AA

AA

■ To assign the same initial value to all occurrences (in both dimensions), you specify:

1 #ARRAY (A1/1:3,1:4) INIT ALL <'A'>

AAAA

AAAA

AAAA

Alternatively, you could specify:

1 #ARRAY (A1/1:3,1:4) INIT (*,*) <'A'>

Assigning Different Values

■ 1 #ARRAY (A1/1:3,1:4) INIT (V,2) <'A','B','C'>

A

B

C

Programming Guide172

Arrays

■ 1 #ARRAY (A1/1:3,1:4) INIT (V,2:3) <'A','B','C'>

AA

BB

CC

■ 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <'A','B','C'>

AAAA

BBBB

CCCC

■ 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <'A',,'C'>

AAAA

CCCC

■ 1 #ARRAY (A1/1:3,1:4) INIT (V,*) <'A','B'>

AAAA

BBBB

■ 1 #ARRAY (A1/1:3,1:4) INIT (V,1) <'A','B','C'> (V,3) <'D','E','F'>

DA

EB

FC

■ 1 #ARRAY (A1/1:3,1:4) INIT (3,V) <'A','B','C','D'>

DCBA

173Programming Guide

Arrays

■ 1 #ARRAY (A1/1:3,1:4) INIT (*,V) <'A','B','C','D'>

DCBA

DCBA

DCBA

■ 1 #ARRAY (A1/1:3,1:4) INIT (2,1) <'A'> (*,2) <'B'> (3,3) <'C'> (3,4) <'D'>

B

BA

DCB

■ 1 #ARRAY (A1/1:3,1:4) INIT (2,1) <'A'> (V,2) <'B','C','D'> (3,3) <'E'> (3,4) <'F'>

B

CA

FED

A Three-Dimensional Array

A three-dimensional array could be visualized as follows:

Programming Guide174

Arrays

The array illustrated here would be defined as follows (at the same time assigning an initial value
to the highlighted field in Row 1, Column 2, Plane 2):

DEFINE DATA LOCAL
1 #ARRAY2

2 #ROW (1:4)
3 #COLUMN (1:3)
4 #PLANE (1:3)

5 #FIELD2 (P3) INIT (1,2,2) <100>
END-DEFINE
...

If defined as a local data area in the data area editor, the same array would look as follows:

175Programming Guide

Arrays

I T L Name F Leng Index/Init/EM/Name/Comment
- - - -------------------------------- - ---- ---------------------------------
 1 #ARRAY2
 2 #ROW (1:4)
 3 #COLUMN (1:3)
 4 #PLANE (1:3)
I 5 #FIELD2 P 3 ↩

Arrays as Part of a Larger Data Structure

Themultiple dimensions of an arraymake it possible to define data structures analogous toCOBOL
or PL1 structures.

Example:

DEFINE DATA LOCAL
1 #AREA

2 #FIELD1 (A10)
2 #GROUP1 (1:10)

3 #FIELD2 (P2)
3 #FIELD3 (N1/1:4)

END-DEFINE
...

In this example, the data area #AREA has a total size of:

10 + (10 * (2 + (1 * 4))) bytes = 70 bytes

#FIELD1 is alphanumeric and 10 bytes long. #GROUP1 is the name of a sub-areawithin #AREA, which
consists of 2 fields and has 10 occurrences. #FIELD2 is packed numeric, length 2. #FIELD3 is the
second field of #GROUP1with four occurrences, and is numeric, length 1.

To reference a particular occurrence of #FIELD3, two indices are required: first, the occurrence of
#GROUP1must be specified, and second, the particular occurrence of #FIELD3must also be specified.
For example, in an ADD statement later in the sameprogram, #FIELD3would be referenced as follows:

ADD 2 TO #FIELD3 (3,2)

Programming Guide176

Arrays

Database Arrays

Adabas supports array structures within the database in the form ofmultiple-value fields and
periodic groups. These are described under Database Arrays.

The following example shows a DEFINE DATA view containing a multiple-value field:

DEFINE DATA LOCAL
1 EMPLOYEES-VIEW VIEW OF EMPLOYEES

2 NAME
2 ADDRESS-LINE (1:10) /* <--- MULTIPLE-VALUE FIELD

END-DEFINE
...

The same view in a local data area would look as follows:

I T L Name F Leng Index/Init/EM/Name/Comment
- - - -------------------------------- - ---- ---------------------------------

V 1 EMPLOYEES-VIEW EMPLOYEES
2 NAME A 20

M 2 ADDRESS-LINE A 20 (1:10) /* MU-FIELD

Using Arithmetic Expressions in Index Notation

A simple arithmetic expression may also be used to express a range of occurrences in an array.

Examples:

Values of the field MA are referenced, beginningwith value I and endingwith value I+5.MA (I:I+5)

Values of the field MA are referenced, beginning with value I+2 and ending with value
J-3.

MA (I+2:J-3)

Only the arithmetic operators plus (+) and minus (-) may be used in index expressions.

177Programming Guide

Arrays

Arithmetic Support for Arrays

Arithmetic support for arrays include operations at array level, at row/column level, and at indi-
vidual element level.

Only simple arithmetic expressions are permitted with array variables, with only one or two op-
erands and an optional third variable as the receiving field.

Only the arithmetic operators plus (+) and minus (-) are allowed for expressions defining index
ranges.

Examples of Array Arithmetics

The following examples assume the following field definitions:

DEFINE DATA LOCAL
01 #A (N5/1:10,1:10)
01 #B (N5/1:10,1:10)
01 #C (N5)
END-DEFINE
...

1. ADD #A(*,*) TO #B(*,*)

The result operand, array #B, contains the addition, element by element, of the array #A and the
original value of array #B.

2. ADD 4 TO #A(*,2)

The second column of the array #A is replaced by its original value plus 4.

3. ADD 2 TO #A(2,*)

The second row of the array #A is replaced by its original value plus 2.

4. ADD #A(2,*) TO #B(4,*)

The value of the second row of array #A is added to the fourth row of array #B.

5. ADD #A(2,*) TO #B(*,2)

This is an illegal operation and will result in a syntax error. Rows may only be added to rows
and columns to columns.

Programming Guide178

Arrays

6. ADD #A(2,*) TO #C

All values in the second row of the array #A are added to the scalar value #C.

7. ADD #A(2,5:7) TO #C

The fifth, sixth, and seventh column values of the second row of array #A are added to the
scalar value #C.

179Programming Guide

Arrays

180

22 X-Arrays

■ Definition ... 182
■ Storage Management of X-Arrays ... 183
■ Storage Management of X-Group Arrays .. 183
■ Referencing an X-Array ... 185
■ Parameter Transfer with X-Arrays ... 186
■ Parameter Transfer with X-Group Arrays .. 187
■ X-Array of Dynamic Variables ... 188
■ Lower and Upper Bound of an Array .. 189

181

When an ordinary array field is defined, you have to specify the index bounds exactly, hence the
number of occurrences for each dimension. At runtime, the complete array field is existent by
default; each of its defined occurrences can be accessed without performing additional allocation
operations. The size layout cannot be changed anymore; you may neither add nor remove field
occurrences.

However, if the number of occurrences needed is unknown at development time, but you want
to flexibly increase or decrease the number of the array fields at runtime, you should use what is
called an X-array (eXtensible array).

An X-array can be resized at runtime and can help you manage memory more efficiently. For ex-
ample, you can use a large number of array occurrences for a short time and then reduce memory
when the application is no longer using the array.

Definition

An X-array is an array of which the number of occurrences is undefined at compile time. It is
defined in a DEFINE DATA statement by specifying an asterisk (*) for at least one index bound of
at least one array dimension. An asterisk (*) character in the index definition represents a variable
index boundwhich can be assigned to a definite value during program execution. Only one bound
- either upper or lower - may be defined as variable, but not both.

An X-array can be defined whenever a (fixed) array can be defined, i.e. at any level or even as an
indexed group. It cannot be used to access MU-/PE-fields of a database view. Amultidimensional
array may have a mixture of constant and variable bounds.

Example:

DEFINE DATA LOCAL
1 #X-ARR1 (A5/1:*) /* lower bound is fixed at 1, upper bound is variable
1 #X-ARR2 (A5/*) /* shortcut for (A5/1:*)
1 #X-ARR3 (A5/*:100) /* lower bound is variable, upper bound is fixed at 100
1 #X-ARR4 (A5/1:10,1:*) /* 1st dimension has a fixed index range with (1:10)
END-DEFINE /* 2nd dimension has fixed lower bound 1 and variable ↩
upper bound

Programming Guide182

X-Arrays

Storage Management of X-Arrays

Occurrences of an X-array must be allocated explicitly before they can be accessed. To increase or
decrease the number of occurrences of a dimension, the statements EXPAND, RESIZE and REDUCE
may be used.

However, the number of dimensions of the X-array (1, 2 or 3 dimensions) cannot be changed.

Example:

DEFINE DATA LOCAL
1 #X-ARR(I4/10:*)
END-DEFINE
EXPAND ARRAY #X-ARR TO (10:10000)
/* #X-ARR(10) to #X-ARR(10000) are accessible
WRITE *LBOUND(#X-ARR) /* is 10

UBOUND(#X-ARR) / is 10000
OCCURRENCE(#X-ARR) / is 9991

#X-ARR(*) := 4711 /* same as #X-ARR(10:10000) := 4711
/* resize array from current lower bound=10 to upper bound =1000
RESIZE ARRAY #X-ARR TO (*:1000)
/* #X-ARR(10) to #X-ARR(1000) are accessible
/* #X-ARR(1001) to #X-ARR(10000) are released
WRITE *LBOUND(#X-ARR) /* is 10

UBOUND(#X-ARR) / is 1000
OCCURRENCE(#X-ARR) / is 991

/* release all occurrences
REDUCE ARRAY #X-ARR TO 0
WRITE *OCCURRENCE(#X-ARR) /* is 0

Storage Management of X-Group Arrays

If you want to increase or decrease occurrences of X-group arrays, you must distinguish between
independent and dependent dimensions.

A dimension which is specified directly (not inherited) for an X-(group) array is independent.

A dimension which is not specified directly, but inherited for an array is dependent.

Only independent dimensions of an X-array can be changed in the statements EXPAND, RESIZE and
REDUCE; dependent dimensions must be changed using the name of the corresponding X-group
array which owns this dimension as independent dimension.

183Programming Guide

X-Arrays

Example - Independent/Dependent Dimensions:

DEFINE DATA LOCAL
1 #X-GROUP-ARR1(1:*) /* (1:*)

2 #X-ARR1 (I4) /* (1:*)
2 #X-ARR2 (I4/2:*) /* (1:*,2:*)
2 #X-GROUP-ARR2 /* (1:*)

3 #X-ARR3 (I4) /* (1:*)
3 #X-ARR4 (I4/3:*) /* (1:*,3:*)
3 #X-ARR5 (I4/4:*, 5:*) /* (1:*,4:*,5:*)

END-DEFINE

The following table shows whether the dimensions in the above program are independent or de-
pendent.

Independent DimensionDependent DimensionName

(1:*)#X-GROUP-ARR1

(1:*)#X-ARR1

(2:*)(1:*)#X-ARR2

(1:*)#X-GROUP-ARR2

(1:*)#X-ARR3

(3:*)(1:*)#X-ARR4

(4:*,5:*)(1:*)#X-ARR5

The only index notation permitted for a dependent dimension is either a single asterisk (*), a range
defined with asterisks (*:*) or the index bounds defined.

This is to indicate that the bounds of the dependent dimensionmust be kept as they are and cannot
be changed.

The occurrences of the dependent dimensions can only be changed by manipulating the corres-
ponding array groups.

EXPAND ARRAY #X-GROUP-ARR1 TO (1:11) /* #X-ARR1(1:11) are allocated
/* #X-ARR3(1:11) are allocated

EXPAND ARRAY #X-ARR2 TO (*:*, 2:12) /* #X-ARR2(1:11, 2:12) are allocated
EXPAND ARRAY #X-ARR2 TO (1:*, 2:12) /* same as before
EXPAND ARRAY #X-ARR2 TO (* , 2:12) /* same as before
EXPAND ARRAY #X-ARR4 TO (*:*, 3:13) /* #X-ARR4(1:11, 3:13) are allocated
EXPAND ARRAY #X-ARR5 TO (*:*, 4:14, 5:15) /* #X-ARR5(1:11, 4:14, 5:15) are allocated

The EXPAND statements may be coded in an arbitrary order.

The following use of the EXPAND statement is not allowed, since the arrays only have dependent
dimensions.

Programming Guide184

X-Arrays

EXPAND ARRAY #X-ARR1 TO ...
EXPAND ARRAY #X-GROUP-ARR2 TO ...
EXPAND ARRAY #X-ARR3 TO ...

Referencing an X-Array

The occurrences of an X-array must be allocated by an EXPAND or RESIZE statement before they
can be accessed. The statements READ, FIND and GET allocate occurrences implicitly if values are
obtained from Tamino.

As a general rule, an attempt to address a non existent X-array occurrence leads to a runtime error.
In some statements, however, the access to a nonmaterialized X-array field does not cause an error
situation if all occurrences of an X-array are referenced using the complete range notation, for ex-
ample: #X-ARR(*). This applies to

■ parameters used in a CALL statement,
■ parameters used in the statements CALLNAT, PERFORM, SEND EVENT or OPEN DIALOG, if defined as
optional parameters,

■ source fields used in a COMPRESS statement,
■ output fields supplied in a PRINT statement,
■ fields referenced in a RESET statement.

If individual occurrences of a non materialized X-array are referenced in one of these statements,
a corresponding error message is issued.

Example:

DEFINE DATA LOCAL
1 #X-ARR (A10/1:*) /* X-array only defined, but not allocated
END-DEFINE
RESET #X-ARR(*) /* no error, because complete field referenced with (*)
RESET #X-ARR(1:3) /* runtime error, because individual occurrences (1:3) are ↩
referenced
END ↩

The asterisk (*) notation in an array reference stands for the complete range of a dimension. If the
array is an X-array, the asterisk is the index range of the currently allocated lower and upper bound
values, which are determined by the system variables *LBOUND and *UBOUND.

185Programming Guide

X-Arrays

Parameter Transfer with X-Arrays

X-arrays that are used as parameters are treated in the same way as constant arrays with regard
to the verification of the following:

■ format,
■ length,
■ dimension or
■ number of occurrences.

In addition, X-array parameters can also change the number of occurrences using the statement
RESIZE, REDUCE or EXPAND. The question if a resize of an X-array parameter is permitted depends
on three factors:

■ the type of parameter transfer used, that is by reference or by value,
■ the definition of the caller or parameter X-array, and
■ the type of X-array range being passed on (complete range or subrange).

The following tables demonstrate when an EXPAND, RESIZE or REDUCE statement can be applied to
an X-array parameter.

Example with Call By Value

ParameterCaller

X-ArrayVariable (1:V)Static

yesnonoStatic

yesnonoX-array subrange, for example:

CALLNAT...#XA(1:5)

yesnonoX-array complete range, for example:

CALLNAT...#XA(*)

Programming Guide186

X-Arrays

Call By Reference/Call By Value Result

ParameterCaller

X-Array with a fixed
upper bound, e.g.

X-Array with a fixed
lower bound, e.g.

Variable
(1:V)

Static

DEFINE DATA ↩
PARAMETER
1 #PX (A10/*:1)

DEFINE DATA ↩
PARAMETER
1 #PX (A10/1:*)

nonononoStatic

nonononoX-array subrange, for example:

CALLNAT...#XA(1:5)

noyesnonoX-Array with a fixed lower bound,
complete range, for example:

DEFINE DATA LOCAL
1 #XA(A10/1:*)
...
CALLNAT...#XA(*)

yesnononoX-Array with a fixed upper bound,
complete range, for example:

DEFINE DATA LOCAL
1 #XA(A10/*:1)
...
CALLNAT...#XA(*)

Parameter Transfer with X-Group Arrays

The declaration of an X-group array implies that each element of the group will have the same
values for upper boundary and lower boundary. Therefore, the number of occurrences of dependent
dimensions of fields of an X-group array can only be changed when the group name of the X-
group array is given with a RESIZE, REDUCE or EXPAND statement (see Storage Management of X-
Group Arrays above).

Members of X-group arrays may be transferred as parameters to X-group arrays defined in a
parameter data area. The group structures of the caller and the callee need not necessarily be

187Programming Guide

X-Arrays

identical. A RESIZE, REDUCE or EXPAND done by the callee is only possible as far as the X-group array
of the caller stays consistent.

Example - Elements of X-Group Array Passed as Parameters:

Program:

DEFINE DATA LOCAL
1 #X-GROUP-ARR1(1:*) /* (1:*)

2 #X-ARR1 (I4) /* (1:*)
2 #X-ARR2 (I4) /* (1:*)

1 #X-GROUP-ARR2(1:*) /* (1:*)
2 #X-ARR3 (I4) /* (1:*)
2 #X-ARR4 (I4) /* (1:*)

END-DEFINE
...
CALLNAT ... #X-ARR1(*) #X-ARR4(*)
...
END

Subprogram:

DEFINE DATA PARAMETER
1 #X-GROUP-ARR(1:*) /* (1:*)

2 #X-PAR1 (I4) /* (1:*)
2 #X-PAR2 (I4) /* (1:*)

END-DEFINE
...
RESIZE ARRAY #X-GROUP-ARR to (1:5)
...
END

The RESIZE statement in the subprogram is not possible. It would result in an inconsistent number
of occurrences of the fields defined in the X-group arrays of the program.

X-Array of Dynamic Variables

An X-array of dynamic variables may be allocated by first specifying the number of occurrences
using the EXPAND statement and then assigning a value to the previously allocated array occurrences.

Programming Guide188

X-Arrays

Example:

DEFINE DATA LOCAL
1 #X-ARRAY(A/1:*) DYNAMIC
END-DEFINE
EXPAND ARRAY #X-ARRAY TO (1:10)

/* allocate #X-ARRAY(1) to #X-ARRAY(10) with zero length.
/* *LENGTH(#X-ARRAY(1:10)) is zero

#X-ARRAY(*) := 'abc'
/* #X-ARRAY(1:10) contains 'abc',
/* *LENGTH(#X-ARRAY(1:10)) is 3

EXPAND ARRAY #X-ARRAY TO (1:20)
/* allocate #X-ARRAY(11) to #X-ARRAY(20) with zero length
/* *LENGTH(#X-ARRAY(11:20)) is zero

#X-ARRAY(11:20) := 'def'
/* #X-ARRAY(11:20) contains 'def'
/* *LENGTH(#X-ARRAY(11:20)) is 3

Lower and Upper Bound of an Array

The system variables *LBOUND and *UBOUND contain the current lower and upper bound of an array
for the specified dimension(s): (1,2 or 3).

If no occurrences of an X-array have been allocated, the access to *LBOUND or *UBOUND is undefined
for the variable index bounds, that is, for the boundaries that are represented by an asterisk (*)
character in the index definition, and leads to a runtime error. In order to avoid a runtime error,
the system variable *OCCURRENCEmay be used to check against zero occurrences before *LBOUND
or *UBOUND is evaluated:

Example:

IF *OCCURRENCE (#A) NE 0 AND *UBOUND(#A) < 100 THEN ...

189Programming Guide

X-Arrays

190

IV User-Defined Functions

191

192

23 User-Defined Functions

■ Introduction to User-Defined Functions .. 194
■ Restrictions .. 195
■ Function Call versus Subprogram Call ... 195
■ Function Definition (DEFINE FUNCTION) ... 198
■ Symbolic and Variable Function Call .. 198
■ Function Result and Parameters ... 198
■ Explicit Prototype Definition (DEFINE PROTOTYPE) .. 199
■ Implicit (Automatic) Prototype Definition ... 199
■ Prototype Cast (PT Clause) ... 200
■ Intermediate Result Definition (IR Clause) .. 200
■ Combinations of Possible Prototype Definitions ... 200
■ Evaluation Sequence of Functions in Statements ... 202
■ Using a Function as a Statement .. 204

193

Related topics:

■ Natural object type function
■ Function Call
■ Natural statements DEFINE FUNCTION, DEFINE PROTOTYPE

Introduction to User-Defined Functions

A user-defined function is a programming object of type function, containing Natural statements
which implement a specific functional task. The invocation of a user-defined function (“function
call”) usually has a number of parameters and returns a result.

The syntactical representation of a function call is the function name (call-name) followed by a
special bracket notation containing the parameters, which is, for example: FCTNAME(<...>).

A function can be called from any place within a Natural statement where an operand is expected
which is only read, but notmodified. The result returned by the function is processed by the statement
at the place where the function call is embedded, like a field containing the same value.

A function can also be called in a stand-alonemode, outside of anyNatural statement. In this case,
the function result is not processed.

Usually, the result value returned by the function depends on the parameters provided with the
function call. As well as with a Natural subprogram, a parameter can be definedwithin a function
as a “by reference”, “by value” or “by value result” field. This makes it possible to provide para-
meter values in a function call which are only transfer compatible towhat is defined in the function
definition. Moreover, it allows you to exchange data between the calling object and the function
not only via the function result, but also via parameters. The correctness of the parameter list and
the compatibility of the result value is checked at compilation, either by means of an existing
cataloged function object or by means of a result and parameter layout definition described with
a DEFINE PROTOTYPE statement.

All function calls used in aNatural statement are evaluated in a separate step before the statement
execution is started. They are evaluated in the same order in which they appear in the statement.

Programming Guide194

User-Defined Functions

Restrictions

At some places in a programming object, function calls cannot be used. This includes

■ positions where the operand value is changed by the Natural statement;
■ all kinds of database calls (for example, FIND, READ);
■ DEFINE DATA statement;
■ IF BREAK statement;
■ AT BREAK statement;
■ array index expressions;
■ Natural system functions (for example, AVER, SUM);
■ parameters of a function call.

Function Call versus Subprogram Call

The following is a comparison of the characteristics of a function call with those of a subprogram
call.

■ What is similar?
■ What is different?
■ Example of a Function Call
■ Example of a Subprogram Call

What is similar?

The following similarities exist between a function call and a subprogram call:

■ The programming code forming the routine logic is coded inside a separate object, either in a
function or a subprogram.

■ Parameters are defined in the object using a DEFINE DATA PARAMETER statement, with various
communication modes (for example, “by value”).

195Programming Guide

User-Defined Functions

What is different?

The following differences exist between a function call and a subprogram call:

■ A function call can be used at any position in a Natural statement where a read-only operand
is possible (for exceptions, see Restrictions), whereas subprograms can be invoked only via the
CALLNAT statement.

■ A function returns a result valuewhich can instantly be processed by the statement that includes
the function call. The use of a temporary variable is not required. A CALLNAT statement can only
return data via its parameters. To process such a value with another statement, it needs to be
declared as an explicit variable.

■ Parameters and the result of a function call are always verified if the called function already
exists at compilation time. Subprogram calls are checked only if the compiler option PCHECK is
set to ON.

■ The name of a function, which is used to call the function, is definedwithin the DEFINE FUNCTION
statement and may differ from the name of the object containing the function. Similar to sub-
routines, the name of a function may have up to 32 characters. A subprogram is called by the
name of the subprogram object. Therefore, themaximumname length is limited to 8 characters.

Example of a Function Call

The following example shows a program calling a function, and the function definition created
with a DEFINE FUNCTION statement.

Program Calling the Function

** Example 'FUNCAX01': Calling a function (Program)
**
*
WRITE 'Function call' F#ADD(< 2,3 >) /* Function call.

/* No temporary variables needed.
*
END

Definition of Function F#ADD

** Example 'FUNCAX02': Calling a function (Function)
**
DEFINE FUNCTION F#ADD

RETURNS #RESULT (I4)
DEFINE DATA PARAMETER

1 #SUMMAND1 (I4) BY VALUE
1 #SUMMAND2 (I4) BY VALUE

END-DEFINE
/*
#RESULT := #SUMMAND1 + #SUMMAND2
/*

Programming Guide196

User-Defined Functions

END-FUNCTION
*
END ↩

Example of a Subprogram Call

To implement the same functionality as shown in the example of a function call by using a subpro-
gram call instead, you need to specify temporary variables.

Program Calling the Subprogram

The following example shows a program calling a subprogram, involving the use of a temporary
variable.

** Example 'FUNCAX03': Calling a subprogram (Program)
**
DEFINE DATA LOCAL

1 #RESULT (I4) INIT <0>
END-DEFINE
*
CALLNAT 'FUNCAX04' #RESULT 2 3 /* Result is stored in #RESULT.
*
WRITE '=' #RESULT /* Print out the result of the

/* subprogram.
*
END

Called Subprogram FUNCAX04

** Example 'FUNCAX04': Calling a subprogram (Subprogram)
**
DEFINE DATA PARAMETER

1 #RESULT (I4) BY VALUE RESULT
1 #SUMMAND1 (I4) BY VALUE
1 #SUMMAND2 (I4) BY VALUE

END-DEFINE
*
#RESULT := #SUMMAND1 + #SUMMAND2
*
END ↩

197Programming Guide

User-Defined Functions

Function Definition (DEFINE FUNCTION)

A function is created in a separate Natural object of type function. It contains a single DEFINE
FUNCTION statement, which defines the parameter interface, the result value and the program code
forming the operation logic.

Symbolic and Variable Function Call

There are two modes to call a function, either in a direct form or indirect form. In the direct form
(denoted as “symbolic” function call), the function name specified in the call is exactly the name
of the function itself. In the indirect form (denoted as “variable” function call), the name specified
in the function call is an alphanumeric variable with any name, which contains the name of the
called function at runtime.

To define a variable function call, it is always necessary to use a DEFINE PROTOTYPE VARIABLE
statement. Otherwise, the function call is assumed to be a symbolic function call; this means, the
name itself is regarded as the function name.

See Function Call for more details about this topic.

Function Result and Parameters

Usually, function calls are used within Natural statements instead of variables or constant values.
Since the compiler strictly requires the layout of the operands involved, it is essential to get the
format, length and array structure of a function result. Moreover, if the parameter structure of a
function is known, the parameters supplied in a function call can be checked for correctness at
compilation time.

There are three options to provide this information

■ with a DEFINE PROTOTYPE statement;
■ implicit by the existent object (cataloged version) of the called function, which is automatically
loaded by the compiler if no DEFINE PROTOTYPE statement was found before;

■ with an explicit (IR=) clause specified in the function call.

The simplest way is certainly to use the second option, as it always takes the information from the
object which is called at runtime. However, this is only possible if the cataloged object of the called
function is available. If a function is called with a variable function call, via a variable containing
the function name, the name of the function object is unknown and as a consequence cannot be

Programming Guide198

User-Defined Functions

identified and loaded. In this case a DEFINE PROTOTYPE statement can be used to describe the
function interface. The first two options comprise a full validation of the result and the parameters.

If neither a DEFINE PROTOTYPE statement nor the existent object of a function call is available, two
casting options can be used in a function call. These are

■ (IR=) to specify the function result format/length/array structure. This option does not incorporate
any parameter checks.

■ (PT=) to use a previously defined prototype with a name other than the function name.

Explicit Prototype Definition (DEFINE PROTOTYPE)

To specify the interface of a certain function, a DEFINE PROTOTYPE statement can be used. This
statement defines the layout of the parameters, which are to be passed in a function call, and the
format/length of the result field returned by the function. Furthermore, it indicates whether a
function call is a “symbolic” or a “variable” function call.

When a function call was found, Natural tries to locate a prototype with the same name as the
used function name. If such a prototype is found, the function result and parameter layouts of this
prototype are used to resolve the function call. Especially, the decision on the function call mode
(“symbolic” or “variable”) is made at this place.

Implicit (Automatic) Prototype Definition

If a function call is resolved in a program, the compiler searches for a DEFINE PROTOTYPE statement
with the function name, which has been defined before. If such a statement cannot be found,
Natural tries to load the called function into the buffer pool. If successful, the function layout of
the result and and the parameters is extracted from the object data and kept as if it was provided
by an explicit DEFINE PROTOTYPE statement for this function. This manner of use is denoted as
automatic prototype definition. It assures great conformity between the interface definition (at compile
time) and the passing accuracy at runtime.

199Programming Guide

User-Defined Functions

Prototype Cast (PT Clause)

In order to get the interface layout of a called function, Natural tries to locate a DEFINE PROTOTYPE
statement with the same name as the function identifier. If such a statement is not available, and
the called function object cannot be loaded (see Implicit (Automatic) Prototype Definition), a
(PT=) clause can be specified in the function call. If such a clause is applied, the DEFINE PROTOTYPE
statementwith the referenced name (which is different from the function name) is used to describe
the function result and to validate the parameters.

Example:

#I := #MULT(<(PT=#ADD) 2 , 3>)

In this example, the function #MULT is called, but the result and parameter layouts are used from
a prototype whose name is #ADD.

Intermediate Result Definition (IR Clause)

Usually, the function result is specified by a DEFINE PROTOTYPE statement, which is either coded
explicitly or will be created automatically with the function object (see Implicit (Automatic) Pro-
totype Definition). If such a definition is not available, the result layout can be specified by using
the (IR=) clause in the function call. If this clause is used, it determines which format/length the
compiler should use for the result field in the statement generation. This clause can also be specified
if the prototype definition is available for a function call. In this case, the result layout in the pro-
totype is overruled by the (IR=) clause specification; the parameter checks, however, are performed
according to the prototype definition.

Combinations of Possible Prototype Definitions

In order to resolve a function call, the compiler needs information on

■ the function call mode (symbolic or variable);
■ the layout (format/length) of the function result;
■ the layout (format/length) of the function parameters.

Different options allow you to provide this data, which are the explicit prototype definition, the
implicit prototype definition, the (PT=) option, and the (IR=) option. But which one has an effect
if multiple of these clauses are used?

Programming Guide200

User-Defined Functions

A function call is used as a variable function call if there is a related prototype with the same
name,which contains a VARIABLE clause. In all other cases, the function call is treated as a symbolic
function call.

The result is determined in the following order:

■ the definition provided in (IR=), if this clause is specified;
■ the RETURNS definition in the prototype referenced in (PT=), if this clause is specified;
■ the explicit prototype definition (DEFINE PROTOTYPE) with the same name as used in the function
call, if it exists;

■ the implicit prototype definition,which is loaded automatically from the existing function object.

If none of these options applies, a syntax error is raised.

The parameter checks are performed according to the definition in:

■ the prototype definition referenced in (PT=), if this clause is specified;
■ the explicit prototype definition (DEFINE PROTOTYPE) with the same name as used in the function
call, if it exists;

■ the implicit prototype definition,which is loaded automatically from the existing function object.

If none of these options applies, the parameter validation is not performed. This allows you to
supply any number and layout of parameters in the function call, without receiving a syntax error.

Example with Multiple Definitions in a Function Call

Program:

** Example 'FUNCBX01': Declare result value and parameters (Program)
**
*
DEFINE DATA LOCAL

1 #PROTO-NAME (A20)
1 #PARM1 (I4)
1 #PARM2 (I4)

END-DEFINE
*
DEFINE PROTOTYPE VARIABLE #PROTO-NAME

RETURNS (I4)
DEFINE DATA PARAMETER

1 #P1 (I4) BY VALUE OPTIONAL
1 #P2 (I4) BY VALUE

END-DEFINE
END-PROTOTYPE
*
#PROTO-NAME := 'F#MULTI'
#PARM1 := 3

201Programming Guide

User-Defined Functions

#PARM2 := 5
*
WRITE #PROTO-NAME(<#PARM1, #PARM2>)
WRITE #PROTO-NAME(<1X ,5>)
*
WRITE F#MULTI(<(PT=#PROTO-NAME) #PARM1,#PARM2>)
*
WRITE F#MULTI(<(IR=N20) #PARM1, #PARM2>)
*
END

Function F#MULTI:

** Example 'FUNCBX02': Declare result value and parameters (Function)
**
DEFINE FUNCTION F#MULTI

RETURNS #RESULT (I4) BY VALUE
DEFINE DATA PARAMETER

1 #FACTOR1 (I4) BY VALUE OPTIONAL
1 #FACTOR2 (I4) BY VALUE

END-DEFINE
/*
IF #FACTOR1 SPECIFIED

#RESULT := #FACTOR1 * #FACTOR2
ELSE

#RESULT := #FACTOR2 * 10
END-IF
/*

END-FUNCTION
*
END ↩

Evaluation Sequence of Functions in Statements

Instead of operands, function calls can be used directly in statements. However, this is only allowed
with operands which are only read, but not modified by the statement.

All function calls are evaluated before the statement execution starts. The returned result values
are stored in temporary fields and passed to the statement. The functions are executed in the same
order in which they appear in the statement. If a function call has parameters which are modified
by the function execution, you should consider that this can influence the statement result. This
may apply if the same parameter is used at another place in the same statement.

Example:

Before the COMPUTE statement is started, variable #I has the value 1. In a first step, function F#RETURN
is executed. This changes #I to value 2 and returns the same value as the function result. After

Programming Guide202

User-Defined Functions

this, the COMPUTE operation starts and adds the incremented #I (2) and the temporary field (2)
to a sum of 4.

Program:

** Example 'FUNCCX01': Parameter changed within function (Program)
**
DEFINE DATA LOCAL

1 #I (I2) INIT <1>
1 #RESULT (I2)

END-DEFINE
*
COMPUTE #RESULT := #I + F#RETURN(<#I>) /* First evaluate function call,

/* then execute the addition.
*
WRITE '#I :' #I /

'#RESULT:' #RESULT
*
END

Function:

** Example 'FUNCCX02': Parameter changed within function (Function)
**
DEFINE FUNCTION F#RETURN

RETURNS #RESULT (I2) BY VALUE
DEFINE DATA PARAMETER

1 #PARM1 (I2) BY VALUE RESULT
END-DEFINE
/*
#PARM1 := #PARM1 + 1 /* Increment parameter.
#RESULT := #PARM1 /* Set result value.
/*

END-FUNCTION
*
END ↩

Output of Program FUNCCX01:

#I : 2
#RESULT: 4 ↩

203Programming Guide

User-Defined Functions

Using a Function as a Statement

A function can also be called stand-alone, without being embedded in other statements. In this
case, the function return value is completely ignored.

If such an execution mode is desired, only the function call is coded, which then stands for a
statement. In order to prevent an unwanted link to the previous statement in the source code, a
semicolon must be used to explicitly separate the function call from this statement.

Example:

Program:

** Example 'FUNCDX01': Using a function as a statement (Program)
**
DEFINE DATA LOCAL

1 #A (I4) INIT <1>
1 #B (I4) INIT <2>

END-DEFINE
*
*
WRITE 'Write:' #A #B
F#PRINT-ADD(< 2,3 >) /* Function call belongs to operand list

/* immediately preceding it.
*
WRITE // '*************************' //
*
WRITE 'Write:' #A #B; /* Semicolon separates operands and function.
F#PRINT-ADD(< 2,3 >) /* Function call does not belong to the

/* operand list.
*
END

Function:

** Example 'FUNCDX02': Using a function as a statement (Function)
**
DEFINE FUNCTION F#PRINT-ADD

RETURNS (I4)
DEFINE DATA PARAMETER

1 #SUMMAND1 (I4) BY VALUE
1 #SUMMAND2 (I4) BY VALUE

END-DEFINE
/*
F#PRINT-ADD := #SUMMAND1 + #SUMMAND2 /* Result of function call.
WRITE 'Function call:' F#PRINT-ADD
/*

END-FUNCTION

Programming Guide204

User-Defined Functions

*
END ↩

Output of Program FUNCDX01:

Function call: 5
Write: 1 2 5

Write: 1 2
Function call: 5 ↩

205Programming Guide

User-Defined Functions

206

V Accessing Data in a Database

This part describes various aspects of accessing data in a database with Natural.

Natural and Database Access

Accessing Data in an Adabas Database

Accessing Data in an SQL Database

Accessing Data in a Tamino Database

207

208

24 Natural and Database Access

■ Database Management Systems Supported by Natural ... 210
■ Profile Parameters Influencing Database Access ... 211
■ Access through Data Definition Modules .. 211
■ Natural's Data Manipulation Language ... 212
■ Natural's Special SQL Statements ... 213

209

This chapter gives an overview of the facilities that Natural provides for accessing different types
of database management systems.

Database Management Systems Supported by Natural

Natural offers specific database interfaces for the following types of databasemanagement systems
(DBMS):

■ Nested-relational DBMS (Adabas)
■ SQL-type DBMS (Oracle, Sybase, Informix, MS SQL Server)
■ XML-type DBMS (Tamino)

The following topics are covered below:

■ Adabas
■ Tamino
■ SQL Databases

Adabas

Via its integratedAdabas interface, Natural can access Adabas databases either on a localmachine
or on remote computers. For remote access, an additional routing and communication software
such as Entire Net-Work is necessary. In any case, the type of host machine running the Adabas
database is transparent for the Natural user.

Tamino

Natural for Tamino offers the possibility to access a Tamino database server on a local machine
or on a remote host using a native HTTP protocol. The Tamino database can be accessed in the
same manner as data access is done with Adabas or SQL databases.

SQL Databases

Natural acesses SQL database systems via Entire Access, a generic interface and routing software
that supports various SQL database management systems such as Oracle, MS SQL Server or
standardized ODBC connections. For a complete overview of the SQL database management
systems and platforms supported, refer to the Entire Access documentation. Information on Nat-
ural configuration aspects is contained in the document Natural and Entire Access.

Programming Guide210

Natural and Database Access

Profile Parameters Influencing Database Access

There are variousNatural profile parameters to define howNatural handles the access to databases.

For an overview of these profile parameters, see the section Database Management in Overview of
Profile Parameters in the Configuration Utility documentation.

For a detailed parameter description, refer to the corresponding section in the Parameter Reference.

Access through Data Definition Modules

To enable convenient and transparent access to the different database management systems, a
special object, the “data definition module” (DDM), is used in Natural. This DDM establishes the
connection between the Natural data structures and the data structures in the database system to
be used. Such a database structuremight be a table in an SQLdatabase, a file in anAdabas database
or a doctype in a Tamino database.Hence, theDDMhides the real structure of the database accessed
from the Natural application. DDMs are created using the Natural DDM editor.

Natural is capable of accessing multiple types of databases (Adabas, Tamino, RDBMS) from
within a single application by using references to DDMs that represent the specific data structures
in the specific database system. The diagrambelow shows an application that connects to different
types of database.

211Programming Guide

Natural and Database Access

Natural's Data Manipulation Language

Natural has a built-in datamanipulation language (DML) that allowsNatural applications to access
all database systems supported byNatural using the same language statements such as FIND, READ,
STORE or DELETE. These statements can be used in a Natural application without knowing the type
of database that is going to be accessed.

Natural determines the real type of database system from its configuration files and translates the
DML statements into database-specific commands; that is, it generates direct commands for
Adabas, SQL statement strings and host variable structures for SQLdatabases andXQuery requests
for a Tamino database.

Because some of the Natural DML statements provide functionality that cannot be supported for
all database types, the use of this functionality is restricted to specific database systems. Please,
note the corresponding database-specific considerations in the statements documentation.

Programming Guide212

Natural and Database Access

Natural's Special SQL Statements

In addition to the “normal” Natural DML statements, Natural provides a set of SQL statements
for a more specific use in conjunction with SQL database systems; see SQL Statements Overview
(in the Statements documentation).

Flexible SQL and facilities forworkingwith stored procedures complete the set of SQL commands.
These statements can be used for SQL database access only and are not valid for Adabas or other
non-SQL-databases.

213Programming Guide

Natural and Database Access

214

25 Accessing Data in an Adabas Database

■ Adabas Database Management Interfaces ADA and ADA2 .. 216
■ Data Definition Modules - DDMs ... 216
■ Database Arrays .. 218
■ Defining a Database View ... 224
■ Statements for Database Access .. 227
■ Multi-Fetch Clause ... 239
■ Database Processing Loops .. 240
■ Database Update - Transaction Processing ... 246
■ Selecting Records Using ACCEPT/REJECT ... 253
■ AT START/END OF DATA Statements ... 257
■ Unicode Data .. 259

215

This chapter describes various aspects of accessing data in an Adabas database with Natural.

Adabas Database Management Interfaces ADA and ADA2

Natural'sAdabas databasemanagement interfacesADAandADA2are considereddistinct database
interfaces like, for example, ADA and SQL.

Database type ADA is Natural's default interface to Adabas databases. It is the appropriate choice
if new Adabas functionality as introduced with Adabas Version 6 on Open Systems and Adabas
Version 8 on mainframes is not concerned.

Database type ADA2 is provided as an extended interface to Adabas databases as of Version 6 on
Open Systems and Adabas as of Version 8 on mainframes. In particular, it supports Adabas LA
fields, Adabas large object fields and extended Adabas buffer lengths. The support of Adabas LA
and large object fields implies the use of Natural format (A) DYNAMIC in a view definition, the
support of extended Adabas buffer lengths enables the definition of view sizes that exceed 64 KB.
For further information, refer to Defining a Database View.

Database type ADA2 does not supportmulti-fetch processing. Corresponding global and local
definitions are ignored at runtime.

SoftwareAGproductswhich have their own systemfiles require a corresponding physical database
of database type ADA.

Natural objects that were compiled with database type ADA can be executed in an environment
where the corresponding Adabas database is defined as database type ADA2.

Data Definition Modules - DDMs

For Natural to be able to access a database file, a logical definition of the physical database file is
required. Such a logical file definition is called a data definition module (DDM).

This section covers the following topics:

■ Use of Data Definition Modules
■ Maintaining DDMs

Programming Guide216

Accessing Data in an Adabas Database

■ Listing/Displaying DDMs

Use of Data Definition Modules

The data definitionmodule contains information about the individual fields of the file - information
which is relevant for the use of these fields in a Natural program. A DDM constitutes a logical
view of a physical database file.

For each physical file of a database, one or more DDMs can be defined. And for each DDM one
or more data views can be defined as described View Definition in the DEFINE DATA statement
documentation and explained in the section Defining a Database View.

DDMs are defined by the Natural administrator with Predict (or, if Predict is not available, with
the corresponding Natural function).

217Programming Guide

Accessing Data in an Adabas Database

Maintaining DDMs

For each database field, a DDM contains the database-internal field name as well as the “external”
field name, that is, the name of the field as used in a Natural program. Moreover, the formats and
lengths of the fields are defined in the DDM, as well as various specifications that are used when
the fields are output with a DISPLAY or WRITE statement (column headings, edit masks, etc.).

For the field attributes defined in a DDM, refer toUsing the DDMEditor in the sectionDDMEditor
of the Editors documentation.

Listing/Displaying DDMs

If you do not know the name of the DDM you want, you can use the system command LIST VIEW
to get a list of all existing DDMs that are available in the current library. From the list, you can
then select a DDM for display.

MeaningSystem command

Displays a list of all views (DDMs).LIST VIEW

If you specify a single view name, the specified view will be displayed. For the
view-name you can use asterisk notation to display a list of all views (*) or a
certain range of views (for example: A*).

LIST VIEW view-name

Database Arrays

Adabas supports array structures within the database in the form of multiple-value fields and
periodic groups.

This section covers the following topics:

■ Multiple-Value Fields
■ Periodic Groups
■ Referencing Multiple-Value Fields and Periodic Groups
■ Multiple-Value Fields within Periodic Groups
■ Referencing Multiple-Value Fields within Periodic Groups

Programming Guide218

Accessing Data in an Adabas Database

■ Referencing the Internal Count of a Database Array

Multiple-Value Fields

A multiple-value field is a field which can have more than one value (up to 65534, depending on
the Adabas version and definition of the FDT) within a given record.

219Programming Guide

Accessing Data in an Adabas Database

Example:

Assuming that the above is a record in an employees file, the first field (Name) is an elementary
field, which can contain only one value, namely the name of the person; whereas the second field
(Languages), which contains the languages spoken by the person, is a multiple-value field, as a
person can speak more than one language.

Periodic Groups

Aperiodic group is a group of fields (whichmay be elementary fields and/ormultiple-value fields)
that may have more than one occurrence (up to 65534, depending on the Adabas version and
definition of the field definition table (FDT)) within a given record.

The different values of a multiple-value field are usually called “occurrences”; that is, the number
of occurrences is the number of values which the field contains, and a specific occurrence means
a specific value. Similarly, in the case of periodic groups, occurrences refer to a group of values.

Programming Guide220

Accessing Data in an Adabas Database

Example:

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field
which contains the name of a person; Cars is a periodic group which contains the automobiles
owned by that person. The periodic group consists of three fields which contain the registration
number, make andmodel of each automobile. Each occurrence of Cars contains the values for one
automobile.

Referencing Multiple-Value Fields and Periodic Groups

To reference one or more occurrences of a multiple-value field or a periodic group, you specify
an “index notation” after the field name.

Examples:

The following examples use the multiple-value field LANGUAGES and the periodic group CARS from
the previous examples.

The various values of the multiple-value field LANGUAGES can be referenced as follows.

221Programming Guide

Accessing Data in an Adabas Database

ExplanationExample

References the first value (SPANISH).LANGUAGES (1)

The value of the variable X determines the value to be referenced.LANGUAGES (X)

References the first three values (SPANISH, CATALAN and FRENCH).LANGUAGES (1:3)

References the sixth to tenth values.LANGUAGES (6:10)

The values of the variables X and Y determine the values to be referenced.LANGUAGES (X:Y)

The various occurrences of the periodic group CARS can be referenced in the same manner:

ExplanationExample

References the first occurrence (B-123ABC/SEAT/IBIZA).CARS (1)

The value of the variable X determines the occurrence to be referenced.CARS (X)

References the first two occurrences (B-123ABC/SEAT/IBIZA and B-999XYZ/VW/GOLF).CARS (1:2)

References the fourth to seventh occurrences.CARS (4:7)

The values of the variables X and Y determine the occurrences to be referenced.CARS (X:Y)

Multiple-Value Fields within Periodic Groups

An Adabas array can have up to two dimensions: a multiple-value field within a periodic group.

Programming Guide222

Accessing Data in an Adabas Database

Example:

Assuming that the above is a record in a vehicles file, the first field (Name) is an elementary field
which contains the name of a person; Cars is a periodic group, which contains the automobiles
owned by that person. This periodic group consists of three fields which contain the registration
number, servicing dates and make of each automobile. Within the periodic group Cars, the field
Servicing is a multiple-value field, containing the different servicing dates for each automobile.

Referencing Multiple-Value Fields within Periodic Groups

To reference one ormore occurrences of amultiple-value fieldwithin a periodic group, you specify
a “two-dimensional” index notation after the field name.

Examples:

The following examples use the multiple-value field SERVICINGwithin the periodic group CARS
from the example above. The various values of themultiple-value field can be referenced as follows:

223Programming Guide

Accessing Data in an Adabas Database

ExplanationExample

References the first value of SERVICING in the first occurrence of CARS
(31-05-97).

SERVICING (1,1)

References the first value of SERVICING in the first five occurrences of CARS.SERVICING (1:5,1)

References the first ten values of SERVICING in the first five occurrences of
CARS.

SERVICING (1:5,1:10)

Referencing the Internal Count of a Database Array

It is sometimes necessary to reference a multiple-value field or a periodic groupwithout knowing
how many values/occurrences exist in a given record. Adabas maintains an internal count of the
number of values in each multiple-value field and the number of occurrences of each periodic
group. This count may be read in a READ statement by specifying C* immediately before the field
name.

The count is returned in format/length N3. See Referencing the Internal Count for a Database
Array for further details.

ExplanationExample

Returns the number of values of the multiple-value field LANGUAGES.C*LANGUAGES

Returns the number of occurrences of the periodic group CARS.C*CARS

Returns the number of values of the multiple-value field SERVICING in the first
occurrence of a periodic group (assuming that SERVICING is a multiple-value field
within a periodic group.)

C*SERVICING (1)

Defining a Database View

To be able to use database fields in a Natural program, you must specify the fields in a database
view.

In the view, you specify the name of the data definition module (see Data Definition Modules -
DDMs) from which the fields are to be taken, and the names of the database fields themselves
(that is, their long names, not their database-internal short names).

The view may comprise an entire DDM or only a subset of it. The order of the fields in the view
need not be the same as in the underlying DDM.

As described in the section Statements forDatabaseAccess, the viewname is used in the statements
READ, FIND, HISTOGRAM to determine which database is to be accessed.

For further information on the complete syntax of the viewdefinition option or on the definition/re-
definition of a group of fields, see View Definition in the description of the DEFINE DATA statement
in the Statements documentation.

Programming Guide224

Accessing Data in an Adabas Database

Basically, you have the following options to define a database view:

■ Inside the Program
You can define a database view inside the program, that is, directly within the DEFINE DATA
statement of the program.

■ Outside the Program
You can define a database view outside the program, that is, in a separate programming object:
either a local data area (LDA) or a global data area (GDA), with the DEFINE DATA statement of
the program referencing that data area.

To define a database view inside the program

1 At Level 1, specify the view name as follows:

1 view-name VIEW OF ddm-name

where view-name is the name you choose for the view, ddm-name is the name of the DDM
from which the fields specified in the view are taken.

2 At Level 2, specify the names of the database fields from the DDM.

In the illustration below, the name of the view is ABC, and it comprises the fields NAME,
FIRST-NAME and PERSONNEL-ID from the DDM XYZ.

In the view, the format and length of a database field need not be specified, as these are already
defined in the underlying DDM.

Sample Program:

225Programming Guide

Accessing Data in an Adabas Database

In this example, the view-name is VIEWEMP, and the ddm-name is EMPLOYEES, and the names of
the database fields taken from the DDM are NAME, FIRST-NAME and PERSONNEL-ID.

DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

1 #VARI-A (A20)
1 #VARI-B (N3.2)
1 #VARI-C (I4)
END-DEFINE
...

To define a database view outside the program

1 In the program, specify:

DEFINE DATA LOCAL
USING <data-area-name>

END-DEFINE
...

where data-area-name is the name you choose for the local or global data area, for example,
LDA39.

2 In the data area to be referenced:

1. At Level 1 in the Name column, specify the name you choose for the view, and in the
Miscellaneous column, the name of the DDM from which the fields specified in the view
are taken.

2. At Level 2, specify the names of the database fields from the DDM.

Example LDA39:

In this example, the view name is VIEWEMP, the DDM name is EMPLOYEES, and the names
of the database fields taken from the DDM are PERSONNEL-ID, FIRST-NAME and NAME.

I T L Name F Length Miscellaneous ↩

All -- -------------------------------- - ---------- ------------------------->
 V 1 VIEWEMP EMPLOYEES ↩

 2 PERSONNEL-ID A 8 ↩

 2 FIRST-NAME A 20 ↩

 2 NAME A 20 ↩

Programming Guide226

Accessing Data in an Adabas Database

 1 #VARI-A A 20 ↩

 1 #VARI-B N 3.2 ↩

 1 #VARI-C I 4 ↩
 ↩

Considerations Concerning Databases of Type ADA2

With databases of type ADA2 (specified in the table DBMSAssignments in the ConfigurationUtility,
see Database Management System Assignments in the Configuration Utility documentation), the fol-
lowing applies:

■ If large alphanumeric (LA) or large object (LOB) fields (Adabas LA/LB option) are to be used,
these fields can be specifiedwithin the viewdefinitionwith both fixed format/length, for example,
A20 or U20, and dynamic format/length, for example, (A)DYNAMIC or U(DYNAMIC).

■ Length indicator fields L@... can also be specifiedwithin views if they are related to LA or LOB
fields.

Statements for Database Access

To read data from a database, the following statements are available:

MeaningStatement

Select a range of records from a database in a specified sequence.READ

Select from a database those records which meet a specified search criterion.FIND

Read only the values of one database field, or determine the number of records which meet
a specified search criterion.

HISTOGRAM

READ Statement

The following topics are covered:

■ Use of READ Statement
■ Basic Syntax of READ Statement
■ Example of READ Statement
■ Limiting the Number of Records to be Read
■ STARTING/ENDING Clauses
■ WHERE Clause

227Programming Guide

Accessing Data in an Adabas Database

■ Further Example of READ Statement

Use of READ Statement

The READ statement is used to read records from a database. The records can be retrieved from the
database

■ in the order in which they are physically stored in the database (READ IN PHYSICAL SEQUENCE),
or

■ in the order of Adabas Internal Sequence Numbers (READ BY ISN), or
■ in the order of the values of a descriptor field (READ IN LOGICAL SEQUENCE).

In this document, only READ IN LOGICAL SEQUENCE is discussed, as it is the most frequently used
form of the READ statement.

For information on the other two options, please refer to the description of the READ statement in
the Statements documentation.

Basic Syntax of READ Statement

The basic syntax of the READ statement is:

READ view IN LOGICAL SEQUENCE BY descriptor

or shorter:

READ view LOGICAL BY descriptor

- where

is the name of a view defined in the DEFINE DATA statement and as explained in Defining
a Database View.

view

is the name of a database field defined in that view. The values of this field determine the
order in which the records are read from the database.

descriptor

If you specify a descriptor, you need not specify the keyword LOGICAL:

READ view BY descriptor

If you do not specify a descriptor, the recordswill be read in the order of values of the field defined
as default descriptor (under Default Sequence) in theDDM. However, if you specify no descriptor,
you must specify the keyword LOGICAL:

Programming Guide228

Accessing Data in an Adabas Database

READ view LOGICAL

Example of READ Statement

** Example 'READX01': READ
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 PERSONNEL-ID
2 JOB-TITLE

END-DEFINE
*
READ (6) MYVIEW BY NAME

DISPLAY NAME PERSONNEL-ID JOB-TITLE
END-READ
END

Output of Program READX01:

With the READ statement in this example, records from the EMPLOYEES file are read in alphabetical
order of their last names.

The program will produce the following output, displaying the information of each employee in
alphabetical order of the employees' last names.

Page 1 04-11-11 14:15:54

NAME PERSONNEL CURRENT
ID POSITION

-------------------- --------- -------------------------

ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 2001100

If you wanted to read the records to create a report with the employees listed in sequential order
by date of birth, the appropriate READ statement would be:

229Programming Guide

Accessing Data in an Adabas Database

READ MYVIEW BY BIRTH

You can only specify a field which is defined as a “descriptor” in the underlyingDDM (it can also
be a subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor or a non-descriptor).

Limiting the Number of Records to be Read

As shown in the previous example program, you can limit the number of records to be read by
specifying a number in parentheses after the keyword READ:

READ (6) MYVIEW BY NAME

In that example, the READ statement would read no more than 6 records.

Without the limit notation, the above READ statement would read all records from the EMPLOYEES
file in the order of last names from A to Z.

STARTING/ENDING Clauses

The READ statement also allows you to qualify the selection of records based on the value of a
descriptor field. With an EQUAL TO/STARTING FROM option in the BY clause, you can specify the
value at which reading should begin. (Instead of using the keyword BY, you may specify the
keyword WITH, which would have the same effect). By adding a THRU/ENDING AT option, you can
also specify the value in the logical sequence at which reading should end.

For example, if youwanted a list of those employees in the order of job titles startingwith TRAINEE
and continuing on to Z, you would use one of the following statements:

READ MYVIEW WITH JOB-TITLE = 'TRAINEE'
READ MYVIEW WITH JOB-TITLE STARTING FROM 'TRAINEE'
READ MYVIEW BY JOB-TITLE = 'TRAINEE'
READ MYVIEW BY JOB-TITLE STARTING FROM 'TRAINEE'

Note that the value to the right of the equal sign (=) or STARTING FROM option must be enclosed in
apostrophes. If the value is numeric, this text notation is not required.

The sequence of records to be read can be evenmore closely specified by adding an end limit with
a THRU/ENDING AT clause.

To read just the records with the job title TRAINEE, you would specify:

Programming Guide230

Accessing Data in an Adabas Database

READ MYVIEW BY JOB-TITLE STARTING FROM 'TRAINEE' THRU 'TRAINEE'
READ MYVIEW WITH JOB-TITLE EQUAL TO 'TRAINEE'

ENDING AT 'TRAINEE'

To read just the records with job titles that begin with A or B, you would specify:

READ MYVIEW BY JOB-TITLE = 'A' THRU 'C'
READ MYVIEW WITH JOB-TITLE STARTING FROM 'A' ENDING AT 'C'

The values are read up to and including the value specified after THRU/ENDING AT. In the two ex-
amples above, all records with job titles that begin with A or B are read; if there were a job title C,
this would also be read, but not the next higher value CA.

WHERE Clause

The WHERE clause may be used to further qualify which records are to be read.

For instance, if you wanted only those employees with job titles starting from TRAINEEwho are
paid in US currency, you would specify:

READ MYVIEW WITH JOB-TITLE = 'TRAINEE'
WHERE CURR-CODE = 'USD'

The WHERE clause can also be used with the BY clause as follows:

READ MYVIEW BY NAME
WHERE SALARY = 20000

The WHERE clause differs from the BY clause in two respects:

■ The field specified in the WHERE clause need not be a descriptor.
■ The expression following the WHERE option is a logical condition.

The following logical operators are possible in a WHERE clause:

=EQEQUAL

¬=NENOT EQUAL TO

<LTLESS THAN

<=LELESS THAN OR EQUAL TO

>GTGREATER THAN

>=GEGREATER THAN OR EQUAL TO

The following program illustrates the use of the STARTING FROM, ENDING AT and WHERE clauses:

231Programming Guide

Accessing Data in an Adabas Database

** Example 'READX02': READ (with STARTING, ENDING and WHERE clause)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE
2 INCOME (1:2)

3 CURR-CODE
3 SALARY
3 BONUS (1:1)

END-DEFINE
*
READ (3) MYVIEW WITH JOB-TITLE
STARTING FROM 'TRAINEE' ENDING AT 'TRAINEE'

WHERE CURR-CODE (*) = 'USD'
DISPLAY NOTITLE NAME / JOB-TITLE 5X INCOME (1:2)
SKIP 1

END-READ
END

Output of Program READX02:

NAME INCOME
CURRENT

POSITION CURRENCY ANNUAL BONUS
CODE SALARY

------------------------- -------- ---------- ----------

SENKO USD 23000 0
TRAINEE USD 21800 0

BANGART USD 25000 0
TRAINEE USD 23000 0

LINCOLN USD 24000 0
TRAINEE USD 22000 0

Further Example of READ Statement

See the following example program:

■ READX03 - READ statement

Programming Guide232

Accessing Data in an Adabas Database

FIND Statement

The following topics are covered:

■ Use of FIND Statement
■ Basic Syntax of FIND Statement
■ Limiting the Number of Records to be Processed
■ WHERE Clause
■ Example of FIND Statement with WHERE Clause
■ IF NO RECORDS FOUND Condition
■ Further Examples of FIND Statement

Use of FIND Statement

The FIND statement is used to select from a database those records which meet a specified search
criterion.

Basic Syntax of FIND Statement

The basic syntax of the FIND statement is:

FIND RECORDS IN view WITH field = value

or shorter:

FIND view WITH field = value

- where

is the name of a view as defined in the DEFINE DATA statement and as explained in Defining a
Database View.

view

is the name of a database field as defined in that view.field

You can only specify a fieldwhich is defined as a “descriptor” in the underlyingDDM (it can
also be a subdescriptor, superdescriptor, hyperdescriptor or phonetic descriptor).

For the complete syntax, refer to the FIND statement documentation.

233Programming Guide

Accessing Data in an Adabas Database

Limiting the Number of Records to be Processed

In the same way as with the READ statement described above, you can limit the number of records
to be processed by specifying a number in parentheses after the keyword FIND:

FIND (6) RECORDS IN MYVIEW WITH NAME = 'CLEGG'

In the above example, only the first 6 records that meet the search criterion would be processed.

Without the limit notation, all records that meet the search criterion would be processed.

Note: If the FIND statement contains a WHERE clause (see below), records which are rejected
as a result of the WHERE clause are not counted against the limit.

WHERE Clause

With the WHERE clause of the FIND statement, you can specify an additional selection criterionwhich
is evaluated after a record (selected with the WITH clause) has been read and before any processing
is performed on the record.

Example of FIND Statement with WHERE Clause

** Example 'FINDX01': FIND (with WHERE)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 CITY

END-DEFINE
*
FIND MYVIEW WITH CITY = 'PARIS'

WHERE JOB-TITLE = 'INGENIEUR COMMERCIAL'
DISPLAY NOTITLE CITY JOB-TITLE PERSONNEL-ID NAME

END-FIND
END

Note: In this example only those records which meet the criteria of the WITH clause and the
WHERE clause are processed in the DISPLAY statement.

Output of Program FINDX01:

Programming Guide234

Accessing Data in an Adabas Database

CITY CURRENT PERSONNEL NAME
POSITION ID

-------------------- ------------------------- --------- --------------------

PARIS INGENIEUR COMMERCIAL 50007300 CAHN
PARIS INGENIEUR COMMERCIAL 50006500 MAZUY
PARIS INGENIEUR COMMERCIAL 50004700 FAURIE
PARIS INGENIEUR COMMERCIAL 50004400 VALLY
PARIS INGENIEUR COMMERCIAL 50002800 BRETON
PARIS INGENIEUR COMMERCIAL 50001000 GIGLEUX
PARIS INGENIEUR COMMERCIAL 50000400 KORAB-BRZOZOWSKI

IF NO RECORDS FOUND Condition

If no records are found that meet the search criteria specified in the WITH and WHERE clauses, the
statementswithin the FIND processing loop are not executed (for the previous example, thiswould
mean that the DISPLAY statement would not be executed and consequently no employee data
would be displayed).

However, the FIND statement also provides an IF NO RECORDS FOUND clause, which allows you to
specify processing you wish to be performed in the case that no records meet the search criteria.

Example:

** Example 'FINDX02': FIND (with IF NO RECORDS FOUND)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME

END-DEFINE
*
FIND MYVIEW WITH NAME = 'BLACKSMITH'

IF NO RECORDS FOUND
WRITE 'NO PERSON FOUND.'

END-NOREC
DISPLAY NAME FIRST-NAME

END-FIND
END

The above program selects all records in which the field NAME contains the value BLACKSMITH. For
each selected record, the name andfirst name are displayed. If no recordwith NAME = 'BLACKSMITH'
is found on the file, the WRITE statement within the IF NO RECORDS FOUND clause is executed.

Output of Program FINDX02:

235Programming Guide

Accessing Data in an Adabas Database

Page 1 04-11-11 14:15:54

NAME FIRST-NAME
-------------------- --------------------

NO PERSON FOUND.

Further Examples of FIND Statement

See the following example programs:

■ FINDX07 - FIND (with several clauses)
■ FINDX08 - FIND (with LIMIT)
■ FINDX09 - FIND (using *NUMBER, *COUNTER, *ISN)
■ FINDX10 - FIND (combined with READ)
■ FINDX11 - FIND NUMBER (with *NUMBER)

HISTOGRAM Statement

The following topics are covered:

■ Use of HISTOGRAM Statement
■ Syntax of HISTOGRAM Statement
■ Limiting the Number of Values to be Read
■ STARTING/ENDING Clauses
■ WHERE Clause
■ Example of HISTOGRAM Statement

Use of HISTOGRAM Statement

The HISTOGRAM statement is used to either read only the values of one database field, or determine
the number of records which meet a specified search criterion.

The HISTOGRAM statement does not provide access to any database fields other than the one specified
in the HISTOGRAM statement.

Programming Guide236

Accessing Data in an Adabas Database

Syntax of HISTOGRAM Statement

The basic syntax of the HISTOGRAM statement is:

HISTOGRAM VALUE IN view FOR field

or shorter:

HISTOGRAM view FOR field

- where

is the name of a view as defined in the DEFINE DATA statement and as explained in Defining a
Database View.

view

is the name of a database field as defined in that view.field

For the complete syntax, refer to the HISTOGRAM statement documentation.

Limiting the Number of Values to be Read

In the same way as with the READ statement, you can limit the number of values to be read by
specifying a number in parentheses after the keyword HISTOGRAM:

HISTOGRAM (6) MYVIEW FOR NAME

In the above example, only the first 6 values of the field NAMEwould be read.

Without the limit notation, all values would be read.

STARTING/ENDING Clauses

Like the READ statement, the HISTOGRAM statement also provides a STARTING FROM clause and an
ENDING AT (or THRU) clause to narrow down the range of values to be read by specifying a
starting value and ending value.

Examples:

HISTOGRAM MYVIEW FOR NAME STARTING from 'BOUCHARD'
HISTOGRAM MYVIEW FOR NAME STARTING from 'BOUCHARD' ENDING AT 'LANIER'
HISTOGRAM MYVIEW FOR NAME from 'BLOOM' THRU 'ROESER'

237Programming Guide

Accessing Data in an Adabas Database

WHERE Clause

The HISTOGRAM statement also provides a WHERE clausewhichmay be used to specify an additional
selection criterion that is evaluated after a value has been read and before any processing is performed
on the value. The field specified in the WHERE clause must be the same as in the main clause of the
HISTOGRAM statement.

Example of HISTOGRAM Statement

** Example 'HISTOX01': HISTOGRAM
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 CITY
END-DEFINE
*
LIMIT 8
HISTOGRAM MYVIEW CITY STARTING FROM 'M'

DISPLAY NOTITLE CITY 'NUMBER OF/PERSONS' *NUMBER *COUNTER
END-HISTOGRAM
END

In this program, the system variables *NUMBER and *COUNTER are also evaluated by the HISTOGRAM
statement, and outputwith the DISPLAY statement. *NUMBER contains the number of database records
that contain the last value read; *COUNTER contains the total number of values which have been
read.

Output of Program HISTOX01:

CITY NUMBER OF CNT
PERSONS

-------------------- ----------- -----------

MADISON 3 1
MADRID 41 2
MAILLY LE CAMP 1 3
MAMERS 1 4
MANSFIELD 4 5
MARSEILLE 2 6
MATLOCK 1 7
MELBOURNE 2 8

Programming Guide238

Accessing Data in an Adabas Database

Multi-Fetch Clause

This section covers the multi-fetch record retrieval functionality for Adabas databases.

The multi-fetch functionality described in this section is only supported for databases of type ADA,
which can be defined in the DBMS Assignments table in the Configuration Utility; see Database
Management System Assignments in the Configuration Utility documentation. With database type
ADA2, the multi-fetch clause is not supported.

The following topics are covered:

■ Purpose of Multi-Fetch Feature
■ Statements Supported
■ Considerations for Multi-Fetch Usage

Purpose of Multi-Fetch Feature

In standard mode, Natural does not read multiple records with a single database call; it always
operates in a one-record-per-fetch mode. This kind of operation is solid and stable, but can take
some time if a large number of database records are being processed. To improve the performance
of those programs, you can use multi-fetch processing.

By default, Natural uses single-fetch to retrieve data from Adabas databases. This default can be
configured using the Natural profile parameter MFSET.

Values ON (multi-fetch) and OFF (single-fetch) define the default behavior. If MFSET is set to NEVER,
Natural always uses single-fetch mode and ignores any settings at statement level.

The default processing mode can also be overridden at statement level.

Statements Supported

Multi-fetch processing is supported for the following statements that do not involve database
modification:

■ FIND

■ READ

■ HISTOGRAM

For more information on the syntax, see the description of the MULTI-FETCH clause of the FIND,
READ or HISTOGRAM statements.

239Programming Guide

Accessing Data in an Adabas Database

Considerations for Multi-Fetch Usage

If nested database loops that refer to the same Adabas file contain UPDATE statements in one of the
inner loops, Natural continues processing the outer loops with the updated values. This implies
in multi-fetch mode, that an outer logical READ loop has to be repositioned if an inner database
loop updates the value of the descriptor that is used for sequence control in the outer loop. If this
attempt leads to a conflict for the current descriptor, an error is returned. To avoid this situation,
we recommend that you disable multi-fetch in the outer database loops.

In general, multi-fetch mode improves performance when accessing Adabas databases. In some
cases, however, it might be advantageous to use single-fetch to enhance performance, especially
if database modifications are involved.

Database Processing Loops

This section discusses processing loops required to process data that have been selected from a
database as a result of a FIND, READ or HISTOGRAM statement.

The following topics are covered:

■ Creation of Database Processing Loops
■ Hierarchies of Processing Loops
■ Example of Nested FIND Loops Accessing the Same File
■ Further Examples of Nested READ and FIND Statements

Creation of Database Processing Loops

Natural automatically creates the necessary processing loops which are required to process data
that have been selected from a database as a result of a FIND, READ or HISTOGRAM statement.

Example:

In the following exampe, the FIND loop selects all records from the EMPLOYEES file in which the
field NAME contains the value ADKINSON and processes the selected records. In this example, the
processing consists of displaying certain fields from each record selected.

** Example 'FINDX03': FIND
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY

END-DEFINE
*

Programming Guide240

Accessing Data in an Adabas Database

FIND MYVIEW WITH NAME = 'ADKINSON'
DISPLAY NAME FIRST-NAME CITY

END-FIND
END

If the FIND statement contained a WHERE clause in addition to the WITH clause, only those records
that were selected as a result of the WITH clause andmet the WHERE criteria would be processed.

The following diagram illustrates the flow logic of a database processing loop:

241Programming Guide

Accessing Data in an Adabas Database

Programming Guide242

Accessing Data in an Adabas Database

Hierarchies of Processing Loops

The use ofmultiple FIND and/or READ statements creates a hierarchy of processing loops, as shown
in the following example:

Example of Processing Loop Hierarchy

** Example 'FINDX04': FIND (two FIND statements nested)
**
DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME

1 AUTOVIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE
2 MODEL

END-DEFINE
*
EMP. FIND PERSONVIEW WITH NAME = 'ADKINSON'

VEH. FIND AUTOVIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)
DISPLAY NAME MAKE MODEL

END-FIND
END-FIND
END

The above program selects from the EMPLOYEES file all peoplewith the name ADKINSON. Each record
(person) selected is then processed as follows:

1. The second FIND statement is executed to select the automobiles from the VEHICLES file, using
as selection criterion the PERSONNEL-IDs from the records selected from the EMPLOYEES file with
the first FIND statement.

2. The NAME of each person selected is displayed; this information is obtained from the EMPLOYEES
file. The MAKE and MODEL of each automobile owned by that person is also displayed; this inform-
ation is obtained from the VEHICLES file.

The second FIND statement creates an inner processing loop within the outer processing loop of
the first FIND statement, as shown in the following diagram.

The diagram illustrates the flow logic of the hierarchy of processing loops in the previous example
program:

243Programming Guide

Accessing Data in an Adabas Database

Programming Guide244

Accessing Data in an Adabas Database

Example of Nested FIND Loops Accessing the Same File

It is also possible to construct a processing loop hierarchy in which the same file is used at both
levels of the hierarchy:

** Example 'FINDX05': FIND (two FIND statements on same file nested)
**
DEFINE DATA LOCAL
1 PERSONVIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY

1 #NAME (A40)
END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED

'PEOPLE IN SAME CITY AS:' #NAME / 'CITY:' CITY SKIP 1
*
FIND PERSONVIEW WITH NAME = 'JONES'

WHERE FIRST-NAME = 'LAUREL'
COMPRESS NAME FIRST-NAME INTO #NAME
/*
FIND PERSONVIEW WITH CITY = CITY

DISPLAY NAME FIRST-NAME CITY
END-FIND

END-FIND
END

The above program first selects all people with name JONES and first name LAUREL from the
EMPLOYEES file. Then all who live in the same city are selected from the EMPLOYEES file and a list
of these people is created. All field values displayed by the DISPLAY statement are taken from the
second FIND statement.

Output of Program FINDX05:

PEOPLE IN SAME CITY AS: JONES LAUREL
CITY: BALTIMORE

NAME FIRST-NAME CITY
-------------------- -------------------- --------------------

JENSON MARTHA BALTIMORE
LAWLER EDDIE BALTIMORE
FORREST CLARA BALTIMORE
ALEXANDER GIL BALTIMORE
NEEDHAM SUNNY BALTIMORE
ZINN CARLOS BALTIMORE
JONES LAUREL BALTIMORE

245Programming Guide

Accessing Data in an Adabas Database

Further Examples of Nested READ and FIND Statements

See the following example programs:

■ READX04 - READ statement (in combination with FIND and the system variables *NUMBER
and *COUNTER)

■ LIMITX01 - LIMIT statement (for READ, FIND loop processing)

Database Update - Transaction Processing

This section describes howNatural performs database updating operations based on transactions.

The following topics are covered:

■ Logical Transaction
■ Record Hold Logic
■ Backing Out a Transaction
■ Restarting a Transaction
■ Example of Using Transaction Data to Restart a Transaction

Logical Transaction

Natural performs database updating operations based on transactions, which means that all
database update requests are processed in logical transaction units. A logical transaction is the
smallest unit of work (as defined by you) which must be performed in its entirety to ensure that
the information contained in the database is logically consistent.

A logical transaction may consist of one or more update statements (DELETE, STORE, UPDATE) in-
volving one ormore database files. A logical transactionmay also spanmultipleNatural programs.

A logical transaction beginswhen a record is put on “hold”; Natural does this automaticallywhen
the record is read for updating, for example, if a FIND loop contains an UPDATE or DELETE statement.

The end of a logical transaction is determined by an END TRANSACTION statement in the program.
This statement ensures that all updates within the transaction have been successfully applied, and
releases all records that were put on “hold” during the transaction.

Programming Guide246

Accessing Data in an Adabas Database

Example:

DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
END-DEFINE
FIND MYVIEW WITH NAME = 'SMITH'

DELETE
END TRANSACTION

END-FIND
END

Each record selected would be put on “hold”, deleted, and then - when the END TRANSACTION
statement is executed - released from “hold”.

Note: TheNatural profile parameter ETEOP, as set by theNatural administrator, determines
whether or not Natural will generate an END TRANSACTION statement at the end of each
Natural program. Ask your Natural administrator for details.

Example of STORE Statement:

The following example program adds new records to the EMPLOYEES file.

** Example 'STOREX01': STORE (Add new records to EMPLOYEES file)
*
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
1 EMPLOYEE-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID(A8)
2 NAME (A20)
2 FIRST-NAME (A20)
2 MIDDLE-I (A1)
2 SALARY (P9/2)
2 MAR-STAT (A1)
2 BIRTH (D)
2 CITY (A20)
2 COUNTRY (A3)

*
1 #PERSONNEL-ID (A8)
1 #NAME (A20)
1 #FIRST-NAME (A20)
1 #INITIAL (A1)
1 #MAR-STAT (A1)
1 #SALARY (N9)
1 #BIRTH (A8)
1 #CITY (A20)
1 #COUNTRY (A3)
1 #CONF (A1) INIT <'Y'>
END-DEFINE

247Programming Guide

Accessing Data in an Adabas Database

*
REPEAT

INPUT 'ENTER A PERSONNEL ID AND NAME (OR ''END'' TO END)' //
'PERSONNEL-ID : ' #PERSONNEL-ID //
'NAME : ' #NAME /
'FIRST-NAME : ' #FIRST-NAME

/***
/* validate entered data
/***
IF #PERSONNEL-ID = 'END' OR #NAME = 'END'

STOP
END-IF
IF #NAME = ' '

REINPUT WITH TEXT 'ENTER A LAST-NAME'
MARK 2 AND SOUND ALARM

END-IF
IF #FIRST-NAME = ' '

REINPUT WITH TEXT 'ENTER A FIRST-NAME'
MARK 3 AND SOUND ALARM

END-IF
/***
/* ensure person is not already on file
/***
FIP2. FIND NUMBER EMPLOYEE-VIEW WITH PERSONNEL-ID = #PERSONNEL-ID
/*
IF *NUMBER (FIP2.) > 0

REINPUT 'PERSON WITH SAME PERSONNEL-ID ALREADY EXISTS'
MARK 1 AND SOUND ALARM

END-IF
/***
/* get further information
/***
INPUT

'ENTER EMPLOYEE DATA' ////
'PERSONNEL-ID :' #PERSONNEL-ID (AD=IO) /
'NAME :' #NAME (AD=IO) /
'FIRST-NAME :' #FIRST-NAME (AD=IO) ///
'INITIAL :' #INITIAL /
'ANNUAL SALARY :' #SALARY /
'MARITAL STATUS :' #MAR-STAT /
'DATE OF BIRTH (YYYYMMDD) :' #BIRTH /
'CITY :' #CITY /
'COUNTRY (3 CHARS) :' #COUNTRY //
'ADD THIS RECORD (Y/N) :' #CONF (AD=M)

/***
/* ENSURE REQUIRED FIELDS CONTAIN VALID DATA
/***
IF #SALARY < 10000

REINPUT TEXT 'ENTER A PROPER ANNUAL SALARY' MARK 2
END-IF
IF NOT (#MAR-STAT = 'S' OR = 'M' OR = 'D' OR = 'W')

REINPUT TEXT 'ENTER VALID MARITAL STATUS S=SINGLE ' -

Programming Guide248

Accessing Data in an Adabas Database

'M=MARRIED D=DIVORCED W=WIDOWED' MARK 3
END-IF
IF NOT(#BIRTH = MASK(YYYYMMDD) AND #BIRTH = MASK(1582-2699))

REINPUT TEXT 'ENTER CORRECT DATE' MARK 4
END-IF
IF #CITY = ' '

REINPUT TEXT 'ENTER A CITY NAME' MARK 5
END-IF
IF #COUNTRY = ' '

REINPUT TEXT 'ENTER A COUNTRY CODE' MARK 6
END-IF
IF NOT (#CONF = 'N' OR= 'Y')

REINPUT TEXT 'ENTER Y (YES) OR N (NO)' MARK 7
END-IF
IF #CONF = 'N'

ESCAPE TOP
END-IF
/***
/* add the record with STORE
/***
MOVE #PERSONNEL-ID TO EMPLOYEE-VIEW.PERSONNEL-ID
MOVE #NAME TO EMPLOYEE-VIEW.NAME
MOVE #FIRST-NAME TO EMPLOYEE-VIEW.FIRST-NAME
MOVE #INITIAL TO EMPLOYEE-VIEW.MIDDLE-I
MOVE #SALARY TO EMPLOYEE-VIEW.SALARY (1)
MOVE #MAR-STAT TO EMPLOYEE-VIEW.MAR-STAT
MOVE EDITED #BIRTH TO EMPLOYEE-VIEW.BIRTH (EM=YYYYMMDD)
MOVE #CITY TO EMPLOYEE-VIEW.CITY
MOVE #COUNTRY TO EMPLOYEE-VIEW.COUNTRY
/*
STP3. STORE RECORD IN FILE EMPLOYEE-VIEW
/*
/***
/* mark end of logical transaction
/***
END OF TRANSACTION
RESET INITIAL #CONF

END-REPEAT
END

Output of Program STOREX01:

ENTER A PERSONNEL ID AND NAME (OR 'END' TO END)

PERSONNEL ID :

NAME :
FIRST NAME :

249Programming Guide

Accessing Data in an Adabas Database

Record Hold Logic

If Natural is used with Adabas, any record which is to be updated will be placed in “hold” status
until an END TRANSACTION or BACKOUT TRANSACTION statement is issued or the transaction time
limit is exceeded.

When a record is placed in “hold” status for one user, the record is not available for update by
another user. Another user who wishes to update the same record will be placed in “wait” status
until the record is released from “hold” when the first user ends or backs out his/her transaction.

To prevent users from being placed in wait status, the session parameter WH (Wait for Record in
Hold Status) can be used (see the Parameter Reference).

When you use update logic in a program, you should consider the following:

■ The maximum time that a record can be in hold status is determined by the Adabas transaction
time limit (Adabas parameter TT). If this time limit is exceeded, youwill receive an errormessage
and all database modifications done since the last END TRANSACTIONwill be made undone.

■ The number of records on hold and the transaction time limit are affected by the size of a
transaction, that is, by the placement of the END TRANSACTION statement in the program. Restart
facilities should be consideredwhen decidingwhere to issue an END TRANSACTION. For example,
if a majority of records being processed are not to be updated, the GET statement is an efficient
way of controlling the “holding” of records. This avoids issuing multiple END TRANSACTION
statements and reduces the number of ISNs on hold. When you process large files, you should
bear in mind that the GET statement requires an additional Adabas call. An example of a GET
statement is shown below.

Example of Hold Logic:

** Example 'GETX01': GET (put single record in hold with UPDATE stmt)
**
** CAUTION: Executing this example will modify the database records!

DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 SALARY (1)

END-DEFINE
*
RD. READ EMPLOY-VIEW BY NAME

DISPLAY EMPLOY-VIEW
IF SALARY (1) > 1500000

/*
GE. GET EMPLOY-VIEW *ISN (RD.)
/*
WRITE '=' (50) 'RECORD IN HOLD:' *ISN(RD.)
COMPUTE SALARY (1) = SALARY (1) * 1.15
UPDATE (GE.)

Programming Guide250

Accessing Data in an Adabas Database

END TRANSACTION
END-IF

END-READ
END

Backing Out a Transaction

During an active logical transaction, that is, before the END TRANSACTION statement is issued, you
can cancel the transaction by using a BACKOUT TRANSACTION statement. The execution of this
statement removes all updates that have been applied (including all records that have been added
or deleted) and releases all records held by the transaction.

Restarting a Transaction

With the END TRANSACTION statement, you can also store transaction-related information. If pro-
cessing of the transaction terminates abnormally, you can read this information with a GET
TRANSACTION DATA statement to ascertain where to resume processing when you restart the
transaction.

Example of Using Transaction Data to Restart a Transaction

The following program updates the EMPLOYEES and VEHICLES files. After a restart operation, the
user is informedof the last EMPLOYEES record successfully processed. The user can resumeprocessing
from that EMPLOYEES record. It would also be possible to set up the restart transaction message to
include the last VEHICLES record successfully updated before the restart operation.

** Example 'GETTRX01': GET TRANSACTION
*
** CAUTION: Executing this example will modify the database records!
**
DEFINE DATA LOCAL
01 PERSON VIEW OF EMPLOYEES

02 PERSONNEL-ID (A8)
02 NAME (A20)
02 FIRST-NAME (A20)
02 MIDDLE-I (A1)
02 CITY (A20)

01 AUTO VIEW OF VEHICLES
02 PERSONNEL-ID (A8)
02 MAKE (A20)
02 MODEL (A20)

*
01 ET-DATA

02 #APPL-ID (A8) INIT <' '>
02 #USER-ID (A8)
02 #PROGRAM (A8)
02 #DATE (A10)
02 #TIME (A8)

251Programming Guide

Accessing Data in an Adabas Database

02 #PERSONNEL-NUMBER (A8)
END-DEFINE
*
GET TRANSACTION DATA #APPL-ID #USER-ID #PROGRAM

#DATE #TIME #PERSONNEL-NUMBER
*
IF #APPL-ID NOT = 'NORMAL' /* if last execution ended abnormally
AND #APPL-ID NOT = ' '

INPUT (AD=OIL)
// 20T '*** LAST SUCCESSFUL TRANSACTION ***' (I)
/ 20T '***********************************'
/// 25T 'APPLICATION:' #APPL-ID
/ 32T 'USER:' #USER-ID
/ 29T 'PROGRAM:' #PROGRAM
/ 24T 'COMPLETED ON:' #DATE 'AT' #TIME
/ 20T 'PERSONNEL NUMBER:' #PERSONNEL-NUMBER

END-IF
*
REPEAT

/*
INPUT (AD=MIL) // 20T 'ENTER PERSONNEL NUMBER:' #PERSONNEL-NUMBER
/*
IF #PERSONNEL-NUMBER = '99999999'

ESCAPE BOTTOM
END-IF
/*
FIND1. FIND PERSON WITH PERSONNEL-ID = #PERSONNEL-NUMBER

IF NO RECORDS FOUND
REINPUT 'SPECIFIED NUMBER DOES NOT EXIST; ENTER ANOTHER ONE.'

END-NOREC
FIND2. FIND AUTO WITH PERSONNEL-ID = #PERSONNEL-NUMBER
IF NO RECORDS FOUND

WRITE 'PERSON DOES NOT OWN ANY CARS'
ESCAPE BOTTOM

END-NOREC
IF *COUNTER (FIND2.) = 1 /* first pass through the loop

INPUT (AD=M)
/ 20T 'EMPLOYEES/AUTOMOBILE DETAILS' (I)
/ 20T '----------------------------'
/// 20T 'NUMBER:' PERSONNEL-ID (AD=O)
/ 22T 'NAME:' NAME ' ' FIRST-NAME ' ' MIDDLE-I
/ 22T 'CITY:' CITY
/ 22T 'MAKE:' MAKE
/ 21T 'MODEL:' MODEL

UPDATE (FIND1.) /* update the EMPLOYEES file
ELSE /* subsequent passes through the loop

INPUT NO ERASE (AD=M IP=OFF) //////// 28T MAKE / 28T MODEL
END-IF
/*
UPDATE (FIND2.) /* update the VEHICLES file
/*
MOVE *APPLIC-ID TO #APPL-ID

Programming Guide252

Accessing Data in an Adabas Database

MOVE *INIT-USER TO #USER-ID
MOVE *PROGRAM TO #PROGRAM
MOVE *DAT4E TO #DATE
MOVE *TIME TO #TIME
/*
END TRANSACTION #APPL-ID #USER-ID #PROGRAM

#DATE #TIME #PERSONNEL-NUMBER
/*

END-FIND /* for VEHICLES (FIND2.)
END-FIND /* for EMPLOYEES (FIND1.)

END-REPEAT /* for REPEAT
*
STOP /* Simulate abnormal transaction end
END TRANSACTION 'NORMAL '
END

Selecting Records Using ACCEPT/REJECT

This section discusses the statements ACCEPT and REJECTwhich are used to select records based
on user-specified logical criteria.

The following topics are covered:

■ Statements Usable with ACCEPT and REJECT
■ Example of ACCEPT Statement
■ Logical Condition Criteria in ACCEPT/REJECT Statements
■ Example of ACCEPT Statement with AND Operator
■ Example of REJECT Statement with OR Operator
■ Further Examples of ACCEPT and REJECT Statements

Statements Usable with ACCEPT and REJECT

The statements ACCEPT and REJECT can be used in conjunctionwith the database access statements:

■ READ

■ FIND

■ HISTOGRAM

253Programming Guide

Accessing Data in an Adabas Database

Example of ACCEPT Statement

** Example 'ACCEPX01': ACCEPT IF
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)

END-DEFINE
*
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD'
ACCEPT IF SALARY (1) >= 40000

DISPLAY NAME JOB-TITLE SALARY (1)
END-READ
END

Output of Program ACCEPX01:

 Page 1 04-11-11 11:11:11

 NAME CURRENT ANNUAL
 POSITION SALARY
 -------------------- ------------------------- ----------

 ADKINSON DBA 46700
 ADKINSON MANAGER 47000
 ADKINSON MANAGER 47000
 AFANASSIEV DBA 42800
 ALEXANDER DIRECTOR 48000
 ANDERSON MANAGER 50000
 ATHERTON ANALYST 43000
 ATHERTON MANAGER 40000 ↩

Logical Condition Criteria in ACCEPT/REJECT Statements

The statements ACCEPT and REJECT allow you to specify logical conditions in addition to those that
were specified in WITH and WHERE clauses of the READ statement.

The logical condition criteria in the IF clause of an ACCEPT / REJECT statement are evaluated after
the record has been selected and read.

Logical condition operators include the following (seeLogical Condition Criteria formore detailed
information):

Programming Guide254

Accessing Data in an Adabas Database

:=EQEQUAL

¬=NENOT EQUAL TO

<LTLESS THAN

<=LELESS EQUAL

>GTGREATER THAN

>=GEGREATER EQUAL

Logical condition criteria in ACCEPT / REJECT statements may also be connected with the Boolean
operators AND, OR, and NOT. Moreover, parentheses may be used to indicate logical grouping; see
the following examples.

Example of ACCEPT Statement with AND Operator

The following program illustrates the use of the Boolean operator AND in an ACCEPT statement.

** Example 'ACCEPX02': ACCEPT IF ... AND ...
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)

END-DEFINE
*
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD'
ACCEPT IF SALARY (1) >= 40000

AND SALARY (1) <= 45000
DISPLAY NAME JOB-TITLE SALARY (1)

END-READ
END

Output of Program ACCEPX02:

Page 1 04-12-14 12:22:01

 NAME CURRENT ANNUAL
 POSITION SALARY
-------------------- ------------------------- ----------

AFANASSIEV DBA 42800
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000 ↩

255Programming Guide

Accessing Data in an Adabas Database

Example of REJECT Statement with OR Operator

The following program, which uses the Boolean operator OR in a REJECT statement, produces the
same output as the ACCEPT statement in the example above, as the logical operators are reversed.

** Example 'ACCEPX03': REJECT IF ... OR ...
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE
2 CURR-CODE (1:1)
2 SALARY (1:1)

END-DEFINE
*
READ (20) MYVIEW BY NAME WHERE CURR-CODE (1) = 'USD'
REJECT IF SALARY (1) < 40000

OR SALARY (1) > 45000
DISPLAY NAME JOB-TITLE SALARY (1)

END-READ
END

Output of Program ACCEPX03:

Page 1 04-12-14 12:26:27

 NAME CURRENT ANNUAL
 POSITION SALARY
-------------------- ------------------------- ----------

AFANASSIEV DBA 42800
ATHERTON ANALYST 43000
ATHERTON MANAGER 40000 ↩

Further Examples of ACCEPT and REJECT Statements

See the following example programs:

■ ACCEPX04 - ACCEPT IF ... LESS THAN ...
■ ACCEPX05 - ACCEPT IF ... AND ...
■ ACCEPX06 - REJECT IF ... OR ...

Programming Guide256

Accessing Data in an Adabas Database

AT START/END OF DATA Statements

This section discusses the use of the statements AT START OF DATA and AT END OF DATA.

The following topics are covered:

■ AT START OF DATA Statement
■ AT END OF DATA Statement
■ Example of AT START OF DATA and AT END OF DATA Statements
■ Further Examples of AT START OF DATA and AT END OF DATA

AT START OF DATA Statement

The AT START OF DATA statement is used to specify any processing that is to be performed after
the first of a set of records has been read in a database processing loop.

The AT START OF DATA statement must be placed within the processing loop.

If the AT START OF DATA processing produces any output, this will be output before the first field
value. By default, this output is displayed left-justified on the page.

AT END OF DATA Statement

The AT END OF DATA statement is used to specify processing that is to be performed after all records
for a database processing loop have been processed.

The AT END OF DATA statement must be placed within the processing loop.

If the AT END OF DATA processing produces any output, this will be output after the last field value.
By default, this output is displayed left-justified on the page.

Example of AT START OF DATA and AT END OF DATA Statements

The following example program illustrates the use of the statements AT START OF DATA and AT
END OF DATA.

The Natural system variable *TIME has been incorporated into the AT START OF DATA statement
to display the time of day.

The Natural system function OLD has been incorporated into the AT END OF DATA statement to
display the name of the last person selected.

257Programming Guide

Accessing Data in an Adabas Database

** Example 'ATSTAX01': AT START OF DATA
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 JOB-TITLE
2 INCOME (1:1)

3 CURR-CODE
3 SALARY
3 BONUS (1:1)

END-DEFINE
*
WRITE TITLE 'XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT' /
READ (3) MYVIEW BY CITY STARTING FROM 'E'

DISPLAY GIVE SYSTEM FUNCTIONS
NAME (AL=15) JOB-TITLE (AL=15) INCOME (1)

/*
AT START OF DATA

WRITE 'RUN TIME:' *TIME /
END-START
AT END OF DATA

WRITE / 'LAST PERSON SELECTED:' OLD (NAME) /
END-ENDDATA

END-READ
*
AT END OF PAGE

WRITE / 'AVERAGE SALARY:' AVER (SALARY(1))
END-ENDPAGE
END

The program produces the following output:

 XYZ EMPLOYEE ANNUAL SALARY AND BONUS REPORT

 NAME CURRENT INCOME
 POSITION
 CURRENCY ANNUAL BONUS
 CODE SALARY
--------------- --------------- -------- ---------- ----------

RUN TIME: 12:43:19.1

DUYVERMAN PROGRAMMER USD 34000 0
PRATT SALES PERSON USD 38000 9000
MARKUSH TRAINEE USD 22000 0

LAST PERSON SELECTED: MARKUSH

AVERAGE SALARY: 31333 ↩

Programming Guide258

Accessing Data in an Adabas Database

Further Examples of AT START OF DATA and AT END OF DATA

See the following example programs:

■ ATENDX01 - AT END OF DATA
■ ATSTAX02 - AT START OF DATA
■ WRITEX09 - WRITE (in combination with AT END OF DATA)

Unicode Data

Natural enables users to access wide-character fields (format W) in an Adabas database.

The following topics are covered:

■ Data Definition Module
■ Access Configuration
■ Restrictions

Data Definition Module

Adabas wide-character fields (W) are mapped to Natural format U (Unicode).

The length definition for a Natural field of format U corresponds to half the size of the Adabas
field of formatW. AnAdabaswide-character field of length 200 is, for example, mapped to (U100)
in Natural.

Access Configuration

Natural receives data fromAdabas and sends data to Adabas using UTF-16 as common encoding.

This encoding is specified with the OPRB parameter and sent to Adabas with the open request. It
is used for wide-character fields and applies to the entire Adabas user session.

Restrictions

Wide-character fields (W) of variable length are not supported.

Collating descriptors are not supported.

For further information on Adabas and Unicode support refer to the specific Adabas product
documentation.

259Programming Guide

Accessing Data in an Adabas Database

260

26 Accessing Data in an SQL Database

■ Generating Natural DDMs ... 262
■ Setting Natural Profile Parameters .. 262
■ Natural DML Statements ... 263
■ Natural SQL Statements ... 269
■ Flexible SQL ... 277
■ RDBMS-Specific Requirements and Restrictions .. 278
■ Data-Type Conversion .. 281
■ Date/Time Conversion .. 281
■ Obtaining Diagnostic Information about Database Errors ... 283
■ SQL Authorization .. 283

261

This chapter describes how to use Natural with SQL databases via Entire Access. For information
about installation and configuration, see Natural and Entire Access in the Database Management
System Interfaces documentation and the separate Entire Access documentation.

Note: On principle, the features and examples contained in the document Accessing Data
in an Adabas Database also apply to the SQL databases supported byNatural. Differences,
if any, are described in the documents for the individual database access statements (see
the Statements documentation) in paragraphs named Database-Specific Considerations or in
the documents for the individual Natural parameters (see the Parameter Reference). In addi-
tion, Natural offers a specific set of statements to access SQL databasess.

Generating Natural DDMs

Entire Access is an application programming interface (API) that supportsNatural SQL statements
and most Natural DML statements.

Natural DML and SQL statements can be used in the same Natural program. At compilation, if a
DML statement references a DDM for a data source defined in NATCONF.CFGwith DBMS type
SQL, Natural translates the DML statement into an SQL statement.

Natural converts DML and SQL statements into calls to Entire Access. Entire Access converts the
requests to the data formats and SQLdialect required by the target RDBMS and passes the requests
to the database driver.

Setting Natural Profile Parameters

ETEOP Parameter

This parameter can be set only by Natural administrators.

The Natural profile parameter ETEOP controls transaction processing during a Natural session. It
is required, for example, if a single logical transaction is to span two or more Natural programs.
In this case, Natural must not issue an END TRANSACTION command (that is, not “commit”) at the
termination of a Natural program.

If the ETEOP parameter is set to:

Programming Guide262

Accessing Data in an SQL Database

Natural issues an END TRANSACTION statement (that is, automatically “commits”) at the end of a
Natural program if the Natural session is not at ET status.

ON

Natural does not issue an END TRANSACTION command (that is, does not “commit”) at the end of a
Natural program. This setting thus enables a single logical transaction to span more than one Natural
program.

OFF

This is the default.

Note: The ETEOP parameter applies to Natural Version 6.1 and above. With previous Nat-
ural versions, the Natural profile parameter OPRB has to be used instead of ETEOP (ETEOP=ON
corresponds to OPRB=OFF, ETEOP=OFF corresponds to ORPB=NOOPEN).

Natural DML Statements

The following table shows how Natural translates DML statements into SQL statements:

SQL StatementDML Statement

ROLLBACKBACKOUT TRANSACTION

DELETE WHERE CURRENT OF cursor-nameDELETE

COMMITEND TRANSACTION

IN (...)EQUAL ... OR

BETWEEN ... AND ...EQUAL ... THRU ...

SELECTFIND ALL

SELECT COUNT (*)FIND NUMBER

SELECT COUNT (*)HISTOGRAM

SELECT ... ORDER BYREAD LOGICAL

SELECT ... ORDER BYREAD PHYSICAL

ORDER BY ... [DESCENDING]SORTED BY ... [DESCENDING]

INSERTSTORE

UPDATE WHERE CURRENT of cursor-nameUPDATE

WHEREWITH

Note: Boolean and relational operators function the sameway inDML and SQL statements.

Entire Access does not support the following DML statements and options:

■ CIPHER

■ COUPLED

■ FIND FIRST, FIND UNIQUE, FIND ... RETAIN AS

263Programming Guide

Accessing Data in an SQL Database

■ GET, GET SAME, GET TRANSACTION DATA, GET RECORD

■ PASSWORD

■ READ BY ISN

■ STORE USING/GIVING NUMBER

BACKOUT TRANSACTION

Natural translates a BACKOUT TRANSACTION statement into an SQL ROLLBACK command. This
statement reverses all database modifications made after the completion of the last recovery unit.
A recovery unit may start at the beginning of a session or after the last END TRANSACTION (COMMIT)
or BACKOUT TRANSACTION (ROLLBACK) statement.

Note: Because all cursors are closedwhen a logical unit of work ends, do not place a BACKOUT
TRANSACTION statementwithin a database loop; place it outside the loop or after the outermost
loop of nested loops.

DELETE

The DELETE statement deletes a row from a database table that has been read with a preceding
FIND, READ, or SELECT statement. It corresponds to the SQL statement DELETE WHERE CURRENT OF
cursor-name, which means that only the last row that was read can be deleted.

Example:

FIND EMPLOYEES WITH NAME = 'SMITH'
AND FIRST_NAME = 'ROGER'

DELETE

Natural translates the Natural statements above into the following SQL statements and assigns a
cursor name (for example, CURSOR1). The SELECT statement and the DELETE statement refer to the
same cursor.

SELECT FROM EMPLOYEES
WHERE NAME = 'SMITH' AND FIRST_NAME = 'ROGER'

DELETE FROM EMPLOYEES
WHERE CURRENT OF CURSOR1

Natural translates a DELETE statement into an SQL DELETE statement the way it translates a FIND
statement into an SQL SELECT statement. For details, see the FIND statement description below.

Note: You cannot delete a row read with a FIND SORTED BY or READ LOGICAL statement.
For an explanation, see the FIND and READ statement descriptions below.

Programming Guide264

Accessing Data in an SQL Database

END TRANSACTION

Natural translates an END TRANSACTION statement into an SQL COMMIT command. The END
TRANSACTION statement indicates the end of a logical transaction, commits all modifications to the
database, and releases data locked during the transaction.

Notes:

1. Because all cursors are closedwhen a logical unit ofwork ends, do not place an END TRANSACTION
statement within a database loop; place it outside the loop or after the outermost loop of nested
loops.

2. The END TRANSACTION statement cannot be used to store transaction (ET) data when used with
Entire Access.

3. Entire Access does not issue a COMMIT automatically when the Natural program terminates.

FIND

Natural translates a FIND statement into an SQL SELECT statement. The SELECT statement is executed
by an OPEN CURSOR command followed by a FETCH command. The FETCH command is executed
repeatedly until all records have been read or the program exits the FIND processing loop. A CLOSE
CURSOR command ends the SELECT processing.

Example:

Natural statements:

FIND EMPLOYEES WITH NAME = 'BLACKMORE'
AND AGE EQ 20 THRU 40

OBTAIN PERSONNEL_ID NAME AGE

Equivalent SQL statement:

SELECT PERSONNEL_ID, NAME, AGE
FROM EMPLOYEES

WHERE NAME = 'BLACKMORE'
AND AGE BETWEEN 20 AND 40

You can use any table column (field) designated as a descriptor to construct search criteria.

Natural translates the WITH clause of a FIND statement into the WHERE clause of an SQL SELECT
statement. Natural evaluates the WHERE clause of the FIND statement after the rows have been se-
lected using the WITH clause. View fields may be used in a WITH clause only if they are designated
as descriptors.

265Programming Guide

Accessing Data in an SQL Database

Natural translates a FIND NUMBER statement into an SQL SELECT statement containing a COUNT(*)
clause. When you want to determine whether a record exists for a specific search condition, the
FIND NUMBER statement provides better performance than the IF NO RECORDS FOUND clause.

Note: A row read with a FIND statement containing a SORTED BY clause cannot be updated
or deleted. Natural translates the SORTED BY clause of a FIND statement into the ORDER BY
clause of an SQL SELECT statement, which produces a read-only result table.

HISTOGRAM

Natural translates the HISTOGRAM statement into an SQL SELECT statement. The HISTOGRAM statement
returns the number of rows in a table that have the same value in a specific column. The number
of rows is returned in the Natural system variable *NUMBER.

Example:

Natural statements:

HISTOGRAM EMPLOYEES FOR AGE
OBTAIN AGE

Equivalent SQL statements:

SELECT AGE, COUNT(*) FROM EMPLOYEES
GROUP BY AGE
ORDER BY AGE

READ

Natural translates a READ statement into an SQL SELECT statement. Both READ PHYSICAL and READ
LOGICAL statements can be used.

A row read with a READ LOGICAL statement (Example 1) cannot be updated or deleted. Natural
translates a READ LOGICAL statement into the ORDER BY clause of an SQL SELECT statement, which
produces a read-only result table.

A READ PHYSICAL statement (Example 2) can be updated or deleted. Natural translates it into a
SELECT statement without an ORDER BY clause.

Example 1:

Natural statements:

Programming Guide266

Accessing Data in an SQL Database

READ PERSONNEL BY NAME
OBTAIN NAME FIRSTNAME DATEOFBIRTH

Equivalent SQL statement:

SELECT NAME, FIRSTNAME, DATEOFBIRTH FROM PERSONNEL
WHERE NAME >= ' '

ORDER BY NAME

Example 2:

Natural statements:

READ PERSONNEL PHYSICAL
OBTAIN NAME

Equivalent SQL statement:

SELECT NAME FROM PERSONNEL

When a READ statement contains a WHERE clause, Natural evaluates the WHERE clause after the rows
have been selected according to the search criterion.

STORE

The STORE statement adds a row to a database table. It corresponds to the SQL INSERT statement.

Example:

Natural statement:

STORE RECORD IN EMPLOYEES
WITH PERSONNEL_ID = '2112'

NAME = 'LIFESON'
FIRST_NAME = 'ALEX'

Equivalent SQL statement:

INSERT INTO EMPLOYEES (PERSONNEL_ID, NAME, FIRST_NAME)
VALUES ('2112', 'LIFESON', 'ALEX')

267Programming Guide

Accessing Data in an SQL Database

UPDATE

The DML UPDATE statement updates a table row that has been read with a preceding FIND, READ,
or SELECT statement. Natural translates the DML UPDATE statement into the SQL statement UPDATE
WHERE CURRENT OF cursor-name (a positioned UPDATE statement), which means that only the last
row that was read can be updated. In the case of nested loops, the last row in each nested loop
can be updated.

UPDATE with FIND/READ

When a DML UPDATE statement is used after a Natural FIND statement, Natural translates the FIND
statement into an SQL SELECT statement with a FOR UPDATE OF clause, and translates the DML
UPDATE statement into an UPDATE WHERE CURRENT OF cursor-name statement.

Example:

FIND EMPLOYEES WITH SALARY < 5000
ASSIGN SALARY = 6000
UPDATE

Natural translates the Natural statements above into the following SQL statements and assigns a
cursor name (for example, CURSOR1). The SELECT and UPDATE statements refer to the same cursor.

SELECT SALARY FROM EMPLOYEES WHERE SALARY < 5000
FOR UPDATE OF SALARY

UPDATE EMPLOYEES SET SALARY = 6000
WHERE CURRENT OF CURSOR1

You cannot update a row read with a FIND SORTED BY or READ LOGICAL statement. For an explan-
ation, see the FIND and READ statement descriptions above.

An END TRANSACTION or BACKOUT TRANSACTION statement releases data locked by an UPDATE
statement.

UPDATE with SELECT

The DML UPDATE statement can be used after a SELECT statement only in the following case:

SELECT *
INTO VIEW view-name

Natural rejects any other form of the SELECT statement used with the DML UPDATE statement.
Natural translates theDML UPDATE statement into a non-cursor or “searched” SQL UPDATE statement,
which means than only an entire Natural view can be updated; individual columns cannot be
updated.

Programming Guide268

Accessing Data in an SQL Database

In addition, the DML UPDATE statement can be used after a SELECT statement only in Natural
structured mode, which has the following syntax:

UPDATE [RECORD] [IN] [STATEMENT] [(r)]

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL

02 NAME
02 AGE

END-DEFINE
SELECT *

INTO VIEW PERS
FROM SQL-PERSONNEL
WHERE NAME LIKE 'S%'
OBTAIN NAME

IF NAME = 'SMITH'
ADD 1 TO AGE

UPDATE
END-IF

END-SELECT

In other respects, the DML UPDATE statement works with the SELECT statement the way it works
with the Natural FIND statement (see UPDATE with FIND/READ above).

Natural SQL Statements

The SQL statements available within the Natural programming language comprise two different
sets of statements: the common set and the extended set. On this platform, only the extended set
is supported by Natural.

The common set can be handled by each SQL-eligible database system supported by Natural. It
basically corresponds to the standard SQL syntax definitions. For a detailed description of the
common set of Natural SQL statements, see Common Set and Extended Set (in the Statements docu-
mentation).

This section describes considerations and restrictions when using the common set of Natural SQL
statements with Entire Access.

■ DELETE
■ INSERT
■ PROCESS SQL
■ SELECT

269Programming Guide

Accessing Data in an SQL Database

■ UPDATE

DELETE

The Natural SQL DELETE statement deletes rows in a table without using a cursor.

Whereas Natural translates the DML DELETE statement into a positioned DELETE statement (that
is, an SQL DELETE WHERE CURRENT OF cursor-name statement), theNatural SQL DELETE statement
is a non-cursor or searched DELETE statement. A searched DELETE statement is a stand-alone
statement unrelated to any SELECT statement.

INSERT

The INSERT statement adds rows to a table; it corresponds to the Natural STORE statement.

PROCESS SQL

The PROCESS SQL statement issues SQL statements in a statement-string to the database identified
by a ddm-name.

Note: It is not possible to run database loops using the PROCESS SQL statement.

Parameters

Natural supports the INDICATOR and LINDICATOR clauses. As an alternative, the statement-string
may include parameters. The syntax item parameter is syntactically defined as follows:

:host-variable
:U

:G

A host-variable is a Natural program variable referenced in an SQL statement.

SET SQLOPTION option=value

With Entire Access, you can also specify SET SQLOPTION option=value as statement-string.
This can be used to specify various options for accessing SQL databases. The options apply only
to the database referenced by the PROCESS SQL statement.

Supported options are:

■ DATEFORMAT

■ DBPROCESS (for Sybase only)
■ TIMEOUT (for Sybase only)
■ TRANSACTION (for Sybase only)

Programming Guide270

Accessing Data in an SQL Database

DATEFORMAT

This option specifies the format used to retrieve SQL Date and Datetime information into Natural
fields of type A. The option is obsolete if Natural fields of type D or T are used. A subset of the
Natural date and time edit masks can be used:

Year (4 digits)YYYY

Year (2 digits)YY

MonthMM

DayDD

HourHH

MinuteII

SecondSS

If the date format contains blanks, it must be enclosed in apostrophes.

Examples:

To use ISO date format, specify

PROCESS SQL sql-ddm << SET SQLOPTION DATEFORMAT = YYYY-MM-DD >>

To obtain date and time components in ISO format, specify

PROCESS SQL sql-ddm << SET SQLOPTION DATEFORMAT = 'YYYY-MM-DD HH:II:SS' >>

The DATEFORMAT is evaluated only if data are retrieved from the database. If data are passed to the
database, the conversion is done by the database system. Therefore, the format specified with
DATEFORMAT should be a valid date format of the underlying database.

If no DATEFORMAT is specified for Natural fields,

■ the default date format DD-MON-YY is used (where MON is a 3-letter abbreviation of the English
month name) and

■ the following default datetime formats are used:

YYYYMMDDHHIISSAdabas D

YYYY-MM-DD-HH.II.SSDB2

YYYY-MM-DD HH:II:SSINFORMIX

YYYY-MM-DD HH:II:SSODBC

YYYYMMDDHHIISSORACLE

YYYYMMDD HH:II:SSSYBASE DBLIB

YYYYMMDD HH:II:SSSYBASE CTLIB

271Programming Guide

Accessing Data in an SQL Database

YYYYMMDD HH:II:SSMicrosoft SQL Server

DD-MON-YYother

DBPROCESS

This option is valid for Sybase and Microsoft SQL Server databases only.

This option is used to influence the allocation of SQL statements to Sybase and Microsoft SQL
Server DBPROCESSes. DBPROCESSes are used by Entire Access to emulate database cursors, which
are not provided by the Sybase and Microsoft SQL Server DBlib interface.

Two values are possible:

With DBPROCESS set to MULTIPLE, each SELECT statement uses its own secondary DBPROCESS,
whereas all other SQL statements are executed within the primary DBPROCESS. The value

MULTIPLE

MULTIPLE therefore enables your application to execute further SQL statements, even if a
database loop is open. It also allows nested database loops.

With DBPROCESS set to SINGLE, all SQL statements use the same (that is, the primary)
DBPROCESS. It is therefore not possible to execute a new database statement while a database

SINGLE

loop is active, because one DBPROCESS can only execute one SQL batch at a time. Since all
statements are executed in the same (primary) DBPROCESS, however, this setting enables
SELECTions from non-shared temporary tables.

Notes:

1. The specified value can only be changed if no database loop is active.

2. As the DBPROCESS option only applies to the Sybase and Microsoft SQL Server DBlib interface,
your application should use a central CALLNAT statement to change the value (at least for SINGLE),
so that you can easily remove these calls once Sybase client libraries are supported. Your applic-
ation should also use a central error handling that establishes the default setting (MULTIPLE).

TIMEOUT

This option is valid for Sybase and Microsoft SQL Server databases only.

With Sybase andMicrosoft SQL Server, Entire Access uses a timeout technique to detect database-
access deadlocks. The default timeout period is 8 seconds. With this option, you can change the
duration of the timeout period (in seconds).

For example, to set the timeout period to 30 seconds, specify

Programming Guide272

Accessing Data in an SQL Database

PROCESS SQL sql-ddm << SET SQLOPTION TIMEOUT = 30 >>

TRANSACTION

This option is valid for Sybase and Microsoft SQL Server databases only.

This option is used to enable or disable transaction mode. It becomes effective after the next END
TRANSACTION or BACKOUT TRANSACTION statement.

If transaction mode is enabled (this is the default), Natural automatically issues all required
statements to begin a transaction.

Examples:

To disable transaction mode, specify

PROCESS SQL sql-ddm << SET SQLOPTION TRANSACTION = NO >>
...
END TRANSACTION

To enable transaction mode, specify

PROCESS SQL sql-ddm << SET SQLOPTION TRANSACTION = YES >>
...
END TRANSACTION

SQLDISCONNECT

With Entire Access, you can also specify SQLDISCONNECT as the statement-string. In combination
with the SQLCONNECT statement (seebelow), this statement can be used to access different databases
by one application within the same session, by simply connecting and disconnecting as required.

A successfully performed SQLDISCONNECT statement clears the information previously provided
by the SQLCONNECT statement; that is, it disconnects your application from the currently connected
SQL database determined by the DBID of the DDM used in the PROCESS SQL statement. If no
connection is established, the SQLDISCONNECT statement is ignored. It will fail if a transaction is
open.

Note: If Natural reports an error in the SQLDISCONNECT statement, the connection status
does not change. If the database reports an error, the connection status is undefined.

273Programming Guide

Accessing Data in an SQL Database

SQLCONNECT option=value

With Entire Access, you can also specify SQLCONNECT option=value as the statement-string.
This statement can be used to establish a connection to an SQL database according to the DBID
specified in the DDM addressed by the PROCESS SQL statement. The SQLCONNECT statement will
fail if the specified connection is already established.

Supported options are:

■ USERID

■ PASSWORD

■ OS_PASSWORD

■ OS_USERID

■ DBMS_PARAMETER

Notes:

1. If the SQLCONNECT statement fails, the connection status does not change.

2. If several options are specified, they must be separated by a comma.

3. The specified value can be either a character literal or a Natural variable of format A.

4. If Natural performs an implicit reconnect, because the connection to the database was lost, the
values provided by the SQLCONNECT statement are used.

The options are evaluated as described below.

USERID and PASSWORD

Specifying USERID and PASSWORD for the database logon suppresses the default logonwindow and
the evaluation of the environment variables SQL_DATABASE_USER and SQL_DATABASE_PASSWORD.

If only USERID is specified, PASSWORD is assumed to be blank, and vice versa.

If neither USERID nor PASSWORD is specified, default logon processing applies.

Note: With database systems that do not require user ID and password, a blank user ID
and password can be specified to suppress the default logon processing.

Programming Guide274

Accessing Data in an SQL Database

OS_USERID and OS_PASSWORD

Specifying OS_PASSWORD and OS_USERID for the operating system logon suppresses the logon
window and the evaluation of the environment variables SQL_OS_USER and SQL_OS_PASSWORD.

If only OS_USERID is specified, OS_PASSWORD is assumed to be blank, and vice versa.

If neither OS_USERID nor OS_PASSWORD is specified, default logon processing applies.

Note: With operating systems that do not require user ID and password, a blank user ID
and password can be specified to suppress the default logon processing.

DBMS_PARAMETER

Specifying DBMS_PARAMETER dynamically overwrites the DBMS assignment in the Natural global
configuration file.

Examples:

PROCESS SQL sql-ddm << SQLCONNECT USERID = 'DBA', PASSWORD = 'SECRET' >>

This example connects to the database specified in the Natural global configuration file with user
ID DBA and password SECRET.

DEFINE DATA LOCAL
1 #UID (A20)
1 #PWD (A20)
END-DEFINE
INPUT 'Please enter ADABAS D user ID and password' / #UID / #PWD
PROCESS SQL sql-ddm << SQLCONNECT USERID = : #UID,

PASSWORD = : #PWD,
DBMS_PARAMETER = 'ADABASD:mydb'

>>

This example connects to the Adabas D database mydbwith the user ID and password taken from
the INPUT statement.

PROCESS SQL sql-ddm << SQLCONNECT USERID = ' ', PASSWORD = ' ',
DBMS_PARAMETER = 'DB2:EXAMPLE' >>

This example connects to the DB2 database EXAMPLEwithout specifying user ID and password
(since these are not required by DB2 which uses the operating system user ID).

275Programming Guide

Accessing Data in an SQL Database

SELECT

The INTO clause and scalar operators for the SELECT statement either are RDBMS-specific and do
not conform to the standard SQL syntax definitions (theNatural common set), or impose restrictions
when used with Entire Access.

Entire Access does not support the INDICATOR and LINDICATOR clauses in the INTO clause. Thus,
Entire Access requires the following syntax for the INTO clause:

INTO
parameter, ...
VIEW {view-name},...

Note: The concatenation operator (||) does not belong to the common set and is therefore
not supported by Entire Access.

SELECT SINGLE

The SELECT SINGLE statement provides the functionality of a non-cursor SELECT operation (singleton
SELECT); that is, a SELECT statement that retrieves a maximum of one row without using a cursor.

This statement is similar to the Natural FIND UNIQUE statement. However, Natural automatically
checks the number of rows returned. If more than one row is selected, Natural returns an error
message.

If your RDBMSdoes not support dynamic execution of a non-cursor SELECT operation, theNatural
SELECT SINGLE statement is executed like a set-level SELECT statement, which results in a cursor
operation.However, Natural still checks the number of returned rows and issues an errormessage
if more than one row is selected.

UPDATE

The Natural SQL UPDATE statement updates rows in a table without using a cursor.

Whereas Natural translates the DML UPDATE statement into a positioned UPDATE statement (that
is, the SQL DELETE WHERE CURRENT OF cursor-name statement), theNatural SQL UPDATE statement
is a non-cursor or searched UPDATE statement. A searched UPDATE statement is a stand-alone
statement unrelated to any SELECT statement.

Programming Guide276

Accessing Data in an SQL Database

Flexible SQL

Flexible SQL allows you to use arbitrary RDBMS-specific SQL syntax extensions. Flexible SQL can
be used as a replacement for any of the following syntactical SQL items:

■ atom
■ column reference
■ scalar expression
■ condition

The Natural compiler does not recognize the SQL text used in flexible SQL; it simply copies the
SQL text (after substituting values for the host variables, which are Natural program variables
referenced in an SQL statement) into the SQL string that it passes to the RDBMS. Syntax errors in
flexible SQL text are detected at runtime when the RDBMS executes the string.

Note the following characteristics of flexible SQL:

■ It is enclosed in << and >> characters and can include arbitrary SQL text and host variables.
■ Host variables must be prefixed by a colon (:).
■ The SQL string can cover several statement lines; comments are permitted.

Flexible SQL can also be used between the clauses of a select expression:

SELECT selection
<< ... >>
INTO ...
FROM ...
<< ... >>
WHERE ...
<< ... >>
GROUP BY ...
<< ... >>
HAVING ...
<< ... >>
ORDER BY ...
<< ... >>

277Programming Guide

Accessing Data in an SQL Database

Examples:

SELECT NAME
FROM EMPLOYEES
WHERE << MONTH (BIRTH) >> = << MONTH (CURRENT_DATE) >>

SELECT NAME
FROM EMPLOYEES
WHERE << MONTH (BIRTH) = MONTH (CURRENT_DATE) >>

SELECT NAME
FROM EMPLOYEES
WHERE SALARY > 50000
<< INTERSECT

SELECT NAME
FROM EMPLOYEES
WHERE DEPT = 'DEPT10'

>>

RDBMS-Specific Requirements and Restrictions

This section discusses restrictions and special requirements for Natural and some RDBMSs used
with Entire Access.

The following topics are covered:

■ Case-Sensitive Database Systems
■ SYBASE and Microsoft SQL Server

Case-Sensitive Database Systems

In case-sensitive database systems, use lower-case characters for table and column names, as all
names specified in a Natural program are automatically converted to lower-case.

Note: This restriction does not apply when you use flexible SQL.

Programming Guide278

Accessing Data in an SQL Database

SYBASE and Microsoft SQL Server

To execute SQL statements against SYBASE andMicrosoft SQL Server, you must use one or more
DBPROCESS structures. A DBPROCESS can execute SQL command batches.

A command batch is a sequence of SQL statements. Statements must be executed in the sequence
in which they are defined in the command batch. If a statement (for example, a SELECT statement)
returns a result, you must execute the statement first and then fetch the rows one by one. Once
you execute the next statement from the command batch, you can no longer fetch rows from the
previous query.

With SYBASE andMicrosoft SQL Server, an application can usemore than one DBPROCESS structure;
therefore, it is possible to have nested queries if you use a separate DBPROCESS for each query. Be-
cause SYBASE and Microsoft SQL Server lock data for each DBPROCESS, however, an application
that uses more than one DBPROCESS can deadlock itself. Natural times out in case of a deadlock.

The following topics are covered below:

■ How Natural Statements are Converted to Database Calls
■ Natural Restrictions with SYBASE and Microsoft SQL Server

How Natural Statements are Converted to Database Calls

Natural uses one DBPROCESS for each open query and another DBPROCESS for all other SQL statements
(UPDATE, DELETE, INSERT, ...).

If a query is referenced by a positioned UPDATE or DELETE statement, Natural automatically appends
the FOR BROWSE clause to the generated SELECT statement to allow UPDATEs while rows are being
read.

For a positioned UPDATE or DELETE statement, the SYBASE dbqual function is used to generate the
following search condition:

WHERE unique-index = value AND tsequal (timestamp,old-timestamp)

This search condition can be used to reselect the current row from the query. The tsequal function
checks whether the row has been updated by another user.

279Programming Guide

Accessing Data in an SQL Database

Natural Restrictions with SYBASE and Microsoft SQL Server

The following restrictions apply when using Natural with SYBASE and Microsoft SQL Server.

Case-Sensitivity
SYBASE and Microsoft SQL Server are case-sensitive, and Natural passes parameters in
lowercase. Thus, if your SYBASE and Microsoft SQL Server tables or fields are defined in up-
percase or mixed case, you must use database SYNONYMs or Natural flexible SQL.

Positioned UPDATE and DELETE Statements
To support positioned UPDATE and DELETE statements, the table to be accessed must have a
unique index and a timestamp column. In addition, the timestamp columnmust not be included
in the select list of the query.

Querying Rows
SYBASE and Microsoft SQL Server lock pages, and locked pages are owned by DBPROCESS
structures.

Pages locked by an active DBPROCESS cannot subsequently be read (by the same or another
DBPROCESS) until the lock is released by an END TRANSACTION or BACKOUT TRANSACTION statement.

Therefore, if you have updated, inserted, or deleted a row in a table:
■ Do not start a new SELECT (FIND, READ, ...) loop against the same table.
■ Do not fetch additional rows from a query that references the same table if the SELECT
statement has no FOR BROWSE clause.

Natural automatically appends the FOR BROWSE clause if the query is referenced by a positioned
UPDATE or DELETE statement.

Transaction/Non-Transaction Mode
SYBASE and Microsoft SQL Server differentiate between transaction and non-transaction
mode. In transaction mode, Natural connects to the database allowing INSERTs, UPDATEs and
DELETEs to be issued; thus, commands that run in non-transaction mode, for example, CREATE
TABLE, cannot be issued.

Stored Procedures
It is possible to use stored procedures in SYBASE andMicrosoft SQL Server using the PROCESS
SQL statement. However, the stored procedures must not contain
■ commands that work only in non-transaction mode; or
■ return values.

Programming Guide280

Accessing Data in an SQL Database

Data-Type Conversion

When a Natural program accesses data in a relational database, Entire Access converts RDBMS-
specific data types to Natural data formats, and vice versa. The RDBMS data types and their cor-
respondingNatural data formats are described in the Editorsdocumentation underData Conversion
for RDBMS (in the section DDM Editors.

The date/time or datetime format specific to a particular database can be converted into the Nat-
ural formats D and T; see below.

Date/Time Conversion

The RDBMS-specific date/time or datetime format can be converted into the Natural formats D
and T.

To use this conversion, you first have to edit the Natural DDM to change the date or time field
formats fromA(lphanumeric) toD(ate) or T(ime). The SQLOPTION DATEFORMAT is obsolete for fields
with format D or T.

Note: Date or time fields converted toNatural D(ate)/T(ime) formatmay not bemixedwith
those converted to Natural A(lphanumeric) format.

■ For update commands, Natural converts the Natural Date and Time format to the database-
dependent representation of DATE/TIME/DATETIME to a precision level of seconds.

■ For retrieval commands,Natural converts the returned database-dependent character represent-
ation to the internal Natural Date or Time format; see conversion tables below. The date com-
ponent of Natural Time is not ignored and is initialized to 0000-01-02 (YYYY-MM-DD) if the RD-
BMS`s time format does not contain a date component.

■ For Natural Date variables, the time portion is ignored and initialized to zero.
■ For Natural Time variables, tenth of seconds are ignored and initialized to zero.

281Programming Guide

Accessing Data in an SQL Database

Conversion Tables

Adabas D

Natural TimeNatural DateRDBMS Formats

YYYYMMDDDATE

00HHIISSTIME

DB2

Natural TimeNatural DateRDBMS Formats

YYYY-MM-DDDATE

HH.II.SSTIME

INFORMIX

Natural TimeNatural DateRDBMS Formats

YYYY-MM-DDDATETIME, year to day

YYYY-MM-DD-HH:II:SS*DATETIME, year to second (other formats are not supported)

ODBC

Natural TimeNatural DateRDBMS Formats

YYYY-MM-DDDATE

HH:II:SSTIME

ORACLE

Natural TimeNatural DateRDBMS Formats

YYYYMMDDHHIISS *YYYYMMDD000000 (ORACLE time component
is set to null for update commands and
ignored for retrieval commands.)

DATE (ORACLE session parameter
NLS_DATE_FORMAT is set to
YYYYMMDDHH24MISS)

SYBASE

Natural TimeNatural DateRDBMS Formats

YYYYMMDD HH:II:SS *YYYYMMDDDATETIME

*When comparing two time values, remember that the date componentsmay have different values.

Programming Guide282

Accessing Data in an SQL Database

Microsoft SQL Server

Natural TimeNatural DateRDBMS Formats

YYYYMMDD HH:II:SS *YYYYMMDDDATETIME

Obtaining Diagnostic Information about Database Errors

If the database returns an error while being accessed, you can call the non-Natural program
CMOSQERR to obtain diagnostic information about the error, using the following syntax:

CALL 'CMOSQERR' parm1 parm2

The parameters are:

DescriptionFormat/LengthParameter

The number of the error returned by the database.I4parm1

The text of the error returned by the database.A70parm2

SQL Authorization

The Natural Configuration Utility allows you to add DBID specific settings of user IDs and pass-
words for automatic login to SQL databases. It distinguishes between operating system authentic-
ation and database authentication, depending on the current database system. If the Auto login
flag in the SQL Authorization table is set for an SQL DBID then no interactive login prompt will
pop up. The login values will be taken from this table row.

Please refer to SQL Assignments in the Configuration Utility documentation for a more detailed
description of the SQL Authorization table.

283Programming Guide

Accessing Data in an SQL Database

284

27 Accessing Data in a Tamino Database

■ Prerequisite .. 286
■ DDM and View Definitions with Natural for Tamino ... 286
■ Natural Statements for Tamino Database Access ... 290
■ Natural for Tamino Restrictions ... 294

285

The following topics are covered:

For information about how to configure Natural to work with Tamino, see Natural for Tamino in
the Database Management System Interfaces documentation.

Prerequisite

Tamino stores structureddata-orientedXMLdocuments in containers called doctypes. The doctypes
are grouped logically together in so-called collections. Collections are stored in a Tamino database,
which is the physical container of data.

The kind of data that can be stored in Tamino and that is to be accessed by Natural for Tamino
must be defined in a Tamino XML Schema.

DDM and View Definitions with Natural for Tamino

This section describes the basic concepts of the Tamino XML schema language, Natural DDMs
and view definitions and how they interact with Natural for Tamino.

The following topics are covered:

■ Introducing Tamino XML Schema Language
■ DDMs from Tamino
■ Arrays in DDMs from Tamino
■ Example of a DDM
■ Definition of Views

Introducing Tamino XML Schema Language

The Tamino XML schema language is used to define a data type-oriented description of the
structure of XML documents. In Tamino, a doctype represents a container for XML documents
with the same root element and the same structure within a collection.

In Tamino, a collection is a container for a set of varying doctypes, so that a collection can be seen
as the logical grouping of doctypes that belong together.

In a Tamino XML schema definition, a doctype is defined together with the collection in which it
is contained. One Tamino XML schema can define more than one doctype and it can also define
doctypes for more than one collection.

For more information on the Tamino XML schema language, refer to the Tamino documentation.

Programming Guide286

Accessing Data in a Tamino Database

DDMs from Tamino

ForNatural to be able to access a Tamino database, a logical connection between a Tamino doctype
and theNatural data structuresmust be provided. Such a logical connection is called a DDM (data
definition module).

A Natural DDM generated from a Tamino database is a representation of one doctype defined in
one schema. The DDM contains information about the type of each data field and all the necessary
structural information as defined in the corresponding Tamino XML schema. To generate a new
DDM, the doctypemust be selected from a list of all doctypes available in a given collection. Since
one collection is bound to one Natural database ID (DBID), it is necessary to use a second DBID
if a doctype from another collection is to be accessed.

A Tamino XML schema describes data and data structures in a very different way than with
Natural data definitions. Therefore, specific mappings are introduced to derive a Natural data
format from a Tamino XML schema data type.

YoudefineDDMswith theNatural DDMeditor. Formore information about TaminoXML schema
mapping, refer toData Conversion for Tamino in theDDMEditor section of theEditorsdocumentation.

For the field attributes defined in a DDM, refer to the DDM editorDDM Editor, Using the DDM
Editor section in the Editors documentation.

287Programming Guide

Accessing Data in a Tamino Database

Arrays in DDMs from Tamino

If you define anXML elementwith a maxOccurs value greater than one in the TaminoXMLSchema,
then this element can occur as often as this value indicates. Such a construction is mapped either
on a Natural static array definition or on a Natural X-Array definition. Depending on the type of
the XML element you are dealing with, the following situations may occur:

■ If the XML element is a complexTypewith complexContent (i.e. it is an element containing other
elements) then the generated corresponding Natural group will be an indexed group.

■ If the XML element is a simpleType (i.e. the element is holding data only) or a complexTypewith
simpleContent (i.e. the element has only data and attributes but no other elements) then the
generated Natural data field will be an array.

For further information about mapping maxOccurs definitions onto Natural arrays, see Data Con-
version for Tamino in the DDM Editor section of the Editors documentation. The array boundaries
or the kind of the array (static array or X-Array) can be adapted in a corresponding viewdefinition
as usual.

Example of a DDM

This is an example of an EMPLOYEES DDM generated from a Tamino XML Schema definition.

The schema can, for example, be defined with the Natural demo application SYSEXINS:

DB: 00250 FILE: 00001 - EMPLOYEES-XML
TYPE: XML
COLLECTION: NATDemoData
SCHEMA: Employee
DOCTYPE: Employee
NAMESPACE-PREFIX: xs
NAMESPACE-URI: http://www.w3.org/2001/XMLSchema
T L Name F Leng D Remark
- -- -------------------------------- - ---------- - -----------
G 1 EMPLOYEE
 FLAGS=MULT_REQUIRED,MULT_ONCE
 TAG=Employee
 XPATH=/Employee
G 2 GROUP$1
 FLAGS=GROUP_ATTRIBUTES
 3 PERSONNEL-ID A 8 D xs:string
 FLAGS=ATTR_REQUIRED
 TAG=@Personnel-ID
 XPATH=/Employee/@Personnel-ID
G 2 GROUP$2
 FLAGS=GROUP_SEQUENCE,MULT_REQUIRED,MULT_ONCE
G 3 FULL-NAME
 FLAGS=MULT_OPTIONAL
 TAG=Full-Name
 XPATH=/Employee/Full-Name

Programming Guide288

Accessing Data in a Tamino Database

G 4 GROUP$3
 FLAGS=GROUP_SEQUENCE,MULT_REQUIRED,MULT_ONCE
 5 FIRST-NAME A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=First-Name
 XPATH=/Employee/Full-Name/First-Name
 5 MIDDLE-NAME A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=Middle-Name
 XPATH=/Employee/Full-Name/Middle-Name
 5 MIDDLE-I A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=Middle-I
 XPATH=/Employee/Full-Name/Middle-I
 5 NAME A 20 D xs:string
 FLAGS=MULT_OPTIONAL
 TAG=Name
 XPATH=/Employee/Full-Name/Name
 . . .
 3 LANG A 3 xs:string
 FLAGS=ARRAY,MULT_OPTIONAL
 OCC=1:4
 TAG=Lang
 XPATH=/Employee/Lang ↩

Definition of Views

In order to workwith Tamino database fields in aNatural program, youmust specify the required
fields of the DDM in a Natural view-definition (see the DEFINE DATA statement). Normally, a
view is a special subset of the complete data structure as defined in the DDM.

Tamino XML Schema->Natural for Tamino DDM->Natural view-definition

If the view is used to store XML objects, it has to contain all fields that are required to a generate
documents that are valid according to the corresponding Tamino XML schema definition.

A view for the EMPLOYEES-XMLDDM, where one of the view fields is a static array, might look like
this:

DEFINE DATA LOCAL
01 VW VIEW OF EMPLOYEES-XML
02 NAME
02 CITY
02 LANG (1:4)
END-DEFINE

289Programming Guide

Accessing Data in a Tamino Database

Natural Statements for Tamino Database Access

The Natural DML statements which are provided for Tamino access can be subdivided into two
categories:

■ pure retrieval statements;
■ database modification statements.

The Natural system variable *ISN is mapped on the Tamino ino:id.

Natural for Tamino Retrieval Statements

The following Natural statements can be used for database retrieval:

■ FIND

This statement is used to select those records from a database which meet a specified search
criterion.

■ GET

This statement is used to select one special record with its unique id from the database.
■ READ

This statement is used to select a range of records from a database in a specified sequence.

Not all of the possible options and all of the possible clauses of the retrieval statements can be
used for Tamino access. Please read the appropriate section in the Statements documentation for
a detailed description.

All statements are internally realized with the Tamino _xquery command verb. Statement clauses
are mapped to corresponding Tamino XQuery expressions, e.g. search criteria are mapped to
Tamino XQuery comparison expressions, sequence specifications are mapped to Tamino XQuery
ordering expressions with sort direction.

The result set for the FIND and READ statements is determined at start of the loop and remains un-
changed throughout the loop.

The following is an example of reading a set of employee records from a Tamino database where
one view field is an array:

Programming Guide290

Accessing Data in a Tamino Database

* READ 5 RECORDS DESCENDING CONTAINING A
* STATIC ARRAY IN THE VIEW DEFINE DATA LOCAL
01 VW VIEW OF EMPLOYEES-TAMINO
02 NAME
02 CITY
02 LANG (1:4)
END-DEFINE
*
READ(5) VW DESCENDING BY NAME = 'MAYER'

DISPLAY NAME CITY LANG(*)
END-READ
*
END

Natural for Tamino Database Modification Statements

The following database modification statements are provided for use with Natural for Tamino:

■ STORE

This statement is used for inserting a new XML document into the database.
■ DELETE

This statement is used for deleting a document from the database. The DELETE statement imple-
ments a positioned delete.

For a detailed description of the statements, see the appropriate sections of the Statements docu-
mentation.

The DELETE statement is internally realized with the Tamino _delete command verb using the
current ino:id, and the STORE statement is implemented with the _process command verb.

Example:

The following example program stores a new employee record with some data in the database:

* STORE NEW EMPLOYEE
DEFINE DATA LOCAL
01 VW VIEW OF EMPLOYEES-TAMINO
02 PERSONNEL-ID
02 NAME
02 CITY
02 LANG (1:3)
END-DEFINE
*
* FILL VIEW
PERSONNEL-ID := '1230815'
NAME := 'KENT'
CITY := 'ROME'
LANG(1) := 'ENG'

291Programming Guide

Accessing Data in a Tamino Database

LANG(2) := 'GER'
LANG(3) := 'SPA'
*
* STORE VIEW
STORE RECORD IN VW
*
COMMIT
*
END

If the Tamino XML Schema defines data structures for a doctype as being mandatory, then these
data structures must also be filled in the view before a STORE statement is issued, otherwise this
will result in a Tamino error.

Natural for Tamino Logical Transaction Handling

Natural performs database modification operations based on transactions, which means that all
database modification requests are processed in logical transaction units. A logical transaction is
the smallest unit of work (as defined by you) which must be performed in its entirety to ensure
that the information contained in the database is logically consistent.

A logical transactionmay consist of one ormoremodification statements (DELETE, STORE) involving
one or more doctypes in the database. A logical transaction may also span multiple Natural pro-
grams.

A logical transaction begins when a database modification statement is issued. Natural does this
automatically. For example, if a FIND loop contains a DELETE statement. The end of a logical
transaction is determined by an END TRANSACTION statement in the program. This statement ensures
that all modifications within the transaction have been successfully applied.

Natural for Tamino Error Handling

In addition to Natural's standard error messages there are two special error codes which provide
additional information via a sub-error code.

Error Message NAT8400

NAT8400 Tamino error ... occurred

For this special error an additional sub-code number is shown. This number refers to a Tamino
error message. Please see the TaminoMessages and Codes documentation. The user exit USR6007
in library SYSEXT is provided for obtaining diagnostic information in case aNAT8400 error occurs.

Here is an example of usage:

Programming Guide292

Accessing Data in a Tamino Database

DEFINE DATA LOCAL
01 VW VIEW OF EMPLOYEES-TAMINO
02 NAME
02 CITY

01 TAMINO_PARMS
02 TAMINO_ERROR_NUM (I4) /* Error number of Tamino error
02 TAMINO_ERROR_TEXT (A70) /* Tamino error text
02 TAMINO_ERROR_LINE (A253) /* Tamino error message line

END-DEFINE
*
NAME := 'MEYER'
CITY := 'BOSTON'
STORE VW
*
ON ERROR
IF *ERROR EQ 8400 /* in case of error 8400 obtain diagnostic information
CALLNAT 'USR6007N' TAMINO_PARMS
PRINT 'Error 8400 occurred:'
PRINT 'Error Number:' TAMINO_ERROR_NUM
PRINT 'Error Text :' TAMINO_ERROR_TEXT
PRINT 'Error Line :' TAMINO_ERROR_LINE

END-IF
END-ERROR
*
END

Error Message NAT8411

NAT8411 HTTP request failed with response code...

The error code from the HTTP server is delivered as additional information. See also REQUEST
DOCUMENT statement, Overview of Response Numbers for HTTP/HTTPs Requests.

Example of Natural for Tamino Interacting with a SQL Database

This is a more sophisticated example of Natural for Tamino interacting with an SQL database; it
retrieves data from a Tamino database and inserts or updates the corresponding row in an appro-
priate table in a SQL database.

*
* TAMINO DB --> SQL RDBMS EXAMPLE
*
DEFINE DATA LOCAL
* DEFINE VIEW FOR TAMINO
01 VW-TAMINO VIEW OF EMPLOYEES-TAMINO
02 PERSONNEL-ID
02 NAME
02 CITY
* DEFINE VIEW FOR SQL DATABASE
01 VW-SQL VIEW OF EMPLOYEES-SQL

293Programming Guide

Accessing Data in a Tamino Database

02 PERSONNEL_ID
02 NAME
02 CITY
END-DEFINE
*
* OPEN A TAMINO LOGICAL READ LOOP
*
TAMINO. READ VW-TAMINO BY NAME
*
* SEARCH RECORD IN SQL DATABASE AND
* INSERT A NEW RECORD IF NOT FOUND OR
* UPDATE THE EXISTING ONE WITH THE DATA
* FROM TAMINO DB
SQL. FIND(1) VW-SQL WITH PERSONNEL_ID = PERSONNEL-ID (TAMINO.)

IF NO RECORDS FOUND
PERSONNEL_ID := PERSONNEL-ID (TAMINO.)
NAME := NAME (TAMINO.)
CITY := CITY (TAMINO.)
STORE VW-SQL
ESCAPE BOTTOM

END-NOREC
PERSONNEL_ID := PERSONNEL-ID (TAMINO.)
NAME := NAME (TAMINO.)
CITY := CITY (TAMINO.)
UPDATE

END-FIND
*
END-READ
*
END TRANSACTION
*
END

Natural for Tamino Restrictions

There are restrictions concerning the scope of the Tamino XML Schema language that can be used
for creating schemas for Natural for Tamino DDM generation:

■ Only Tamino XML Schema language constructors and attributes (as mentioned in Tamino XML
Schema Constructors in the DDM Editor section of the Editors documentation) are supported by
Natural for Tamino. Other constructors such as xs:any, xs:anyAttribute cannot be applied in
Tamino XML Schemas if you wish to use them together with Natural for Tamino.

■ The functionality of xs:import is not supported byNatural for Tamino. Thismeans that external
schema componentsmust not be referenced in a TaminoXMLSchema suitable for usage together
with Natural. In other words, a doctype definition in a Tamino XML Schema must resolve all
references within this Tamino XML Schema itself if you are planning to use it together with
Natural for Tamino.

Programming Guide294

Accessing Data in a Tamino Database

■ The attribute mixed of the constructor xs:complexType is only supported with its default value
false. Natural for Tamino does not support mixed-content document definitions (as set with
the specification mixed="true"). Using mixed="true"will result in an error during DDM gen-
eration.

■ The level of nested structures in a Natural for Tamino DDM is limited to 99. A new DDM level
is generated whenever one of the following constructors occurs in the Tamino XML Schema:

xs:element
xs:attribute
xs:choice
xs:all
xs:sequence

■ Recursively defined structures in a Tamino XML Schema cannot be used together with Natural
for Tamino.

■ The Tamino XML Schema language constructor xs:choice is mapped on a Natural group con-
taining all alternatives of the choice. To restrict processing to one particular choice, an appropriate
view with the required choice has to be created.

■ Natural for Tamino only supports “closed content validation mode”. Tamino XML Schemas
with “open content validation mode” cannot be used together with Natural for Tamino.

■ For the Tamino XML Schema language constructors xs:choice, xs:sequence and xs:all, a
value greater than 1 of the attribute maxOccurs cannot be handled in theNatural data structures.
Hence a value greater than 1 will always lead to an error during DDM generation.

■ Natural for Tamino can handle only Tamino objects that are definedwith a TaminoXMLSchema
as a subset of the W3C schema. Especially Natural for Tamino does not support non-XML
(tsd:nonXML) data or instances without a defined schema (ino:etc).

295Programming Guide

Accessing Data in a Tamino Database

296

VI Controlling Data Output

This part describes how to proceed if a Natural program is to produce multiple reports. Further-
more, it discusses various aspects of how you can control the format of an output report created
with Natural, that is, the way in which the data are displayed.

Report Specification - (rep) Notation

Layout of an Output Page

Statements DISPLAY and WRITE

Index Notation for Multiple-Value Fields and Periodic Groups

Page Titles, Page Breaks, Blank Lines

Column Headers

Parameters to Influence the Output of Fields

Edit Masks - EM Parameter

Unicode Edit Masks - EMU Parameter

Vertical Displays

297

298

28 Report Specification - (rep) Notation

■ Use of Report Specifications .. 300
■ Statements Concerned ... 300
■ Examples of Report Specification .. 300

299

(rep) is the output report identifier for which a statement is applicable.

Use of Report Specifications

If a Natural program is to produce multiple reports, the notation (rep)must be specified with
each output statement (see Statements Concerned, below) which is to be used to create output for
any report other than the first report (Report 0).

A value of 0 - 31may be specified.

The value for (rep)may also be a logical namewhich has been assigned using the DEFINE PRINTER
statement, see Example 2 below.

Statements Concerned

The notation (rep) can be used with the following output statements:

AT END OF PAGE | AT TOP OF PAGE | DISPLAY | EJECT | FORMAT | NEWPAGE | PRINT | SKIP | SUSPEND
IDENTICAL SUPPRESS | WRITE | WRITE TITLE | WRITE TRAILER

Examples of Report Specification

Example 1 - Multiple Reports

DISPLAY (1) NAME ...
WRITE (4) NAME ...

Example 2 - Using Logical Names

DEFINE PRINTER (LIST=5) OUTPUT 'LPT1'
WRITE (LIST) NAME ...

Programming Guide300

Report Specification - (rep) Notation

29 Layout of an Output Page

■ Statements Influencing a Report Layout ... 302
■ General Layout Example ... 302

301

The following topics are covered:

Statements Influencing a Report Layout

The following statements have an impact on the layout of the report:

FunctionStatement

With this statement, you can specify a page title, that is, text to be output at the top
of a page. By default, page titles are centered and not underlined.

WRITE TITLE

With this statement, you can specify a page trailer, that is, text to be output at the
bottom of a page. By default, the trailer lines are centered and not underlined.

WRITE TRAILER

With this statement, you can specify any processing that is to be performedwhenever
a new page of the report is started. Any output from this processing will be output
below the page title.

AT TOP OF PAGE

With this statement, you can specify any processing that is to be performedwhenever
an end-of-page condition occurs. Any output from this processing will be output
below any page trailer (as specified with the WRITE TRAILER statement).

AT END OF PAGE

With this statement, you specify processing that is to be performed after the first
record has been read in a database processing loop. Any output from this processing
will be output before the first field value. See note below.

AT START OF DATA

With this statement, you specify processing that is to be performed after all records
for a processing loop have been processed. Any output from this processing will be
output immediately after the last field value. See note below.

AT END OF DATA

With these statements, you control the format in which the field values that have
been read are to be output. See section Statements DISPLAY and WRITE.

DISPLAY / WRITE

Note: The relevance of the statements AT START OF DATA and AT END OF DATA for the output
of data is described under Database Access, AT START/END OF DATA Statements. The
other statements listed above are discussed in other sections of the part Controlling Data
Output.

General Layout Example

The following example program illustrates the general layout of an output page:

Programming Guide302

Layout of an Output Page

** Example 'OUTPUX01': Several sections of output
**
DEFINE DATA LOCAL
1 EMP-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 BIRTH

END-DEFINE
*
WRITE TITLE '********** Page Title **********'
WRITE TRAILER '********** Page Trailer **********'
*
AT TOP OF PAGE

WRITE '===== Top of Page ====='
END-TOPPAGE
AT END OF PAGE

WRITE '===== End of Page ====='
END-ENDPAGE
*
READ (10) EMP-VIEW BY NAME

/*
DISPLAY NAME FIRST-NAME BIRTH (EM=YYYY-MM-DD)
/*
AT START OF DATA

WRITE '>>>>> Start of Data >>>>>'
END-START
AT END OF DATA

WRITE '<<<<< End of Data <<<<<'
END-ENDDATA

END-READ
END

Output of Program OUTPUX01:

********** Page Title **********
===== Top of Page =====

NAME FIRST-NAME DATE
OF

BIRTH
-------------------- -------------------- ----------

>>>>> Start of Data >>>>>
ABELLAN KEPA 1961-04-08
ACHIESON ROBERT 1963-12-24
ADAM SIMONE 1952-01-30
ADKINSON JEFF 1951-06-15
ADKINSON PHYLLIS 1956-09-17
ADKINSON HAZEL 1954-03-19
ADKINSON DAVID 1946-10-12
ADKINSON CHARLIE 1950-03-02
ADKINSON MARTHA 1970-01-01
ADKINSON TIMMIE 1970-03-03

303Programming Guide

Layout of an Output Page

<<<<< End of Data <<<<<
********** Page Trailer **********

===== End of Page =====

Programming Guide304

Layout of an Output Page

30 Statements DISPLAY and WRITE

■ DISPLAY Statement ... 306
■ WRITE Statement .. 307
■ Example of DISPLAY Statement ... 308
■ Example of WRITE Statement .. 308
■ Column Spacing - SF Parameter and nX Notation .. 309
■ Tab Setting - nT Notation ... 310
■ Line Advance - Slash Notation ... 311
■ Further Examples of DISPLAY and WRITE Statements ... 314

305

The following topics are covered:

DISPLAY Statement

The DISPLAY statement produces output in column format; that is, the values for one field are
output in a column underneath one another. If multiple fields are output, that is, if multiple
columns are produced, these columns are output next to one another horizontally.

The order in which fields are displayed is determined by the sequence in which you specify the
field names in the DISPLAY statement.

The DISPLAY statement in the following program displays for each person first the personnel
number, then the name and then the job title:

** Example 'DISPLX01': DISPLAY
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE

END-DEFINE
*
READ (3) VIEWEMP BY BIRTH

DISPLAY PERSONNEL-ID NAME JOB-TITLE
END-READ
END

Output of Program DISPLX01:

Page 1 04-11-11 14:15:54

PERSONNEL NAME CURRENT
ID POSITION

--------- -------------------- -------------------------

30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

To change the order of the columns that appear in the output report, simply reorder the field
names in the DISPLAY statement. For example, if you prefer to list employee names first, then job
titles followed by personnel numbers, the appropriate DISPLAY statement would be:

Programming Guide306

Statements DISPLAY and WRITE

** Example 'DISPLX02': DISPLAY
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE

END-DEFINE
*
READ (3) VIEWEMP BY BIRTH

DISPLAY NAME JOB-TITLE PERSONNEL-ID
END-READ
END

Output of Program DISPLX02:

Page 1 04-11-11 14:15:54

NAME CURRENT PERSONNEL
POSITION ID

-------------------- ------------------------- ---------

GARRET TYPIST 30020013
TAILOR WAREHOUSEMAN 30016112
PIETSCH SECRETARY 20017600

A header is output above each column. Various ways to influence this header are described in the
document Column Headers.

WRITE Statement

The WRITE statement is used to produce output in free format (that is, not in columns). In contrast
to the DISPLAY statement, the following applies to the WRITE statement:

■ If necessary, it automatically creates a line advance; that is, a field or text element that does not
fit onto the current output line, is automatically output in the next line.

■ It does not produce any headers.
■ The values of a multiple-value field are output next to one another horizontally, and not under-
neath one another.

The two example programs shown below illustrate the basic differences between the DISPLAY
statement and the WRITE statement.

You can also use the two statements in combination with one another, as described later in the
document Vertical Displays, Combining DISPLAY and WRITE .

307Programming Guide

Statements DISPLAY and WRITE

Example of DISPLAY Statement

** Example 'DISPLX03': DISPLAY
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 SALARY (1:3)

END-DEFINE
*
READ (2) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY NAME FIRST-NAME SALARY (1:3)
END-READ
END

Output of Program DISPLX03:

Page 1 04-11-11 14:15:54

NAME FIRST-NAME ANNUAL
SALARY

-------------------- -------------------- ----------

JONES VIRGINIA 46000
42300
39300

JONES MARSHA 50000
46000
42700

Example of WRITE Statement

** Example 'WRITEX01': WRITE
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 SALARY (1:3)

END-DEFINE
*
READ (2) VIEWEMP BY NAME STARTING FROM 'JONES'

WRITE NAME FIRST-NAME SALARY (1:3)
END-READ
END

Programming Guide308

Statements DISPLAY and WRITE

Output of Program WRITEX01:

Page 1 04-11-11 14:15:55

JONES VIRGINIA 46000 42300 39300
JONES MARSHA 50000 46000 42700

Column Spacing - SF Parameter and nX Notation

By default, the columns output with a DISPLAY statement are separated from one another by one
space.

With the session parameter SF, you can specify the default number of spaces to be inserted between
columns output with a DISPLAY statement. You can set the number of spaces to any value from 1
to 30.

The parameter can be specified with a FORMAT statement to apply to the whole report, or with a
DISPLAY statement at statement level, but not at element level.

With the nX notation in the DISPLAY statement, you can specify the number of spaces (n) to be in-
serted between two columns. An nX notation overrides the specification made with the SF para-
meter.

** Example 'DISPLX04': DISPLAY (with nX)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE

END-DEFINE
*
FORMAT SF=3
READ (3) VIEWEMP BY BIRTH

DISPLAY PERSONNEL-ID NAME 5X JOB-TITLE
END-READ
END

Output of Program DISPLX04:

The above example program produces the following output, where the first two columns are
separated by 3 spaces due to the SF parameter in the FORMAT statement, while the second and third
columns are separated by 5 spaces due to the notation 5X in the DISPLAY statement:

309Programming Guide

Statements DISPLAY and WRITE

Page 1 04-11-11 14:15:54

PERSONNEL NAME CURRENT
ID POSITION

--------- -------------------- -------------------------

30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

The nX notation is also available with the WRITE statement to insert spaces between individual
output elements:

WRITE PERSONNEL-ID 5X NAME 3X JOB-TITLE

With the above statement, 5 spaces will be inserted between the fields PERSONNEL-ID and NAME,
and 3 spaces between NAME and JOB-TITLE.

Tab Setting - nT Notation

With the nT notation, which is availablewith the DISPLAY and the WRITE statement, you can specify
the position where an output element is to be output.

** Example 'DISPLX05': DISPLAY (with nT)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME

END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY 5T NAME 30T FIRST-NAME
END-READ
END

Output of Program DISPLX05:

The above program produces the following output, where the field NAME is output starting in the
5th position (counted from the left margin of the page), and the field FIRST-NAME starting in the
30th position:

Programming Guide310

Statements DISPLAY and WRITE

Page 1 04-11-11 14:15:54

NAME FIRST-NAME
-------------------- --------------------

JONES VIRGINIA
JONES MARSHA
JONES ROBERT

Line Advance - Slash Notation

With a slash (/) in a DISPLAY or WRITE statement, you cause a line advance.

■ In a DISPLAY statement, a slash causes a line advance between fields and within text.
■ In a WRITE statement, a slash causes a line advance only when placed between fields; within text,
it is treated like an ordinary text character.

When placed between fields, the slash must have a blank on either side.

For multiple line advances, you specify multiple slashes.

Example 1 - Line Advance in DISPLAY Statement:

** Example 'DISPLX06': DISPLAY (with slash '/')
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 DEPARTMENT

END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY NAME / FIRST-NAME 'DEPART-/MENT' DEPARTMENT
END-READ
END

Output of Program DISPLX06:

The above DISPLAY statement produces a line advance after each value of the field NAME and
within the text DEPART-MENT:

311Programming Guide

Statements DISPLAY and WRITE

Page 1 04-11-11 14:15:54

NAME DEPART-
FIRST-NAME MENT

-------------------- -------

JONES SALE
VIRGINIA
JONES MGMT
MARSHA
JONES TECH
ROBERT

Example 2 - Line Advance in WRITE Statement:

** Example 'WRITEX02': WRITE (with line advance)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 DEPARTMENT

END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'

WRITE NAME / FIRST-NAME 'DEPART-/MENT' DEPARTMENT //
END-READ
END

Output of Program WRITEX02:

The above WRITE statement produces a line advance after each value of the field NAME, and a double
line advance after each value of the field DEPARTMENT, but none within the text DEPART-/MENT:

Page 1 04-11-11 14:15:55

JONES
VIRGINIA DEPART-/MENT SALE

JONES
MARSHA DEPART-/MENT MGMT

JONES
ROBERT DEPART-/MENT TECH

Programming Guide312

Statements DISPLAY and WRITE

Example 3 - Line Advance in DISPLAY and WRITE Statements:

** Example 'DISPLX21': DISPLAY (usage of slash '/' in DISPLAY and WRITE)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 FIRST-NAME
2 ADDRESS-LINE (1)

END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED UNDERLINED

*TIME
5X 'PEOPLE LIVING IN SALT LAKE CITY'
21X 'PAGE:' *PAGE-NUMBER /
15X 'AS OF' *DAT4E //

*
WRITE TRAILER UNDERLINED 'REGISTER OF' / 'SALT LAKE CITY'
*
READ (2) EMPLOY-VIEW WITH CITY = 'SALT LAKE CITY'

DISPLAY NAME /
FIRST-NAME
'HOME/CITY' CITY
'STREET/OR BOX NO.' ADDRESS-LINE (1)

SKIP 1
END-READ
END

Output of Program DISPLX21:

14:15:54.6 PEOPLE LIVING IN SALT LAKE CITY PAGE: 1
AS OF 11/11/2004

NAME HOME STREET

FIRST-NAME CITY OR BOX NO.
-------------------- -------------------- --------------------

ANDERSON SALT LAKE CITY 3701 S. GEORGE MASON
JENNY

SAMUELSON SALT LAKE CITY 7610 W. 86TH STREET
MARTIN

REGISTER OF
SALT LAKE CITY

313Programming Guide

Statements DISPLAY and WRITE

Further Examples of DISPLAY and WRITE Statements

See the following example programs:

■ DISPLX13 - DISPLAY (compare with WRITEX08 using WRITE)
■ WRITEX08 - WRITE (compare with DISPLX13 using DISPLAY)
■ DISPLX14 - DISPLAY (with AL, SF and nX)
■ WRITEX09 - WRITE (in combination with AT END OF DATA)

Programming Guide314

Statements DISPLAY and WRITE

31 Index Notation for Multiple-Value Fields and Periodic

Groups
■ Use of Index Notation ... 316
■ Example of Index Notation in DISPLAY Statement .. 316
■ Example of Index Notation in WRITE Statement .. 317

315

This chapter describes how you can use the index notation (n:n) to specify how many values of
a multiple-value field or how many occurrences of a periodic group are to be output.

Use of Index Notation

With the index notation (n:n) you can specify howmany values of a multiple-value field or how
many occurrences of a periodic group are to be output.

For example, the field INCOME in the DDM EMPLOYEES is a periodic group which keeps a record of
the annual incomes of an employee for each year he/she has been with the company.

These annual incomes are maintained in chronological order. The income of the most recent year
is in occurrence 1.

If you wanted to have the annual incomes of an employee for the last three years displayed - that
is, occurrences 1 to 3 - you would specify the notation (1:3) after the field name in a DISPLAY or
WRITE statement (as shown in the following example program).

Example of Index Notation in DISPLAY Statement

** Example 'DISPLX07': DISPLAY (with index notation)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 BIRTH
2 INCOME (1:3)

3 CURR-CODE
3 SALARY
3 BONUS (1:1)

END-DEFINE
*
READ (3) VIEWEMP BY BIRTH

DISPLAY PERSONNEL-ID NAME INCOME (1:3)
SKIP 1

END-READ
END

Output of Program DISPLX07:

Note that a DISPLAY statement outputs multiple values of a multiple-value field underneath one
another:

Programming Guide316

Index Notation for Multiple-Value Fields and Periodic Groups

Page 1 04-11-11 14:15:54

PERSONNEL NAME INCOME
ID

CURRENCY ANNUAL BONUS
CODE SALARY

--------- -------------------- -------- ---------- ----------

30020013 GARRET UKL 4200 0
UKL 4150 0

0 0

30016112 TAILOR UKL 7450 0
UKL 7350 0
UKL 6700 0

20017600 PIETSCH USD 22000 0
USD 20200 0
USD 18700 0

As a WRITE statement displays multiple values horizontally instead of vertically, this may cause
a line overflow and a - possibly undesired - line advance.

If you use only a single field within a periodic group (for example, SALARY) instead of the entire
periodic group, and if you also insert a slash (/) to cause a line advance (as shown in the following
example between NAME and JOB-TITLE), the report format becomes manageable.

Example of Index Notation in WRITE Statement

** Example 'WRITEX03': WRITE (with index notation)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE
2 SALARY (1:3)

END-DEFINE
*
READ (3) VIEWEMP BY BIRTH

WRITE PERSONNEL-ID NAME / JOB-TITLE SALARY (1:3)
SKIP 1

END-READ
END

Output of Program WRITEX03:

317Programming Guide

Index Notation for Multiple-Value Fields and Periodic Groups

Page 1 04-11-11 14:15:55

30020013 GARRET
TYPIST 4200 4150 0

30016112 TAILOR
WAREHOUSEMAN 7450 7350 6700

20017600 PIETSCH
SECRETARY 22000 20200 18700

Programming Guide318

Index Notation for Multiple-Value Fields and Periodic Groups

32 Page Titles, Page Breaks, Blank Lines

■ Default Page Title .. 320
■ Suppress Page Title - NOTITLE Option .. 320
■ Define Your Own Page Title - WRITE TITLE Statement ... 321
■ Logical Page and Physical Page ... 324
■ Page Size - PS Parameter ... 326
■ Page Advance .. 326
■ New Page with Title ... 329
■ Page Trailer - WRITE TRAILER Statement ... 330
■ Generating Blank Lines - SKIP Statement ... 332
■ AT TOP OF PAGE Statement ... 333
■ AT END OF PAGE Statement ... 334
■ Further Example .. 336

319

This chapter describes various ways of controlling page breaks in a report, the output of page
titles at the top of each report page and the generation of empty lines in an output report.

Default Page Title

For each page output via a DISPLAY or WRITE statement, Natural automatically generates a single
default title line. This title line contains the page number, the date and the time of day.

Example:

WRITE 'HELLO'
END

The above program produces the following output with default page title:

Page 1 04-12-14 13:19:33

HELLO ↩

Suppress Page Title - NOTITLE Option

If you wish your report to be output without page titles, you add the keyword NOTITLE to the
statement DISPLAY or WRITE.

Example - DISPLAY with NOTITLE:

** Example 'DISPLX20': DISPLAY (with NOTITLE)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 FIRST-NAME

END-DEFINE
*
READ (5) EMPLOY-VIEW BY CITY FROM 'BOSTON'

DISPLAY NOTITLE NAME FIRST-NAME CITY
END-READ
END

Output of Program DISPLX20:

Programming Guide320

Page Titles, Page Breaks, Blank Lines

NAME FIRST-NAME CITY
-------------------- -------------------- --------------------

SHAW LESLIE BOSTON
STANWOOD VERNON BOSTON
CREMER WALT BOSTON
PERREAULT BRENDA BOSTON
COHEN JOHN BOSTON

Example - WRITE with NOTITLE:

WRITE NOTITLE 'HELLO'
END

The above program produces the following output without page title:

HELLO ↩

Define Your Own Page Title - WRITE TITLE Statement

If you wish a page title of your own to be output instead of the Natural default page title, you use
the statement WRITE TITLE.

The following topics are covered below:

■ Specifying Text for Your Title
■ Specifying Empty Lines after the Title
■ Title Justification and/or Underlining
■ Title with Page Number

Specifying Text for Your Title

With the statement WRITE TITLE, you specify the text for your title (in apostrophes).

WRITE TITLE 'THIS IS MY PAGE TITLE'
WRITE 'HELLO'
END

The above program produces the following output:

321Programming Guide

Page Titles, Page Breaks, Blank Lines

 THIS IS MY PAGE TITLE
HELLO ↩

Specifying Empty Lines after the Title

With the SKIP option of the WRITE TITLE statement, you can specify the number of empty lines
to be output immediately below the title line. After the keyword SKIP, you specify the number of
empty lines to be inserted.

WRITE TITLE 'THIS IS MY PAGE TITLE' SKIP 2
WRITE 'HELLO'
END

The above program produces the following output:

 THIS IS MY PAGE TITLE

HELLO ↩

SKIP is not only available as part of the WRITE TITLE statement, but also as a stand-alone statement.

Title Justification and/or Underlining

By default, the page title is centered on the page and not underlined.

The WRITE TITLE statement provides the following options which can be used independent of
each other:

EffectOption

Causes the page trailer to be displayed left-justified.LEFT JUSTIFIED

Causes the title to be displayed underlined. The underlining runs the width of the line
size (see alsoNatural profile and session parameter LS). By default, titles are underlined

UNDERLINED

with a hyphen (-). However, with the UC session parameter you can specify another
character to be used as underlining character (seeUnderlining Character for Titles and
Headers).

The following example shows the effect of the LEFT JUSTIFIED and UNDERLINED options:

Programming Guide322

Page Titles, Page Breaks, Blank Lines

WRITE TITLE LEFT JUSTIFIED UNDERLINED 'THIS IS MY PAGE TITLE'
SKIP 2
WRITE 'HELLO'
END

The above program produces the following output:

THIS IS MY PAGE TITLE

HELLO ↩

The WRITE TITLE statement is executed whenever a new page is initiated for the report.

Title with Page Number

In the following examples, the system variable *PAGE-NUMBER is used in conjunctionwith the WRITE
TITLE statement to output the page number in the title line.

** Example 'WTITLX01': WRITE TITLE (with *PAGE-NUMBER)
**
DEFINE DATA LOCAL
1 VEHIC-VIEW VIEW OF VEHICLES

2 MAKE
2 YEAR
2 MAINT-COST (1)

END-DEFINE
*
LIMIT 5
*
READ VEHIC-VIEW
END-ALL
SORT BY YEAR USING MAKE MAINT-COST (1)

DISPLAY NOTITLE YEAR MAKE MAINT-COST (1)
AT BREAK OF YEAR

MOVE 1 TO *PAGE-NUMBER
NEWPAGE

END-BREAK
/*
WRITE TITLE LEFT JUSTIFIED

'YEAR:' YEAR 15X 'PAGE' *PAGE-NUMBER
END-SORT
END

Output of Program WTITLX01:

323Programming Guide

Page Titles, Page Breaks, Blank Lines

YEAR: 1980 PAGE 1
YEAR MAKE MAINT-COST
----- -------------------- ----------

1980 RENAULT 20000
1980 RENAULT 20000
1980 PEUGEOT 20000

Logical Page and Physical Page

A logical page is the output produced by a Natural program. A physical page is your terminal screen
on which the output is displayed; or it may be the piece of paper on which the output is printed.

The size of the logical page is determined by the number of lines output by the Natural program.

If more lines are output than fit onto one screen, the logical page will exceed the physical screen,
and the remaining lines will be displayed on the next screen.

Programming Guide324

Page Titles, Page Breaks, Blank Lines

Note: If information you wish to appear at the bottom of the screen (for example, output
created by a WRITE TRAILER or AT END OF PAGE statement) is output on the next screen in-
stead, reduce the logical page size accordingly (with the session parameter PS, which is
discussed below).

325Programming Guide

Page Titles, Page Breaks, Blank Lines

Page Size - PS Parameter

With the parameter PS (Page Size for Natural Reports), you determine the maximum number of
lines per (logical) page for a report.

When the number of lines specified with the PS parameter is reached, a page advance occurs
(unless page advance is controlledwith a NEWPAGE or EJECT statement; seePageAdvance Controlled
by EJ Parameter below).

The PS parameter can be set either at session level with the system command GLOBALS, or within
a program with the following statements:

At report level:

■ FORMAT PS=nn

At statement level:

■ DISPLAY (PS=nn)

■ WRITE (PS=nn)

■ WRITE TITLE (PS=nn)

■ WRITE TRAILER (PS=nn)

■ INPUT (PS=nn)

Page Advance

A page advance can be triggered by one of the following methods:

■ Page Advance Controlled by EJ Parameter
■ Page Advance Controlled by EJECT or NEWPAGE Statements
■ Eject/New Page when less than n Lines Left

These methods are discussed below.

Programming Guide326

Page Titles, Page Breaks, Blank Lines

Page Advance Controlled by EJ Parameter

With the session parameter EJ (Page Eject), you determinewhether page ejects are to be performed
or not. By default, EJ=ON applies, which means that page ejects will be performed as specified.

If you specify EJ=OFF, page break information will be ignored. This may be useful to save paper
during test runs where page ejects are not needed.

The EJ parameter can be set at session level with the system command GLOBALS; for example:

GLOBALS EJ=OFF

The EJ parameter setting is overridden by the EJECT statement.

Page Advance Controlled by EJECT or NEWPAGE Statements

The following topics are covered below:

■ Page Advance without Title/Header on Next Page
■ Page Advance with End/Top-of-Page Processing

Page Advance without Title/Header on Next Page

The EJECT statement causes a page advance without a title or header line being generated on the
next page. A newphysical page is startedwithout any top-of-page or end-of-page processing being
performed (for example, no WRITE TRAILER or AT END OF PAGE, WRITE TITLE, AT TOP OF PAGE
or *PAGE-NUMBER processing).

The EJECT statement overrides the EJ parameter setting.

Page Advance with End/Top-of-Page Processing

The NEWPAGE statement causes a page advance with associated end-of-page and top-of-page pro-
cessing. A trailer line will be displayed, if specified. A title line, either default or user-specified,
will be displayed on the new page, unless the NOTITLE option has been specified in a DISPLAY or
WRITE statement (as described above).

If the NEWPAGE statement is not used, page advance is automatically controlled by the setting of
the PS parameter; see Page Size - PS Parameter above).

327Programming Guide

Page Titles, Page Breaks, Blank Lines

Eject/New Page when less than n Lines Left

Both the NEWPAGE statement and the EJECT statement provide a WHEN LESS THAN n LINES LEFT
option.With this option, you specify a number of lines (n). The NEWPAGE/EJECT statement will then
be executed if - at the time the statement is processed - less than n lines are available on the current
page.

Example 1:

FORMAT PS=55
...
NEWPAGE WHEN LESS THAN 7 LINES LEFT
...

In this example, the page size is set to 55 lines.

If only 6 or less lines are left on the current page at the time when the NEWPAGE statement is pro-
cessed, the NEWPAGE statement is executed and a page advance occurs. If 7 or more lines are left,
the NEWPAGE statement is not executed and no page advance occurs; the page advance then occurs
depending on the session parameter PS (Page Size for Natural Reports), that is, after 55 lines.

Example 2:

** Example 'NEWPAX02': NEWPAGE (in combination with EJECT and
** parameter PS)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 JOB-TITLE

END-DEFINE
*
FORMAT PS=15
*
READ (9) EMPLOY-VIEW BY CITY STARTING FROM 'BOSTON'

AT START OF DATA
EJECT
WRITE /// 20T '%' (29) /

20T '%%' 47T '%%' /
20T '%%' 3X 'REPORT OF EMPLOYEES' 47T '%%' /
20T '%%' 3X ' SORTED BY CITY ' 47T '%%' /
20T '%%' 47T '%%' /
20T '%' (29) /

NEWPAGE
END-START
AT BREAK OF CITY

NEWPAGE WHEN LESS 3 LINES LEFT
END-BREAK
DISPLAY CITY (IS=ON) NAME JOB-TITLE

Programming Guide328

Page Titles, Page Breaks, Blank Lines

END-READ
END

New Page with Title

The NEWPAGE statement also provides a WITH TITLE option. If this option is not used, a default title
will appear at the top of the new page or a WRITE TITLE statement or NOTITLE clause will be ex-
ecuted.

The WITH TITLE option of the NEWPAGE statement allows you to override these with a title of your
own choice. The syntax of the WITH TITLE option is the same as for the WRITE TITLE statement.

Example:

NEWPAGE WITH TITLE LEFT JUSTIFIED 'PEOPLE LIVING IN BOSTON:'

The followingprogram illustrates the use of the session parameter PS (Page Size forNatural Reports)
and the NEWPAGE statement. Moreover, the system variable *PAGE-NUMBER is used to display the
current page number.

** Example 'NEWPAX01': NEWPAGE
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 CITY
2 DEPT

END-DEFINE
*
FORMAT PS=20
READ (5) VIEWEMP BY CITY STARTING FROM 'M'

DISPLAY NAME 'DEPT' DEPT 'LOCATION' CITY
AT BREAK OF CITY

NEWPAGE WITH TITLE LEFT JUSTIFIED
'EMPLOYEES BY CITY - PAGE:' *PAGE-NUMBER

END-BREAK
END-READ
END

Output of Program NEWPAX01:

Note the position of the page breaks and the title line:

329Programming Guide

Page Titles, Page Breaks, Blank Lines

Page 1 04-11-11 14:15:54

NAME DEPT LOCATION
-------------------- ------ --------------------

FICKEN TECH10 MADISON
KELLOGG TECH10 MADISON
ALEXANDER SALE20 MADISON

Page 2:

EMPLOYEES BY CITY - PAGE: 2
NAME DEPT LOCATION

-------------------- ------ --------------------

DE JUAN SALE03 MADRID
DE LA MADRID PROD01 MADRID

Page 3:

EMPLOYEES BY CITY - PAGE: 3

Page Trailer - WRITE TRAILER Statement

The following topics are covered below:

■ Specifying a Page Trailer
■ Considering Logical Page Size
■ Page Trailer Justification and/or Underlining

Specifying a Page Trailer

The WRITE TRAILER statement is used to output text (in apostrophes) at the bottom of a page.

WRITE TRAILER 'THIS IS THE END OF THE PAGE'

The statement is executed when an end-of-page condition is detected, or as a result of a SKIP or
NEWPAGE statement.

Programming Guide330

Page Titles, Page Breaks, Blank Lines

Considering Logical Page Size

As the end-of-page condition is checked only after an entire DISPLAY or WRITE statement has been
processed, it may occur that the logical page size (that is, the number of lines output by a DISPLAY
or WRITE statement) causes the physical size of the output page to be exceeded before the WRITE
TRAILER statement is executed.

To ensure that a page trailer actually appears at the bottom of a physical page, you should set the
logical page size (with the PS session parameter) to a value less than the physical page size.

Page Trailer Justification and/or Underlining

By default, the page trailer is displayed centered on the page and not underlined.

The WRITE TRAILER statement provides the following options which can be used independent of
each other:

EffectOption

Causes the page trailer to be displayed left justified.LEFT JUSTIFIED

The underlining runs the width of the line size (see also Natural profile and session
parameter LS). By default, titles are underlined with a hyphen (-). However, with the

UNDERLINED

UC session parameter you can specify another character to be used as underlining
character (see Underlining Character for Titles and Headers).

The following examples show the use of the LEFT JUSTIFIED and UNDERLINED options of the WRITE
TRAILER statement:

Example 1:

WRITE TRAILER LEFT JUSTIFIED UNDERLINED 'THIS IS THE END OF THE PAGE'

Example 2:

** Example 'WTITLX02': WRITE TITLE AND WRITE TRAILER
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 FIRST-NAME
2 ADDRESS-LINE (1)

END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED UNDERLINED

*TIME
5X 'PEOPLE LIVING IN SALT LAKE CITY'
21X 'PAGE:' *PAGE-NUMBER /

331Programming Guide

Page Titles, Page Breaks, Blank Lines

15X 'AS OF' *DAT4E //
*
WRITE TRAILER UNDERLINED 'REGISTER OF' / 'SALT LAKE CITY'
*
READ (2) EMPLOY-VIEW WITH CITY = 'SALT LAKE CITY'

DISPLAY NAME /
FIRST-NAME
'HOME/CITY' CITY
'STREET/OR BOX NO.' ADDRESS-LINE (1)

SKIP 1
END-READ
END

Generating Blank Lines - SKIP Statement

The SKIP statement is used to generate one or more blank lines in an output report.

Example 1 - SKIP in conjunction with WRITE and DISPLAY:

** Example 'SKIPX01': SKIP (in conjunction with WRITE and DISPLAY)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 FIRST-NAME
2 ADDRESS-LINE (1)

END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED UNDERLINED

'PEOPLE LIVING IN SALT LAKE CITY AS OF' *DAT4E 7X
'PAGE:' *PAGE-NUMBER

SKIP 3
*
READ (2) EMPLOY-VIEW WITH CITY = 'SALT LAKE CITY'

DISPLAY NAME / FIRST-NAME CITY ADDRESS-LINE (1)
SKIP 1

END-READ
END

Programming Guide332

Page Titles, Page Breaks, Blank Lines

Example 2 - SKIP in conjunction with DISPLAY VERT:

** Example 'SKIPX02': SKIP (in conjunction with DISPLAY VERT)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 JOB-TITLE

END-DEFINE
*
READ (2) EMPLOY-VIEW WITH JOB-TITLE = 'SECRETARY'

DISPLAY NOTITLE VERT
NAME FIRST-NAME / CITY

SKIP 3
END-READ
*
NEWPAGE
*
READ (2) EMPLOY-VIEW WITH JOB-TITLE = 'SECRETARY'

DISPLAY NOTITLE
NAME FIRST-NAME / CITY

SKIP 3
END-READ
END

AT TOP OF PAGE Statement

The AT TOP OF PAGE statement is used to specify any processing that is to be performedwhenever
a new page of the report is started.

If the AT TOP OF PAGE processing produces any output, this will be output below the page title
(with a skipped line in between).

By default, this output is displayed left-justified on the page.

Example:

** Example 'ATTOPX01': AT TOP OF PAGE
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 MAR-STAT
2 BIRTH
2 CITY

333Programming Guide

Page Titles, Page Breaks, Blank Lines

2 JOB-TITLE
2 DEPT

END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY PERSONNEL-ID FROM '20017000'

DISPLAY NOTITLE (AL=10)
NAME DEPT JOB-TITLE CITY 5X
MAR-STAT 'DATE OF/BIRTH' BIRTH (EM=YY-MM-DD)

/*
AT TOP OF PAGE

WRITE / '-BUSINESS INFORMATION-'
26X '-PRIVATE INFORMATION-'

END-TOPPAGE
END-READ
END

Output of Program ATTOPX01:

-BUSINESS INFORMATION- -PRIVATE INFORMATION-
NAME DEPARTMENT CURRENT CITY MARITAL DATE OF

CODE POSITION STATUS BIRTH
---------- ---------- ---------- ---------- ---------- --------

CREMER TECH10 ANALYST GREENVILLE S 70-01-01
MARKUSH SALE00 TRAINEE LOS ANGELE D 79-03-14
GEE TECH05 MANAGER CHAPEL HIL M 41-02-04
KUNEY TECH10 DBA DETROIT S 40-02-13
NEEDHAM TECH10 PROGRAMMER CHATTANOOG S 55-08-05
JACKSON TECH10 PROGRAMMER ST LOUIS D 70-01-01
PIETSCH MGMT10 SECRETARY VISTA M 40-01-09
PAUL MGMT10 SECRETARY NORFOLK S 43-07-07
HERZOG TECH05 MANAGER CHATTANOOG S 52-09-16
DEKKER TECH10 DBA MOBILE W 40-03-03

AT END OF PAGE Statement

The AT END OF PAGE statement is used to specify any processing that is to be performedwhenever
an end-of-page condition occurs.

If the AT END OF PAGE processing produces any output, this will be output after any page trailer
(as specified with the WRITE TRAILER statement).

By default, this output is displayed left-justified on the page.

Programming Guide334

Page Titles, Page Breaks, Blank Lines

The same considerations described above for page trailers regarding physical and logical page
sizes and the number of lines output by a DISPLAY or WRITE statement also apply to AT END OF
PAGE output.

Example:

** Example 'ATENPX01': AT END OF PAGE (with system function available
** via GIVE SYSTEM FUNCTIONS in DISPLAY)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 SALARY (1)

END-DEFINE
*
READ (10) EMPLOY-VIEW BY PERSONNEL-ID = '20017000'

DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
NAME JOB-TITLE 'SALARY' SALARY(1)

/*
AT END OF PAGE

WRITE / 24T 'AVERAGE SALARY: ...' AVER(SALARY(1))
END-ENDPAGE

END-READ
END

Output of Program ATENPX01:

NAME CURRENT SALARY
POSITION

-------------------- ------------------------- ----------

CREMER ANALYST 34000
MARKUSH TRAINEE 22000
GEE MANAGER 39500
KUNEY DBA 40200
NEEDHAM PROGRAMMER 32500
JACKSON PROGRAMMER 33000
PIETSCH SECRETARY 22000
PAUL SECRETARY 23000
HERZOG MANAGER 48500
DEKKER DBA 48000

AVERAGE SALARY: ... 34270
 ↩

335Programming Guide

Page Titles, Page Breaks, Blank Lines

Further Example

See the following example program:

■ DISPLX21 - DISPLAY (with slash '/' and compare with WRITE)

Programming Guide336

Page Titles, Page Breaks, Blank Lines

33 Column Headers

■ Default Column Headers ... 338
■ Suppress Default Column Headers - NOHDR Option .. 338
■ Define Your Own Column Headers .. 339
■ Combining NOTITLE and NOHDR .. 340
■ Centering of Column Headers - HC Parameter .. 340
■ Width of Column Headers - HW Parameter ... 340
■ Filler Characters for Headers - Parameters FC and GC ... 341
■ Underlining Character for Titles and Headers - UC Parameter .. 342
■ Suppressing Column Headers - Slash Notation .. 343
■ Further Examples of Column Headers ... 344

337

The following topics are covered:

Default Column Headers

By default, each database field outputwith a DISPLAY statement is displayedwith a default column
header (which is defined for the field in the DDM).

** Example 'DISPLX01': DISPLAY
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE

END-DEFINE
*
READ (3) VIEWEMP BY BIRTH

DISPLAY PERSONNEL-ID NAME JOB-TITLE
END-READ
END

Output of Program DISPLX01:

The above example program uses default headers and produces the following output.

Page 1 04-11-11 14:15:54

PERSONNEL NAME CURRENT
ID POSITION

--------- -------------------- -------------------------

30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

Suppress Default Column Headers - NOHDR Option

If you wish your report to be output without column headers, add the keyword NOHDR to the
DISPLAY statement.

Programming Guide338

Column Headers

DISPLAY NOHDR PERSONNEL-ID NAME JOB-TITLE

Define Your Own Column Headers

If you wish column headers of your own to be output instead of the default headers, you specify
'text' (in apostrophes) immediately before a field, text being the header to be used for the field.

** Example 'DISPLX08': DISPLAY (with column title in 'text')
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE

END-DEFINE
*
READ (3) VIEWEMP BY BIRTH

DISPLAY PERSONNEL-ID
'EMPLOYEE' NAME
'POSITION' JOB-TITLE

END-READ
END

Output of Program DISPLX08:

The above program contains the header EMPLOYEE for the field NAME, and the header POSITION for
the field JOB-TITLE; for the field PERSONNEL-ID, the default header is used. The program produces
the following output:

Page 1 04-11-11 14:15:54

PERSONNEL EMPLOYEE POSITION
ID

--------- -------------------- -------------------------

30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

339Programming Guide

Column Headers

Combining NOTITLE and NOHDR

To create a report that has neither page title nor column headers, you specify the NOTITLE and
NOHDR options together in the following order:

DISPLAY NOTITLE NOHDR PERSONNEL-ID NAME JOB-TITLE

Centering of Column Headers - HC Parameter

By default, column headers are centered above the columns.With the HC parameter, you can influ-
ence the placement of column headers.

If you specify

headers will be left-justified.HC=L

headers will be right-justified.HC=R

headers will be centered.HC=C

The HC parameter can be used in a FORMAT statement to apply to the whole report, or it can be used
in a DISPLAY statement at both statement level and element level, for example:

DISPLAY (HC=L) PERSONNEL-ID NAME JOB-TITLE

Width of Column Headers - HW Parameter

With the HW parameter, you determine the width of a column output with a DISPLAY statement.

If you specify

thewidth of a DISPLAY column is determined by either the length of the header text or the length
of the field, whichever is longer. This also applies by default.

HW=ON

the width of a DISPLAY column is determined only by the length of the field. However, HW=OFF
only applies to DISPLAY statements which do not create headers; that is, either a first DISPLAY
statement with NOHDR option or a subsequent DISPLAY statement.

HW=OFF

The HW parameter can be used in a FORMAT statement to apply to the entire report, or it can be used
in a DISPLAY statement at both statement level and element (field) level.

Programming Guide340

Column Headers

Filler Characters for Headers - Parameters FC and GC

With the FC parameter, you specify the filler characterwhich will appear on either side of a header
produced by a DISPLAY statement across the full columnwidth if the columnwidth is determined
by the field length and not by the header (see HW parameter above); otherwise FCwill be ignored.

When a group of fields or a periodic group is output via a DISPLAY statement, a group header is
displayed across all field columns that belong to that group above the headers for the individual
fieldswithin the group.With the GC parameter, you can specify the filler characterwhichwill appear
on either side of such a group header.

While the FC parameter applies to the headers of individual fields, the GC parameter applies to the
headers for groups of fields.

The parameters FC and GC can be specified in a FORMAT statement to apply to the whole report, or
they can be specified in a DISPLAY statement at both statement level and element (field) level.

** Example 'FORMAX01': FORMAT (with parameters FC, GC)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 INCOME (1:1)

3 CURR-CODE
3 SALARY
3 BONUS (1:1)

END-DEFINE
*
FORMAT FC=* GC=$
*
READ (3) VIEWEMP BY NAME

DISPLAY NAME (FC==) INCOME (1)
END-READ
END

Output of Program FORMAX01:

Page 1 04-11-11 14:15:54

========NAME======== $$$$$$$$$$$$INCOME$$$$$$$$$$$$

CURRENCY **ANNUAL** **BONUS***
CODE SALARY

-------------------- -------- ---------- ----------

ABELLAN PTA 1450000 0
ACHIESON UKL 10500 0
ADAM FRA 159980 23000

341Programming Guide

Column Headers

Underlining Character for Titles and Headers - UC Parameter

By default, titles and headers are underlined with a hyphen (-).

With the UC parameter, you can specify another character to be used as underlining character.

The UC parameter can be specified in a FORMAT statement to apply to the whole report, or it can be
specified in a DISPLAY statement at both statement level and element (field) level.

** Example 'FORMAX02': FORMAT (with parameter UC)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 BIRTH
2 JOB-TITLE

END-DEFINE
*
FORMAT UC==
*
WRITE TITLE LEFT JUSTIFIED UNDERLINED 'EMPLOYEES REPORT'
SKIP 1
READ (3) VIEWEMP BY BIRTH

DISPLAY PERSONNEL-ID (UC=*) NAME JOB-TITLE
END-READ
END

In the above program, the UC parameter is specified at program level and at element (field) level:
the underlining character specified with the FORMAT statement (=) applies for the whole report -
except for the field PERSONNEL-ID, for which a different underlining character (*) is specified.

Output of Program FORMAX02:

EMPLOYEES REPORT
===

PERSONNEL NAME CURRENT
ID POSITION

********* ==================== =========================

30020013 GARRET TYPIST
30016112 TAILOR WAREHOUSEMAN
20017600 PIETSCH SECRETARY

Programming Guide342

Column Headers

Suppressing Column Headers - Slash Notation

With the notation apostrophe-slash-apostrophe ('/'), you can suppress default column headers for
individual fields displayed with a DISPLAY statement. While the NOHDR option suppresses the
headers of all columns, the notation '/' can be used to suppress the header for an individual
column.

The apostrophe-slash-apostrophe ('/') notation is specified in the DISPLAY statement immediately
before the name of the field for which the column header is to be suppressed.

Compare the following two examples:

Example 1:

DISPLAY NAME PERSONNEL-ID JOB-TITLE

In this case, the default column headers of all three fields will be displayed:

Page 1 04-11-11 14:15:54

 NAME PERSONNEL CURRENT
 ID POSITION
-------------------- --------- -------------------------

ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER
ADKINSON 20009800 DBA
ADKINSON 20011000 SALES PERSON ↩

Example 2:

DISPLAY '/' NAME PERSONNEL-ID JOB-TITLE

In this case, the notation '/' causes the column header for the field NAME to be suppressed:

Page 1 04-11-11 14:15:54

 PERSONNEL CURRENT
 ID POSITION
 --------- -------------------------

ABELLAN 60008339 MAQUINISTA
ACHIESON 30000231 DATA BASE ADMINISTRATOR
ADAM 50005800 CHEF DE SERVICE
ADKINSON 20008800 PROGRAMMER

343Programming Guide

Column Headers

ADKINSON 20009800 DBA
ADKINSON 20011000 SALES PERSON ↩

Further Examples of Column Headers

See the following example programs:

■ DISPLX15 - DISPLAY (with FC, UC)
■ DISPLX16 - DISPLAY (with '/', 'text', 'text/text')

Programming Guide344

Column Headers

34 Parameters to Influence the Output of Fields

■ Overview of Field-Output-Relevant Parameters ... 346
■ Leading Characters - LC Parameter .. 346
■ Unicode Leading Characters - LCU Parameter .. 347
■ Insertion Characters - IC Parameter .. 347
■ Unicode Insertion Characters - ICU Parameter .. 348
■ Trailing Characters - TC Parameter ... 348
■ Unicode Trailing Characters - TCU Parameter ... 348
■ Output Length - AL and NL Parameters .. 349
■ Display Length for Output - DL Parameter .. 349
■ Sign Position - SG Parameter .. 351
■ Identical Suppress - IS Parameter ... 353
■ Zero Printing - ZP Parameter ... 355
■ Empty Line Suppression - ES Parameter .. 355
■ Further Examples of Field-Output-Relevant Parameters .. 357

345

This chapter discusses the use of those Natural profile and/or session parameters which you can
use to control the output format of fields.

Overview of Field-Output-Relevant Parameters

Natural provides several profile and/or session parameters you can use to control the format in
which fields are output:

FunctionParameter

With these session parameters, you can specify characters that are to be displayed before
or after a field or before a field value.

LC, IC and TC

With these session parameters, you can specify characters in Unicode format that are
to be displayed before or after a field or before a field value.

LCU, ICU and TCU

With these session parameters, you can increase or reduce the output length of fields.AL and NL

With this session parameter, you can specify the default output length for an
alphanumeric map field of format U.

DL

With this session parameter, you can determine whether negative values are to be
displayed with or without a minus sign.

SG

With this session parameter, you can suppress the display of subsequent identical field
values.

IS

With this profile and session parameter, you can determine whether field values of 0
are to be displayed or not.

ZP

With this session parameter, you can suppress the display of empty lines generated by
a DISPLAY or WRITE statement.

ES

These parameters are discussed in the following sections.

Leading Characters - LC Parameter

With the session parameter LC, you can specify leading characters that are to be displayed imme-
diately before a field that is output with a DISPLAY statement. The width of the output column is
enlarged accordingly. You can specify 1 to 10 characters.

By default, values are displayed left-justified in alphanumeric fields and right-justified in numeric
fields. (These defaults can be changed with the AD parameter; see the Parameter Reference). When
a leading character is specified for an alphanumeric field, the character is therefore displayed im-
mediately before the field value; for a numeric field, a number of spaces may occur between the
leading character and the field value.

The LC parameter can be used with the following statements:

Programming Guide346

Parameters to Influence the Output of Fields

■ FORMAT

■ DISPLAY

The LC parameter can be set at statement level and at element level.

Unicode Leading Characters - LCU Parameter

The session parameter LCU is identical to the session parameter LC. The difference is that the
leading characters are always stored in Unicode format.

This allows you to specify leading characters with mixed characters from different code pages,
and assures that always the correct character is displayed independent of the installed system
code page.

For further information, see Unicode and Code Page Support in the Natural Programming Language,
Session Parameters, section EMU, ICU, LCU, TCU versus EM, IC, LC, TC.

The parameters LCU and ICU cannot both be applied to one field.

Insertion Characters - IC Parameter

With the session parameter IC, you specify the characters to be inserted in the column immediately
preceding the value of a field that is output with a DISPLAY statement. You can specify 1 to 10 charac-
ters.

For a numeric field, the insertion characters will be placed immediately before the first significant
digit that is output, with no intervening spaces between the specified character and the field value.
For alphanumeric fields, the effect of the IC parameter is the same as that of the LC parameter.

The parameters LC and IC cannot both be applied to one field.

The IC parameter can be used with the following statements:

■ FORMAT

■ DISPLAY

The IC parameter can be set at statement level and at element level.

347Programming Guide

Parameters to Influence the Output of Fields

Unicode Insertion Characters - ICU Parameter

The session parameter ICU is identical to the session parameter IC. The difference is that the insertion
characters are always stored in Unicode format.

This allows you to specify insertion characters with mixed characters from different code pages,
and assures that always the correct character is displayed independent of the installed system
code page.

For further information, see Unicode and Code Page Support in the Natural Programming Language,
Session Parameters, section EMU, ICU, LCU, TCU versus EM, IC, LC, TC.

The parameters LCU and ICU cannot both be applied to one field.

Trailing Characters - TC Parameter

With the session parameter TC, you can specify trailing characters that are to be displayed imme-
diately to the right of a field that is outputwith a DISPLAY statement. Thewidth of the output column
is enlarged accordingly. You can specify 1 to 10 characters.

The TC parameter can be used with the following statements:

■ FORMAT

■ DISPLAY

The TC parameter can be set at statement level and at element level.

Unicode Trailing Characters - TCU Parameter

The session parameter TCU is identical to the session parameter TC. The difference is that the trailing
characters are always stored in Unicode format.

This allows you to specify trailing characters with mixed characters from different code pages,
and assures that always the correct character is displayed independent of the installed system
code page.

For further information, see Unicode and Code Page Support in the Natural Programming Language,
Session Parameters, section EMU, ICU, LCU, TCU versus EM, IC, LC, TC.

Programming Guide348

Parameters to Influence the Output of Fields

Output Length - AL and NL Parameters

With the session parameter AL, you can specify the output length for an alphanumeric field; with the
NL parameter, you can specify the output length for a numeric field. This determines the length of a
field as it will be output, which may be shorter or longer than the actual length of the field (as
defined in the DDM for a database field, or in the DEFINE DATA statement for a user-defined vari-
able).

Both parameters can be used with the following statements:

■ FORMAT

■ DISPLAY

■ WRITE

■ PRINT

■ INPUT

Both parameters can be set at statement level and at element level.

Note: If an edit mask is specified, it overrides an NL or AL specification. Edit masks are de-
scribed in Edit Masks - EM Parameter.

Display Length for Output - DL Parameter

With the session parameter DL, you can specify the display length for a field of format A or U, since
the display width of a Unicode string can be twice the length of the string, and the user must be
able to display the whole string. The default will be the length, for example, for a format/length
U10, the display length can be 10 to 20, whereas the default length (when DL is not specified) is
10.

The session parameter DL can be used with the following statements:

■ FORMAT

■ DISPLAY

■ WRITE

■ PRINT

■ INPUT

The session parameter DL can be set at statement level and at element level.

349Programming Guide

Parameters to Influence the Output of Fields

The difference between the session parameters AL and DL is that AL defines the data length of a
field whereas DL defines the number of columns which are used on the screen for displaying the
field. The user can scroll in input fields to view the entire content of a field if the value specified
with the DL session parameter is less than the length of the field data.

Note: DL is allowed for A-format fields as well. This would allow making the edit control
size smaller than the content of a field.

Example:

DEFINE DATA LOCAL
1 #U1 (U10)
1 #U2 (U10)
END-DEFINE
*
#U1 := U'latintxt00'
#U2 := U' '
*
INPUT (AD=M) #U1 #U2
END

The above programproduces the following outputwhere the content of the field #U2 is incomplete:

#U1 latintxt00 #U2

When the session parameter DL is used with the field #U2 and is specified accordingly, the content
of this field will be displayed correctly:

DEFINE DATA LOCAL
1 #U1 (U10)
1 #U2 (U10)
END-DEFINE
*
#U1 := U'latintxt00'
#U2 := U' '
*
INPUT (AD=M) #U1 #U2 (DL=20)
END

Result:

Programming Guide350

Parameters to Influence the Output of Fields

#U1 latintxt00 #U2

Sign Position - SG Parameter

With the session parameter SG, you can determine whether or not a sign position is to be allocated
for numeric fields.

■ By default, SG=ON applies, which means that a sign position is allocated for numeric fields.
■ If you specify SG=OFF, negative values in numeric fields will be output without a minus sign (-
).

The SG parameter can be used with the following statements:

■ FORMAT

■ DISPLAY

■ PRINT

■ WRITE

■ INPUT

The SG parameter can be set at both statement level and element level.

Note: If an edit mask is specified, it overrides an SG specification. Edit masks are described
in Edit Masks - EM Parameter.

Example Program without Parameters

** Example 'FORMAX03': FORMAT (without FORMAT and compare with FORMAX04)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)

END-DEFINE
*
READ (5) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY NAME
FIRST-NAME
SALARY (1:1)
BONUS (1:1,1:1)

END-READ
END

351Programming Guide

Parameters to Influence the Output of Fields

The above program contains no parameter settings and produces the following output:

Page 1 04-11-11 11:11:11

NAME FIRST-NAME ANNUAL BONUS
SALARY

-------------------- -------------------- ---------- ----------

JONES VIRGINIA 46000 9000
JONES MARSHA 50000 0
JONES ROBERT 31000 0
JONES LILLY 24000 0
JONES EDWARD 37600 0

Example Program with Parameters AL, NL, LC, IC and TC

In this example, the session parameters AL, NL, LC, IC and TC are used.

** Example 'FORMAX04': FORMAT (with parameters AL, NL, LC, TC, IC and
** compare with FORMAX03)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)

END-DEFINE
*
FORMAT AL=10 NL=6
*
READ (5) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY NAME (LC=*)
FIRST-NAME (TC=*)
SALARY (1:1) (IC=$)
BONUS (1:1,1:1) (LC=>)

END-READ
END

The above program produces the following output. Compare the layout of this output with that
of the previous program to see the effect of the individual parameters:

Programming Guide352

Parameters to Influence the Output of Fields

Page 1 04-11-11 11:11:11

NAME FIRST-NAME ANNUAL BONUS
SALARY

----------- ----------- -------- --------

*JONES VIRGINIA * $46000 > 9000
*JONES MARSHA * $50000 > 0
*JONES ROBERT * $31000 > 0
*JONES LILLY * $24000 > 0
*JONES EDWARD * $37600 > 0

As you can see in the above example, any output length you specify with the AL or NL parameter
does not include any characters specified with the LC, IC and TC parameters: the width of the NAME
column, for example, is 11 characters - 10 for the field value (AL=10) plus 1 leading character.

The width of the SALARY and BONUS columns is 8 characters - 6 for the field value (NL=6), plus 1
leading/inserted character, plus 1 sign position (because SG=ON applies).

Identical Suppress - IS Parameter

With the session parameter IS, you can suppress the display of identical information in successive
lines created by a WRITE or DISPLAY statement.

■ By default, IS=OFF applies, which means that identical field values will be displayed.
■ If IS=ON is specified, a value which is identical to the previous value of that field will not be
displayed.

The IS parameter can be specified

■ with a FORMAT statement to apply to the whole report, or
■ in a DISPLAY or WRITE statement at both statement level and element level.

The effect of the parameter IS=ON can be suspended for one record by using the statement SUSPEND
IDENTICAL SUPPRESS; see the Statements documentation for details.

Compare the output of the following two example programs to see the effect of the IS parameter.
In the second one, the display of identical values in the NAME field is suppressed.

353Programming Guide

Parameters to Influence the Output of Fields

Example Program without IS Parameter

** Example 'FORMAX05': FORMAT (without parameter IS
** and compare with FORMAX06)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME

END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY NAME FIRST-NAME
END-READ
END

The above program produces the following output:

 Page 1 04-11-11 11:11:11

 NAME FIRST-NAME
 -------------------- --------------------

 JONES VIRGINIA
 JONES MARSHA
 JONES ROBERT ↩

Example Program with IS Parameter

** Example 'FORMAX06': FORMAT (with parameter IS
** and compare with FORMAX05)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME

END-DEFINE
*
FORMAT IS=ON
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY NAME FIRST-NAME
END-READ
END

The above program produces the following output:

Programming Guide354

Parameters to Influence the Output of Fields

Page 1 04-11-11 11:54:01

NAME FIRST-NAME
-------------------- --------------------

JONES VIRGINIA
MARSHA
ROBERT

Zero Printing - ZP Parameter

With the profile and session parameter ZP, you determine how a field value of zero is to be dis-
played.

■ By default, ZP=ON applies, which means that one 0 (for numeric fields) or all zeros (for time
fields) will be displayed for each field value that is zero.

■ If you specify ZP=OFF, the display of each field value which is zero will be suppressed.

The ZP parameter can be specified

■ with a FORMAT statement to apply to the whole report, or
■ in a DISPLAY or WRITE statement at both statement level and element level.

Compare the output of the following two example programs to see the effect of the parameters
ZP and ES.

Empty Line Suppression - ES Parameter

With the session parameter ES, you can suppress the output of empty lines created by a DISPLAY
or WRITE statement.

■ By default, ES=OFF applies, whichmeans that lines containing all blank valueswill be displayed.
■ If ES=ON is specified, a line resulting from a DISPLAY or WRITE statement which contains all blank
values will not be displayed. This is particularly useful when displaying multiple-value fields
or fields which are part of a periodic group if a large number of empty lines are likely to be
produced.

The ES parameter can be specified

■ with a FORMAT statement to apply to the whole report, or
■ in a DISPLAY or WRITE statement at statement level.

355Programming Guide

Parameters to Influence the Output of Fields

Note: To achieve empty suppression for numeric values, in addition to ES=ON the parameter
ZP=OFFmust also be set for the fields concerned in order to have null values turned into
blanks and thus not output either.

Compare the output of the following two example programs to see the effect of the parameters
ZP and ES.

Example Program without Parameters ZP and ES

** Example 'FORMAX07': FORMAT (without parameter ES and ZP
** and compare with FORMAX08)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 BONUS (1:2,1:1)

END-DEFINE
*
READ (4) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY NAME FIRST-NAME BONUS (1:2,1:1)
END-READ
END

The above program produces the following output:

Page 1 04-11-11 11:58:23

NAME FIRST-NAME BONUS
-------------------- -------------------- ----------

JONES VIRGINIA 9000
6750

JONES MARSHA 0
0

JONES ROBERT 0
0

JONES LILLY 0
0

Programming Guide356

Parameters to Influence the Output of Fields

Example Program with Parameters ZP and ES

** Example 'FORMAX08': FORMAT (with parameters ES and ZP
** and compare with FORMAX07)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 BONUS (1:2,1:1)

END-DEFINE
*
FORMAT ES=ON
*
READ (4) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY NAME FIRST-NAME BONUS (1:2,1:1)(ZP=OFF)
END-READ
END

The above program produces the following output:

Page 1 04-11-11 11:59:09

NAME FIRST-NAME BONUS
-------------------- -------------------- ----------

JONES VIRGINIA 9000
6750

JONES MARSHA
JONES ROBERT
JONES LILLY

Further Examples of Field-Output-Relevant Parameters

For further examples of the parameters LC, IC, TC, AL, NL, IS, ZP and ES, and the SUSPEND IDENTICAL
SUPPRESS statement, see the following example programs:

■ DISPLX17 - DISPLAY (with NL, AL, IC, LC, TC)
■ DISPLX18 - DISPLAY (using default settings for SF, AL, UC, LC, IC, TC and compare with
DISPLX19)

■ DISPLX19 - DISPLAY (with SF, AL, LC, IC, TC and compare with DISPLX18)
■ SUSPEX01 - SUSPEND IDENTICAL SUPPRESS (in conjunction with parameters IS, ES, ZP
in DISPLAY)

■ SUSPEX02 - SUSPEND IDENTICAL SUPPRESS (in conjunction with parameters IS, ES, ZP
in DISPLAY). Identical to SUSPEX01, but with IS=OFF.

357Programming Guide

Parameters to Influence the Output of Fields

■ COMPRX03 - COMPRESS

Programming Guide358

Parameters to Influence the Output of Fields

35 Code Page Edit Masks - EM Parameter

■ Use of EM Parameter ... 360
■ Edit Masks for Numeric Fields .. 360
■ Edit Masks for Alphanumeric Fields ... 361
■ Length of Fields ... 361
■ Edit Masks for Date and Time Fields .. 362
■ Customizing Separator Character Displays ... 362
■ Examples of Edit Masks .. 364
■ Further Examples of Edit Masks ... 366

359

This chapter describes how you can specify an edit mask for an alphanumeric or numeric field.

Use of EM Parameter

With the session parameter EM you can specify an edit mask for an alphanumeric or numeric field,
that is, determine character by character the format in which the field values are to be output.
Using the session parameter EMU, you can define edit masks with Unicode characters in the same
way as described below for the EM session parameter.

Example:

DISPLAY NAME (EM=X^X^X^X^X^X^X^X^X^X)

In this example, each X represents one character of an alphanumeric field value to be displayed,
and each ^ represents a blank. If displayed via the DISPLAY statement, the name JOHNSONwould
appear as follows:

J O H N S O N

You can specify the session parameter EM

■ at report level (in a FORMAT statement),
■ at statement level (in a DISPLAY, WRITE, INPUT, MOVE EDITED or PRINT statement) or
■ at element level (in a DISPLAY, WRITE or INPUT statement).

An edit mask specified with the session parameter EMwill override a default edit mask specified
for a field in the DDM; see Using the DDM Editor, Specifying Extended Field Attributes.

If EM=OFF is specified, no edit mask at all will be used.

An edit mask specified at statement level will override an edit mask specified at report level.

An edit mask specified at element level will override an edit mask specified at statement level.

Edit Masks for Numeric Fields

An edit mask specified for a field of format N, P, I, or F must contain at least one 9 or Z. If more
nines or Zs exist, the number of positions contained in the field value, the number of print positions
in the edit mask will be adjusted to the number of digits defined for the field value. If fewer nines
or Zs exist, the high-order digits before the decimal point and/or low-order digits after the
decimal point will be truncated.

Programming Guide360

Code Page Edit Masks - EM Parameter

For further information, see session parameter EM, Edit Masks for Numeric Fields in the Parameter
Reference documentation.

Edit Masks for Alphanumeric Fields

Edit masks for alphanumeric fields must include an X for each alphanumeric character that is to
be output.

With a few exceptions, you may add leading, trailing and insertion characters (with or without
enclosing them in apostrophes).

The circumflex character (^) is used to insert blanks in edit mask for both numeric and alphanu-
meric fields.

For further information, see session parameter EM,EditMasks for Alphanumeric Fields in theParameter
Reference documentation.

Length of Fields

It is important to be aware of the length of the field to which you assign an edit mask.

■ If the edit mask is longer than the field, this will yield unexpected results.
■ If the edit mask is shorter than the field, the field output will be truncated to just those positions
specified in the edit mask.

Examples:

Assuming an alphanumeric field that is 12 characters long and the field value to be output is
JOHNSON, the following edit masks will yield the following results:

OutputEdit Mask

J.O.H.N.SEM=X.X.X.X.X

****JOHNSO**EM=****XXXXXX****

361Programming Guide

Code Page Edit Masks - EM Parameter

Edit Masks for Date and Time Fields

Edit masks for date fields can include the characters D (day), M (month) and Y (year) in various
combinations.

Edit masks for time fields can include the characters H (hour), I (minute), S (second) and T (tenth
of a second) in various combinations.

In conjunctionwith editmasks for date and time fields, see also the date and time system variables.

Customizing Separator Character Displays

Natural programs are used in business applications all over the world. Depending on the local
conventions, it is usual to present numeric data fields and those with a date or time content in a
special output style, when displayed in I/O statements. The different appearance should not be
realized by alternate program coding that is processed selectively as a function of the locale where
the program is being executed, but should be carried outwith the sameprogram image in conjunc-
tion with a set of runtime parameters to specify the decimal point character and the “thousands
separator character”.

The following topics are covered below:

■ Decimal Separator
■ Dynamic Thousands Separator
■ Examples

Decimal Separator

The Natural parameter DC is available to specify the character to be inserted in place of any char-
acters used to represent the decimal separator (also called “radix” character) in edit masks. This
parameter enables the users of a Natural program or application to choose any (special) character
to separate the integer positions from the decimal positions of a numeric data item and enables,
for example, U.S. shops to use the decimal point (.) and European shops to use the comma (,).

Programming Guide362

Code Page Edit Masks - EM Parameter

Dynamic Thousands Separator

To structure the output of a large integer values, it is commonpractice to insert separators between
every three digits of an integer to separate groups of thousands. This separator is called a “thou-
sands separator”. For example, shops in the United States generally use a comma for this purpose
(1,000,000), whereas shops in Germany use the period (1.000.000), in France a space (1 000 000),
etc.

In a Natural edit mask, a “dynamic thousands separator” is a comma (or period) indicating the
position where thousands separator characters (definedwith the THSEPCH parameter) are inserted
at runtime. At compile time, the Natural profile parameter THSEP or the option THSEP of system
command COMPOPT enables or disables the interpretation of the comma (or period) as dynamic
thousands separator.

If THSEP is set to OFF (default), any character used as thousands separator in the edit mask is treated
as literal and displayed unchanged at runtime. This setting retains downwards compatibility.

If THSEP is set to ON, any comma (or period) in the edit mask is interpreted as dynamic thousands
separators. In general, the dynamic thousands separator is a comma, but if the comma is already
in use as decimal character (DC), the period is used as dynamic thousands separator.

At runtime the dynamic thousands separators are replaced by the current value of the THSEPCH
parameter (thousands separator character).

Examples

A Natural program that is cataloged with parameter settings DC='.' and THSEP=ON uses the edit
mask (EM=ZZ,ZZZ,ZZ9.99).

Displays asParameter Settings at Runtime

1,234,567.89DC='.' and THSEPCH=','

1.234.567,89DC=',' and THSEPCH='.'

1/234/567,89DC=',' and THSEPCH='/'

1 234 567,89DC=',' and THSEPCH=' '

1'234'567,89DC=',' and THSEPCH=''''

363Programming Guide

Code Page Edit Masks - EM Parameter

Examples of Edit Masks

Some examples of edit masks, along with possible output they produce, are provided below.

In addition, the abbreviated notation for each editmask is given. You can use either the abbreviated
or the long notation.

Output BOutput AAbbreviationEdit Mask

005.40367.32EM=9(3).9(2)EM=999.99

5790EM=Z(5)9(1)EM=ZZZZZ9

A 19379B LUEEM=X(1)^X(5)EM=X^XXXXX

AAB...01BLU...EEM=X(3)...X(2)EM=XXX...XX

12.22.8601.05.87*EM=MM.DD.YY

14.32.54.308.54.12.7**EM=HH.II.SS.T

* Use a date system variable.

** Use a time system variable.

For further information about edit masks, see the session parameter EM in the Parameter Reference.

Example Program without EM Parameters

** Example 'EDITMX01': Edit mask (using default edit masks)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE
2 SALARY (1:3)
2 CITY

END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'

DISPLAY 'N A M E' NAME /
'OCCUPATION' JOB-TITLE
'SALARY' SALARY (1:3)
'LOCATION' CITY

SKIP 1
END-READ
END

Output of Program EDITMX01:

The output of this program shows the default edit masks available.

Programming Guide364

Code Page Edit Masks - EM Parameter

Page 1 04-11-11 14:15:54

N A M E SALARY LOCATION
OCCUPATION

------------------------- ---------- --------------------

JONES 46000 TULSA
MANAGER 42300

39300

JONES 50000 MOBILE
DIRECTOR 46000

42700

JONES 31000 MILWAUKEE
PROGRAMMER 29400

27600

Example Program with EM Parameters

** Example 'EDITMX02': Edit mask (using EM)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 JOB-TITLE
2 SALARY (1:3)

END-DEFINE
*
READ (3) VIEWEMP BY NAME STARTING FROM 'JONES'
DISPLAY 'N A M E' NAME (EM=X^X^X^X^X^X^X^X^X^X^X^X^X^X^X) /

FIRST-NAME (EM=...X(10)...)
'OCCUPATION' JOB-TITLE (EM=' ___ 'X(12))
'SALARY' SALARY (1:3) (EM=' USD 'ZZZ,999)

SKIP 1
END-READ
END

Output of Program EDITMX02:

Compare the outputwith that of the previous program (Example Programwithout EMParameters)
to see how the EM specifications affect the way the fields are displayed.

365Programming Guide

Code Page Edit Masks - EM Parameter

Page 1 04-11-11 14:15:54

N A M E OCCUPATION SALARY
FIRST-NAME

----------------------------- ---------------- -----------

J O N E S ___ MANAGER USD 46,000
..VIRGINIA ... USD 42,300

USD 39,300

J O N E S ___ DIRECTOR USD 50,000
..MARSHA ... USD 46,000

USD 42,700

J O N E S ___ PROGRAMMER USD 31,000
..ROBERT ... USD 29,400

USD 27,600

Further Examples of Edit Masks

See the following example programs:

■ EDITMX03 - Edit mask (different EM for alpha-numeric fields)
■ EDITMX04 - Edit mask (different EM for numeric fields)
■ EDITMX05 - Edit mask (EM for date and time system variables)

Programming Guide366

Code Page Edit Masks - EM Parameter

36 Unicode Edit Masks - EMU Parameter

Unicode edit masks can be used similar to code page edit masks. The difference is that the edit
mask is always stored in Unicode format.

This allows you to specify editmaskswithmixed characters fromdifferent code pages and assures
that always the correct character is displayed, independent of the installed system code page.

For the general usage of edit masks, see Edit Masks - EM Parameter.

For information on the session parameter EMU, see EMU - Unicode Edit Mask (in the Parameter Ref-
erence).

367

368

37 Vertical Displays

■ Creating Vertical Displays .. 370
■ Combining DISPLAY and WRITE .. 370
■ Tab Notation - T*field .. 371
■ Positioning Notation x/y .. 372
■ DISPLAY VERT Statement .. 373
■ Further Example of DISPLAY VERT with WRITE Statement ... 379

369

This chapter describes how you can combine the features of the statements DISPLAY and WRITE to
produce vertical displays of field values.

Creating Vertical Displays

There are two ways of creating vertical displays:

■ You can use a combination of the statements DISPLAY and WRITE.
■ You can use the VERT option of the DISPLAY statement.

Combining DISPLAY and WRITE

As described in Statements DISPLAY and WRITE, the DISPLAY statement normally presents the
data in columnswith default headers, while the WRITE statement presents data horizontallywithout
headers.

You can combine the features of the two statements to produce vertical displays of field values.

The DISPLAY statement produces the values of different fields for the same record across the page
with a column for each field. The field values for each record are displayed below the values for
the previous record.

By using a WRITE statement after a DISPLAY statement, you can insert text and/or field values spe-
cified in the WRITE statement between records displayed via the DISPLAY statement.

The following program illustrates the combination of DISPLAY and WRITE:

** Example 'WRITEX04': WRITE (in combination with DISPLAY)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE
2 CITY
2 DEPT

END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'SAN FRANCISCO'

DISPLAY NAME JOB-TITLE
WRITE 22T 'DEPT:' DEPT
SKIP 1

END-READ
END

Programming Guide370

Vertical Displays

Output of Program WRITEX04:

Page 1 04-11-11 14:15:55

NAME CURRENT
POSITION

-------------------- -------------------------

KOLENCE MANAGER
DEPT: TECH05

GOSDEN ANALYST
DEPT: TECH10

WALLACE SALES PERSON
DEPT: SALE20

Tab Notation - T*field

In the previous example, the position of the field DEPT is determined by the tab notation nT (in this
case 20T, which means that the display begins in column 20 on the screen).

Field values specified in a WRITE statement can be lined up automaticallywith field values specified
in the first DISPLAY statement of the program by using the tab notation T*field (where field is
the name of the field to which the field is to be aligned).

In the following program, the output produced by the WRITE statement is aligned to the field
JOB-TITLE by using the notation T*JOB-TITLE:

** Example 'WRITEX05': WRITE (in combination with DISPLAY)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE
2 DEPT
2 CITY

END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'SAN FRANCISCO'

DISPLAY NAME JOB-TITLE
WRITE T*JOB-TITLE 'DEPT:' DEPT
SKIP 1

END-READ
END

Output of Program WRITEX05:

371Programming Guide

Vertical Displays

Page 1 04-11-11 14:15:55

NAME CURRENT
POSITION

-------------------- -------------------------

KOLENCE MANAGER
DEPT: TECH05

GOSDEN ANALYST
DEPT: TECH10

WALLACE SALES PERSON
DEPT: SALE20

Positioning Notation x/y

When you use the DISPLAY and WRITE statements in sequence andmultiple lines are to be produced
by the WRITE statement, you can use the notation x/y (number-slash-number) to determine in
which row/column something is to be displayed. The positioning notation causes the next element
in the DISPLAY or WRITE statement to be placed x lines below the last output, beginning in column
y of the output.

The following program illustrates the use of this notation:

** Example 'WRITEX06': WRITE (with n/n)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 MIDDLE-I
2 ADDRESS-LINE (1:1)
2 CITY
2 ZIP

END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'

DISPLAY 'NAME AND ADDRESS' NAME
WRITE 1/5 FIRST-NAME

1/30 MIDDLE-I
2/5 ADDRESS-LINE (1:1)
3/5 CITY
3/30 ZIP /

END-READ
END

Output of Program WRITEX06:

Programming Guide372

Vertical Displays

Page 1 04-11-11 14:15:55

NAME AND ADDRESS

RUBIN
SYLVIA L
2003 SARAZEN PLACE
NEW YORK 10036

WALLACE
MARY P
12248 LAUREL GLADE C
NEW YORK 10036

KELLOGG
HENRIETTA S
1001 JEFF RYAN DR.
NEWARK 19711

DISPLAY VERT Statement

The standard display mode in Natural is horizontal.

With the VERT clause option of the DISPLAY statement, you can override the standard display and
produce a vertical field display.

The HORIZ clause option, which can be used in the same DISPLAY statement, re-activates the
standard horizontal display mode.

Columnheadings in verticalmode are controlledwith various forms of the AS clause. The following
example programs illustrate the use of the DISPLAY VERT statement:

■ DISPLAY VERT without AS Clause
■ DISPLAY with VERT AS CAPTIONED and HORIZ Clause
■ DISPLAY with VERT AS 'text' Clause
■ DISPLAY with VERT AS 'text' CAPTIONED Clause

373Programming Guide

Vertical Displays

■ Tab Notation P*field

DISPLAY VERT without AS Clause

The following program has no AS clause, which means that no column headings are output.

** Example 'DISPLX09': DISPLAY (without column title)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY

END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'

DISPLAY VERT NAME FIRST-NAME / CITY
SKIP 2

END-READ
END

Output of Program DISPLX09:

Note that all field values are displayed vertically underneath one another.

Page 1 04-11-11 14:15:54

RUBIN
SYLVIA

NEW YORK

WALLACE
MARY

NEW YORK

KELLOGG
HENRIETTA

NEWARK

Programming Guide374

Vertical Displays

DISPLAY with VERT AS CAPTIONED and HORIZ Clause

The following program contains a VERT and a HORIZ clause, which causes some column values to
be output vertically and others horizontally; moreover AS CAPTIONED causes the default column
headers to be displayed.

** Example 'DISPLX10': DISPLAY (with VERT as CAPTIONED and HORIZ clause)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 JOB-TITLE
2 SALARY (1:1)

END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'

DISPLAY VERT AS CAPTIONED NAME FIRST-NAME
HORIZ JOB-TITLE SALARY (1:1)

SKIP 1
END-READ
END

Output of Program DISPLX10:

Page 1 04-11-11 14:15:54

NAME CURRENT ANNUAL
FIRST-NAME POSITION SALARY

-------------------- ------------------------- ----------

RUBIN SECRETARY 17000
SYLVIA

WALLACE ANALYST 38000
MARY

KELLOGG DIRECTOR 52000
HENRIETTA

375Programming Guide

Vertical Displays

DISPLAY with VERT AS 'text' Clause

The following program contains an AS 'text' clause, which displays the specified 'text' as
column header.

Note: A slash (/) within the text element in a DISPLAY statement causes a line advance.

** Example 'DISPLX11': DISPLAY (with VERT AS 'text' clause)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 JOB-TITLE
2 SALARY (1:1)

END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'

DISPLAY VERT AS 'EMPLOYEES' NAME FIRST-NAME
HORIZ JOB-TITLE SALARY (1:1)

SKIP 1
END-READ
END

Output of Program DISPLX11:

Page 1 04-11-11 14:15:54

EMPLOYEES CURRENT ANNUAL
POSITION SALARY

-------------------- ------------------------- ----------

RUBIN SECRETARY 17000
SYLVIA

WALLACE ANALYST 38000
MARY

KELLOGG DIRECTOR 52000
HENRIETTA

Programming Guide376

Vertical Displays

DISPLAY with VERT AS 'text' CAPTIONED Clause

The AS 'text' CAPTIONED clause causes the specified text to be displayed as column heading,
and the default column headings to be displayed immediately before the field value in each line
that is output.

The following program contains an AS 'text' CAPTIONED clause.

** Example 'DISPLX12': DISPLAY (with VERT AS 'text' CAPTIONED clause)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 JOB-TITLE
2 SALARY (1:1)

END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'

DISPLAY VERT AS 'EMPLOYEES' CAPTIONED NAME FIRST-NAME
HORIZ JOB-TITLE SALARY (1:1)

SKIP 1
END-READ
END

Output of Program DISPLX12:

This clause causes the default column headers (NAME and FIRST-NAME) to be placed before the field
values:

Page 1 04-11-11 14:15:54

EMPLOYEES CURRENT ANNUAL
POSITION SALARY

------------------------------- ------------------------- ----------

NAME RUBIN SECRETARY 17000
FIRST-NAME SYLVIA

NAME WALLACE ANALYST 38000
FIRST-NAME MARY

NAME KELLOGG DIRECTOR 52000
FIRST-NAME HENRIETTA

377Programming Guide

Vertical Displays

Tab Notation P*field

If you use a combination of DISPLAY VERT statement and subsequent WRITE statement, you can
use the tab notation P*field-name in the WRITE statement to align the position of a field to the
column and line position of a particular field specified in the DISPLAY VERT statement.

In the following program, the fields SALARY and BONUS are displayed in the same column, SALARY
in every first line, BONUS in every second line. The text ***SALARY PLUS BONUS*** is aligned to
SALARY, which means that it is displayed in the same column as SALARY and in the first line,
whereas the text (IN US DOLLARS) is aligned to BONUS and therefore displayed in the same column
as BONUS and in the second line.

** Example 'WRITEX07': WRITE (with P*field)
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 CITY
2 NAME
2 JOB-TITLE
2 SALARY (1:1)
2 BONUS (1:1,1:1)

END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'LOS ANGELES'

DISPLAY NAME JOB-TITLE
VERT AS 'INCOME' SALARY (1) BONUS (1,1)

WRITE P*SALARY '***SALARY PLUS BONUS***'
P*BONUS '(IN US DOLLARS)'

SKIP 1
END-READ
END

Output of Program WRITEX07:

Page 1 04-11-11 14:15:55

NAME CURRENT INCOME
POSITION

-------------------- ------------------------- ----------

SMITH 0
0

SALARY PLUS BONUS
(IN US DOLLARS)

POORE JR SECRETARY 25000
0

SALARY PLUS BONUS
(IN US DOLLARS)

Programming Guide378

Vertical Displays

PREPARATA MANAGER 46000
9000

SALARY PLUS BONUS
(IN US DOLLARS)

Further Example of DISPLAY VERT with WRITE Statement

See the following example program:

■ WRITEX10 - WRITE (with nT, T*field and P*field)

379Programming Guide

Vertical Displays

380

VII Further Programming Aspects

End of Statement, Program or Application

Processing of Application Errors

Conditional Processing - IF Statement

Loop Processing

Control Breaks

Data Computation

System Variables and System Functions

Stack

Processing of Date Information

Text Notation

User Comments

Logical Condition Criteria

Rules for Arithmetic Assignment

Invoking Natural Subprograms from 3GL Programs

Issuing Operating System Commands from within a Natural Program

Statements for Internet and XML Access

381

382

38 End of Statement, Program or Application

■ End of Statement ... 384
■ End of Program ... 384
■ End of Application .. 384

383

End of Statement

To explicitly mark the end of a statement, you can place a semicolon (;) between the statement
and the next statement. This can be used tomake the program structure clearer, but is not required.

End of Program

The END statement is used to mark the end of a Natural program, function, subprogram, external
subroutine or helproutine.

Every one of these objects must contain an END statement as the last statement.

Every object may contain only one END statement.

End of Application

Ending the Execution of an Application by a STOP Statement

The STOP statement is used to terminate the execution of a Natural application. A STOP statement
executed anywherewithin an application immediately stops the execution of the entire application.

Ending the Execution of an Application by a TERMINATE Statement

The TERMINATE statement stops the execution of the Natural application and also ends the Natural
session.

Interrupting a Running Natural Application

During the development of a Natural application and in test situations, the user should be able to
interrupt a running Natural application that does not respond anymore, for example, due to an
endless loop. As the Natural session should not need to be killed, the running Natural application
can be interrupted via the typical system interrupt key combination (for example, CTRL+BREAK for
Windows, CTRL+C for UNIX andOpenVMS). The Natural error NAT1016 is raised and the runtime
error processing is activated. The error can be handled by an ON ERROR processing.

In a production environment, this featurewill typically need to be disabled, because the application
may not be able to recover from a user interrupt at an arbitrary program location.

TheNatural profile parameter RTINTdetermineswhether interrupts are allowed. By default, inter-
rupts are not allowed.

Programming Guide384

End of Statement, Program or Application

If this parameter is set to ON, a running Natural application may be interrupted with the interrupt
key combination of the operating system (for example, forWindows: CTRL+BREAK; forUNIX: typically
CTRL+C, but can be reconfigured using the stty command; for OpenVMS: CTRL+C).

Natural catches this interrupt request and then offers the user the following possibilities:

■ Perform standard error processing by raising a NAT1016 error.
■ Continue application processing (cancel interrupt).

The choice is shown in a window that is opened after catching the interrupt signal.

Note: TheNatural applicationwill only be interruptible if theNatural application orNatural
Studio that started the application has the input focus.

385Programming Guide

End of Statement, Program or Application

386

39 Processing of Application Errors

■ Natural's Default Error Processing ... 388
■ Application Specific Error Processing ... 388
■ Using an ON ERROR Statement Block .. 389
■ Using an Error Transaction Program .. 390
■ Error Processing Related Features .. 393

387

This section discusses the two basic methods Natural offers for the handling of application errors:
default processing and application-specific processing. Furthermore, it describes the options you
have to enable the application specific error processing: coding an ON ERROR statement block
within a programming object or using a separate error transaction program.

Finally, this section gives an overview of the features that are provided to configureNatural's error
processing behavior, to retrieve information on an error, to process or debug an application error.

This document covers the following topics:

For information on error handling in a Natural RPC environment, see Handling Errors in the Nat-
ural Remote Procedure Call documentation.

Natural's Default Error Processing

When an error occurs in a Natural application, Natural will by default proceed in the following
way:

1. Natural terminates the execution of the currently running application object;

2. Natural issues an error message;

3. Natural returns to command input mode.

“Command inputmode”means that, depending on yourNatural configuration, theNatural main
menu, the NEXT command prompt, or a user-defined startup menu may appear.

The displayed error message contains the Natural error number, the corresponding message text
and the affected Natural object and line number where the error has occurred.

Because after the occurrence of an error the execution of the affected application object is terminated,
the status of any pending database transactions may be affected by actions required by the setting
of the profile parameter ETEOP. Unless Natural has issued an END TRANSACTION statement as a
result of the settings of these parameters, a BACKOUT TRANSACTION statement is issued when Nat-
ural returns to command input mode.

Application Specific Error Processing

Natural enables you to adapt the error processing if the default error processing does not meet
your application’s requirements. Possible reasons to establish an application specific error processing
may be:

■ The information on the error is to be stored for further analysis by the application developer.
■ The application execution is to be continued after error recovery, if possible.

Programming Guide388

Processing of Application Errors

■ A specific transaction handling is necessary.

Because the execution of the affected Natural application object is terminated after an application
error has occurred, the status of the pending database transactions may be influenced by actions
which are triggered by the settings of the profile parameter ETEOP. Therefore, further transaction
handling (END TRANSACTION or BACKOUT TRANSACTION statement) has to be performed by the ap-
plication’s error processing.

To enable the application specific error processing, you have the following options:

■ You may code an ON ERROR statement block within a programming object.
■ You may use a separate error transaction program.

These options are described in the following sections.

Using an ON ERROR Statement Block

You may use the ON ERROR statement to intercept execution time errors within the application
where an error occurs.

From within an ON ERROR statement block, it is possible to resume application execution on the
current level or on a superior level.

Moreover, you may specify an ON ERROR statement in multiple objects of an application in order
to process any errors that have occurred on subordinate levels. Thus, application specific error
processing may exactly be tailored to the application’s needs.

Exiting from an ON ERROR Statement Block

You may exit from an ON ERROR statement block by specifying one of the following statements:

■ RETRY

Application execution is resumed on the current level.
■ ESCAPE ROUTINE

Error processing is assumed to be complete and application execution is resumed on the super-
ior level.

■ FETCH

Error processing is assumed to be complete and the “fetched” program is executed.

STOP

389Programming Guide

Processing of Application Errors

Natural stops the execution of the affectedprogram, ends the application and returns to command
input mode.

■ TERMINATE

The execution of the Natural application is stopped and also the Natural session is terminated.

Error Processing Rules

■ If the execution of the ON ERROR statement block is not terminated by one of these statements,
the error is percolated to the Natural object on the superior level for processing by an ON ERROR
statement block that exists there.

■ If none of theNatural objects on any of the superior levels contains an ON ERROR statement block,
but if an error transaction program has been specified (as described in the next section), this
error transaction program will receive control.

■ If none of theNatural objects on any of the superior levels contains an ON ERROR statement block
and no error transaction program has been specified there, Natural's default error processing
will be performed as described above.

Using an Error Transaction Program

You may specify an error transaction program in the following places:

■ In the profile parameter ETA.
■ If Natural Security is installed, within the Natural Security library profile; see Components of a
Library Profile in the Natural Security documentation.

■ Within a Natural object by assigning the name of the programwhich is to receive control in the
event of an error condition as a value to the systemvariable *ERROR-TA, using an ASSIGN, COMPUTE
or MOVE statement.

If you assign the name of an error transaction program to the system variable *ERROR-TA during
the Natural session, this assignment supersedes an error transaction program specified using the
profile parameter ETA. Regardless of whether you use the ETA profile parameter or assign a value
to the system variable *ERROR-TA, the error transaction program names are not saved and restored
by Natural for different levels of the call hierarchy. Therefore, if you assign a name to the system
variable *ERROR-TA in a Natural object, the specified programwill be invoked to process any error
that occurs in the current Natural session after the assignment.

On the one hand, if you specify an error transaction program by using the profile parameter ETA,
an error transaction is defined for the complete Natural session without having the need for indi-
vidual assignments in Natural objects. On the other hand, the method of assigning a program to
the system variable *ERROR-TA provides more flexibility and, for example, allows you to have
different error transaction programs in different application branches.

Programming Guide390

Processing of Application Errors

If the system variable *ERROR-TA is reset to blank, Natural's default error processing will be per-
formed as described above.

If an error transaction program is specified and an application error occurs, execution of the ap-
plication is terminated, and the specified error transaction program receives control to perform
the following actions:

■ Analyze the error;
■ Log the error information;
■ Terminate the Natural session;
■ Continue the application execution by calling a program using the FETCH statement.

Because the error transaction program receives control in the same way as if it had been called
from the command prompt, it is not possible to resume application execution in one of theNatural
objects that were active at the time when the error occurred.

If a syntax error occurs and the Natural profile parameter SYNERR is set to ON, the error transaction
program will also receive control.

An error transaction programmust be located in the library to which you are currently logged on
or in a current steplib library.

When an error occurs, Natural executes a STACK TOP DATA statement and places the following in-
formation at the top of the stack:

DescriptionFormat/LengthStack Data

Natural error number.

Note: If session parameter SG is set to ON, the format/length will be N5.

N4Error number

Number of the line where the error has occurred.

If the status is C or L, the line number will be zero.

N4Line number

Status code:A1Status

Command processing errorC

Logon processing errorL

Object (execution) time errorO

Error on remote server (in conjunction
with Natural RPC)

R

Syntax errorS

Name of the Natural object where the error has occurred.A8Object name

Level number of the Natural object where the error has occurred.

If a Natural syntax error occurs at compile time and profile parameter
SYNERR is set to ON, the level number will be zero.

N2Level number

391Programming Guide

Processing of Application Errors

DescriptionFormat/LengthStack Data

If a Natural runtime error occurs and the level number of the Natural
object is greater than 99, the value 99will be stacked, and the current
value will be stacked in the additional stack data “Level number
enhanced”.

If a Natural runtime error occurs and the level number of the Natural object is greater than 99:

Current level number (512 at maximum).I4Level number
enhanced

If a Natural syntax error occurs at compile time and profile parameter SYNERR is set to ON:

Position of the offending item in the source line.N3Error position

Length of the offending item.N3Item length

This information can be retrieved in the error transaction program, using an INPUT statement.

Example:

DEFINE DATA LOCAL
1 #ERROR-NR (N5)
1 #LINE (N4)
1 #STATUS-CODE (A1)
1 #PROGRAM (A8)
1 #LEVEL (N2)
1 #LEVELI4 (I4)
1 #POSITION-IN-LINE (N3)
1 #LENGTH-OF-ITEM (N3)
END-DEFINE
IF *DATA > 6 THEN /* SYNERR = ON and a syntax error occurred

INPUT
#ERROR-NR
#LINE
#STATUS-CODE
#PROGRAM
#LEVEL
#POSITION-IN-LINE
#LENGTH-OF-ITEM

ELSE
INPUT /* other error

#ERROR-NR
#LINE
#STATUS-CODE
#PROGRAM
#LEVEL
#LEVELI4

END-IF
WRITE #STATUS-CODE
* DECIDE ON FIRST VALUE OF STATUS-CODE
* ... /* process error
* END-DECIDE
END

Programming Guide392

Processing of Application Errors

Some of the information placed on top of the stack is equivalent to the contents of several system
variables that are available in an ON ERROR statement block:

Equivalent System Variable in ON ERROR Statement BlockStack Data

*ERROR-NRError number

*ERROR-LINELine number

*PROGRAMObject name

*LEVELLevel number

Rules under Natural Security

If Natural Security is installed, the additional rules for the processing of logon errors apply. For
further information, see Transactions in the Natural Security documentation.

Error Processing Related Features

Natural provides a variety of error processing related features that

■ Enable you to configure Natural’s error processing behavior;
■ Help you in retrieving information about errors that have occurred;
■ Support you in processing these errors;
■ Support you in debugging application errors.

These features can be grouped as follows:

■ Profile parameters
■ System variables
■ Terminal Commands
■ System commands
■ Application programming interfaces

Profile Parameters

The following profile parameters have an influence on the behavior of Natural in the event of an
error:

393Programming Guide

Processing of Application Errors

PurposeProfile Parameter

Conversion ErrorCPCVERR

Error Transaction ProgramETA

Issue END TRANSACTION at End of ProgramETEOP

Handling of Response Code 113 for FIND StatementRCFIND

Handling of Response Code 113 for GET StatementRCGET

Control of Syntax ErrorsSYNERR

System Variables

The following application related systemvariables can be used to locate an error or to obtain/specify
the name of the program which is to receive control in the event of an error condition:

ContentSystem Variable

Source-code line number of the statement that caused an error.

See Example 1.

*ERROR-LINE

Error number of the error which caused an ON ERROR condition to be entered.*ERROR-NR

Name of the program which is to receive control in the event of an error condition.

See Example 2.

*ERROR-TA

Level number of the Natural object where the error has occurred.*LEVEL

Name of the library to which the user is currently logged on.*LIBRARY-ID

Name of the Natural object that is currently being executed.

See Example 1.

*PROGRAM

Example 1:

...
/*
ON ERROR
IF *ERROR-NR = 3009 THEN

WRITE 'LAST TRANSACTION NOT SUCCESSFUL'
/ 'HIT ENTER TO RESTART PROGRAM'

FETCH 'ONEEX1'
END-IF
WRITE 'ERROR' *ERROR-NR 'OCCURRED IN PROGRAM' *PROGRAM

'AT LINE' *ERROR-LINE
FETCH 'MENU'

END-ERROR
/*

...

Example 2:

Programming Guide394

Processing of Application Errors

...
*ERROR-TA := 'ERRORTA1'
/* from now on, program ERRORTA1 will be invoked
/* to process application errors

...
MOVE 'ERRORTA2' TO *ERROR-TA
/* change error transaction program to ERRORTA2

...

For further information on these system variables, see the corresponding sections in the System
Variables documentation.

Terminal Commands

The following terminal command has an influence on the behavior of Natural in the event of an
error:

PurposeTerminal Command

Activate/Deactivate Error Processing%E=

System Commands

The following system commands provide additional information on an error situation or invoke
the utilities for debugging or logging database calls:

PurposeSystem Command

Display additional information on the error situation which has occurred last.LASTMSG

Display technical and other information about your Natural session, for example,
information on the last error that occurred.

TECH

Application Programming Interfaces

The following application programming interfaces (APIs) are generally available for getting addi-
tional information on an error situation or to install an error transaction.

PurposeAPI

Get type of last errorUSR0040N

Get error level for error in nested copycodesUSR1016N

Get information on last errorUSR2001N

Get information from error message collectorUSR2006N

Get or set data for RPC default serverUSR2007N

Get error information on last database callUSR2010N

Get TECH informationUSR2026N

Get dynamic error message parts from the last errorUSR2030N

395Programming Guide

Processing of Application Errors

PurposeAPI

Find user short error message (including steplibs search)USR3320N

Get program level informationUSR4214N

For further information, see SYSEXT - Natural Application Programming Interfaces in the Utilities
documentation.

Programming Guide396

Processing of Application Errors

40 Conditional Processing - IF Statement

■ Structure of IF Statement .. 398
■ Nested IF Statements ... 400

397

With the IF statement, you define a logical condition, and the execution of the statement attached
to the IF statement then depends on that condition.

Structure of IF Statement

The IF statement contains three components:

In the IF clause, you specify the logical condition which is to be met.IF

In the THEN clause you specify the statement(s) to be executed if this condition is met.THEN

In the (optional) ELSE clause, you can specify the statement(s) to be executed if this condition is not
met.

ELSE

So, an IF statement takes the following general form:

IF condition
THEN execute statement(s)
ELSE execute other statement(s)

END-IF

Note: If you wish a certain processing to be performed only if the IF condition is notmet,
you can specify the clause THEN IGNORE. The IGNORE statement causes the IF condition to
be ignored if it is met.

Example 1:

** Example 'IFX01': IF
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 BIRTH
2 CITY
2 SALARY (1:1)

END-DEFINE
*
LIMIT 7
READ MYVIEW BY CITY STARTING FROM 'C'
IF SALARY (1) LT 40000 THEN

WRITE NOTITLE '*****' NAME 30X 'SALARY LT 40000'
ELSE

DISPLAY NAME BIRTH (EM=YYYY-MM-DD) SALARY (1)
END-IF

END-READ
END

Programming Guide398

Conditional Processing - IF Statement

The IF statement block in the above program causes the following conditional processing to be
performed:

■ IF the salary is less than 40000, THEN the WRITE statement is to be executed;
■ otherwise (ELSE), that is, if the salary is 40000 or more, the DISPLAY statement is to be executed.

Output of Program IFX01:

NAME DATE ANNUAL
OF SALARY

BIRTH
-------------------- ---------- ----------

***** KEEN SALARY LT 40000
***** FORRESTER SALARY LT 40000
***** JONES SALARY LT 40000
***** MELKANOFF SALARY LT 40000
DAVENPORT 1948-12-25 42000
GEORGES 1949-10-26 182800
***** FULLERTON SALARY LT 40000

Example 2:

** Example 'IFX03': IF
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 BONUS (1,1)
2 SALARY (1)

*
1 #INCOME (N9)
1 #TEXT (A26)
END-DEFINE
*
WRITE TITLE '-- DISTRIBUTION OF CATALOGS I AND II --' /
*
READ (3) EMPLOY-VIEW BY CITY = 'SAN FRANSISCO'

COMPUTE #INCOME = BONUS(1,1) + SALARY(1)
/*

IF #INCOME > 40000
MOVE 'CATALOGS I AND II' TO #TEXT

ELSE
MOVE 'CATALOG I' TO #TEXT

END-IF
/*
DISPLAY NAME 5X 'SALARY' SALARY(1) / BONUS(1,1)
WRITE T*SALARY '-'(10) /

16X 'INCOME:' T*SALARY #INCOME 3X #TEXT /

399Programming Guide

Conditional Processing - IF Statement

16X '='(19)
SKIP 1

END-READ
END

Output of Program IFX03:

-- DISTRIBUTION OF CATALOGS I AND II --
NAME SALARY

BONUS
-------------------- ----------

COLVILLE JR 56000
0

INCOME: 56000 CATALOGS I AND II
===================

RICHMOND 9150
0

INCOME: 9150 CATALOG I
===================

MONKTON 13500
600

INCOME: 14100 CATALOG I
===================

Nested IF Statements

It is possible to use various nested IF statements; for example, you can make the execution of a
THEN clause dependent on another IF statement which you specify in the THEN clause.

Example:

** Example 'IFX02': IF (two IF statements nested)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 SALARY (1:1)
2 BIRTH
2 PERSONNEL-ID

1 MYVIEW2 VIEW OF VEHICLES
2 PERSONNEL-ID

Programming Guide400

Conditional Processing - IF Statement

2 MAKE
*
1 #BIRTH (D)
END-DEFINE
*
MOVE EDITED '19450101' TO #BIRTH (EM=YYYYMMDD)
*
LIMIT 20
FND1. FIND MYVIEW WITH CITY = 'BOSTON'

SORTED BY NAME
IF SALARY (1) LESS THAN 20000

WRITE NOTITLE '*****' NAME 30X 'SALARY LT 20000'
ELSE

IF BIRTH GT #BIRTH
FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)

DISPLAY (IS=ON) NAME BIRTH (EM=YYYY-MM-DD)
SALARY (1) MAKE (AL=8 IS=OFF)

END-FIND
END-IF

END-IF
SKIP 1

END-FIND
END

Output of Program IFX02:

NAME DATE ANNUAL MAKE
OF SALARY

BIRTH
-------------------- ---------- ---------- --------

***** COHEN SALARY LT 20000

CREMER 1972-12-14 20000 FORD

***** FLEMING SALARY LT 20000

PERREAULT 1950-05-12 30500 CHRYSLER

***** SHAW SALARY LT 20000

STANWOOD 1946-09-08 31000 CHRYSLER
FORD

401Programming Guide

Conditional Processing - IF Statement

402

41 Loop Processing

■ Use of Processing Loops .. 404
■ Limiting Database Loops ... 404
■ Limiting Non-Database Loops - REPEAT Statement ... 406
■ Example of REPEAT Statement .. 407
■ Terminating a Processing Loop - ESCAPE Statement ... 408
■ Loops Within Loops ... 408
■ Example of Nested FIND Statements ... 408
■ Referencing Statements within a Program .. 409
■ Example of Referencing with Line Numbers .. 411
■ Example with Statement Reference Labels ... 412

403

A processing loop is a group of statements which are executed repeatedly until a stated condition
has been satisfied, or as long as a certain condition prevails.

Use of Processing Loops

Processing loops can be subdivided into database loops and non-database loops:

■ Database processing loops
are those created automatically by Natural to process data selected from a database as a result
of a READ, FIND or HISTOGRAM statement. These statements are described in the sectionDatabase
Access.

■ Non-database processing loops
are initiated by the statements REPEAT, FOR, CALL FILE, CALL LOOP, SORT, and READ WORK FILE.

More than one processing loopmay be active at the same time. Loopsmay be embedded or nested
within other loops which remain active (open).

A processing loopmust be explicitly closedwith a corresponding END-... statement (for example,
END-REPEAT, END-FOR)

The SORT statement, which invokes the sort program of the operating system, closes all active
processing loops and initiates a new processing loop.

Limiting Database Loops

The following topics are covered below:

■ Possible Ways of Limiting Database Loops
■ LT Session Parameter
■ LIMIT Statement
■ Limit Notation

Programming Guide404

Loop Processing

■ Priority of Limit Settings

Possible Ways of Limiting Database Loops

With the statements READ, FIND or HISTOGRAM, you have three ways of limiting the number of repe-
titions of the processing loops initiated with these statements:

■ using the session parameter LT,
■ using a LIMIT statement,
■ or using a limit notation in a READ/FIND/HISTOGRAM statement itself.

LT Session Parameter

With the system command GLOBALS, you can specify the session parameter LT, which limits the
number of records which may be read in a database processing loop.

Example:

GLOBALS LT=100

This limit applies to all READ, FIND and HISTOGRAM statements in the entire session.

LIMIT Statement

In a program, you can use the LIMIT statement to limit the number of records which may be read
in a database processing loop.

Example:

LIMIT 100

The LIMIT statement applies to the remainder of the program unless it is overridden by another
LIMIT statement or limit notation.

Limit Notation

With a READ, FIND or HISTOGRAM statement itself, you can specify the number of records to be read
in parentheses immediately after the statement name.

405Programming Guide

Loop Processing

Example:

READ (10) VIEWXYZ BY NAME

This limit notation overrides any other limit in effect, but applies only to the statement in which
it is specified.

Priority of Limit Settings

If the limit set with the LT parameter is smaller than a limit specified with a LIMIT statement or a
limit notation, the LT limit has priority over any of these other limits.

Limiting Non-Database Loops - REPEAT Statement

Non-database processing loops begin and end based on logical condition criteria or some other
specified limiting condition.

The REPEAT statement is discussed here as representative of a non-database loop statement.

With the REPEAT statement, you specify one ormore statementswhich are to be executed repeatedly.
Moreover, you can specify a logical condition, so that the statements are only executed either until
or as long as that condition is met. For this purpose you use an UNTIL or WHILE clause.

If you specify the logical condition

■ in an UNTIL clause, the REPEAT loop will continue until the logical condition is met;
■ in a WHILE clause, the REPEAT loop will continue as long as the logical condition remains true.

If you specify no logical condition, the REPEAT loop must be exited with one of the following
statements:

■ ESCAPE terminates the execution of the processing loop and continues processing outside the
loop (see below).

■ STOP stops the execution of the entire Natural application.
■ TERMINATE stops the execution of the Natural application and also ends the Natural session.

Programming Guide406

Loop Processing

Example of REPEAT Statement

** Example 'REPEAX01': REPEAT
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 SALARY (1:1)

*
1 #PAY1 (N8)
END-DEFINE
*
READ (5) MYVIEW BY NAME WHERE SALARY (1) = 30000 THRU 39999

MOVE SALARY (1) TO #PAY1
/*
REPEAT WHILE #PAY1 LT 40000

MULTIPLY #PAY1 BY 1.1
DISPLAY NAME (IS=ON) SALARY (1)(IS=ON) #PAY1

END-REPEAT
/*
SKIP 1

END-READ
END

Output of Program REPEAX01:

Page 1 04-11-11 14:15:54

NAME ANNUAL #PAY1
SALARY

-------------------- ---------- ---------

ADKINSON 34500 37950
41745

33500 36850
40535

36000 39600
43560

AFANASSIEV 37000 40700

ALEXANDER 34500 37950
41745

407Programming Guide

Loop Processing

Terminating a Processing Loop - ESCAPE Statement

The ESCAPE statement is used to terminate the execution of a processing loop based on a logical
condition.

You can place an ESCAPE statement within loops in conditional IF statement groups, in break
processing statement groups (AT END OF DATA, AT END OF PAGE, AT BREAK), or as a stand-alone
statement implementing the basic logical conditions of a non-database loop.

The ESCAPE statement offers the options TOP and BOTTOM, which determine where processing is to
continue after the processing loop has been left via the ESCAPE statement:

■ ESCAPE TOP is used to continue processing at the top of the processing loop.
■ ESCAPE BOTTOM is used to continue processing with the first statement following the processing
loop.

You can specify several ESCAPE statements within the same processing loop.

For further details and examples of the ESCAPE statement, see the Statements documentation.

Loops Within Loops

Adatabase statement can be placedwithin a database processing loop initiated by another database
statement. When database loop-initiating statements are embedded in this way, a “hierarchy” of
loops is created, each of which is processed for each record which meets the selection criteria.

Multiple levels of loops can be embedded. For example, non-database loops can be nested one
inside the other. Database loops can be nested inside non-database loops. Database and non-
database loops can be nested within conditional statement groups.

Example of Nested FIND Statements

The following program illustrates a hierarchy of two loops,with one FIND loop nested or embedded
within another FIND loop.

Programming Guide408

Loop Processing

** Example 'FINDX06': FIND (two FIND statements nested)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 PERSONNEL-ID

1 VEH-VIEW VIEW OF VEHICLES
2 MAKE
2 PERSONNEL-ID

END-DEFINE
*
FND1. FIND EMPLOY-VIEW WITH CITY = 'NEW YORK' OR = 'BEVERLEY HILLS'

FIND (1) VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (FND1.)
DISPLAY NOTITLE NAME CITY MAKE

END-FIND
END-FIND
END

The above program selects data frommultiple files. The outer FIND loop selects from the EMPLOYEES
file all persons who live in New York or Beverley Hills. For each record selected in the outer loop,
the inner FIND loop is entered, selecting the car data of those persons from the VEHICLES file.

Output of Program FINDX06:

NAME CITY MAKE

-------------------- -------------------- --------------------

RUBIN NEW YORK FORD
OLLE BEVERLEY HILLS GENERAL MOTORS
WALLACE NEW YORK MAZDA
JONES BEVERLEY HILLS FORD
SPEISER BEVERLEY HILLS GENERAL MOTORS

Referencing Statements within a Program

Statement reference notation is used for the following purposes:

■ Referring to previous statements in a program in order to specify processing over a particular
range of data.

■ Overriding Natural's default referencing.
■ Documenting.

AnyNatural statement which causes a processing loop to be initiated and/or causes data elements
in a database to be accessed can be referenced, for example:

409Programming Guide

Loop Processing

■ READ

■ FIND

■ HISTOGRAM

■ SORT

■ REPEAT

■ FOR

When multiple processing loops are used in a program, reference notation is used to uniquely
identify the particular database field to be processed by referring back to the statement that origin-
ally accessed that field in the database.

If a field can be referenced in such a way, this is indicated in the Referencing Permitted column
of theOperand Definition Table in the corresponding statement description (in the Statements docu-
mentation). See also User-Defined Variables, Referencing of Database Fields Using (r) Notation.

In addition, reference notation can be specified in some statements. For example:

■ AT START OF DATA

■ AT END OF DATA

■ AT BREAK

■ ESCAPE BOTTOM

Without reference notation, an AT START OF DATA, AT END OF DATA or AT BREAK statement will
be related to the outermost active READ, FIND, HISTOGRAM, SORT or READ WORK FILE loop. With refer-
ence notation, you can relate it to another active processing loop.

If reference notation is specified with an ESCAPE BOTTOM statement, processing will continue with
the first statement following the processing loop identified by the reference notation.

Statement reference notation may be specified in the form of a statement reference label or a source-
code line number.

■ Statement reference label
A statement reference label consists of several characters, the last of which must be a period (.).
The period serves to identify the entry as a label.

A statement that is to be referenced is marked with a label by placing the label at the beginning
of the line that contains the statement. For example:

Programming Guide410

Loop Processing

0030 ...
0040 READ1. READ VIEWXYZ BY NAME
0050 ...

In the statement that references the marked statement, the label is placed in parentheses at the
location indicated in the statement's syntax diagram (as described in the Statements documenta-
tion). For example:

AT BREAK (READ1.) OF NAME

■ Source-code line number
If source-code line numbers are used for referencing, they must be specified as 4-digit numbers
(leading zeros must not be omitted) and in parentheses. For example:

AT BREAK (0040) OF NAME

In a statement where the label/line number relates a particular field to a previous statement, the
label/line number is placed in parentheses after the field name. For example:

DISPLAY NAME (READ1.) JOB-TITLE (READ1.) MAKE MODEL

Line numbers and labels can be used interchangeably.

See also User-Defined Variables, Referencing of Database Fields Using (r) Notation.

Example of Referencing with Line Numbers

The following program uses source code line numbers (4-digit numbers in parentheses) for refer-
encing.

In this particular example, the line numbers refer to the statements that would be referenced in
any case by default.

0010 ** Example 'LABELX01': Labels for READ and FIND loops (line numbers)
0020 **
0030 DEFINE DATA LOCAL
0040 1 MYVIEW1 VIEW OF EMPLOYEES
0050 2 NAME
0060 2 FIRST-NAME
0070 2 PERSONNEL-ID
0080 1 MYVIEW2 VIEW OF VEHICLES
0090 2 PERSONNEL-ID
0100 2 MAKE
0110 END-DEFINE
0120 *

411Programming Guide

Loop Processing

0130 LIMIT 15
0140 READ MYVIEW1 BY NAME STARTING FROM 'JONES'
0150 FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (0140)
0160 IF NO RECORDS FOUND
0170 MOVE '***NO CAR***' TO MAKE
0180 END-NOREC
0190 DISPLAY NOTITLE NAME (0140) (IS=ON)
0200 FIRST-NAME (0140) (IS=ON)
0210 MAKE (0150)
0220 END-FIND /* (0150)
0230 END-READ /* (0140)
0240 END

Example with Statement Reference Labels

The following example illustrates the use of statement reference labels.

It is identical to the previous program, except that labels are used for referencing instead of line
numbers.

** Example 'LABELX02': Labels for READ and FIND loops (user labels)
**
DEFINE DATA LOCAL
1 MYVIEW1 VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 PERSONNEL-ID

1 MYVIEW2 VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 15
RD. READ MYVIEW1 BY NAME STARTING FROM 'JONES'

FD. FIND MYVIEW2 WITH PERSONNEL-ID = PERSONNEL-ID (RD.)
IF NO RECORDS FOUND
MOVE '***NO CAR***' TO MAKE

END-NOREC
DISPLAY NOTITLE NAME (RD.) (IS=ON)

FIRST-NAME (RD.) (IS=ON)
MAKE (FD.)

END-FIND /* (FD.)
END-READ /* (RD.)
END ↩

Both programs produce the following output:

Programming Guide412

Loop Processing

NAME FIRST-NAME MAKE
-------------------- -------------------- --------------------

JONES VIRGINIA CHRYSLER
MARSHA CHRYSLER

CHRYSLER
ROBERT GENERAL MOTORS
LILLY FORD

MG
EDWARD GENERAL MOTORS
LAUREL GENERAL MOTORS
KEVIN DATSUN
GREGORY FORD

JOPER MANFRED ***NO CAR***
JOUSSELIN DANIEL RENAULT
JUBE GABRIEL ***NO CAR***
JUNG ERNST ***NO CAR***
JUNKIN JEREMY ***NO CAR***
KAISER REINER ***NO CAR***
KANT HEIKE ***NO CAR***

413Programming Guide

Loop Processing

414

42 Control Breaks

■ Use of Control Breaks ... 416
■ AT BREAK Statement ... 416
■ Automatic Break Processing .. 421
■ Example of System Functions with AT BREAK Statement .. 422
■ Further Example of AT BREAK Statement .. 424
■ BEFORE BREAK PROCESSING Statement ... 424
■ Example of BEFORE BREAK PROCESSING Statement ... 424
■ User-Initiated Break Processing - PERFORM BREAK PROCESSING Statement .. 425
■ Example of PERFORM BREAK PROCESSING Statement ... 427

415

This chapter describes how the execution of a statement can bemade dependent on a control break,
and how control breaks can be used for the evaluation of Natural system functions.

Use of Control Breaks

A control break occurs when the value of a control field changes.

The execution of statements can be made dependent on a control break.

A control break can also be used for the evaluation of Natural system functions.

System functions are discussed in SystemVariables and SystemFunctions. For detailed descriptions
of the system functions available, refer to the System Functions documentation.

AT BREAK Statement

With the statement AT BREAK, you specify the processing which is to be performed whenever a
control break occurs, that is, whenever the value of a control field which you specify with the AT
BREAK statement changes. As a control field, you can use a database field or a user-defined variable.

The following topics are covered below:

■ Control Break Based on a Database Field
■ Control Break Based on a User-Defined Variable
■ Multiple Control Break Levels

Control Break Based on a Database Field

The field specified as control field in an AT BREAK statement is usually a database field.

Example:

...
AT BREAK OF DEPT

statements
END-BREAK
...

In this example, the control field is the database field DEPT; if the value of the field changes, for
example, FROM SALE01 to SALE02, the statements specified in the AT BREAK statement would be
executed.

Programming Guide416

Control Breaks

Instead of an entire field, you can also use only part of a field as a control field.With the slash-n-slash
notation /n/, you can determine that only the first n positions of a field are to be checked for a
change in value.

Example:

...
AT BREAK OF DEPT /4/

statements
END-BREAK
...

In this example, the specified statementswould only be executed if the value of the first 4 positions
of the field DEPT changes, for example, FROM SALE to TECH; if, however, the field value changes
from SALE01 to SALE02, this would be ignored and no AT BREAK processing performed.

Example:

** Example 'ATBREX01': AT BREAK OF (with database field)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 COUNTRY
2 JOB-TITLE
2 SALARY (1:1)

END-DEFINE
*
READ (5) MYVIEW BY CITY WHERE COUNTRY = 'USA'

DISPLAY CITY (AL=9) NAME 'POSITION' JOB-TITLE 'SALARY' SALARY(1)
/*
AT BREAK OF CITY

WRITE / OLD(CITY) (EM=X^X^X^X^X^X^X^X^X^X^X^)
5X 'AVERAGE:' T*SALARY AVER(SALARY(1)) //

COUNT(SALARY(1)) 'RECORDS FOUND' /
END-BREAK
/*
AT END OF DATA

WRITE 'TOTAL (ALL RECORDS):' T*SALARY(1) TOTAL(SALARY(1))
END-ENDDATA

END-READ
END

In the above program, the first WRITE statement is executed whenever the value of the field CITY
changes.

In the AT BREAK statement, the Natural system functions OLD, AVER and COUNT are evaluated (and
output in the WRITE statement).

417Programming Guide

Control Breaks

In the AT END OF DATA statement, the Natural system function TOTAL is evaluated.

Output of Program ATBREX01:

Page 1 04-12-14 14:07:26

 CITY NAME POSITION SALARY
--------- -------------------- ------------------------- ----------

AIKEN SENKO PROGRAMMER 31500

A I K E N AVERAGE: 31500

 1 RECORDS FOUND

ALBUQUERQ HAMMOND SECRETARY 22000
ALBUQUERQ ROLLING MANAGER 34000
ALBUQUERQ FREEMAN MANAGER 34000
ALBUQUERQ LINCOLN ANALYST 41000

A L B U Q U E R Q U E AVERAGE: 32750

 4 RECORDS FOUND

TOTAL (ALL RECORDS): 162500 ↩

Control Break Based on a User-Defined Variable

A user-defined variable can also be used as control field in an AT BREAK statement.

In the following program, the user-defined variable #LOCATION is used as control field.

** Example 'ATBREX02': AT BREAK OF (with user-defined variable and
** in conjunction with BEFORE BREAK PROCESSING)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 CITY
2 COUNTRY
2 JOB-TITLE
2 SALARY (1:1)

*
1 #LOCATION (A20)
END-DEFINE
*
READ (5) MYVIEW BY CITY WHERE COUNTRY = 'USA'

BEFORE BREAK PROCESSING
COMPRESS CITY 'USA' INTO #LOCATION

END-BEFORE
DISPLAY #LOCATION 'POSITION' JOB-TITLE 'SALARY' SALARY (1)

Programming Guide418

Control Breaks

/*
AT BREAK OF #LOCATION

SKIP 1
END-BREAK

END-READ
END

Output of Program ATBREX02:

Page 1 04-12-14 14:08:36

 #LOCATION POSITION SALARY
-------------------- ------------------------- ----------

AIKEN USA PROGRAMMER 31500

ALBUQUERQUE USA SECRETARY 22000
ALBUQUERQUE USA MANAGER 34000
ALBUQUERQUE USA MANAGER 34000
ALBUQUERQUE USA ANALYST 41000 ↩

Multiple Control Break Levels

As explained above, the notation /n/ allows some portion of a field to be checked for a control
break. It is possible to combine several AT BREAK statements, using an entire field as control field
for one break and part of the same field as control field for another break.

In such a case, the break at the lower level (entire field) must be specified before the break at the
higher level (part of field); that is, in the first AT BREAK statement the entire field must be specified
as control field, and in the second one part of the field.

The following example program illustrates this, using the field DEPT as well as the first 4 positions
of that field (DEPT /4/).

** Example 'ATBREX03': AT BREAK OF (two statements in combination)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 JOB-TITLE
2 DEPT
2 SALARY (1:1)
2 CURR-CODE (1:1)

END-DEFINE
*
READ MYVIEW BY DEPT STARTING FROM 'SALE40' ENDING AT 'TECH10'

WHERE SALARY(1) GT 47000 AND CURR-CODE(1) = 'USD'
/*
AT BREAK OF DEPT

WRITE '*** LOWEST BREAK LEVEL ***' /

419Programming Guide

Control Breaks

END-BREAK
AT BREAK OF DEPT /4/

WRITE '*** HIGHEST BREAK LEVEL ***'
END-BREAK
/*
DISPLAY DEPT NAME 'POSITION' JOB-TITLE

END-READ
END

Output of Program ATBREX03:

Page 1 04-12-14 14:09:20

DEPARTMENT NAME POSITION
 CODE
---------- -------------------- -------------------------

TECH05 HERZOG MANAGER
TECH05 LAWLER MANAGER
TECH05 MEYER MANAGER
*** LOWEST BREAK LEVEL ***

TECH10 DEKKER DBA
*** LOWEST BREAK LEVEL ***

*** HIGHEST BREAK LEVEL *** ↩

In the following program, one blank line is output whenever the value of the field DEPT changes;
and whenever the value in the first 4 positions of DEPT changes, a record count is carried out by
evaluating the system function COUNT.

** Example 'ATBREX04': AT BREAK OF (two statements in combination)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 DEPT
2 REDEFINE DEPT

3 #GENDEP (A4)
2 NAME
2 SALARY (1)

END-DEFINE
*
WRITE TITLE '** PERSONS WITH SALARY > 30000, SORTED BY DEPARTMENT **' /
LIMIT 9
READ MYVIEW BY DEPT FROM 'A' WHERE SALARY(1) > 30000

DISPLAY 'DEPT' DEPT NAME 'SALARY' SALARY(1)
/*
AT BREAK OF DEPT

SKIP 1
END-BREAK
AT BREAK OF DEPT /4/

Programming Guide420

Control Breaks

WRITE COUNT(SALARY(1)) 'RECORDS FOUND IN:' OLD(#GENDEP) /
END-BREAK

END-READ
END

Output of Program ATBREX04:

 ** PERSONS WITH SALARY > 30000, SORTED BY DEPARTMENT **

 DEPT NAME SALARY
------ -------------------- ----------

ADMA01 JENSEN 180000
ADMA01 PETERSEN 105000
ADMA01 MORTENSEN 320000
ADMA01 MADSEN 149000
ADMA01 BUHL 642000

ADMA02 HERMANSEN 391500
ADMA02 PLOUG 162900
ADMA02 HANSEN 234000

 8 RECORDS FOUND IN: ADMA

COMP01 HEURTEBISE 168800

 1 RECORDS FOUND IN: COMP ↩

Automatic Break Processing

Automatic break processing is in effect for a processing loopwhich contains an AT BREAK statement.
This applies to the following statements:

■ FIND

■ READ

■ HISTOGRAM

■ SORT

■ READ WORK FILE

The value of the control field specified with the AT BREAK statement is checked only for records
which satisfy the selection criteria of both the WITH clause and the WHERE clause.

Natural system functions (AVER, MAX, MIN, etc.) are evaluated for each record after all statements
within the processing loop have been executed. System functions are not evaluated for any record
which is rejected by WHERE criteria.

421Programming Guide

Control Breaks

The figure below illustrates the flow logic of automatic break processing.

Example of System Functions with AT BREAK Statement

The following example shows the use of the Natural system functions OLD, MIN, AVER, MAX, SUM and
COUNT in an AT BREAK statement (and of the system function TOTAL in an AT END OF DATA statement).

Programming Guide422

Control Breaks

** Example 'ATBREX05': AT BREAK OF (with system functions)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 SALARY (1:1)
2 CURR-CODE (1:1)

END-DEFINE
*
LIMIT 3
READ MYVIEW BY CITY = 'SALT LAKE CITY'

DISPLAY NOTITLE CITY NAME 'SALARY' SALARY(1) 'CURRENCY' CURR-CODE(1)
/*
AT BREAK OF CITY

WRITE / OLD(CITY) (EM=X^X^X^X^X^X^X^X^X^X^X^X^X^X^X)
31T ' - MINIMUM:' MIN(SALARY(1)) CURR-CODE(1) /
31T ' - AVERAGE:' AVER(SALARY(1)) CURR-CODE(1) /
31T ' - MAXIMUM:' MAX(SALARY(1)) CURR-CODE(1) /
31T ' - SUM:' SUM(SALARY(1)) CURR-CODE(1) /
33T COUNT(SALARY(1)) 'RECORDS FOUND' /

END-BREAK
/*
AT END OF DATA

WRITE 22T 'TOTAL (ALL RECORDS):'
T*SALARY TOTAL(SALARY(1)) CURR-CODE(1)

END-ENDDATA
END-READ
END

Output of Program ATBREX05:

 CITY NAME SALARY CURRENCY
-------------------- -------------------- ---------- --------

SALT LAKE CITY ANDERSON 50000 USD
SALT LAKE CITY SAMUELSON 24000 USD

S A L T L A K E C I T Y - MINIMUM: 24000 USD
 - AVERAGE: 37000 USD
 - MAXIMUM: 50000 USD
 - SUM: 74000 USD
 2 RECORDS FOUND

SAN DIEGO GEE 60000 USD

S A N D I E G O - MINIMUM: 60000 USD
 - AVERAGE: 60000 USD
 - MAXIMUM: 60000 USD
 - SUM: 60000 USD
 1 RECORDS FOUND

423Programming Guide

Control Breaks

 TOTAL (ALL RECORDS): 134000 USD ↩

Further Example of AT BREAK Statement

See the following example program:

■ ATBREX06 - AT BREAKOF (comparing NMIN, NAVER, NCOUNTwithMIN, AVER, COUNT)

BEFORE BREAK PROCESSING Statement

With the BEFORE BREAK PROCESSING statement, you can specify statements that are to be executed
immediately before a control break; that is, before the value of the control field is checked, before
the statements specified in the AT BREAK block are executed, and before any Natural system func-
tions are evaluated.

Example of BEFORE BREAK PROCESSING Statement

** Example 'BEFORX01': BEFORE BREAK PROCESSING
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 BONUS (1:1,1:1)

*
1 #INCOME (P11)
END-DEFINE
*
LIMIT 5
READ MYVIEW BY NAME FROM 'B'
BEFORE BREAK PROCESSING

COMPUTE #INCOME = SALARY(1) + BONUS(1,1)
END-BEFORE
/*
DISPLAY NOTITLE NAME FIRST-NAME (AL=10)

'ANNUAL/INCOME' #INCOME 'SALARY' SALARY(1) (LC==) /
'+ BONUS' BONUS(1,1) (IC=+)

AT BREAK OF #INCOME
WRITE T*#INCOME '-'(24)

END-BREAK

Programming Guide424

Control Breaks

END-READ
END

Output of Program BEFORX01:

NAME FIRST-NAME ANNUAL SALARY
INCOME + BONUS

-------------------- ---------- ------------ -----------

BACHMANN HANS 56800 = 52800
+4000

BAECKER JOHANNES 81000 = 74400

+6600

BAECKER KARL 52650 = 48600
+4050

BAGAZJA MARJAN 152700 = 129700

+23000

BAILLET PATRICK 198500 = 188000
+10500

User-InitiatedBreak Processing - PERFORMBREAKPROCESSINGStatement

With automatic break processing, the statements specified in an AT BREAK block are executed
whenever the value of the specified control field changes - regardless of the position of the AT
BREAK statement in the processing loop.

With a PERFORM BREAK PROCESSING statement, you can perform break processing at a specified
position in a processing loop: the PERFORM BREAK PROCESSING statement is executed when it is
encountered in the processing flow of the program.

Immediately after the PERFORM BREAK PROCESSING, you specify one or more AT BREAK statement
blocks:

...
PERFORM BREAK PROCESSING

AT BREAK OF field1
statements

END-BREAK
AT BREAK OF field2

statements
END-BREAK

...

425Programming Guide

Control Breaks

When a PERFORM BREAK PROCESSING is executed, Natural checks if a break has occurred; that is,
if the value of the specified control field has changed; and if it has, the specified statements are
executed.

With PERFORM BREAK PROCESSING, system functions are evaluated beforeNatural checks if a break
has occurred.

The following figure illustrates the flow logic of user-initiated break processing:

Programming Guide426

Control Breaks

Example of PERFORM BREAK PROCESSING Statement

** Example 'PERFBX01': PERFORM BREAK PROCESSING (with BREAK option
** in IF statement)
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 DEPT
2 SALARY (1:1)

*
1 #CNTL (N2)
END-DEFINE
*
LIMIT 7
READ MYVIEW BY DEPT

AT BREAK OF DEPT /* <- automatic break processing
SKIP 1
WRITE 'SUMMARY FOR ALL SALARIES '

'SUM:' SUM(SALARY(1))
'TOTAL:' TOTAL(SALARY(1))

ADD 1 TO #CNTL
END-BREAK
/*
IF SALARY (1) GREATER THAN 100000 OR BREAK #CNTL

PERFORM BREAK PROCESSING /* <- user-initiated break processing
AT BREAK OF #CNTL
WRITE 'SUMMARY FOR SALARY GREATER 100000'

'SUM:' SUM(SALARY(1))
'TOTAL:' TOTAL(SALARY(1))

END-BREAK
END-IF
/*
IF SALARY (1) GREATER THAN 150000 OR BREAK #CNTL

PERFORM BREAK PROCESSING /* <- user-initiated break processing
AT BREAK OF #CNTL
WRITE 'SUMMARY FOR SALARY GREATER 150000'

'SUM:' SUM(SALARY(1))
'TOTAL:' TOTAL(SALARY(1))

END-BREAK
END-IF
DISPLAY NAME DEPT SALARY(1)

END-READ
END

Output of Program PERFBX01:

427Programming Guide

Control Breaks

Page 1 04-12-14 14:13:35

 NAME DEPARTMENT ANNUAL
 CODE SALARY
-------------------- ---------- ----------

JENSEN ADMA01 180000
PETERSEN ADMA01 105000
MORTENSEN ADMA01 320000
MADSEN ADMA01 149000
BUHL ADMA01 642000

SUMMARY FOR ALL SALARIES SUM: 1396000 TOTAL: 1396000
SUMMARY FOR SALARY GREATER 100000 SUM: 1396000 TOTAL: 1396000
SUMMARY FOR SALARY GREATER 150000 SUM: 1142000 TOTAL: 1142000
HERMANSEN ADMA02 391500
PLOUG ADMA02 162900

SUMMARY FOR ALL SALARIES SUM: 554400 TOTAL: 1950400
SUMMARY FOR SALARY GREATER 100000 SUM: 554400 TOTAL: 1950400
SUMMARY FOR SALARY GREATER 150000 SUM: 554400 TOTAL: 1696400 ↩

Programming Guide428

Control Breaks

43 Data Computation

■ COMPUTE Statement .. 430
■ Statements MOVE and COMPUTE ... 431
■ Statements ADD, SUBTRACT, MULTIPLY and DIVIDE ... 432
■ Example of MOVE, SUBTRACT and COMPUTE Statements .. 432
■ COMPRESS Statement .. 433
■ Example of COMPRESS and MOVE Statements ... 434
■ Example of COMPRESS Statement .. 435
■ Mathematical Functions .. 436
■ Further Examples of COMPUTE, MOVE and COMPRESS Statements ... 437

429

This chapter discusses arithmetic statements that are used for computing data:

■ COMPUTE

■ ADD

■ SUBTRACT

■ MULTIPLY

■ DIVIDE

In addition, the following statements are discussed which are used to transfer the value of an op-
erand into one or more fields:

■ MOVE

■ COMPRESS

Important: For optimum processing, user-defined variables used in arithmetic statements
should be defined with format P (packed numeric).

COMPUTE Statement

The COMPUTE statement is used to perform arithmetic operations. The following connecting oper-
ators are available:

Exponentiation**

Multiplication*

Division/

Addition+

Subtraction-

Parentheses may be used to indicate logical grouping.()

Programming Guide430

Data Computation

Example 1:

COMPUTE LEAVE-DUE = LEAVE-DUE * 1.1

In this example, the value of the field LEAVE-DUE is multiplied by 1.1, and the result is placed in
the field LEAVE-DUE.

Example 2:

COMPUTE #A = SQRT (#B)

In this example, the square root of the value of the field #B is evaluated, and the result is assigned
to the field #A.

SQRT is a mathematical function supported in the following arithmetic statements:

■ COMPUTE

■ ADD

■ SUBTRACT

■ MULTIPLY

■ DIVIDE

For an overview of mathematical functions, seeMathematical Functions below.

Example 3:

COMPUTE #INCOME = BONUS (1,1) + SALARY (1)

In this example, the first bonus of the current year and the current salary amount are added and
assigned to the field #INCOME.

Statements MOVE and COMPUTE

The statements MOVE and COMPUTE can be used to transfer the value of an operand into one or more
fields. The operand may be a constant such as a text item or a number, a database field, a user-
defined variable, a system variable, or, in certain cases, a system function.

The difference between the two statements is that in the MOVE statement the value to be moved is
specified on the left; in the COMPUTE statement the value to be assigned is specified on the right, as
shown in the following examples.

431Programming Guide

Data Computation

Examples:

MOVE NAME TO #LAST-NAME
COMPUTE #LAST-NAME = NAME

Statements ADD, SUBTRACT, MULTIPLY and DIVIDE

The ADD, SUBTRACT, MULTIPLY and DIVIDE statements are used to perform arithmetic operations.

Examples:

ADD +5 -2 -1 GIVING #A
SUBTRACT 6 FROM 11 GIVING #B
MULTIPLY 3 BY 4 GIVING #C
DIVIDE 3 INTO #D GIVING #E

All four statements have a ROUNDED option,which you can use if youwish the result of the operation
to be rounded.

For rules on rounding, see Rules for Arithmetic Assignment.

The Statements documentation provides more detailed information on these statements.

Example of MOVE, SUBTRACT and COMPUTE Statements

The following program demonstrates the use of user-defined variables in arithmetic statements.
It calculates the ages and wages of three employees and outputs these.

** Example 'COMPUX01': COMPUTE
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 BIRTH
2 JOB-TITLE
2 SALARY (1:1)
2 BONUS (1:1,1:1)

*
1 #DATE (N8)
1 REDEFINE #DATE

2 #YEAR (N4)
2 #MONTH (N2)
2 #DAY (N2)

1 #BIRTH-YEAR (A4)
1 REDEFINE #BIRTH-YEAR

Programming Guide432

Data Computation

2 #BIRTH-YEAR-N (N4)
1 #AGE (N3)
1 #INCOME (P9)
END-DEFINE
*
MOVE *DATN TO #DATE
*
READ (3) MYVIEW BY NAME STARTING FROM 'JONES'

MOVE EDITED BIRTH (EM=YYYY) TO #BIRTH-YEAR
SUBTRACT #BIRTH-YEAR-N FROM #YEAR GIVING #AGE
/*
COMPUTE #INCOME = BONUS (1:1,1:1) + SALARY (1:1)
/*
DISPLAY NAME 'POSITION' JOB-TITLE #AGE #INCOME

END-READ
END

Output of Program COMPUX01:

Page 1 04-11-11 14:15:54

NAME POSITION #AGE #INCOME
-------------------- ------------------------- ---- ----------

JONES MANAGER 63 55000
JONES DIRECTOR 58 50000
JONES PROGRAMMER 48 31000

COMPRESS Statement

The COMPRESS statement is used to transfer (combine) the contents of two or more operands into
a single alphanumeric field.

Leading zeros in a numeric field and trailing blanks in an alphanumeric field are suppressed before
the field value is moved to the receiving field.

By default, the transferred values are separated fromone another by a single blank in the receiving
field. For other separating possibilities, see the COMPRESS statement option LEAVING NO SPACE (in
the Statements documentation).

433Programming Guide

Data Computation

Example:

COMPRESS 'NAME:' FIRST-NAME #LAST-NAME INTO #FULLNAME

In this example, a COMPRESS statement is used to combine a text constant ('NAME:'), a database
field (FIRST-NAME) and a user-defined variable (#LAST-NAME) into one user-defined variable
(#FULLNAME).

For further information on the COMPRESS statement, please refer to the COMPRESS statement descrip-
tion (in the Statements documentation).

Example of COMPRESS and MOVE Statements

The following program illustrates the use of the statements MOVE and COMPRESS.

** Example 'COMPRX01': COMPRESS
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 MIDDLE-I

*
1 #LAST-NAME (A15)
1 #FULL-NAME (A30)
END-DEFINE
*
READ (3) MYVIEW BY NAME STARTING FROM 'JONES'

MOVE NAME TO #LAST-NAME
/*
COMPRESS 'NAME:' FIRST-NAME MIDDLE-I #LAST-NAME INTO #FULL-NAME
/*
DISPLAY #FULL-NAME (UC==) FIRST-NAME 'I' MIDDLE-I (AL=1) NAME

END-READ
END

Output of Program COMPRX01:

Notice the output format of the compressed field.

Programming Guide434

Data Computation

Page 1 04-11-11 14:15:54

#FULL-NAME FIRST-NAME I NAME
============================== -------------------- - --------------------

NAME: VIRGINIA J JONES VIRGINIA J JONES
NAME: MARSHA JONES MARSHA JONES
NAME: ROBERT B JONES ROBERT B JONES

In multiple-line displays, it may be useful to combine fields/text in a user-defined variables by
using a COMPRESS statement.

Example of COMPRESS Statement

In the following program, three user-defined variables are used: #FULL-SALARY, #FULL-NAME, and
#FULL-CITY. #FULL-SALARY, for example, contains the text 'SALARY:' and the database fields SALARY
and CURR-CODE. The WRITE statement then references only the compressed variables.

** Example 'COMPRX02': COMPRESS
**
DEFINE DATA LOCAL
1 VIEWEMP VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 SALARY (1:1)
2 CURR-CODE (1:1)
2 CITY
2 ADDRESS-LINE (1:1)
2 ZIP

*
1 #FULL-SALARY (A25)
1 #FULL-NAME (A25)
1 #FULL-CITY (A25)
END-DEFINE
*
READ (3) VIEWEMP BY CITY STARTING FROM 'NEW YORK'

COMPRESS 'SALARY:' CURR-CODE(1) SALARY(1) INTO #FULL-SALARY
COMPRESS FIRST-NAME NAME INTO #FULL-NAME
COMPRESS ZIP CITY INTO #FULL-CITY
/*
DISPLAY 'NAME AND ADDRESS' NAME (EM=X^X^X^X^X^X^X^X^X^X^X^X)
WRITE 1/5 #FULL-NAME

1/37 #FULL-SALARY
2/5 ADDRESS-LINE (1)
3/5 #FULL-CITY

SKIP 1
END-READ
END

435Programming Guide

Data Computation

Output of Program COMPRX02:

Page 1 04-11-11 14:15:54

NAME AND ADDRESS

R U B I N
SYLVIA RUBIN SALARY: USD 17000
2003 SARAZEN PLACE
10036 NEW YORK

W A L L A C E
MARY WALLACE SALARY: USD 38000
12248 LAUREL GLADE C
10036 NEW YORK

K E L L O G G
HENRIETTA KELLOGG SALARY: USD 52000
1001 JEFF RYAN DR.
19711 NEWARK

Mathematical Functions

The following Natural mathematical functions are supported in arithmetic processing statements
(ADD, COMPUTE, DIVIDE, SUBTRACT, MULTIPLY).

Natural System FunctionMathematical Function

ABS(field)Absolute value of field.

ATN(field)Arc tangent of field.

COS(field)Cosine of field.

EXP(field)Exponential of field.

FRAC(field)Fractional part of field.

INT(field)Integer part of field.

LOG(field)Natural logarithm of field.

SGN(field)Sign of field.

SIN(field)Sine of field.

SQRT(field)Square root of field.

TAN(field)Tangent of field.

VAL(field)Numeric value of an alphanumeric field.

See also the System Functions documentation for a detailed explanation of each mathematical
function.

Programming Guide436

Data Computation

Further Examples of COMPUTE, MOVE and COMPRESS Statements

See the following example programs:

■ WRITEX11 - WRITE (with nX, n/n and COMPRESS)
■ IFX03 - IF statement
■ COMPRX03 - COMPRESS (using parameters LC and TC)

437Programming Guide

Data Computation

438

44 System Variables and System Functions

■ System Variables ... 440
■ System Functions .. 441
■ Example of System Variables and System Functions .. 442
■ Further Examples of System Variables ... 443
■ Further Examples of System Functions .. 444

439

This chapter describes the purpose of Natural system variables and Natural system functions and
how they are used in Natural programs.

System Variables

The following topics are covered below:

■ Purpose
■ Characteristics of System Variables
■ System Variables Grouped by Function

Purpose

System variables are used to display system information. They may be referenced at any point
within a Natural program.

Natural system variables provide variable information, for example, about the current Natural
session:

■ the current library;
■ the user and terminal identification;
■ the current status of a loop processing;
■ the current report processing status;
■ the current date and time.

The typical use of system variables is illustrated in the Example of System Variables and System
Functions below and in the examples contained in library SYSEXPG.

The information contained in a system variable may be used in Natural programs by specifying
the appropriate system variables. For example, date and time system variables may be specified
in a DISPLAY, WRITE, PRINT, MOVE or COMPUTE statement.

Characteristics of System Variables

The names of all system variables begin with an asterisk (*).

Format/Length

Information on format and length is given in the detailed descriptions in the System Variables
documentation. The following abbreviations are used:

Programming Guide440

System Variables and System Functions

Format

AlphanumericA

BinaryB

DateD

IntegerI

LogicalL

Numeric (unpacked)N

Packed numericP

TimeT

Content Modifiable

In the individual descriptions, this indicateswhether in aNatural programyou can assign another
value to the system variable, that is, overwrite its content as generated by Natural.

System Variables Grouped by Function

The Natural system variables are grouped as follows:

■ Application Related System Variables
■ Date and Time System Variables
■ Input/Ouput Related System Variables
■ Natural Environment Related System Variables
■ System Environment Related System Variables
■ XML Related System Variables

For detailed descriptions of all system variables, see the System Variables documentation.

System Functions

Natural system functions comprise a set of statistical andmathematical functions that can be applied
to the data after a record has been processed, but before break processing occurs.

System functions may be specified in a DISPLAY, WRITE, PRINT, MOVE or COMPUTE statement that is
used in conjunction with an AT END OF PAGE, AT END OF DATA or AT BREAK statement.

In the case of an AT END OF PAGE statement, the corresponding DISPLAY statement must include
the GIVE SYSTEM FUNCTIONS clause (as shown in the example below).

The following functional groups of system functions exist:

441Programming Guide

System Variables and System Functions

■ System Functions for Use in Processing Loops
■ Mathematical Functions
■ Miscellaneous Functions

For detailed information on all system functions available, see the System Functionsdocumentation.

See also Using System Functions in Processing Loops (in the System Functions documentation).

The typical use of system functions is explained in the example programs given below and in the
examples contained in library SYSEXPG.

Example of System Variables and System Functions

The following example program illustrates the use of system variables and system functions:

** Example 'SYSVAX01': System variables and system functions
**
DEFINE DATA LOCAL
1 MYVIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 JOB-TITLE
2 INCOME (1:1)

3 CURR-CODE
3 SALARY
3 BONUS (1:1)

END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED 'EMPLOYEE SALARY REPORT AS OF' *DAT4E /
*
READ (3) MYVIEW BY CITY STARTING FROM 'E'

DISPLAY GIVE SYSTEM FUNCTIONS
NAME (AL=15) JOB-TITLE (AL=15) INCOME (1:1)

AT START OF DATA
WRITE 'REPORT CREATED AT:' *TIME 'HOURS' /

END-START
AT END OF DATA

WRITE / 'LAST PERSON SELECTED:' OLD (NAME) /
END-ENDDATA

END-READ
*
AT END OF PAGE

WRITE 'AVERAGE SALARY:' AVER (SALARY(1))
END-ENDPAGE
END

Explanation:

Programming Guide442

System Variables and System Functions

■ The system variable *DATE is output with the WRITE TITLE statement.
■ The system variable *TIME is output with the AT START OF DATA statement.
■ The system function OLD is used in the AT END OF DATA statement.
■ The system function AVER is used in the AT END OF PAGE statement.

Output of Program SYSVAX01:

Note how the system variables and system function are displayed.

EMPLOYEE SALARY REPORT AS OF 11/11/2004

NAME CURRENT INCOME
POSITION

CURRENCY ANNUAL BONUS
CODE SALARY

--------------- --------------- -------- ---------- ----------

REPORT CREATED AT: 14:15:55.0 HOURS

DUYVERMAN PROGRAMMER USD 34000 0
PRATT SALES PERSON USD 38000 9000
MARKUSH TRAINEE USD 22000 0

LAST PERSON SELECTED: MARKUSH

AVERAGE SALARY: 31333

Further Examples of System Variables

See the following example programs:

■ EDITMX05 - Edit mask (EM for date and time system variables)
■ READX04 - READ (in combination with FIND and the system variables *NUMBER and
*COUNTER)

■ WTITLX01 - WRITE TITLE (with *PAGE-NUMBER)

443Programming Guide

System Variables and System Functions

Further Examples of System Functions

See the following example programs:

■ ATBREX06 - AT BREAKOF (comparing NMIN, NAVER, NCOUNTwithMIN, AVER, COUNT)
■ ATENPX01 -ATENDOFPAGE (with system function available viaGIVESYSTEMFUNCTIONS
in DISPLAY)

Programming Guide444

System Variables and System Functions

45 Stack

■ Use of Natural Stack .. 446
■ Stack Processing ... 446
■ Placing Data on the Stack ... 447
■ Clearing the Stack ... 448

445

The Natural stack is a kind of “intermediate storage” in which you can store Natural commands,
user-defined commands, and input data to be used by an INPUT statement.

Use of Natural Stack

In the stack you can store a series of functions which are frequently executed one after the other,
such as a series of logon commands.

The data/commands stored in the stack are “stacked” on top of one another. You can decide
whether to put them on top or at the bottom of the stack. The data/command in the stack can only
be processed in the order in which they are stacked, beginning from the top of the stack.

In a program, you may reference the system variable *DATA to determine the content of the stack
(see the System Variables documentation for further information).

Stack Processing

The processing of the commands/data stored in the stack differs depending on the function being
performed.

If a command is expected, that is, the NEXT prompt is about to be displayed, Natural first checks
if a command is on the top of the stack. If there is, the NEXT prompt is suppressed and the command
is read and deleted from the stack; the command is then executed as if it had been enteredmanually
in response to the NEXT prompt.

If an INPUT statement containing input fields is being executed, Natural first checks if there are
any input data on the top of the stack. If there are, these data are passed to the INPUT statement
(in delimiter mode); the data read from the stack must be format-compatible with the variables in
the INPUT statement; the data are then deleted from the stack. See also Processing Data from the
Natural Stack in the INPUT statement description.

If an INPUT statement was executed using data from the stack, and this INPUT statement is re-ex-
ecuted via a REINPUT statement, the INPUT statement screen will be re-executed displaying the
same data from the stack aswhen itwas executed originally.With the REINPUT statement, no further
data are read from the stack.

When a Natural program terminates normally, the stack is flushed beginning from the top until
either a command is on the top of the stack or the stack is cleared. When a Natural program is
terminated via the terminal command %% or with an error, the stack is cleared entirely.

Programming Guide446

Stack

Placing Data on the Stack

The following methods can be used to place data/commands on the stack:

■ STACK Parameter
■ STACK Statement
■ FETCH and RUN Statements

STACK Parameter

TheNatural profile parameter STACKmay be used to place data/commands on the stack. The STACK
parameter (described in the Parameter Reference) can be specified by the Natural administrator in
the Natural parameter module at the installation of Natural; or you can specify it as a dynamic
parameter when you invoke Natural.

When data/commands are to be placed on the stack via the STACK parameter, multiple commands
must be separated from one another by a semicolon (;). If a command is to be passed within a se-
quence of data or command elements, it must be preceded by a semicolon.

Data for multiple INPUT statements must be separated from one another by a colon (:). Data that
are to be read by a separate INPUT statement must be preceded by a colon. If a command is to be
stacked which requires parameters, no colon is to be placed between the command and the para-
meters.

Semicolon and colonmust not be usedwithin the input data themselves as theywill be interpreted
as separation characters.

STACK Statement

The STACK statement can be usedwithin a program to place data/commands in the stack. The data
elements specified in one STACK statement will be used for one INPUT statement, whichmeans that
if data formultiple INPUT statements are to be placed on the stack, multiple STACK statementsmust
be used.

Data may be placed on the stack either unformatted or formatted:

■ If unformatted data are read from the stack, the data string is interpreted in delimiter mode and
the characters specified with the session parameters IA (Input Assignment character) and ID
(Input Delimiter character) are processed as control characters for keyword assignment and
data separation.

■ If formatted data are placed on the stack, each content of a field will be separated and passed
to one input field in the corresponding INPUT statement. If the data to be placed on the stack
contains delimiter, control or DBCS characters, it should be placed formatted on the stack to
avoid unintentional interpretation of these characters.

447Programming Guide

Stack

See the Statements documentation for further information on the STACK statement.

FETCH and RUN Statements

The execution of a FETCH or RUN statement that contains parameters to be passed to the invoked
program will result in these parameters being placed on top of the stack.

Clearing the Stack

The contents of the stack can be deletedwith the RELEASE statement. See the Statements document-
ation for details on the RELEASE statement.

Note: When aNatural program is terminated via the terminal command %% orwith an error,
the stack is cleared entirely.

Programming Guide448

Stack

46 Processing of Date Information

■ Edit Masks for Date Fields and Date System Variables .. 450
■ Default Edit Mask for Date - DTFORM Parameter .. 450
■ Date Format for Alphanumeric Representation - DF Parameter ... 451
■ Date Format for Output - DFOUT Parameter ... 453
■ Date Format for Stack - DFSTACK Parameter ... 454
■ Year Sliding Window - YSLW Parameter ... 455
■ Combinations of DFSTACK and YSLW ... 457
■ Year Fixed Window .. 459
■ Date Format for Default Page Title - DFTITLE Parameter .. 459

449

This chapter covers various aspects concerning the handling of date information inNatural applic-
ations.

Edit Masks for Date Fields and Date System Variables

If you wish the value of a date field to be output in a specific representation, you usually specify
an edit mask for the field. With an edit mask, you determine character by character what the
output is to look like.

If you wish to use the current date in a specific representation, you need not define a date field
and specify an edit mask for it; instead you can simply use a date system variable. Natural provides
various date system variables, which contain the current date in different representations. Some
of these representations contain a 2-digit year component, some a 4-digit year component.

Formore information and a list of all date system variables, see the SystemVariablesdocumentation.

Default Edit Mask for Date - DTFORM Parameter

The profile parameter DTFORM determines the default format used for dates as part of the default
title on Natural reports, for date constants and for date input.

This date format determines the sequence of the day, month and year components of a date, as
well as the delimiter characters to be used between these components.

Possible DTFORM settings are:

ExampleDate Format*Setting

2005-12-31yyyy-mm-ddDTFORM=I

31.12.2005dd.mm.yyyyDTFORM=G

31/12/2005dd/mm/yyyyDTFORM=E

12/31/2005mm/dd/yyyyDTFORM=U

* dd = day, mm = month, yyyy = year.

The DTFORM parameter can be set in the Natural parameter module/file or dynamically when
Natural is invoked. By default, DTFORM=I applies.

Programming Guide450

Processing of Date Information

Date Format for Alphanumeric Representation - DF Parameter

If an edit mask is specified, the representation of the field value is determined by the edit mask.
If no edit mask is specified, the representation of the field value is determined by the session
parameter DF in combination with the profile parameter DTFORM.

With the DF parameter, you can choose one of the following date representations:

8-byte representation with 2-digit year component and delimiters (yy-mm-dd).DF=S

8-byte representation with 4-digit year component without delimiters (yyyymmdd).DF=I

10-byte representation with 4-digit year component and delimiters (yyyy-mm-dd).DF=L

For each representation, the sequence of the day, month and year components, and the delimiter
characters used, are determined by the DTFORM parameter.

By default, DF=S applies (except for INPUT statements; see below).

The session parameter DF is evaluated at compilation.

It can be specified with the following statements:

■ FORMAT,
■ INPUT, DISPLAY, WRITE and PRINT at statement and element (field) level,
■ MOVE, COMPRESS, STACK, RUN and FETCH at element (field) level.

When specified in one of these statements, the DF parameter applies to the following:

Effect of DF parameterStatement

When the value of a date variable is output with one of these statements, the value
is converted to an alphanumeric representation before it is output. The DF parameter
determines which representation is used.

DISPLAY, WRITE,
PRINT

When the value of a date variable is transferred to an alphanumeric field with a MOVE
or COMPRESS statement, the value is converted to an alphanumeric representation
before it is transferred. The DF parameter determines which representation is used.

MOVE, COMPRESS

When the value of a date variable is placed on the stack, it is converted to alphanumeric
representation before it is placed on the stack. The DF parameter determines which
representation is used.

The same applies when a date variable is specified as a parameter in a FETCH or RUN
statement (as these parameters are also passed via the stack).

STACK, RUN, FETCH

451Programming Guide

Processing of Date Information

Effect of DF parameterStatement

When a data variable is used in an INPUT statement, the DF parameter determines
how a value must be entered in the field.

However, when a date variable for which no DF parameter is specified is used in an
INPUT statement, the date can be entered either with a 2-digit year component and

INPUT

delimiters or with a 4-digit year component and no delimiters. In this case, too, the
sequence of the day, month and year components, and the delimiter characters to be
used, are determined by the DTFORM parameter.

Note: With DF=S, only 2 digits are provided for the year information; this means that if a
date value contained the century, this information would be lost during the conversion. To
retain the century information, you set DF=I or DF=L.

Examples of DF Parameter with WRITE Statements

These examples assume that DTFORM=G applies.

/* DF=S (default)
WRITE *DATX /* Output has this format: dd.mm.yy
END

FORMAT DF=I
WRITE *DATX /* Output has this format: ddmmyyyy
END

FORMAT DF=L
WRITE *DATX /* Output has this format: dd.mm.yyyy
END

Example of DF Parameter with MOVE Statement

This example assumes that DTFORM=E applies.

DEFINE DATA LOCAL
1 #DATE (D) INIT <D'31/12/2005'>
1 #ALPHA (A10)

END-DEFINE
...
MOVE #DATE TO #ALPHA /* Result: #ALPHA contains 31/12/05
MOVE #DATE (DF=I) TO #ALPHA /* Result: #ALPHA contains 31122005
MOVE #DATE (DF=L) TO #ALPHA /* Result: #ALPHA contains 31/12/2005
...

Programming Guide452

Processing of Date Information

Example of DF Parameter with STACK Statement

This example assumes that DTFORM=I applies.

DEFINE DATA LOCAL
1 #DATE (D) INIT <D'2005-12-31'>
1 #ALPHA1(A10)
1 #ALPHA2(A10)
1 #ALPHA3(A10)

END-DEFINE
...
STACK TOP DATA #DATE (DF=S) #DATE (DF=I) #DATE (DF=L)
...
INPUT #ALPHA1 #ALPHA2 #ALPHA3
...
/* Result: #ALPHA1 contains 05-12-31
/* #ALPHA2 contains 20051231
/* #ALPHA3 contains 2005-12-31
...

Example of DF Parameter with INPUT Statement

This example assumes that DTFORM=I applies.

DEFINE DATA LOCAL
1 #DATE1 (D)
1 #DATE2 (D)
1 #DATE3 (D)
1 #DATE4 (D)

END-DEFINE
...
INPUT #DATE1 (DF=S) /* Input must have this format: yy-mm-dd

#DATE2 (DF=I) /* Input must have this format: yyyymmdd
#DATE3 (DF=L) /* Input must have this format: yyyy-mm-dd
#DATE4 /* Input must have this format: yy-mm-dd or yyyymmdd

...

Date Format for Output - DFOUT Parameter

The session/profile parameter DFOUT only applies to date fields in INPUT, DISPLAY, WRITE and PRINT
statements for which no edit mask is specified, and for which no DF parameter applies.

For date fields which are displayed by INPUT, DISPLAY, PRINT and WRITE statements and for which
neither an edit mask is specified nor a DF parameter applies, the profile/session parameter DFOUT
determines the format in which the field values are displayed.

Possible DFOUT settings are:

453Programming Guide

Processing of Date Information

Date variables are displayed with a 2-digit year component, and delimiters as determined by
the DTFORM parameter (yy-mm-dd).

DFOUT=S

Date variables are displayed with a 4-digit year component and no delimiters (yyyymmdd).DFOUT=I

By default, DFOUT=S applies. For either DFOUT setting, the sequence of the day, month and year
components in the date values is determined by the DTFORM parameter.

The lengths of the date fields are not affected by the DFOUT setting, as either date value represent-
ation fits into an 8-byte field.

The DFOUT parameter can be set in the Natural parameter module/file, dynamically when Natural
is invoked, or at session level with the system command GLOBALS. It is evaluated at runtime.

Example:

This example assumes that DTFORM=I applies.

DEFINE DATA LOCAL
1 #DATE (D) INIT <D'2005-12-31'>
END-DEFINE
...
WRITE #DATE /* Output if DFOUT=S is set ...: 05-12-31

/* Output if DFOUT=I is set ...: 20051231
WRITE #DATE (DF=L) /* Output (regardless of DFOUT): 2005-12-31
...

Date Format for Stack - DFSTACK Parameter

The session/profile parameter DFSTACK only applies to date fields used in STACK, FETCH and RUN
statements for which no DF parameter has been specified.

The DFSTACK parameter determines the format in which the values of date variables are placed on
the stack via a STACK, RUN or FETCH statement.

Possible DFSTACK settings are:

Date variables are placed on the stack with a 2-digit year component, and delimiters as
determined by the profile parameter DTFORM (yy-mm-dd).

DFSTACK=S

Same as DFSTACK=S. However, a change in the century will be intercepted at runtime.DFSTACK=C

Date variables are placed on the stack with a 4-digit year component and no delimiters
(yyyymmdd).

DFSTACK=I

By default, DFSTACK=S applies. DFSTACK=Smeans that when a date value is placed on the stack, it
is placed there without the century information (which is lost). When the value is then read from
the stack and placed into another date variable, the century is either assumed to be the current

Programming Guide454

Processing of Date Information

one or determined by the setting of the YSLW parameter (see below). Thismight lead to the century
being different from that of the original date value; however, Natural would not issue any error
in this case.

DFSTACK=Cworks the same as DFSTACK=S in that a date value is placed on the stack without the
century information. However, if the value is read from the stack and the resulting century is
different from that of the original date value (either because of the YSLW parameter, or the original
century not being the current one), Natural issues a runtime error.

Note: This runtime error is already issued at the timewhen the value is placed on the stack.

DFSTACK=I allows you to place a date value on the stack in a length of 8 bytes without losing the
century information.

The DFSTACK parameter can be set in the Natural parameter module/file, dynamically when Nat-
ural is invoked, or at session level with the system command GLOBALS. It is evaluated at runtime.

Example:

This example assumes that DTFORM=I and YSLW=0 apply.

DEFINE DATA LOCAL
1 #DATE (D) INIT <D'2005-12-31'>
1 #ALPHA1(A8)
1 #ALPHA2(A10)

END-DEFINE
...
STACK TOP DATA #DATE #DATE (DF=L)
...
INPUT #ALPHA1 #ALPHA2
...
/* Result if DFSTACK=S or =C is set: #ALPHA1 contains 05-12-31
/* Result if DFSTACK=I is set: #ALPHA1 contains 20051231
/* Result (regardless of DFSTACK) .: #ALPHA2 contains 2005-12-31
...

Year Sliding Window - YSLW Parameter

The profile parameter YSLW allows you determine the century of a 2-digit year value.

The YSLW parameter can be set in theNatural parametermodule/file or dynamicallywhenNatural
is invoked. It is evaluated at runtime when an alphanumeric date value with a 2-digit year com-
ponent is moved into a date variable. This applies to data values which are:

■ used with themathematical function VAL(field),
■ used with the IS(D) option in a logical condition,

455Programming Guide

Processing of Date Information

■ read from the stack as input data, or
■ entered in an input field as input data.

The YSLW parameter determines the range of years covered by a so-called “year sliding window”.
The sliding-window mechanism assumes a date with a 2-digit year to be within a “window” of
100 years. Within these 100 years, every 2-digit year value can be uniquely related to a specific
century.

With the YSLW parameter, you determine howmany years in the past that 100-year range is to begin:
The YSLW value is subtracted from the current year to determine the first year of thewindow range.

Possible values of the YSLW parameter are 0 to 99. The default value is YSLW=0, which means that
no sliding-window mechanism is used; that is, a date with a 2-digit year is assumed to be in the
current century.

Example 1:

If the current year is 2005 and you specify YSLW=40, the sliding window will cover the years 1965
to 2064. A 2-digit year value nn from 65 to 99 is interpreted accordingly as 19nn, while a 2-digit
year value nn from 00 to 64 is interpreted as 20nn.

Programming Guide456

Processing of Date Information

Example 2:

If the current year is 2005 and you specify YSLW=20, the sliding window will cover the years 1985
to 2084. A 2-digit year value nn from 85 to 99 is interpreted accordingly as 19nn, while a 2-digit
year value nn from 00 to 84 is interpreted as 20nn.

Combinations of DFSTACK and YSLW

The following examples illustrate the effects of using various combinations of the parameters
DFSTACK and YSLW.

Note: All these examples assume that DTFORM=I applies.

Example 1:

This example assumes the current year to be 2005, and that the parameter settings DFSTACK=S
(default) and YSLW=20 apply.

457Programming Guide

Processing of Date Information

DEFINE DATA LOCAL
1 #DATE1 (D) INIT <D'1956-12-31'>
1 #DATE2 (D)

END-DEFINE
...
STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
...
INPUT #DATE2 /* year sliding window determines 56 to be 2056
...
/* Result: #DATE2 contains 2056-12-31

even if #DATE1 is set to <D'2156-12-31'>

In this case, the year sliding window is not set appropriately, so that the century information is
(inadvertently) changed.

Example 2:

This example assumes the current year to be 2005, and that the parameter settings DFSTACK=S
(default) and YSLW=60 apply.

DEFINE DATA LOCAL
1 #DATE1 (D) INIT <D'1956-12-31'>
1 #DATE2 (D)

END-DEFINE
...
STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
...
INPUT #DATE2 /* year sliding window determines 56 to be 1956
...
/* Result: #DATE2 contains 1956-12-31

even if #DATE1 is set to <D'2056-12-31'>

In this case, the year sliding window is set appropriately, so that the original century information
is correctly restored.

Example 3:

This example assumes the current year to be 2005, and that the parameter settings DFSTACK=C and
YSLW=0 (default) apply.

DEFINE DATA LOCAL
1 #DATE1 (D) INIT <D'1956-12-31'>
1 #DATE2 (D)

END-DEFINE
...
STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
...
INPUT #DATE2 /* 56 is assumed to be in current century -> 1956

Programming Guide458

Processing of Date Information

...
/* Result: RUNTIME ERROR (UNINTENDED CENTURY CHANGE)

In this case, the century information is (inadvertently) changed.However, this change is intercepted
by the DFSTACK=C setting.

Example 4:

This example assumes the current year to be 2005, and that the parameter settings DFSTACK=C and
YSLW=60 (default) apply.

DEFINE DATA LOCAL
1 #DATE1 (D) INIT <D'2056-12-31'>
1 #DATE2 (D)

END-DEFINE
...
STACK TOP DATA #DATE1 /* century information is lost (year 56 is stacked)
...
INPUT #DATE2 /* year sliding window determines 56 to be 1956
...
/* Result: RUNTIME ERROR (UNINTENDED CENTURY CHANGE)

In this case, the century information is changed due to the year sliding window. However, this
change is intercepted by the DFSTACK=C setting.

Year Fixed Window

For information on this topic, see the description of the profile parameter YSLW.

Date Format for Default Page Title - DFTITLE Parameter

The session/profile parameter DFTITLE determines the format of the date in a default page title
(as output with a DISPLAY, WRITE or PRINT statement).

The date is output with a 2-digit year component and delimiters (yy-mm-dd).DFTITLE=S

The date is output with a 4-digit year component and delimiters (yyyy-mm-dd).DFTITLE=L

The date is output with a 4-digit year component and no delimiters (yyyymmdd).DFTITLE=I

For each of these output formats, the sequence of the day, month and year components, and the
delimiter characters used, are determined by the DTFORM parameter.

The DFTITLE parameter can be set in the Natural parameter module/file, dynamically when Nat-
ural is invoked, or at session level with the system command GLOBALS. It is evaluated at runtime.

459Programming Guide

Processing of Date Information

Example:

This example assumes that DTFORM=I applies.

WRITE 'HELLO'
END
/*
/* Date in page title if DFTITLE=S is set ...: 05-10-31
/* Date in page title if DFTITLE=L is set ...: 2005-10-31
/* Date in page title if DFTITLE=I is set ...: 20051031

Note: The DFTITLE parameter has no effect on a user-defined page title as specified with a
WRITE TITLE statement.

Programming Guide460

Processing of Date Information

47 Text Notation

■ Defining a Text to Be Used with a Statement - the 'text' Notation ... 462
■ Defining a Character to Be Displayed n Times before a Field Value - the 'c'(n) Notation 463

461

In an INPUT, DISPLAY, WRITE, WRITE TITLE or WRITE TRAILER statement, you can use text notation
to define a text to be used in conjunction with such a statement.

Defining a Text to Be Used with a Statement - the 'text' Notation

The text to be used with the statement (for example, a prompting message) must be enclosed in
either apostrophes (') or quotationmarks ("). Do not confuse double apostrophes ('') with a quotation
mark (").

Text enclosed in quotation marks can be converted automatically from lower-case letters to upper
case. To switch off automatic conversion, change the settings in the editor profile.

For details, see Program Editor Options, Ignore text constants andUppercase translation (inUsing
Natural Studio).

The text itself may be 1 to 72 characters and must not be continued from one line to the next.

Text elements may be concatenated by using a hyphen.

Examples:

DEFINE DATA LOCAL
1 #A(A10)
END-DEFINE

INPUT 'Input XYZ' (CD=BL) #A
WRITE '=' #A
WRITE 'Write1 ' - 'Write2 ' - 'Write3' (CD=RE)
END

Using Apostrophes as Part of a Text String

The following applies, if Natural profile parameter TQMARK (Translate Quotation Marks) is set to
ON. This is the default setting.

If you want an apostrophe to be part of a text string that is enclosed in apostrophes, you must
write this as double apostrophes ('') or as a quotation mark ("). Either notation will be output as a
single apostrophe.

If you want an apostrophe to be part of a text string that is enclosed in quotation marks, you write
this as a single apostrophe.

Programming Guide462

Text Notation

Examples of Apostrophe:

#FIELDA = 'O''CONNOR'
#FIELDA = 'O"CONNOR'
#FIELDA = "O'CONNOR"

In all three cases, the result will be:

O'CONNOR

Using Quotation Marks as Part of a Text String

The following applies, if the Natural profile parameter TQ (Translate Quotation Marks) is set to
OFF. The default setting is TQ=ON.

If youwant a quotationmark to be part of a text string that is enclosed in single apostrophes, write
a quotation mark.

If you want a quotation mark to be part of a text string that is enclosed in quotation marks, write
double quotation marks ("").

Example of Quotation Mark:

#FIELDA = 'O"CONNOR'
#FIELDA = "O""CONNOR"

In both cases, the result will be:

O"CONNOR

Defining a Character to Be Displayed n Times before a Field Value - the 'c'(n)
Notation

If a single character is to be output several times as text, you use the following notation:

'c'(n)

As c you specify the character, and as n the number of times the character is to be generated. The
maximum value for n is 249.

463Programming Guide

Text Notation

Example:

WRITE '*'(3)

Instead of apostrophes before and after the character c you can also use quotation marks.

Programming Guide464

Text Notation

48 User Comments

■ Using an Entire Source Code Line for Comments ... 466
■ Using the Latter Part of a Source Code Line for Comments .. 467

465

User comments are descriptions or explanatory notes added to or interspersed among the statements
of the source code. Such informationmay be particularly helpful in understanding andmaintenaing
source code that was written or edited by another programmer. Also, the characters marking the
beginning of a comment can be used to temporarily disable the function of a statement or several
source code lines for test purposes.

Using an Entire Source Code Line for Comments

If you wish to use an entire source-code line for a user comment, you enter one of the following
at the beginning of the line:

■ an asterisk and a blank (*),
■ two asterisks (**), or
■ a slash and an asterisk (/*).

* USER COMMENT
** USER COMMENT
/* USER COMMENT

Example:

As can be seen from the following example, comment lines may also be used to provide for a clear
source code structure.

** Example 'LOGICX03': BREAK option in logical condition
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 BIRTH

*
1 #BIRTH (A8)
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY BIRTH

MOVE EDITED BIRTH (EM=YYYYMMDD) TO #BIRTH
/*
IF BREAK OF #BIRTH /6/

NEWPAGE IF LESS THAN 5 LINES LEFT
WRITE / '-' (50) /

END-IF
/*
DISPLAY NOTITLE BIRTH (EM=YYYY-MM-DD) NAME FIRST-NAME

Programming Guide466

User Comments

END-READ
END

Using the Latter Part of a Source Code Line for Comments

If you wish to use only the latter part of a source-code line for a user comment, you enter a blank,
a slash and an asterisk (/*); the remainder of the line after this notation is thusmarked as a comment:

ADD 5 TO #A /* USER COMMENT

Example:

** Example 'LOGICX04': IS option as format/length check
**
DEFINE DATA LOCAL
1 #FIELDA (A10) /* INPUT FIELD TO BE CHECKED
1 #FIELDB (N5) /* RECEIVING FIELD OF VAL FUNCTION
1 #DATE (A10) /* INPUT FIELD FOR DATE
END-DEFINE
*
INPUT #DATE #FIELDA
IF #DATE IS(D)

IF #FIELDA IS (N5)
COMPUTE #FIELDB = VAL(#FIELDA)
WRITE NOTITLE 'VAL FUNCTION OK' // '=' #FIELDA '=' #FIELDB

ELSE
REINPUT 'FIELD DOES NOT FIT INTO N5 FORMAT'

MARK *#FIELDA
END-IF

ELSE
REINPUT 'INPUT IS NOT IN DATE FORMAT (YY-MM-DD) '

MARK *#DATE
END-IF
*
END

467Programming Guide

User Comments

468

49 Logical Condition Criteria

■ Introduction .. 470
■ Relational Expression ... 471
■ Extended Relational Expression ... 475
■ Evaluation of a Logical Variable .. 476
■ Fields Used within Logical Condition Criteria ... 477
■ Logical Operators in Complex Logical Expressions ... 479
■ BREAK Option - Compare Current Value with Value of Previous Loop Pass .. 480
■ IS Option - Check whether Content of Alphanumeric or Unicode Field can be Converted 482
■ MASK Option - Check Selected Positions of a Field for Specific Content ... 484
■ MASK Option Compared with IS Option ... 491
■ MODIFIED Option - Check whether Field Content has been Modified ... 493
■ SCAN Option - Scan for a Value within a Field ... 494
■ SPECIFIED Option - Check whether a Value is Passed for an Optional Parameter 496

469

This chapter describes purpose and use of logical condition criteria that can be used in the state-
ments FIND, READ, HISTOGRAM, ACCEPT/REJECT, IF, DECIDE FOR, REPEAT.

Introduction

The basic criterion is a relational expression. Multiple relational expressions may be combined
with logical operators (AND, OR) to form complex criteria.

Arithmetic expressions may also be used to form a relational expression.

Logical condition criteria can be used in the following statements:

UsageStatement

A WHERE clause containing logical condition criteria may be used to indicate criteria in
addition to the basic selection criteria as specified in the WITH clause. The logical condition

FIND

criteria specified with the WHERE clause are evaluated after the record has been selected
and read.

In a WITH clause, “basic search criteria” (as describedwith the FIND statement) are used,
but not logical condition criteria.

A WHERE clause containing logical condition criteria may be used to specify whether a
record that has just been read is to be processed. The logical condition criteria are
evaluated after the record has been read.

READ

A WHERE clause containing logical condition criteria may be used to specify whether the
value that has just been read is to be processed. The logical condition criteria are evaluated
after the value has been read.

HISTOGRAM

An IF clause may be used with an ACCEPT or REJECT statement to specify logical
condition criteria in addition to that specified when the record was selected/read with

ACCEPT/REJECT

a FIND, READ, or HISTOGRAM statement. The logical condition criteria are evaluated after
the record has been read and after record processing has started.

Logical condition criteria are used to control statement execution.IF

Logical condition criteria are used to control statement execution.DECIDE FOR

The UNTIL or WHILE clause of a REPEAT statement contain logical condition criteriawhich
determine when a processing loop is to be terminated.

REPEAT

Programming Guide470

Logical Condition Criteria

Relational Expression

Syntax:

operand2operand1

EQ
=
EQUAL
EQUAL TO
NE
^=
<>
NOT =
NOT EQ
NOTEQUAL
NOT EQUAL
NOT EQUAL TO
LT
LESS THAN
<
GE
GREATER EQUAL
>=
NOT <
NOT LT
GT
GREATER THAN
>
LE
LESS EQUAL
<=
NOT >
NOT GT

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

yesyesOGLTDBFIPNUAENASCoperand1

noyesOGLTDBFIPNUAENASCoperand2

For an explanation of the Operand Definition Table shown above, see Syntax Symbols and Operand
Definition Tables in the Statements documentation.

In the “Possible Structure” column of the table above, “E” stands for arithmetic expressions; that
is, any arithmetic expression may be specified as an operand within the relational expression. For

471Programming Guide

Logical Condition Criteria

further information on arithmetic expressions, see arithmetic-expression in the COMPUTE statement
description.

Explanation of the comparison operators:

ExplanationComparison Operator

equal toEQ
=
EQUAL
EQUAL TO

not equal toNE
^=
<>
NOT =
NOT EQ
NOTEQUAL
NOT EQUAL
NOT EQUAL TO

less thanLT
LESS THAN
<

greater than or equal toGE
GREATER EQUAL
>=

not less thanNOT <
NOT LT

greater thanGT
GREATER THAN
>

less than or equal toLE
LESS EQUAL
<=

not greater thanNOT >
NOT GT

Examples of Relational Expressions:

IF NAME = 'SMITH'
IF LEAVE-DUE GT 40
IF NAME = #NAME

For information on comparing arrays in a relational expression, see Processing of Arrays.

Note: If a floating-point operand is used, comparison is performed in floating point.
Floating-point numbers as suchhave only a limitedprecision; therefore, rounding/truncation

Programming Guide472

Logical Condition Criteria

errors cannot be precluded when numbers are converted to/from floating-point represent-
ation.

Arithmetic Expressions in Logical Conditions

The following example shows how arithmetic expressions can be used in logical conditions:

IF #A + 3 GT #B - 5 AND #C * 3 LE #A + #B

Handles in Logical Conditions

If the operands in a relation expression are handles, only EQUAL and NOT EQUAL operators may be
used.

SUBSTRING Option in Relational Expression

Syntax:

operand2

=

SUBSTRING
(operand1,operand3,operand4) SUBSTRING

(operand2,operand5,operand6)

EQ

operand1

EQUAL [TO]
<>
NE
NOT =
NOT EQ
NOT EQUAL
NOT EQUAL TO
<
LT
LESS THAN
<=
LE
LESS EQUAL
>
GT
GREATER THAN
>=
GE
GREATER EQUAL

Operand Definition Table:

473Programming Guide

Logical Condition Criteria

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

yesyesBUANASCoperand1

noyesBUANASCoperand2

noyesBIPNSCoperand3

noyesIPNSCoperand4

noyesIPNSCoperand5

noyesIPNSCoperand6

With the SUBSTRING option, you can compare a part of an alphanumeric, a binary or a Unicode
field. After the field name (operand1) you specify first the starting position (operand3) and then
the length (operand4) of the field portion to be compared.

Also, you can compare a field valuewith part of another field value. After the field name (operand2)
you specify first the starting position (operand5) and then the length (operand6) of the field portion
operand1 is to be compared with.

You can also combine both forms, that is, you can specify a SUBSTRING for both operand1 and
operand2.

Examples:

The following expression compares the 5th to 12th position inclusive of the value in field #Awith
the value of field #B:

SUBSTRING(#A,5,8) = #B

- where 5 is the starting position and 8 is the length.

The following expression compares the value of field #Awith the 3rd to 6th position inclusive of
the value in field #B:

#A = SUBSTRING(#B,3,4)

Note: If you omit operand3/operand5, the starting position is assumed to be 1. If you omit
operand4/operand6, the length is assumed to be from the starting position to the end of the
field.

Programming Guide474

Logical Condition Criteria

Extended Relational Expression

Syntax:

operand2operand1
=
EQ
EQUAL [TO]

operand3OR
=
EQ
EQUAL [TO]

THRU operand4 [BUT NOT operand5 [THRU operand6]]

Operand Definition Table:

Dynamic
Definition

Referencing
Permitted

Possible FormatsPossible StructureOperand

noyesOGTDBFIPNUAEN*ASCoperand1

noyesOGTDBFIPNUAEN*ASCoperand2

noyesOGTDBFIPNUAEN*ASCoperand3

noyesOGTDBFIPNUAEN*ASCoperand4

noyesOGTDBFIPNUAEN*ASCoperand5

noyesOGTDBFIPNUAEN*ASCoperand6

* Mathematical functions and system variables are permitted. Break functions are not permitted.

operand3 can also be specified using a MASK or SCAN option; that is, it can be specified as:

MASK (mask-definition) [operand]

MASK operand

SCAN operand

For details on these options, see the sectionsMASK Option and SCAN Option.

475Programming Guide

Logical Condition Criteria

Examples:

IF #A = 2 OR = 4 OR = 7
IF #A = 5 THRU 11 BUT NOT 7 THRU 8

Evaluation of a Logical Variable

Syntax:

operand1

This option is used in conjunction with a logical variable (format L). A logical variable may take
the value TRUE or FALSE. As operand1 you specify the name of the logical variable to be used.

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

nonoLASCoperand1

Example of Logical Variable:

** Example 'LOGICX05': Logical variable in logical condition
**
DEFINE DATA LOCAL
1 #SWITCH (L) INIT <true>
1 #INDEX (I1)
END-DEFINE
*
FOR #INDEX 1 5

WRITE NOTITLE #SWITCH (EM=FALSE/TRUE) 5X 'INDEX =' #INDEX
WRITE NOTITLE #SWITCH (EM=OFF/ON) 7X 'INDEX =' #INDEX
IF #SWITCH

MOVE FALSE TO #SWITCH
ELSE

MOVE TRUE TO #SWITCH
END-IF
/*
SKIP 1

END-FOR
END

Output of Program LOGICX05:

Programming Guide476

Logical Condition Criteria

TRUE INDEX = 1
ON INDEX = 1

FALSE INDEX = 2
OFF INDEX = 2

TRUE INDEX = 3
ON INDEX = 3

FALSE INDEX = 4
OFF INDEX = 4

TRUE INDEX = 5
ON INDEX = 5

Fields Used within Logical Condition Criteria

Database fields and user-defined variables may be used to construct logical condition criteria. A
database field which is a multiple-value field or is contained in a periodic group can also be used.
If a range of values for a multiple-value field or a range of occurrences for a periodic group is
specified, the condition is true if the search value is found in any value/occurrence within the
specified range.

Each value used must be compatible with the field used on the opposite side of the expression.
Decimal notation may be specified only for values used with numeric fields, and the number of
decimal positions of the value must agree with the number of decimal positions defined for the
field.

If the operands are not of the same format, the second operand is converted to the format of the
first operand.

Note: A numeric constant without decimal point notation is stored with format I for the
values -2147483648 to +2147483647, seeNumeric Constants. Consequently the comparison
with such an integer constant as operand1 is performed by converting operand2 to a integer
value. This means that the digits after the decimal point of operand2 are not considered
due to truncation.

Example:

477Programming Guide

Logical Condition Criteria

 IF 0 = 0.5 /* is true because 0.5 (operand2) is converted to 0 (format I of ↩
operand1)
 IF 0.0 = 0.5 /* is false
 IF 0.5 = 0 /* is false
 IF 0.5 = 0.0 /* is false ↩

The following table shows which operand formats can be used together in a logical condition:

operand2operand1

OHGHPNLFITDBn (n>=5)Bn (n=<4)UA

YYYYA

[2][2]YYU

YYYYYYYYYYBn (n=<4)

YYYYBn (n>=5)

YYYYYYYD

YYYYYYYT

YYYYYYYI

YYYYYYYF
L

YYYYYYYN

YYYYYYYP

YGH [1]

YOH [1]

Notes:

1. [1] where GH = GUI handle, OH = object handle.

2. [2] The binary value will be assumed to contain Unicode code points, and the comparison is
performed as for a comparison of two Unicode values. The length of the binary field must be
even.

If two values are compared as alphanumeric values, the shorter value is assumed to be extended
with trailing blanks in order to get the same length as the longer value.

If two values are compared as binary values, the shorter value is assumed to be extended with
leading binary zeroes in order to get the same length as the longer value.

If two values are compared asUnicode values, trailing blanks are removed from both values before
the ICU collation algorithm is used to compare the two resulting values. See also Logical Condition
Criteria in the Unicode and Code Page Support documentation.

Programming Guide478

Logical Condition Criteria

Comparison Examples:

A1(A1) := 'A'
A5(A5) := 'A '
B1(B1) := H'FF'
B5(B5) := H'00000000FF'
U1(U1) := UH'00E4'
U2(U2) := UH'00610308'
IF A1 = A5 THEN ... /* TRUE
IF B1 = B5 THEN ... /* TRUE
IF U1 = U2 THEN ... /* TRUE ↩

If an array is compared with a scalar value, each element of the array will be compared with the
scalar value. The condition will be true if at least one of the array elements meets the condition
(OR operation).

If an array is comparedwith an array, each element in the array is comparedwith the corresponding
element of the other array. The result is true only if all element comparisons meet the condition
(AND operation).

See also Processing of Arrays.

Note: An Adabas phonetic descriptor cannot be used within a logical condition.

Examples of Logical Condition Criteria:

FIND EMPLOYEES-VIEW WITH CITY = 'BOSTON' WHERE SEX = 'M'
READ EMPLOYEES-VIEW BY NAME WHERE SEX = 'M'
ACCEPT IF LEAVE-DUE GT 45
IF #A GT #B THEN COMPUTE #C = #A + #B
REPEAT UNTIL #X = 500

Logical Operators in Complex Logical Expressions

Logical condition criteria may be combined using the Boolean operators AND, OR, and NOT. Paren-
theses may also be used to indicate logical grouping.

The operators are evaluated in the following order:

479Programming Guide

Logical Condition Criteria

MeaningOperatorPriority

Parentheses()1

NegationNOT2

AND operationAND3

OR operationOR4

The following logical-condition-criteriamay be combined by logical operators to form a
complex logical-expression:

■ Relational expressions
■ Extended relational expressions
■ MASK option
■ SCAN option
■ BREAK option

The syntax for a logical-expression is as follows:

logical-expression
OR

[NOT]
logical-condition-criterion
(logical-expression) AND

Examples of Logical Expressions:

FIND STAFF-VIEW WITH CITY = 'TOKYO'
WHERE BIRTH GT 19610101 AND SEX = 'F'

IF NOT (#CITY = 'A' THRU 'E')

For information on comparing arrays in a logical expression, see Processing of Arrays.

Note: If multiple logical-condition-criteria are connectedwith AND, the evaluation terminates
as soon as the first of these criteria is not true.

BREAK Option - Compare Current Value with Value of Previous Loop Pass

The BREAK option allows the current value or a portion of a value of a field to be compared with
the value contained in the same field in the previous pass through the processing loop.

Syntax:

Programming Guide480

Logical Condition Criteria

BREAK [OF] operand1 [/n/]

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesLTDBFIPNUASoperand1

Syntax Element Description:

Specifies the control field which is to be checked. A specific occurrence of an array can also be
used as a control field.

operand1

The notation /n/may be used to indicate that only the first n positions (counting from left to
right) of the control field are to be checked for a change in value. This notation can only be
used with operands of format A, B, N, or P.

/n/

The result of the BREAK operation is true when a change in the specified positions of the field
occurs. The result of the BREAK operation is not true if an AT END OF DATA condition occurs.

Example:

In this example, a check is made for a different value in the first position of the field
FIRST-NAME.

BREAK FIRST-NAME /1/

Natural system functions (which are available with the AT BREAK statement) are not available
with this option.

Example of BREAK Option:

** Example 'LOGICX03': BREAK option in logical condition
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 BIRTH

*
1 #BIRTH (A8)
END-DEFINE
*
LIMIT 10
READ EMPLOY-VIEW BY BIRTH

MOVE EDITED BIRTH (EM=YYYYMMDD) TO #BIRTH
/*
IF BREAK OF #BIRTH /6/

NEWPAGE IF LESS THAN 5 LINES LEFT
WRITE / '-' (50) /

481Programming Guide

Logical Condition Criteria

END-IF
/*
DISPLAY NOTITLE BIRTH (EM=YYYY-MM-DD) NAME FIRST-NAME

END-READ
END

Output of Program LOGICX03:

DATE NAME FIRST-NAME
OF

BIRTH
---------- -------------------- --------------------

1940-01-01 GARRET WILLIAM
1940-01-09 TAILOR ROBERT
1940-01-09 PIETSCH VENUS
1940-01-31 LYTTLETON BETTY

--

1940-02-02 WINTRICH MARIA
1940-02-13 KUNEY MARY
1940-02-14 KOLENCE MARSHA
1940-02-24 DILWORTH TOM

--

1940-03-03 DEKKER SYLVIA
1940-03-06 STEFFERUD BILL

IS Option - Check whether Content of Alphanumeric or Unicode Field can be
Converted

Syntax:

operand1 IS (format)

This option is used to check whether the content of an alphanumeric or Unicode field (operand1)
can be converted to a specific other format.

Operand Definition Table:

Programming Guide482

Logical Condition Criteria

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

noyesUANASCoperand1

The format for which the check is performed can be:

Numeric with length ll.ll.Nll.ll

Floating point with length ll.Fll

Date. The following date formats are possible: dd-mm-yy, dd-mm-yyyy, ddmmyyyy (dd = day,
mm = month, yy or yyyy = year). The sequence of the day, month and year components as well

D

as the characters between the components are determined by the profile parameter DTFORM
(which is described in the Parameter Reference).

Time (according to the default time display format).T

Packed numeric with length ll.ll.Pll.ll

Integer with length ll.Ill

When the check is performed, leading and trailing blanks in operand1will be ignored.

The IS option may, for example, be used to check the content of a field before the mathematical
function VAL (extract numeric value from an alphanumeric field) is used to ensure that it will not
result in a runtime error.

Note: The IS option cannot be used to check if the value of an alphanumeric field is in the
specified “format”, but if it can be converted to that “format”. To check if a value is in a
specific format, you can use the MASK option. For further information, seeMASK Option
Compared with IS Option and Checking Packed or Unpacked Numeric Data.

Example of IS Option:

** Example 'LOGICX04': IS option as format/length check
**
DEFINE DATA LOCAL
1 #FIELDA (A10) /* INPUT FIELD TO BE CHECKED
1 #FIELDB (N5) /* RECEIVING FIELD OF VAL FUNCTION
1 #DATE (A10) /* INPUT FIELD FOR DATE
END-DEFINE
*
INPUT #DATE #FIELDA
IF #DATE IS(D)

IF #FIELDA IS (N5)
COMPUTE #FIELDB = VAL(#FIELDA)
WRITE NOTITLE 'VAL FUNCTION OK' // '=' #FIELDA '=' #FIELDB

ELSE
REINPUT 'FIELD DOES NOT FIT INTO N5 FORMAT'

MARK *#FIELDA
END-IF

ELSE
REINPUT 'INPUT IS NOT IN DATE FORMAT (YY-MM-DD) '

483Programming Guide

Logical Condition Criteria

MARK *#DATE
END-IF
*
END

Output of Program LOGICX04:

#DATE 150487 #FIELDA

INPUT IS NOT IN DATE FORMAT (YY-MM-DD)

MASK Option - Check Selected Positions of a Field for Specific Content

With the MASK option, you can check selected positions of a field for specific content.

The following topics are covered below:

■ Constant Mask
■ Variable Mask
■ Characters in a Mask
■ Mask Length
■ Checking Dates
■ Checking Against the Content of Constants or Variables
■ Range Checks
■ Checking Packed or Unpacked Numeric Data

Constant Mask

Syntax:

MASK (mask-definition) [operand2]operand1

=
EQ
EQUAL TO
NE
NOT EQUAL

Operand Definition Table:

Programming Guide484

Logical Condition Criteria

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesPNUANASCoperand1

noyesBPNUASCoperand2

operand2 can only be used if the mask-definition contains at least one X. operand1 and operand2
must be format-compatible:

■ If operand1 is of format A, operand2must be of format A, B, N or U.
■ If operand1 is of format U, operand2must be of format A, B, N or U.
■ If operand1 is of format N or P, operand2must be of format N or P.

An X in the mask-definition selects the corresponding positions of the content of operand1 and
operand2 for comparison.

Variable Mask

Apart from a constant mask-definition (see above), you may also specify a variable mask defin-
ition.

Syntax:

MASK operand2operand1

=
EQ
EQUAL TO
NE
NOT EQUAL

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesPNUANASCoperand1

noyesUASoperand2

The content of operand2will be taken as the mask definition. Trailing blanks in operand2will be
ignored.

■ If operand1 is of format A, N or P, operand2must be of format A.
■ If operand1 is of format U, operand2must be of format U.

485Programming Guide

Logical Condition Criteria

Characters in a Mask

The following characters may be used within a mask definition (the mask definition is contained
in mask-definition for a constant mask and operand2 for a variable mask):

MeaningCharacter

Aperiod, questionmark or underscore indicates a single position that is not to be checked.. or ? or _

An asterisk or percentmark is used to indicate any number of positions not to be checked.* or %

A slash (/) is used to check if a value endswith a specific character (or string of characters).

For example, the following condition will be true if there is either an E in the last position
of the field, or the last E in the field is followed by nothing but blanks:

/

IF #FIELD = MASK (*'E'/)

The position is to be checked for an alphabetical character (upper or lower case).A

One or more positions are to be checked for the characters bounded by apostrophes (a
double apostrophe indicates that a single apostrophe is the character to be checked for).
If operand1 is in Unicode format, 'c'must contain Unicode characters.

'c'

The position is to be checked for an alphabetical character (upper or lower case), a numeric
character, or a blank.

C

The two positions are to be checked for a valid day notation (01 - 31; dependent on the
values of MM and YY/YYYY, if specified; see also Checking Dates).

DD

The position is to be checked for hexadecimal content (A - F, 0 - 9).H

The positions are to be checked for a valid Julian Day; that is, the day number in the year
(001-366, dependent on the value of YY/YYYY, if specified. See also Checking Dates.)

JJJ

The position is to be checked for a lower-case alphabetical character (a - z).L

The positions are to be checked for a valid month (01 - 12); see also Checking Dates.MM

The position is to be checked for a numeric digit.N

One (or more) positions are to be checked for a numeric value in the range 0 - n.n...

The positions are checked for a numeric value in the range n1-n2.

n1 and n2 must be of the same length.

n1-n2 or n1:n2

The position is to be checked for a displayable character (U, L, N or S).P

The position is to be checked for special characters. See also Support of Different Character
Sets with NATCONV.INI in the Operations documentation.

S

The position is to be checked for an upper-case alphabetical character (A - Z).U

The position is to be checked against the equivalent position in the value (operand2)
following the mask-definition.

X is not allowed in a variable mask definition, as it makes no sense.

X

The two positions are to be checked for a valid year (00 - 99). See also Checking Dates.YY

The four positions are checked for a valid year (0000 - 2699).YYYY

Programming Guide486

Logical Condition Criteria

MeaningCharacter

The position is to be checked for a character whose left half-byte is hexadecimally 3 or 7,
and whose right half-byte is hexadecimally 0 - 9.

Thismay be used to correctly check for numeric digits in negative numbers.With N (which
indicates a position to be checked for a numeric digit), a check for numeric digits in negative

Z

numbers leads to incorrect results, because the sign of the number is stored in the last
digit of the number, causing that digit to be hexadecimally represented as non-numeric.

Within a mask, use only one Z for each sequence of numeric digits that is checked.

Mask Length

The length of the mask determines how many positions are to be checked.

Example:

DEFINE DATA LOCAL
1 #CODE (A15)
END-DEFINE
...
IF #CODE = MASK (NN'ABC'....NN)
...

In the above example, the first two positions of #CODE are to be checked for numeric content. The
three following positions are checked for the contents ABC. The next four positions are not to be
checked. Positions ten and eleven are to be checked for numeric content. Positions twelve to fifteen
are not to be checked.

Checking Dates

Only one date may be checked within a given mask. When the same date component (JJJ, DD, MM,
YY or YYYY) is specifiedmore than once in themask, only the value of the last occurrence is checked
for consistency with other date components.

When dates are checked for a day (DD) and no month (MM) is specified in the mask, the current
month will be assumed.

When dates are checked for a day (DD) or a Julian day (JJJ) and no year (YY or YYYY) is specified
in the mask, the current year will be assumed.

When dates are checked for a 2-digit year (YY), the current century will be assumed if no Sliding
or FixedWindow is set. Formore details about Sliding or FixedWindows, refer to profile parameter
YSLW in the Parameter Reference.

487Programming Guide

Logical Condition Criteria

Example 1:

MOVE 1131 TO #DATE (N4)
IF #DATE = MASK (MMDD)

In this example,month andday are checked for validity. The value formonth (11)will be considered
valid, whereas the value for day (31) will be invalid since the 11th month has only 30 days.

Example 2:

IF #DATE(A8) = MASK (MM'/'DD'/'YY)

In this example, the content of the field #DATE is be checked for a valid date with the format
MM/DD/YY (month/day/year).

Example 3:

IF #DATE (A8) = MASK (1950-2020MMDD)

In this example, the content of field #DATE is checked for a four-digit number in the range 1950 to
2020 followed by a valid month and day in the current year.

Note: Although apparent, the above mask does not allow to check for a valid date in the
years 1950 through 2020, because the numeric value range 1950-2020 is checked independent
of the validation of month and day. The check will deliver the intended results except for
February, 29, where the result depends on whether the current year is a leap year or not.
To check for a specific year range in addition to the date validation, code one check for the
date validation and another for the range validation:

IF #DATE (A8) = MASK (YYYYMMDD) AND #DATE = MASK (1950-2020)

Example 4:

IF #DATE (A4) = MASK (19-20YY)

In this example, the content of field #DATE is checked for a two-digit number in the range 19 to 20
followed by a valid two-digit year (00 through 99). The century is supplied byNatural as described
above.

Note: Although apparent, the above mask does not allow to check for a valid year in the
range 1900 through 2099, because the numeric value range 19-20 is checked independent
of the year validation. To check for year ranges, code one check for the date validation and
another for the range validation:

Programming Guide488

Logical Condition Criteria

IF #DATE (A10) = MASK (YYYY'-'MM'-'DD) AND #DATE = MASK (19-20)

Checking Against the Content of Constants or Variables

If the value for the mask check is to be taken from either a constant or a variable, this value
(operand2) must be specified immediately following the mask-definition.

operand2must be at least as long as the mask.

In themask, you indicate each position to be checkedwith an X, and each position not to be checked
with a period (.) or a question mark (?) or an underscore (_).

Example:

DEFINE DATA LOCAL
1 #NAME (A15)
END-DEFINE
...
IF #NAME = MASK (..XX) 'ABCD'
...

In the above example, it is checked whether the field #NAME contains CD in the third and fourth
positions. Positions one and two are not checked.

The length of themask determines howmany positions are to be checked. Themask is left-justified
against any field or constant used in the mask operation. The format of the field (or constant) on
the right side of the expression must be the same as the format of the field on the left side of the
expression.

If the field to be checked (operand1) is of format A, any constant used (operand2) must be enclosed
in apostrophes. If the field is numeric, the value used must be a numeric constant or the content
of a numeric database field or user-defined variable.

In either case, any characters/digits within the value specified whose positions do not match the
X indicator within the mask are ignored.

The result of the MASK operation is true when the indicated positions in both values are identical.

Example:

** Example 'LOGICX01': MASK option in logical condition
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
END-DEFINE
*
HISTOGRAM EMPLOY-VIEW CITY

IF CITY =

489Programming Guide

Logical Condition Criteria

MASK (....XX) '....NN'

DISPLAY NOTITLE CITY *NUMBER
END-IF

END-HISTOGRAM
*
END

In the above example, the record will be accepted if the fifth and sixth positions of the field CITY
each contain the character N.

Range Checks

When performing range checks, the number of positions verified in the supplied variable is defined
by the precision of the value supplied in themask specification. For example, amask of (...193...)
will verify positions 4 to 6 for a three-digit number in the range 000 to 193.

Additional Examples of Mask Definitions:

■ In this example, each character of #NAME is checked for an alphabetical character:

IF #NAME (A10) = MASK (AAAAAAAAAA)

■ In this example, positions 4 to 6 of #NUMBER are checked for a numeric value:

IF #NUMBER (A6) = MASK (...NNN)

■ In this example, positions 4 to 6 of #VALUE are to be checked for the value 123:

IF #VALUE(A10) = MASK (...'123')

■ This examplewill check if #LICENSE contains a license numberwhich beginswith NY- andwhose
last five characters are identical to the last five positions of #VALUE:

DEFINE DATA LOCAL
1 #VALUE(A8)
1 #LICENSE(A8)
END-DEFINE
INPUT 'ENTER KNOWN POSITIONS OF LICENSE PLATE:' #VALUE
IF #LICENSE = MASK ('NY-'XXXXX) #VALUE

■ The following conditionwould bemet by any valuewhich contains NAT and AL nomatter which
and howmany other characters are between NAT and AL (this would include the values NATURAL
and NATIONALITY as well as NATAL):

Programming Guide490

Logical Condition Criteria

MASK('NAT'*'AL')

Checking Packed or Unpacked Numeric Data

Legacy applications often have packed or unpacked numeric variables redefined with alphanu-
meric or binary fields. Such redefinitions are not recommended, because using the packed or un-
packed variable in an assignment or computation may lead to errors or unpredictable results. To
validate the contents of such a redefined variable before the variable is used, use the N option (see
Characters in a Mask) as many as number of digits - 1 times followed by a single Z option.

Examples :

IF #P1 (P1) = MASK (Z)
IF #N4 (N4) = MASK (NNNZ)
IF #P5 (P5) = MASK (NNNNZ)

For further information about checking field contents, seeMASKOptionComparedwith ISOption.

MASK Option Compared with IS Option

This section points out the difference between MASK option and IS option and contains a sample
program to illustrate the difference.

The IS option can be used to check whether the content of an alphanumeric or Unicode field can
be converted to a specific other format, but it cannot be used to check if the value of an alphanu-
meric field is in the specified format.

The MASK option can be used to validate the contents of a redefined packed or unpacked numeric
variable.

Example Illustrating the Difference:

** Example 'LOGICX09': MASK versus IS option in logical condition
**
DEFINE DATA LOCAL
1 #A2 (A2)
1 REDEFINE #A2
 2 #N2 (N2)
1 REDEFINE #A2
 2 #P3 (P3)
1 #CONV-N2 (N2)
1 #CONV-P3 (P3)
END-DEFINE
*
#A2 := '12'
WRITE NOTITLE 'Assignment #A2 := "12" results in:'

491Programming Guide

Logical Condition Criteria

PERFORM SUBTEST
#A2 := '-1'
WRITE NOTITLE / 'Assignment #A2 := "-1" results in:'
PERFORM SUBTEST
#N2 := 12
WRITE NOTITLE / 'Assignment #N2 := 12 results in:'
PERFORM SUBTEST
#N2 := -1
WRITE NOTITLE / 'Assignment #N2 := -1 results in:'
PERFORM SUBTEST
#P3 := 12
WRITE NOTITLE / 'Assignment #P3 := 12 results in:'
PERFORM SUBTEST
#P3 := -1
WRITE NOTITLE / 'Assignment #P3 := -1 results in:'
PERFORM SUBTEST
* ↩

DEFINE SUBROUTINE SUBTEST
IF #A2 IS (N2) THEN
 #CONV-N2 := VAL(#A2)
 WRITE NOTITLE 12T '#A2 can be converted to' #CONV-N2 '(N2)'
END-IF
IF #A2 IS (P3) THEN
 #CONV-P3 := VAL(#A2)
 WRITE NOTITLE 12T '#A2 can be converted to' #CONV-P3 '(P3)'
END-IF
IF #N2 = MASK(NZ) THEN
 WRITE NOTITLE 12T '#N2 contains the valid unpacked number' #N2
END-IF
IF #P3 = MASK(NNZ) THEN
 WRITE NOTITLE 12T '#P3 contains the valid packed number' #P3
END-IF
END-SUBROUTINE
*
END ↩

Output of Program LOGICX09:

Assignment #A2 := '12' results in:
#A2 can be converted to 12 (N2)
#A2 can be converted to 12 (P3)
#N2 contains the valid unpacked number 12

Assignment #A2 := '-1' results in:
#A2 can be converted to -1 (N2)
#A2 can be converted to -1 (P3)

Assignment #N2 := 12 results in:
#A2 can be converted to 12 (N2)
#A2 can be converted to 12 (P3)
#N2 contains the valid unpacked number 12

Programming Guide492

Logical Condition Criteria

Assignment #N2 := -1 results in:
#N2 contains the valid unpacked number -1

Assignment #P3 := 12 results in:
#P3 contains the valid packed number 12

Assignment #P3 := -1 results in:
#P3 contains the valid packed number -1

MODIFIED Option - Check whether Field Content has been Modified

Syntax:

operand1 [NOT] MODIFIED

This option is used to determine whether the content of a field has been modified during the exe-
cution of an INPUT or PROCESS PAGE statement. As a precondition, a control variable must have
been assigned using the parameter CV.

Operand Definition Table:

Dynamic DefinitionReferencing PermittedPossible FormatsPossible StructureOperand

nonoCASoperand1

Attribute control variables referenced in an INPUT or PROCESS PAGE statement are always assigned
the status “not modified” when the map is transmitted to the terminal.

Whenever the content of a field referencing an attribute control variable is modified, the attribute
control variable has been assigned the status “modified”.Whenmultiple fields reference the same
attribute control variable, the variable is marked “modified” if any of these fields is modified.

If operand1 is an array, the result will be true if at least one of the array elements has been assigned
the status “modified” (OR operation).

Example of MODIFIED Option:

** Example 'LOGICX06': MODIFIED option in logical condition
**
DEFINE DATA LOCAL
1 #ATTR (C)
1 #A (A1)
1 #B (A1)
END-DEFINE
*
MOVE (AD=I) TO #ATTR

493Programming Guide

Logical Condition Criteria

*
INPUT (CV=#ATTR) #A #B
IF #ATTR NOT MODIFIED

WRITE NOTITLE 'FIELD #A OR #B HAS NOT BEEN MODIFIED'
END-IF
*
IF #ATTR MODIFIED

WRITE NOTITLE 'FIELD #A OR #B HAS BEEN MODIFIED'
END-IF
*
END

Output of Program LOGICX06:

#A #B

After entering any value and pressing ENTER, the following output is displayed:

FIELD #A OR #B HAS BEEN MODIFIED

SCAN Option - Scan for a Value within a Field

Syntax:

SCANoperand1
operand2

=

(operand2)

EQ
EQUAL TO
NE
NOT EQUAL

Operand Definition Table:

Dynamic DefinitionReferencing
Permitted

Possible FormatsPossible StructureOperand

noyesPNUANASCoperand1

noyesB*UASCoperand2

* operand2may only be binary if operand1 is of format A or U. If operand1 is of format U and op-
erand2 is of format B, then the length of operand2must be even.

The SCAN option is used to scan for a specific value within a field.

Programming Guide494

Logical Condition Criteria

The characters used in the SCAN option (operand2) may be specified as an alphanumeric or Unicode
constant (a character string bounded by apostrophes) or the contents of an alphanumeric orUnicode
database field or user-defined variable.

Caution: Trailing blanks are automatically eliminated from operand1 and operand2. Therefore,
the SCAN option cannot be used to scan for values containing trailing blanks. operand1 and
operand2may contain leading or embedded blanks. If operand2 consists of blanks only,
scanning will be assumed to be successful, regardless of the value of operand1; confer
EXAMINE FULL statement if trailing blanks are not to be ignored in the scan operation.

The field to be scanned (operand1) may be of format A, N, P or U. The SCAN operation may be
specified with the equal (EQ) or not equal (NE) operators.

The length of the character string for the SCAN operation should be less than the length of the field
to be scanned. If the length of the character string specified is identical to the length of the field
to be scanned, then an EQUAL operator should be used instead of SCAN.

Example of SCAN Option:

** Example 'LOGICX02': SCAN option in logical condition
**
DEFINE DATA
LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
*
1 #VALUE (A4)
1 #COMMENT (A10)
END-DEFINE
*
INPUT 'ENTER SCAN VALUE:' #VALUE
LIMIT 15
*
HISTOGRAM EMPLOY-VIEW FOR NAME

RESET #COMMENT
IF NAME = SCAN #VALUE

MOVE 'MATCH' TO #COMMENT
END-IF
DISPLAY NOTITLE NAME *NUMBER #COMMENT

END-HISTOGRAM
*
END

Output of Program LOGICX02:

495Programming Guide

Logical Condition Criteria

ENTER SCAN VALUE: ↩

A scan for example for LL delivers three matches in 15 names:

NAME NMBR #COMMENT
-------------------- --------- ----------

ABELLAN 1 MATCH
ACHIESON 1
ADAM 1
ADKINSON 8
AECKERLE 1
AFANASSIEV 2
AHL 1
AKROYD 1
ALEMAN 1
ALESTIA 1
ALEXANDER 5
ALLEGRE 1 MATCH
ALLSOP 1 MATCH
ALTINOK 1
ALVAREZ 1

SPECIFIED Option - Check whether a Value is Passed for an Optional Para-
meter

Syntax:

parameter-name [NOT] SPECIFIED

This option is used to check whether an optional parameter in an invoked object (subprogram,
external subroutine, dialog or ActiveX control) has received a value from the invoking object or
not.

An optional parameter is a field definedwith the keyword OPTIONAL in the DEFINE DATA PARAMETER
statement of the invoked object. If a field is defined as OPTIONAL, a value can - but need not - be
passed from an invoking object to this field.

In the invoking statement, the notation nX is used to indicate parameters for which no values are
passed.

If you process an optional parameter which has not received a value, this will cause a runtime
error. To avoid such an error, you use the SPECIFIED option in the invoked object to check
whether an optional parameter has received a value or not, and then only process it if it has.

Programming Guide496

Logical Condition Criteria

parameter-name is the name of the parameter as specified in the DEFINE DATA PARAMETER statement
of the invoked object.

For a field not defined as OPTIONAL, the SPECIFIED condition is always TRUE.

Example of SPECIFIED Option:

Calling Programming:

** Example 'LOGICX07': SPECIFIED option in logical condition
**
DEFINE DATA LOCAL
1 #PARM1 (A3)
1 #PARM3 (N2)
END-DEFINE
*
#PARM1 := 'ABC'
#PARM3 := 20
*
CALLNAT 'LOGICX08' #PARM1 1X #PARM3
*
END ↩

Subprogram Called:

** Example 'LOGICX08': SPECIFIED option in logical condition
**
DEFINE DATA PARAMETER
1 #PARM1 (A3)
1 #PARM2 (N2) OPTIONAL
1 #PARM3 (N2) OPTIONAL
END-DEFINE
*
WRITE '=' #PARM1
*
IF #PARM2 SPECIFIED

WRITE '#PARM2 is specified'
WRITE '=' #PARM2

ELSE
WRITE '#PARM2 is not specified'

* WRITE '=' #PARM2 /* would cause runtime error NAT1322
END-IF
*
IF #PARM3 NOT SPECIFIED
 WRITE '#PARM3 is not specified'
ELSE
 WRITE '#PARM3 is specified'
 WRITE '=' #PARM3
END-IF
END ↩

497Programming Guide

Logical Condition Criteria

Output of Program LOGICX07:

Page 1 04-12-15 11:25:41

#PARM1: ABC
#PARM2 is not specified
#PARM3 is specified
#PARM3: 20

Programming Guide498

Logical Condition Criteria

50 Rules for Arithmetic Assignment

■ Field Initialization ... 500
■ Data Transfer .. 500
■ Field Truncation and Field Rounding .. 503
■ Result Format and Length in Arithmetic Operations .. 503
■ Arithmetic Operations with Floating-Point Numbers .. 504
■ Arithmetic Operations with Date and Time .. 506
■ Performance Considerations for Mixed Format Expressions ... 510
■ Precision of Results of Arithmetic Operations .. 510
■ Error Conditions in Arithmetic Operations ... 511
■ Processing of Arrays .. 512

499

Field Initialization

Afield (user-defined variable or database field) which is to be used as an operand in an arithmetic
operation must be defined with one of the following formats:

Format

Numeric unpackedN

Packed numericP

IntegerI

Floating pointF

DateD

TimeT

Note: For reporting mode: A field which is to be used as an operand in an arithmetic oper-
ation must have been previously defined. A user-defined variable or database field used
as a result field in an arithmetic operation need not have been previously defined.

All user-defined variables and all database fields defined in a DEFINE DATA statement are initialized
to the appropriate zero or blank value when the program is invoked for execution.

Data Transfer

Data transfer is performedwith a MOVE or COMPUTE statement. The following table summarizes the
data transfer compatibility of the formats an operand may take.

Receiving Field FormatSending Field Format
OGFTDCLIBn (n>4)Bn (n<5)UAN or P

--YY---Y-[3][14][2]YN or P

--------[1][1][13]Y-A

--------[12][12]Y[11]-U

--YY---Y[5][5][14][2][4]Bn (n<5)

--------[5][5][15][6]-Bn (n>4)

--YY---Y-[3][14][2]YI

------Y---[16][9]-L

-----Y-------C

Programming Guide500

Rules for Arithmetic Assignment

--Y[7]Y--Y-Y[16][9]YD

--YY[8]--Y-Y[16][9]YT

--YY---Y-[3][10] [16][9] [10]YF

-Y-----------G

Y------------O

Where:

Indicates data transfer compatibility.Y

Indicates data transfer incompatibility.-

Numbers in brackets [] refer to the corresponding rule for data transfer given below.[]

Data Conversion

The following rules apply to converting data values:

1. Alphanumeric to binary:
The value will be moved byte by byte from left to right. The result may be truncated or padded
with trailing blank characters depending on the length defined and the number of bytes specified.

2. (N,P,I) and binary (length 1-4) to alphanumeric:
The value will be converted to unpacked form and moved into the alphanumeric field left jus-
tified, that is, leading zeros will be suppressed and the field will be filled with trailing blank
characters. For negative numeric values, the sign will be converted to the hexadecimal notation
Dx. Any decimal point in the numeric value will be ignored. All digits before and after the
decimal point will be treated as one integer value.

3. (N,P,I,F) to binary (1-4 bytes):
The numeric value will be converted to binary (4 bytes). Any decimal point in the numeric
value will be ignored (the digits of the value before and after the decimal point will be treated
as an integer value). The resulting binary number will be positive or a two's complement of the
number depending on the sign of the value.

4. Binary (1-4 bytes) to numeric:
The value will be converted and assigned to the numeric value right justified, that is, with
leading zeros. (Binary values of the length 1-3 bytes are always assumed to have a positive sign.
For binary values of 4 bytes, the leftmost bit determines the sign of the number: 1=negative,
0=positive.) Any decimal point in the receiving numeric value will be ignored. All digits before
and after the decimal point will be treated as one integer value.

5. Binary to binary:
The value will be moved from right to left byte by byte. Leading binary zeros will be inserted
into the receiving field.

501Programming Guide

Rules for Arithmetic Assignment

6. Binary (>4 bytes) to alphanumeric:
The value will be moved byte by byte from left to right. The result may be truncated or padded
with trailing blanks depending on the length defined and the number of bytes specified.

7. Date (D) to time (T):
If date is moved to time, it is converted to time assuming time 00:00:00:0.

8. Time (T) to date (D):
If time is moved to date, the time information is truncated, leaving only the date information.

9. L,D,T,F to A:
The values are converted to display form and are assigned left justified.

10. F:
If F is assigned to an alphanumeric or Unicode field which is too short, the mantissa is reduced
accordingly.

11.Unicode to alphanumeric:
The Unicode value will be converted to alphanumeric character codes according to the default
code page (value of the system variable *CODEPAGE) using the International Components for
Unicode (ICU) library. The result may be truncated or padded with trailing blank characters,
depending on the length defined and the number of bytes specified.

12.Unicode to binary:
The value will be moved code unit by code unit from left to right. The result may be truncated
or padded with trailing blank characters, depending on the length defined and the number of
bytes specified. The length of the receiving binary field must be even.

13.Alphanumeric to Unicode:
The alphanumeric value will be converted from the default code page to a Unicode value using
the International Components for Unicode (ICU) library. The resultmay be truncated or padded
with trailing blank characters, depending on the length defined and the number of code units
specified.

14. (N,P,I) and binary (length 1-4) to Unicode:
The value will be converted to unpacked form from which an alphanumeric value will be ob-
tained by suppression of leading zeros. For negative numeric values, the sign will be converted
to the hexadecimal notation Dx. Any decimal point in the numeric value will be ignored. All
digits before and after the decimal pointwill be treated as one integer value. The resulting value
will be converted from alphanumeric to Unicode. The result may be truncated or padded with
trailing blank characters, depending on the length defined and the number of codeunits specified.

15. Binary (>4 bytes) to Unicode:
The value will be moved byte by byte from left to right. The result may be truncated or padded
with trailing blanks, depending on the length defined and the number of bytes specified. The
length of the sending binary field must be even.

Programming Guide502

Rules for Arithmetic Assignment

16. L,D,T,F to U:
The values are converted to an alphanumeric display form. The resulting valuewill be converted
from alphanumeric to Unicode and assigned left justified.

If source and target format are identical, the result may be truncated or paddedwith trailing blank
characters (format A and U) or leading binary zeros (format B) depending on the length defined
and the number of bytes (format A and B) or code units (format U) specified.

See also Using Dynamic Variables.

Field Truncation and Field Rounding

The following rules apply to field truncation and rounding:

■ High-order numeric field truncation is allowed only when the digits to be truncated are leading
zeros. Digits following an expressed or implied decimal point may be truncated.

■ Trailing positions of an alphanumeric field may be truncated.
■ If the option ROUNDED is specified, the last position of the result will be rounded up if the first
truncated decimal position of the value being assigned contains a value greater than or equal
to 5. For the result precision of a division, see alsoPrecision of Results of ArithmeticOperations.

Result Format and Length in Arithmetic Operations

The following table shows the format and length of the result of an arithmetic operation:

F8F4N or PI4I2I1

F8F4P*I4I2I1I1

F8F4P*I4I2I2I2

F8F4P*I4I4I4I4

F8F4P*P*P*P*N or P

F8F4F4F4F4F4F4

F8F8F8F8F8F8F8

On a mainframe computer, format/length F8 is used instead of F4 for improved precision of the
results of an arithmetic operation.

P* is determined from the integer length and precision of the operands individually for each oper-
ation, as shown under Precision of Results of Arithmetic Operations.

The following decimal integer lengths and possible values are applicable for format I:

503Programming Guide

Rules for Arithmetic Assignment

Possible ValuesDecimal Integer LengthFormat/Length

-128 to 1273I1

-32768 to 327675I2

-2147483648 to 214748364710I4

Arithmetic Operations with Floating-Point Numbers

The following topics are covered below:

■ General Considerations
■ Precision of Floating-Point Numbers
■ Conversion to Floating-Point Representation
■ Platform Dependency

General Considerations

Floating-point numbers (format F) are represented as a sum of powers of two (as are integer
numbers (format I)), whereas unpacked and packed numbers (formats N and P) are represented
as a sum of powers of ten.

In unpacked or packed numbers, the position of the decimal point is fixed. In floating-point
numbers, however, the position of the decimal point (as the name indicates) is “floating”, that is,
its position is not fixed, but depends on the actual value.

Floating-point numbers are essential for the computing of trigonometric functions ormathematical
functions such as sinus or logarithm.

Precision of Floating-Point Numbers

Due to the nature of floating-point numbers, their precision is limited:

■ For a variable of format/length F4, the precision is limited to approximately 7 digits.
■ For a variable of format/length F8, the precision is limited to approximately 15 digits.

Valueswhich havemore significant digits cannot be represented exactly as a floating-point number.
Nomatter howmany additional digits there are before or after the decimal point, a floating-point
number can cover only the leading 7 or 15 digits respectively.

An integer value can only be represented exactly in a variable of format/length F4 if its absolute
value does not exceed 2 23 -1.

Programming Guide504

Rules for Arithmetic Assignment

Conversion to Floating-Point Representation

When an alphanumeric, unpackednumeric or packednumeric value is converted to floating-point
format (for example, in an assignment operation), the representation has to be changed, that is, a
sum of powers of ten has to be converted to a sum of powers of two.

Consequently, only numbers that are representable as a finite sum of powers of two can be repres-
ented exactly; all other numbers can only be represented approximately.

Examples:

This number has an exact floating-point representation:

1.25 = 20 + 2-2

This number is a periodic floating-point number without an exact representation:

1.2 = 20 + 2-3 + 2-4 + 2-7 + 2-8 + 2-11 + 2-12 + ...

Thus, the conversion of alphanumeric, unpacked numeric or packed numeric values to floating-
point values, and vice versa, can introduce small errors.

Platform Dependency

Because of different hardware architecture, the representation of floating-point numbers varies
according to platforms. This explains why the same application, when run on different platforms,
may return slightly different results when floating-point arithmetics are involved. The respective
representation also determines the range of possible values for floating-point variables, which is
(approximately)

■ ±1.17 * 10-38 to ±3.40 * 1038 for F4 variables,
■ ±2.22 * 10-308 to ±1.79 * 10308 for F8 variables.

Note: The representation used by your pocket calculator may also be different from the
one used by your computer - which explains why results for the same computation may
differ.

505Programming Guide

Rules for Arithmetic Assignment

Arithmetic Operations with Date and Time

With formats D (date) and T (time), only addition, subtraction, multiplication and division are
allowed.Multiplication and division are allowed on intermediate results of additions and subtrac-
tions only.

Date/time values can be added to/subtracted fromone another; or integer values (no decimal digits)
can be added to/subtracted from date/time values. Such integer values can be contained in fields
of formats N, P, I, D, or T.

The intermediate results of such an addition or subtraction may be used as a multiplicand or di-
vidend in a subsequent operation.

An integer value added to/subtracted from a date value is assumed to be in days. An integer value
added to/subtracted from a time value is assumed to be in tenths of seconds.

For arithmetic operations with date and time, certain restrictions apply, which are due to the
Natural's internal handling of arithmetic operations with date and time, as explained below.

Internally, Natural handles an arithmetic operation with date/time variables as follows:

COMPUTE result-field = operand1 +/- operand2

The above statement is resolved as:

1. intermediate-result = operand1 +/- operand2

2. result-field = intermediate-result

That is, in a first stepNatural computes the result of the addition/subtraction, and in a second step
assigns this result to the result field.

More complex arithmetic operations are resolved following the same pattern:

COMPUTE result-field = operand1 +/- operand2 +/- operand3 +/- operand4

The above statement is resolved as:

1. intermediate-result1 = operand1 +/- operand2

2. intermediate-result2 = intermediate-result1 +/- operand3

3. intermediate-result3 = intermediate-result2 +/- operand4

4. result-field = intermediate-result3

The resolution of multiplication and division operations is similar to the resolution for addition
and subtraction.

Programming Guide506

Rules for Arithmetic Assignment

The internal format of such an intermediate result depends on the formats of the operands, as
shown in the tables below.

Addition

The following table shows the format of the intermediate result of an addition
(intermediate-result = operand1 + operand2):

Format of intermediate-resultFormat of operand2Format of operand1

DiDD

TTD

DDi, Ti, N, P, ID

TD, T, Di, Ti, N, P, IT

DDDi, Ti, N, P, I

TTDi, Ti, N, P, I

DiDiDi, N, P, I

TiTiTi, N, P, I

DiTi, N, P, IDi

TiDi, N, P, ITi

Subtraction

The following table shows the format of the intermediate result of a subtraction
(intermediate-result = operand1 - operand2):

Format of intermediate-resultFormat of operand2Format of operand1

DiDD

TiTD

DDi, Ti, N, P, ID

TiD, TT

TDi, Ti, N, P, IT

DiDDi, N, P, I

TiTDi, N, P, I

DiDi, Ti, N, P, IDi

TiD, T, Di, Ti, N, P, ITi

P12Di, TiN, P, I

507Programming Guide

Rules for Arithmetic Assignment

Multiplication or Division

The following table shows the format of the intermediate result of a multiplication
(intermediate-result = operand1 * operand2) or division (intermediate-result = operand1
/ operand2):

Format of intermediate-resultFormat of operand2Format of operand1

DiD, Di, Ti, N, P, ID

TiTD

TiD, T, Di, Ti, N, P, IT

TiTDi

DiD, Di, Ti, N, P, IDi

DiDTi

TiDi, T, Ti, N, P, ITi

DiD, DiN, P, I

TiT, TiN, P, I

Internal Assignments

Di is a value in internal date format; Ti is a value in internal time format; such values can be used
in further arithmetic date/time operations, but they cannot be assigned to a result field of format
D (see the assignment table below).

In complex arithmetic operations in which an intermediate result of internal format Di or Ti is
used as operand in a further addition/subtraction/multiplication/division, its format is assumed
to be D or T respectively.

The following table shows which intermediate results can internally be assigned to which result
fields (result-field = intermediate-result).

Assignment possibleFormat of intermediate-resultFormat of result-field

yesD, TD

noDi, Ti, N, P, ID

yesD, T, Di, Ti, N, P, IT

yesD, T, Di, Ti, N, P, IN, P, I

A result field of format D or T must not contain a negative value.

Programming Guide508

Rules for Arithmetic Assignment

Examples 1 and 2 (invalid):

COMPUTE DATE1 (D) = DATE2 (D) + DATE3 (D)
COMPUTE DATE1 (D) = DATE2 (D) - DATE3 (D)

These operations are not possible, because the intermediate result of the addition/subtraction
would be format Di, and a value of format Di cannot be assigned to a result field of format D.

Examples 3 and 4 (invalid):

COMPUTE DATE1 (D) = TIME2 (T) - TIME3 (T)
COMPUTE DATE1 (D) = DATE2 (D) - TIME3 (T)

These operations are not possible, because the intermediate result of the addition/subtraction
would be format Ti, and a value of format Ti cannot be assigned to a result field of format D.

Example 5 (valid):

COMPUTE DATE1 (D) = DATE2 (D) - DATE3 (D) + TIME3 (T)

This operation is possible. First, DATE3 is subtracted from DATE2, giving an intermediate result of
format Di; then, this intermediate result is added to TIME3, giving an intermediate result of format
T; finally, this second intermediate result is assigned to the result field DATE1.

Examples 6 and 7 (invalid):

COMPUTE DATE1 (D) = DATE2 (D) + DATE3 (D) * 2
COMPUTE TIME1 (T) = TIME2 (T) - TIME3 (T) / 3

These operations are not possible, because the attempted multiplication/division is performed
with date/time fields and not with intermediate results.

Example 8 (valid):

COMPUTE DATE1 (D) = DATE2 (D) + (DATE3(D) - DATE4 (D)) * 2

This operation is possible. First, DATE4 is subtracted from DATE3 giving an intermediate result of
format Di; then, this intermediate result is multiplied by two giving an intermediate result of
format Di; this intermediate result is added to DATE2 giving an intermediate result of format D;
finally, this third intermediate result is assigned to the result field DATE1.

If a format T value is assigned to a format D field, you must ensure that the time value contains a
valid date component.

509Programming Guide

Rules for Arithmetic Assignment

Performance Considerations for Mixed Format Expressions

When doing arithmetic operations, the choice of field formats has considerable impact on perform-
ance:

For business arithmetic, only fields of format I (integer) should be used, if possible.

For scientific arithmetic, fields of format F (floating point) should be used, if possible.

In expressionswhere formats aremixed between numeric (N, P) and floating point (F), a conversion
to floating point format is performed. This conversion results in considerable CPU load. Therefore
it is recommended to avoid mixed format expressions in arithmetic operations.

Precision of Results of Arithmetic Operations

Digits After Decimal PointDigits Before Decimal PointOperation

Fd or Sd (whichever is greater)Fi + 1 or Si + 1 (whichever is greater)Addition/Subtraction

Fd + Sd (maximum 7)Fi + Si + 2Multiplication

(see below)Fi + SdDivision

Fd15 - Fd (See Exception below)Exponentiation

FdFiSquare Root

- where:

First operandF

Second operandS

ResultR

Digits before decimal pointi

Digits after decimal pointd

Exception:

If the exponent has one or more digits after the decimal point, the exponentiation is internally
carried out in floating point format and the result will also have floating point format. See Arith-
metic Operations with Floating-Point Numbers for further information.

Programming Guide510

Rules for Arithmetic Assignment

Digits after Decimal Point for Division Results

The precision of the result of a division depends whether a result field is available or not:

■ If a result field is available, the precision is: Fd or Rd (whichever is greater) *.
■ If no result field is available, the precision is: Fd or Sd (whichever is greater) *.

* If the ROUNDED option is used, the precision of the result is internally increased by one digit before
the result is actually rounded.

A result field is available (or assumed to be available) in a COMPUTE and DIVIDE statement, and in
a logical condition in which the division is placed after the comparison operator (for example: IF
#A = #B / #C THEN ...).

A result field is not (or assumed to be not) available in a logical condition in which the division is
placed before the comparison operator (for example: IF #B / #C = #A THEN ...).

Exception:

If both dividend and divisor are of integer format and at least one of them is a variable, the division
result is always of integer format (regardless of the precision of the result field and of whether the
ROUNDED option is used or not).

Precision of Results for Arithmetic Expressions

The precision of arithmetic expressions, for example: #A / (#B * #C) + #D * (#E - #F + #G),
is derived by evaluating the results of the arithmetic operations in their processing order. For
further information on arithmetic expressions, see arithmetic-expression in the COMPUTE statement
description.

Error Conditions in Arithmetic Operations

In an addition, subtraction, multiplication or division, an error occurs if the total number of digits
(before and after the decimal point) of the result is greater than 31.

In an exponentiation, an error occurs in any of the following situations:

■ if the base is of packed format and either the result has over 16 digits or any intermediate result
has over 15 digits;

■ if the base is of floating-point format and the result is greater than approximately 7 * 1075.

511Programming Guide

Rules for Arithmetic Assignment

Processing of Arrays

Generally, the following rules apply:

■ All scalar operations may be applied to array elements which consist of a single occurrence.
■ If a variable is defined with a constant value (for example, #FIELD (I2) CONSTANT <8>), the
valuewill be assigned to the variable at compilation, and the variablewill be treated as a constant.
This means that if such a variable is used in an array index, the dimension concerned has a def-
inite number of occurrences.

■ If an assignment/comparison operation involves two arrays with a different number of dimen-
sions, the “missing” dimension in the array with fewer dimensions is assumed to be (1:1).

Example: If #ARRAY1 (1:2) is assigned to #ARRAY2 (1:2,1:2), #ARRAY1 is assumed to be #ARRAY1
(1:1,1:2).

The following topics are covered below:

■ Definitions of Array Dimensions
■ Assignment Operations with Arrays
■ Comparison Operations with Arrays
■ Arithmetic Operations with Arrays

Definitions of Array Dimensions

The first, second and third dimensions of an array are defined as follows:

PropertiesNumber of Dimensions

#a3(3rd dim., 2nd dim., 1st dim.)3

#a2(2nd dim., 1st dim.)2

#a1(1st dim.)1

Assignment Operations with Arrays

If an array range is assigned to another array range, the assignment is performed element by ele-
ment.

Example:

Programming Guide512

Rules for Arithmetic Assignment

DEFINE DATA LOCAL
1 #ARRAY(I4/1:5) INIT <10,20,30,40,50>
END-DEFINE
*
MOVE #ARRAY(2:4) TO #ARRAY(3:5)
/* is identical to
/* MOVE #ARRAY(2) TO #ARRAY(3)
/* MOVE #ARRAY(3) TO #ARRAY(4)
/* MOVE #ARRAY(4) TO #ARRAY(5)
/*
/* #ARRAY contains 10,20,20,20,20

If a single occurrence is assigned to an array range, each element of the range is filled with the
value of the single occurrence. (For a mathematical function, each element of the range is filled
with the result of the function.)

Before an assignment operation is executed, the individual dimensions of the arrays involved are
comparedwith one another to check if theymeet one of the conditions listed below. The dimensions
are compared independently of one another; that is, the 1st dimension of the one array is compared
with the 1st dimension of the other array, the 2nd dimension of the one array is compared with
the 2nd dimension of the other array, and the 3rd dimension of the one array is compared with
the 3rd dimension of the other array.

The assignment of values from one array to another is only allowed under one of the following
conditions:

■ The number of occurrences is the same for both dimensions compared.
■ The number of occurrences is indefinite for both dimensions compared.
■ The dimension that is assigned to another dimension consists of a single occurrence.

Example - Array Assignments:

The following program shows which array assignment operations are possible.

 DEFINE DATA LOCAL
 1 A1 (N1/1:8)
 1 B1 (N1/1:8)
 1 A2 (N1/1:8,1:8)
 1 B2 (N1/1:8,1:8)
 1 A3 (N1/1:8,1:8,1:8)
 1 I (I2) INIT <4>
 1 J (I2) INIT <8>
 1 K (I2) CONST <8>
 END-DEFINE
 *
 COMPUTE A1(1:3) = B1(6:8) /* allowed
 COMPUTE A1(1:I) = B1(1:I) /* allowed
 COMPUTE A1(*) = B1(1:8) /* allowed
 COMPUTE A1(2:3) = B1(I:I+1) /* allowed

513Programming Guide

Rules for Arithmetic Assignment

 COMPUTE A1(1) = B1(I) /* allowed
 COMPUTE A1(1:I) = B1(3) /* allowed
 COMPUTE A1(I:J) = B1(I+2) /* allowed
 COMPUTE A1(1:I) = B1(5:J) /* allowed
 COMPUTE A1(1:I) = B1(2) /* allowed
 COMPUTE A1(1:2) = B1(1:J) /* NOT ALLOWED ↩
(NAT0631)
 COMPUTE A1(*) = B1(1:J) /* NOT ALLOWED ↩
(NAT0631)
 COMPUTE A1(*) = B1(1:K) /* allowed
 COMPUTE A1(1:J) = B1(1:K) /* NOT ALLOWED ↩
(NAT0631)
 *
 COMPUTE A1(*) = B2(1,*) /* allowed
 COMPUTE A1(1:3) = B2(1,I:I+2) /* allowed
 COMPUTE A1(1:3) = B2(1:3,1) /* NOT ALLOWED ↩
(NAT0631)
 *
 COMPUTE A2(1,1:3) = B1(6:8) /* allowed
 COMPUTE A2(*,1:I) = B1(5:J) /* allowed
 COMPUTE A2(*,1) = B1(*) /* NOT ALLOWED ↩
(NAT0631)
 COMPUTE A2(1:I,1) = B1(1:J) /* NOT ALLOWED ↩
(NAT0631)
 COMPUTE A2(1:I,1:J) = B1(1:J) /* allowed
 *
 COMPUTE A2(1,I) = B2(1,1) /* allowed
 COMPUTE A2(1:I,1) = B2(1:I,2) /* allowed
 COMPUTE A2(1:2,1:8) = B2(I:I+1,*) /* allowed
 *
 COMPUTE A3(1,1,1:I) = B1(1) /* allowed
 COMPUTE A3(1,1,1:J) = B1(*) /* NOT ALLOWED ↩
(NAT0631)
 COMPUTE A3(1,1,1:I) = B1(1:I) /* allowed
 COMPUTE A3(1,1:2,1:I) = B2(1,1:I) /* allowed
 COMPUTE A3(1,1,1:I) = B2(1:2,1:I) /* NOT ALLOWED ↩
(NAT0631)
 END

Comparison Operations with Arrays

Generally, the following applies: if arrays with multiple dimensions are compared, the individual
dimensions are handled independently of one another; that is, the 1st dimension of the one array
is compared with the 1st dimension of the other array, the 2nd dimension of the one array is
compared with the 2nd dimension of the other array, and the 3rd dimension of the one array is
compared with the 3rd dimension of the other array.

The comparison of two array dimensions is only allowed under one of the following conditions:

■ The array dimensions compared with one another have the same number of occurrences.

Programming Guide514

Rules for Arithmetic Assignment

■ The array dimensions compared with one another have an indefinite number of occurrences.
■ All array dimensions of one of the arrays involved are single occurrences.

Example - Array Comparisons:

The following program shows which array comparison operations are possible:

DEFINE DATA LOCAL
1 A3 (N1/1:8,1:8,1:8)
1 A2 (N1/1:8,1:8)

1 A1 (N1/1:8)
1 I (I2) INIT <4>
1 J (I2) INIT <8>
1 K (I2) CONST <8>
END-DEFINE
*
IF A2(1,1) = A1(1) THEN IGNORE END-IF /* allowed
IF A2(1,1) = A1(I) THEN IGNORE END-IF /* allowed
IF A2(1,*) = A1(1) THEN IGNORE END-IF /* allowed
IF A2(1,*) = A1(I) THEN IGNORE END-IF /* allowed
IF A2(1,*) = A1(*) THEN IGNORE END-IF /* allowed
IF A2(1,*) = A1(I -3:I+4) THEN IGNORE END-IF /* allowed
IF A2(1,5:J) = A1(1:I) THEN IGNORE END-IF /* allowed
IF A2(1,*) = A1(1:I) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629)
IF A2(1,*) = A1(1:K) THEN IGNORE END-IF /* allowed
*
IF A2(1,1) = A2(1,1) THEN IGNORE END-IF /* allowed
IF A2(1,1) = A2(1,I) THEN IGNORE END-IF /* allowed
IF A2(1,*) = A2(1,1:8) THEN IGNORE END-IF /* allowed
IF A2(1,*) = A2(I,I -3:I+4) THEN IGNORE END-IF /* allowed
IF A2(1,1:I) = A2(1,I+1:J) THEN IGNORE END-IF /* allowed
IF A2(1,1:I) = A2(1,I:I+1) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629)
IF A2(*,1) = A2(1,*) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629)
IF A2(1,1:I) = A1(2,1:K) THEN IGNORE END-IF /* NOT ALLOWED(NAT0629)
*
IF A3(1,1,*) = A2(1,*) THEN IGNORE END-IF /* allowed
IF A3(1,1,*) = A2(1,I -3:I+4) THEN IGNORE END-IF /* allowed
IF A3(1,*,I:J) = A2(*,1:I+1) THEN IGNORE END-IF /* allowed
IF A3(1,*,I:J) = A2(*,I:J) THEN IGNORE END-IF /* allowed
END

When you compare two array ranges, note that the following two expressions lead to different
results:

515Programming Guide

Rules for Arithmetic Assignment

#ARRAY1(*) NOT EQUAL #ARRAY2(*)
NOT #ARRAY1(*) = #ARRAY2(*)

Example:

■ Condition A:

IF #ARRAY1(1:2) NOT EQUAL #ARRAY2(1:2)

This is equivalent to:

IF (#ARRAY1(1) NOT EQUAL #ARRAY2(1)) AND (#ARRAY1(2) NOT EQUAL #ARRAY2(2))

ConditionA is therefore true if the first occurrence of #ARRAY1 does not equal the first occurrence
of #ARRAY2 and the second occurrence of #ARRAY1 does not equal the second occurrence of
#ARRAY2.

■ Condition B:

IF NOT #ARRAY1(1:2) = #ARRAY2(1:2)

This is equivalent to:

IF NOT (#ARRAY1(1)= #ARRAY2(1) AND #ARRAY1(2) = #ARRAY2(2))

This in turn is equivalent to:

IF (#ARRAY1(1) NOT EQUAL #ARRAY2(1)) OR (#ARRAY1(2) NOT EQUAL #ARRAY2(2))

Condition B is therefore true if either the first occurrence of #ARRAY1 does not equal the first oc-
currence of #ARRAY2 or the second occurrence of #ARRAY1 does not equal the second occurrence
of #ARRAY2.

Arithmetic Operations with Arrays

A general rule about arithmetic operations with arrays is that the number of occurrences of the
corresponding dimensions must be equal.

The following illustrates this rule:

#c(2:3,2:4) := #a(3:4,1:3) + #b(3:5)

In other words:

Programming Guide516

Rules for Arithmetic Assignment

RangeNumber of OccurrencesDimension NumberArray

2:322nd#c

2:431st#c

3:422nd#a

1:331st#a

3:531st#b

The operation is performed element by element.

Note: An arithmetic operation of a different number of dimensions is allowed.

For the example above, the following operations are executed:

#c(2,2) := #a(3,1) + #b(3)

#c(2,3) := #a(3,2) + #b(4)

#c(2,4) := #a(3,3) + #b(5)

#c(3,2) := #a(4,1) + #b(3)

#c(3,3) := #a(4,2) + #b(4)

#c(3,4) := #a(4,3) + #b(5)

Below is a list of examples of how array ranges may be used in the following ways in arithmetic
operations (in COMPUTE, ADD or MULTIPLY statements). In examples 1-4, the number of occurrences
of the corresponding dimensions must be equal.

1. range + range = range.

The addition is performed element by element.

2. range * range = range.

The multiplication is performed element by element.

3. scalar + range = range.

The scalar is added to each element of the range.

4. range * scalar = range.

Each element of the range is multiplied by the scalar.

5. range + scalar = scalar.

Each element of the range is added to the scalar and the result is assigned to the scalar.

6. scalar * range = scalar2.

517Programming Guide

Rules for Arithmetic Assignment

The scalar is multiplied by each element of the array and the result is assigned to scalar2.

Since intermediate results will be generated for arithmetic operations as shown in the above ex-
amples, the result of overlapping index ranges is computed element by element in an intermediate
result array and finally the intermediate result array is assigned to the result field.

Example:

DEFINE DATA LOCAL
1 #ARRAY(I4/1:5) INIT <10,20,30,40,50>
END-DEFINE

#ARRAY(3:5) := #ARRAY(2:4) + 1

/* A temporary array for the
/* intermediate result values is
/* generated implicitly: #temp(1:3).
/* The following operations are
/* performed internally:
/* #temp(1) := #ARRAY(2) + 1
/* #temp(2) := #ARRAY(3) + 1
/* #temp(3) := #ARRAY(4) + 1
/* #ARRAY(3:5) := #temp(1:3)
/*
/* #ARRAY contains 10,20,21,31,41

Programming Guide518

Rules for Arithmetic Assignment

51 Invoking Natural Subprograms from 3GL Programs

■ Passing Parameters from the 3GL Program to the Subprogram .. 520
■ Example of Invoking a Natural Subprogram from a 3GL Program .. 521

519

Natural subprograms can be invoked from a programming object written in a 3rd generation
programming language (3GL). The invoking program can bewritten in anyprogramming language
that supports a standard CALL interface.

For this purpose, Natural provides the interface ncxr_callnat. The 3GL program invokes this
interface with a specification of the name of the desired subprogram.

Note: Natural must have been activated beforehand; that is, the invoking 3GL program
must in turn have been invoked by a Natural object with a CALL statement.

The subprogram is executed as if it had been invoked from another Natural object with a CALLNAT
statement.

When the processing of the subprogram stops (either with the END statement or with an ESCAPE
ROUTINE statement), control is returned to the 3GL program.

Passing Parameters from the 3GL Program to the Subprogram

Parameters can be passed from the invoking 3GLprogram to theNatural subprogram. For passing
parameters, the same rules apply as for passing parameters with a CALL statement.

The 3GL program invokes the Natural interface ncxr_callnatwith four parameters:

■ The 1st parameter is the name of the Natural subprogram to be invoked.
■ The 2nd parameter contains the number of parameters to be passed to the subprogram.
■ The 3rd parameter contains the address of the table that contains the addresses of the parameters
to be passed to the subprogram.

■ The 4th parameter contains the address of the table that contains the format/length specifications
of the parameters to be passed to the subprogram.

The sequence, format and length of the parameters in the invoking program must match exactly
the sequence, format and length of the fields in the DEFINE DATA PARAMETER statement of the
subprogram. The names of the fields in the invoking program and the invoked subprogram can
be different.

Programming Guide520

Invoking Natural Subprograms from 3GL Programs

Example of Invoking a Natural Subprogram from a 3GL Program

For an example of how to invoke aNatural subprogram from a 3GLprogram, refer to the following
samples in the Natural root directory's subdirectory samples\sysexuex.

■ MY3GL.NSP (for the main program),
■ MY3GLSUB.NSN (for the subprogram),
■ MYC3GL.C (for the C function).

521Programming Guide

Invoking Natural Subprograms from 3GL Programs

522

52 Issuing Operating System Commands from within a

Natural Program
■ Syntax ... 524
■ Parameters .. 524
■ Parameter Options ... 524
■ Return Codes ... 525
■ Examples ... 525

523

The Natural user exit SHCMD can be used to issue an operating system command from within a
Natural program.

Syntax

CALL 'SHCMD' 'command' ['option']

Parameters

command is to be executed by the operating system. To execute commands (such as DIR for
directory or DEL for delete) you have to specify the system command interpreter as well.

command

For more information, see Examples below.

option describes how the command should be executed. This parameter is optional. The
following options are available:

option

■ ASYNCH

■ NOSCREENIO

■ SYNCH (default)

See Parameter Options below.

Parameter Options

The following parameter options are available:

DescriptionOption

Natural does not wait until the command is completely executed. This kind of processing
is named asynchronous processing.

ASYNCH

This option is used to hide the output generated by the command. The hidden output is
redirected to the null device.

NOSCREENIO

Naturalwaits until the command is completed. This kind of processing is named synchronous
processing and is set by default.

SYNCH

Note: The options ASYNCH and SYNCHmay be not set at the same time.

Programming Guide524

Issuing Operating System Commands from within a Natural Program

Return Codes

The following return code values are available:

DescriptionReturn Code

Command successfully executed.0

Illegal SHCMD parameter specified.4

Operating-system-dependent error code.All other codes

Examples

Execute operating system command DIR to view a directory:

CALL 'SHCMD''CMD.EXE /C DIR'

Retrieve the return code by using the Natural function RET:

RESET rc (I4)
CALL 'SHCMD''CMD.EXE /C DIR'
rc = RET('SHCMD') /* retrieve return code
IF rc <> 0 THEN /* in case of an error
DISPLAY "Error occurred during SHCMD" /* display an error message

Execute a command which includes blanks within the command by enclosing the command with
quotation marks.

The following example executes Microsoft Excel.

RESET #cmd (A253)
MOVE '"C:\Program Files\Microsoft Office\Office\EXCEL.EXE"' to #cmd
CALL "SHCMD" #cmd "ASYNCH"

In this case, parameter TQ (translate quotationmarks) has to be OFF, otherwise the quotationmarks
have been removed.

To be independent of the TQparameter, use the hexadecimalASCII code of quotationmarks (H'22')
and append it at the beginning and the end of the command. The following example demonstrates
this:

525Programming Guide

Issuing Operating System Commands from within a Natural Program

RESET #cmd (A253)
MOVE H'22' - "C:\Program Files\Microsoft Office\Office\EXCEL.EXE" - H'22' to #cmd
CALL "SHCMD" #cmd "ASYNCH"

Programming Guide526

Issuing Operating System Commands from within a Natural Program

53 Statements for Internet and XML Access

■ Statements Available .. 528
■ Further References .. 529

527

This chapter gives an overview of theNatural statements for internet and XML access and contains
a list of further references. To take full advantage of these statements, a thorough knowledge of
the underlying communication standards is required.

Statements Available

The following statements are available for internet and XML access:

■ REQUEST DOCUMENT
■ PARSE XML

REQUEST DOCUMENT

This statement enables you to use the HTTP/HTTPS protocol.

The following is an example of how this statement can be used to access an externally-located
document:

REQUEST DOCUMENT FROM
"http://bolsap1:5555/invoke/sap.demo/handle_RFC_XML_POST"
WITH
USER #User PASSWORD #Password
DATA
NAME 'XMLData' VALUE #Queryxml
NAME 'repServerName' VALUE 'NT2'
RETURN
PAGE #Resultxml
RESPONSE #rc ↩

For further information, see REQUEST DOCUMENT in the Statements documentation.

PARSE XML

The PARSE XML statement allows you to parse XML documents from a Natural program.

For further information, see PARSE XML in the Statements documentation.

Programming Guide528

Statements for Internet and XML Access

Further References

Below is a list of resources that you may find useful.

■ Sample Programs
■ Training Courses
■ Useful Links

Sample Programs

In addition to the sample programs provided at the end of the description of each statement, some
sample programs are included in the Natural library SYSEXV.

Training Courses

SoftwareAG's CorporateUniversity offers special training courses on this subject. See theCorporate
University offerings on Empower at https://empower.softwareag.com/.

Or, ask your local Software AG representative for the availability of special on-site training courses
at your location.

Useful Links

Below is a collection of links that may be of interest.

■ World Wide Web Consortium (W3C): http://www.w3.org/
■ Extensible Markup Language (XML): http://www.w3.org/XML/
■ HyperText Markup Language (HTML) Home Page: http://www.w3.org/MarkUp/
■ W3 Schools: http://www.w3schools.com/

529Programming Guide

Statements for Internet and XML Access

http://servline24.eur.ad.sag/public/
http://www.w3.org/
http://www.w3.org/XML/
http://www.w3.org/MarkUp/
http://www.w3schools.com/

530

VIII Portable Natural Generated Programs

531

532

54 Portable Natural Generated Programs

■ Compatibility ... 534
■ Endian Mode Considerations ... 534
■ ENDIAN Parameter .. 535
■ Transferring Natural Generated Programs .. 535
■ Portable FILEDIR.SAG and Error Message Files .. 537

533

As of Natural Version 5, Natural generated programs (GPs) are portable across UNIX, OpenVMS
and Windows platforms.

Compatibility

As ofNatural Version 5, a sourcewhichwas cataloged on anyNatural-supportedUNIX,OpenVMS
andWindows platform is executable with all of these Open Systems platforms without recompil-
ation. This feature simplifies the deployment of applications across Open Systems platforms.

Natural applications generated with Natural Version 4 or Natural Version 3 can be executed with
Natural Version 5 or above without cataloging the applications again (upward compatibility). In
this case, the portable GP functionality is not available. To make use of the portable GP and other
improvements, cataloging with Natural Version 5 or above is required.

Command processor GPs are not portable. The portable GP feature is not available for mainframe
platforms. This means that Natural GPs which are generated on mainframe computers are not
executable onUNIX, OpenVMS andWindows platformswithout recompilation of the application
and vice versa.

Endian Mode Considerations

AsofNatural Version 5,Natural acts as follows:Depending onwhichUNIX,OpenVMSorWindows
platform it is running, Natural will consider the byte order inwhichmulti-byte numbers are stored
in the GP. The two byte order modes are called “Little Endian” and “Big Endian”.

■ “Little Endian” means that the low-order byte of the number is stored in memory at the lowest
address, and the high-order byte at the highest address (the little end comes first).

■ “Big Endian” means that the high-order byte of the number is stored in memory at the lowest
address, and the low-order byte at the highest address (the big end comes first).

The UNIX, OpenVMS andWindows platforms use both endian modes: Intel processors and AXP
computers have “Little Endian” byte order, other processors such asHP-UX, Sun Solaris, or RS6000
use “Big Endian” mode.

Natural converts a portable GP automatically into the endian mode of the execution platform, if
necessary. This endian conversion is not performed if the GP has been generated in the endian
mode of the platform.

Programming Guide534

Portable Natural Generated Programs

ENDIAN Parameter

In order to increase execution performance of portable GPs, the profile parameter ENDIAN has been
introduced. ENDIAN determines the endian mode in which a GP is generated during compilation:

The endian mode of the machine on which the GP is generated.DEFAULT

Big endian mode (high order byte first).BIG

Little endian mode (low order byte first).LITTLE

The values DEFAULT, BIG and LITTLE are alternatives whereby the default value is DEFAULT.

The ENDIANmode parameter may be set

■ as a profile parameter with the Natural Configuration Utility,
■ as a start-up parameter,
■ as a session parameter or with the GLOBALS command.

Transferring Natural Generated Programs

To make use of the portable GP on different platforms (UNIX, OpenVMS and Windows), the
generated Natural objects must be transferred to the target platform or must be accessible from
the target platform, for example, via NFS.

Using theNatural Object Handler is the recommendedway to distributeNatural generated objects
or even entireNatural applications. This is done by unloading the objects in the source environment
into a work file, transferring the work file to the target environment and loading the objects from
the work file.

To deploy your Natural generated objects across Open Systems platforms

1 Start the Natural Object Handler. Unload all necessary cataloged objects into a work file of
type PORTABLE.

Error messages, if needed, can also be unloaded to the work file.

Important: The specified work file type must be of type PORTABLE. PORTABLE performs
an automatic endian conversion of a work file when it is transferred to a different ma-
chine. See also the information on the work file type in the description of the DEFINE
WORK FILE statement in the Statements documentation.

535Programming Guide

Portable Natural Generated Programs

2 Transfer the work file to the target environment. Depending on the transfer mechanism
(network, CD, diskette, tape, email, download, etc.), the use of a compressed archive such as
a ZIP file or encoding with UUENCODE/UUDECODE or similar may make sense. Copying
via FTP requires binary transfer type.

Note: According to the transfer method used, it may be necessary to adjust the record
format and attributes or block size of the transferred work file depending on the spe-
cific target platform, before continuing with the load function. The work file should
have the same format and attributes on the target platform as a work file of the same
type that was generated on the target platform itself. Use operating system tools if an
adaptation is necessary.

3 Start the Natural Object Handler in the target environment. Select PORTABLE as work file type.
Load the Natural objects and error messages from the work file.

For more details on how to use the Natural Object Handler, refer to Object Handler in the Utilities
documentation.

You can find more information about how to port an application from a Natural development
workstation to a Natural Runtime workstation in the section Porting Procedure Overview in the
Operations documentation.

Beside the aforementioned preferredmethod, there are various otherways of “moving” or copying
single Natural generated objects or even entire libraries or parts thereof, using operating system
tools and different transfermethods. In all of these cases, tomake the objects executable byNatural,
they have to be imported into the Natural system file FUSER so that the FILEDIR.SAG structure is
adapted. For information on the FNAT or FUSER directory, see System Files FNAT and FUSER in the
Operations documentation.

This can be done with either of the following methods:

■ Using the Import function of the SYSMAIN utility.
■ Using the FTOUCH utility. This utility can be used without entering Natural.
■ It is also possible to import files from theWindows Explorer to the Natural environment, using
drag-and-drop or the menu commands Cut, Copy and Paste. This means, if you have access to
the Natural objects you want to import via the Windows Explorer, you can use drag-and-drop
or Cut, Copy and Paste, and the FILEDIR.SAG file will be updated automatically. For more
details on copying, moving and importing objects, seeManaging Natural Objects in the Using
Natural Studio documentation.

The same applies when direct access is possible from a target platform to the generated objects in
the source environment, for example, via NSF, network file server, etc. In this case, the objects
have to be imported, too.

Programming Guide536

Portable Natural Generated Programs

Portable FILEDIR.SAG and Error Message Files

As ofNatural Version 6.2, the file FILEDIR.SAG and the errormessage files are platform independ-
ent. Hence, it is possible to share common FUSER system files among different Open Systems
platforms. For example, it is possible to copy sets of Natural libraries from one Open Systems
platform to another with operating system copy procedures. However, it is not recommended to
share FNAT system files. For more information about the portable FILEDIR.SAG, refer to Portable
Natural System Files in the Operations documentation.

537Programming Guide

Portable Natural Generated Programs

538

IX Introduction to Event-Driven Programming

What is an Event-Driven Application?

GUI Development Environments

GUI Design Tips

Tasks Involved in Creating an Application

Tutorial

Basic Terminology

For detailed information on event-drivenprogramming, seeEvent-DrivenProgrammingTechniques.

539

540

55 What is an Event-Driven Application?

■ Introduction .. 542
■ Program-Driven Applications .. 543
■ Event Driven Applications .. 544
■ What is Happening Here? ... 545
■ Writing Event-Driven Code .. 545
■ Components of an Event Driven Application .. 546

541

Introduction

Event-driven applications represent a new approach to development in addition to the program-
driven approach. Natural offers you both. Event-driven programming allows the application to
be driven by input received through the graphical user interface.

In program-driven applications, the application controls the portions of code that execute - not an
event. Execution startswith the first line of executable code and follows a defined pathway through
the application, calling additional programs as instructed in the predetermined sequence.

In event-driven programming, the user's action or a system event triggers the code attached to
that event. Thus, the order in which your code executes depends on which events occur, which
in turn depends on what the user does. This is the essence of graphical user interfaces and event-
driven programming: The user is in charge, and the code responds. Even though event-driven
programming is possible in character-oriented interfaces, it is more common in graphical user in-
terfaces.

Because you cannot predict what the user will do, your code must make a few assumptions when
it executes. For example, the application might assume that the user added text to an edit-area
control before pressing theOK button.

When you must make assumptions, you should try to structure your application so that these as-
sumptions are always valid. For example, to ensure the user added text, you can disable the button
and enable it only when the change event occurs for the edit area control.

Your code can trigger additional events as it performs certain operations. For example, moving
the slider in a scroll bar control triggers the change event.

The following diagrams illustrate the difference between program-driven and event-driven applic-
ations.

Programming Guide542

What is an Event-Driven Application?

Program-Driven Applications

In typical program-driven applications, the following sequence of steps applies:

1. The program sends a screen to the terminal.

2. The user reacts by filling in the data fields.

3. The user then presses ENTER or a function key.

4. The program then decides whether or not the user's entries are valid.

If the data are valid, it processes the results until it reaches an END statement.

543Programming Guide

What is an Event-Driven Application?

Event Driven Applications

In typical event-driven applications, the following sequence of steps applies:

1. The user requests an action on the screen.

2. The event handler code reacts in the background according to the context.

3. If certain conditions are fulfilled, the executed event handler code triggers other Natural code
(here: a subroutine) or returns control to the screen.

In the program-driven approach, the user interacts with the code through the ENTER and function
keys, the user of an event-driven application triggers specific pieces of code (event handlers).
Typically, an event-driven application is not executing any code when waiting for user input; in
the same situation, the program-driven application might be processing an INPUT statement.

Programming Guide544

What is an Event-Driven Application?

What is Happening Here?

Graphical user interface programs require you to write programs that react to isolated events ini-
tiated by the user.

An event is an action recognized by a dialog or a dialog element. Event-driven applications execute
code in response to an event. Each dialog or dialog element has a predefined set of events. If one
of these events occurs, Natural invokes the code in the associated event handler.

You decide if and how the dialogs and dialog elements in your application respond to a particular
event. When you want a program to respond to an event, you write event code for that event.

Writing Event-Driven Code

For each dialog or dialog element you create, Natural predefines a set of events to which your
program (event handler) can respond. It is easy to respond to events: dialogs and dialog elements
have the built-in ability to recognize user actions and execute the code associated with them.

You do not have to write code for all events. When you do want a dialog object to respond to an
event, you write event code that Natural executes in response to that event.

In a typical event-driven application, the following series of actions takes place:

■ A dialog or dialog element recognizes an action as an event. The action can be caused by the
user (such as a click or keystroke).

■ If there is event code corresponding to the event, it is executed.
■ The application waits for the next event.

The event code youwrite to respond to events can perform calculations, get input, andmanipulate
parts of the interface. Using Natural, you manipulate dialogs or dialog elements by changing the
values of their attribute settings.

Caution: Avoid creating cascading events in your code caused by events occurring re-
peatedly. For example, when the user drags the slider in the scroll-bar control, the current
SLIDER attribute setting is automatically changed and the change event is triggered. If the
code attached to the change event also changes the current SLIDER attribute setting, then
the change event is triggered again, the current SLIDER attribute setting is again adjusted,
the change event is once again triggered, and so on. At this rate, you quickly run out of
memory.

545Programming Guide

What is an Event-Driven Application?

Components of an Event Driven Application

The following topics are covered below:

■ Dialogs
■ Dialog Elements
■ Attributes
■ Event Handlers
■ Data Areas - Global, Local, Parameter
■ Inline Subroutines

Dialogs

The dialog is the central Natural object in an event-driven application. An event-driven application
is started by running or executing the base dialog. This may open other dependent dialogs when
the OPEN DIALOG statement is specified. As opposed to program-driven applications, these dialogs
are usually modeless, that is, all open dialogs can be processed concurrently by the end user. The
application terminates when the base dialog is closed.

You create a dialog with the dialog editor. Just like the map editor, the dialog editor assembles a
Natural object from the specification of the dialogwindow and its dialog elements, the global data
area (GDA), the local data areas (LDAs), the parameter data areas (PDAs), the subroutines and
the specified event handler sections.

At runtime of the dialog, there is a difference between the runtime instance identified by the system
variable *DIALOG-ID and theGUI instance (handle) of the dialogwindow (the default handle name
is #DLG$WINDOW).

Whenever youwant to workwithmore than one dialog in your application, youmust decide how
the base dialogwindow relates to the other dialogs. First you have to decidewhether the application
should be MDI (Multiple Document Interface) or not.

If you have opted for anMDI application, the base dialogmust be of the type “MDI framewindow”
and the dependent dialogs must be of the type “MDI child window” and “Standard window”.

If you have opted for non-MDI, the application may contain only dialogs of the type “Standard
window”.

Dialogs of type “Standard window” can have the styles “Popup”, “Modal” or “Dialog Box”.

Programming Guide546

What is an Event-Driven Application?

Dialog Elements

Almost all dialog elements are graphical elements inside a dialog that allow the end user to interact
with the event-driven application. After a dialog has been opened with the dialog editor and its
attributes have been set (see below), the programmer will go on to “draw” the dialog elements
inside the window; usually, this comprises a menu control, possibly a toolbar, and other elements,
such as push-button controls, input-field controls.

“Drawing” a dialog element means that you select the type of dialog element from the dialog ed-
itor's menu or toolbar, and use the mouse to place it at the desired location. It is also possible to
define a grid where the dialog elements can be placed more conveniently by aligning them to the
grid.

547Programming Guide

What is an Event-Driven Application?

Attributes

Attributes are the properties of dialogs and dialog elements. After creating a dialog or dialog ele-
ment, you double-click with the mouse on it and the window with the corresponding attributes
appears. You can then set the attributes to a value; if not, they remain at the system default value.
The attributeswindowalso contains a push-button control that opens up the event handlerwindow.

Event Handlers

The event handlers represent the Natural code that is triggered when an event occurs. A click
event occurs, for example, when the end user clicks on a push-button control. Inside the event
handler window, you must first select the type of event from the list of events available for the
dialog or dialog element (the one whose attributes have just been set). Then, the code window is
enabled and Natural code can be entered.

Data Areas - Global, Local, Parameter

■ A global data area (GDA) is used to share data fields betweenNatural objects within the applic-
ation. One GDA per application may be specified.

■ A local data area (LDA) contains the data fields private to the dialog.
■ A parameter data area (PDA) is always present in dialogs. It is used to pass parameters to a
dialog in the OPEN DIALOG or SEND EVENT statements. In these statements, parameters are passed
either by specifying their name (WITH clause), or by listing parameters one after the other. You
can use the dialog editor PDA window to type in your PDA in free-form style or to include
PDAs defined externally.

Inline Subroutines

An inline subroutine defines standard code to be used for a frequently needed task called by a
number of event handlers. You access an inline subroutine window via the Inline Subroutines
push button control in the dialog window.

Programming Guide548

What is an Event-Driven Application?

56 GUI Development Environments

To understand the functions of Natural, you must first understand the environment in which it
runs.

A graphical user interface (GUI) environment differs from a traditional mainframe environment
in at least two important ways:

■ Applications share screen space. ANatural application runs in a group of one ormorewindows
and rarely occupies the full screen.

■ Applications share computing time. An application cannot run continually, or if it does, it must
run in the background.

UsingNatural, your applications share computing time and other resources (such as the clipboard).
An event-driven application consists of dialogs and dialog elements that wait for a particular event
to happen.

While your application is waiting to execute an event, it remains on the desktop (unless the user
closes the application). In the meantime, the user can run other applications, resize windows, or
customize system settings (such as color). However, your code is always present, ready to be ac-
tivated when the user returns to your application.

549

550

57 GUI Design Tips

■ Introduction .. 552
■ Do Your Research ... 552
■ Screen Design .. 553
■ Menu Design .. 554
■ Color Usage ... 555
■ Consistency Check .. 555

551

Introduction

Designing the screens for a GUI application requires different knowledge than designing the 3270
screens for a mainframe. Why is it different?

It is different, because GUI applications put the users in control; these applications are non-modal
and unstructured. The users choose the order in which they access windows, and fields within
the windows. Traditional database applications often require the users to perform operations in
a specific order; these applications are form-oriented and structured.

Designing a GUI screen is also different, because the GUI interface has different capabilities than
a traditionalmainframe interface. You can designwindows that incorporate dialog elements, such
as push button controls and list box controls. As you design your GUI windows, which are called
dialogs in event-driven Natural, you define the font type and size of the text, the background and
foreground colors, and the size of each window.

The following sections provide some tips for effective GUI design.

Do Your Research

■ Spend a few hours with your users before prototyping.

A couple of sessions with your users to iron out their needs, likes, and dislikes is enough to give
you to a good basis for beginning your design.

■ Take some ideas from existing GUI designs.

Save time by not re-inventing the GUI. Try out other GUIs with an eye for what works andwhat
does not. ConsistencywithinGUIs helps users learn to use new applications, improves efficiency,
and reduces training costs. Get user feedback on existing GUI applications - listen to their likes
and dislikes rather than develop a prototype that replicates the weaknesses of poor GUI design.

■ Develop your ideas on paper before spending time developing the application online.

It is faster for you to run through a number of screen design options for your main windows
on paper before spending time to create multiple prototypes online. It is quicker than coding
and you do not become attached to poor designs.

If you include your users in the development process, they can quickly comment about their
needs and likes before the application is installed in the system. Try to use a paper prototype
before reaching for the online development tool.

Programming Guide552

GUI Design Tips

Screen Design

■ Design multiple windows for related subject matter.

Unlike designing for 3270monitors, where you try tomaximize the number of fields per screen,
GUI screens are better designed using subwindows. You can, for example, have the essential
fields in the main window, and all optional or supplemental information stored in one or more
subwindows. Subwindows can include choices, such as drop-down lists, for the user to browse
through if they do not know the information to input into the main window. Messages and
field-dependent information are more effectively presented in supplemental windows than in
the main window.

■ Design clear, uncluttered windows.

Avoid cluttering your windows with more than three colors, multiple graphics, and a variety
of shapes. Balance your objects on the screen with lots of white space so users are not over-
whelmed by variety and distracted by the presentation. Try to keep shapes and objects to a
minimum and the number of colors low.

■ Design accessible, not overwhelming, windows.

Multiple fonts, font sizes, font types or families, and color schemes can overwhelm your users,
making your application seem inaccessible to them. Use a maximum of three fonts, font sizes,
and font types per window. Avoid using italics and serif fonts because they often break up on
the screen. Use color sparingly. Neutral colors are kindest to your users eyes. Though vibrant
reds and greens are very eye-catching, remember that your users spend a lot of their day
working in the windows you design.

■ Design for both keyboard and mouse use.

Some users prefer using the keyboard andmemorize the short cut commands, while other users
are more comfortable using the mouse. Each action should be accessible by both the mouse and
the keyboard.

■ Design the windows according to your users' needs.

Though it is tempting to create fabulous-looking screens with lots of functionality, if your users
do not use it, it is of no value. Remember that you are designing the application for your users
to get a job done, not for you to experiment with all the functionality you have available. First
find out what your users need, then tailor your design to meet their needs. You design screens
with different purposes in different ways. If you want to prompt the user, you use a conversa-
tional style; if you want the user to enter values from a form, you use a data-entry style.

553Programming Guide

GUI Design Tips

Conversational Screens

■ Design conversational screens with field prompts.

In a conversational-based style, users enter data from a conversation (travel reservations, for
example). Conversational-based styles, in which the user relies on the screen for prompting,
can be rich with labels, hints, instructions, and even questions for the users to ask their clients.

Data-Entry Screens

■ Design data-entry screens with terse labels.

In a form-based style, users enter data from a form. Each line on the input screen must match
a line on the form - and the lines must be in the same order. To maintain a line-for-line corres-
pondence, you can abbreviate labels. Headings and instructions are kept to a minimum. The
only purpose of labels is to help users find their places again after interruptions.

Menu Design

The following three criteria are recommended for designing menus.

■ Organize menus using the conventions defined by the operating system on which your users
run the application. Microsoft Windows, for example, recommends certain menus (File, Edit,
andView, for example), options onmenus (Cut,Copy, andPaste on theEditmenu, for example),
and a particular order of the menus on the menu bar (Help always appears at the right margin,
for example).

■ Arrangemenus by frequency of use and decide this information through observation or usability
testing.

Anticipatewhether usage changes as users becomemore expert.Watch that this does not violate
conventions established for the operating system.

■ Listmenu items alphabetically. Remember to follow the operating-system conventions and user
recommendations for frequency of using menu items.

Programming Guide554

GUI Design Tips

Color Usage

■ Be as conservative as possible with color.

Humans can remember the meaning of no more than five colors at a time, plus or minus two.
■ Use color as an additional signal, not as the primary signal.

Using bright red text to warn a user is not enough; add a warning tone. Eight percent of all
males are red-green color-blind and may not notice the red text.

■ On charts, do not use colors without adding a secondary key (for example, a broken or solid
underline).

Users with black and white monitors must be able to understand the key without the benefit of
color. Also, most users do not have color printers.

Consistency Check

■ Be consistent throughout the application.

Do not change fonts, colors, or shapes for related subjects. For example, design all theOK buttons
in an application with the same shape, size, color, and font. If related objects are presented in
different ways, users cannot use the visual clues, taking them longer to become comfortable
with the application. Present similar actions in a similar way, using the same font, color, and
size for related buttons.

■ Adopt a naming convention (and stick with it throughout the application).

While traditional programs tend to have one large program you modify for a name change,
object-oriented programs have numerous pieces of event code that you must edit individually
every time you make a name change. When you design GUI applications, you must be much
more rigorous about sticking to naming conventions. This avoids a lot of cleaning up time later.

555Programming Guide

GUI Design Tips

556

58 Tasks Involved in Creating an Application

There are a number of main tasks you perform to create an application in event-driven Natural.
The order in which they are explained in this section is the typical order in which you perform
them. However, this sequence is not inflexible. For example, you may very well test a dialog sev-
eral times in the process of designing it, and you will no doubt save your work more often during
the development process.

■ Decide whether your application is “Multiple Document Interface” or “Single Document Inter-
face”.

■ Create one or more dialogs.
■ Set the attributes of the dialog(s).
■ Create and place dialog elements in the dialog(s).
■ Set the attributes of the dialog elements.
■ Define the tab order in each of the dialogs (from the Dialogmenu, choose Control Sequence).
■ Save the dialog(s) to a name.
■ Define the global data area.
■ Define the local data area(s).
■ Write event handler code for the dialog(s).
■ Write inline subroutines for the dialog(s).
■ Write event handler code for the dialog elements.
■ Stow the dialog(s).
■ Test (check and run) the dialog(s).
■ Execute the application.

The tutorial in the next section introduces you to the most frequently performed tasks.

557

558

59 Tutorial

■ Creating a Dialog ... 560
■ Assigning Attributes to the Dialog .. 561
■ Creating Dialog Elements Inside the Dialog ... 563
■ Assigning Attributes to the Dialog Elements .. 565
■ Creating the Application's Local Data Area .. 566
■ Attaching Event Handler Code to the Dialog Element .. 567
■ Checking, Stowing and Running the Application ... 568

559

This chapter is a simple tutorial that demonstrates how to add the components of an event-driven
application one after the other. The tutorial describes how to develop a small sample application
consisting of one dialog. The application you will create is a degressive depreciation calculator.

You can use this calculator, for example, to find out the value of your car by entering how much
the car was worth when you bought it, how many years you have owned it, and the percentage
by which the value of the car decreases each year.

You can save your application at any stage, allowing you to interrupt the tutorial and continue at
a later time where you left.

To develop the sample application

1 Create a new dialog (represented by a window).

2 Assign the attributes to your dialog (decide the window's settings).

3 Create the dialog elements in the dialog (decide how the user can interact).

4 Assign the attributes to your dialog elements (decide attribute settings).

5 Create the application's local data area (define the variables that allow the event handler to
use the end user's numeric input).

6 Attach event handler code to the dialog element (decide what happens at runtime when the
user interacts).

7 Check, stow and run the application.

Apart from creating the local data area, this is the minimal number of steps required to create any
event-driven application.

The above steps are described in detail in the following topics:

Creating a Dialog

To create a new dialog

1 Invoke Natural.

2 From theObjectmenu, chooseNew > Dialog.

The Natural window displays the menus and the toolbar for the dialog editor. It displays an
editing window called Untitled1 - Dialog. You can resize this editing window.

Programming Guide560

Tutorial

The editing window contains the new dialog window, titled (Untitled). You can also resize
this new dialog window, or use the editing window's scroll bars.

Assigning Attributes to the Dialog

To assign attributes to the dialog

1 From the Dialogmenu, choose Attributes.

Or:

Double-click inside the dialog window.

TheDialog Attributes dialog box appears.

561Programming Guide

Tutorial

2 With the cursor in the String text box, type in the new dialog window's title: Degressive
Depreciation.

3 From the Background color drop-down list box, select the desired color, for exampleGray.

4 Choose theOK button.

TheDialog Attributes dialog box closes.

You have set the attribute STRING to the value Degressive Depreciation and the attribute
BACKGROUND-COLOUR-NAME to the value of your desired color, for example GRAY.

Programming Guide562

Tutorial

Creating Dialog Elements Inside the Dialog

To create the dialog elements inside the dialog

1 From the Toolsmenu, chooseOptions.

TheOptions dialog box appears.

2 Select the Dialog Editor page.

3 Make sure that the Display grid check box is selected and select the Lines option button.

This decides the way your grid will be displayed.

4 Choose theOK button to confirm the change.

The grid now helps you position and align the dialog elements.

Note: When the grid is not visible, you may have to change the color for the grid (on
the Dialog Editor page of theOptions dialog box). This may be the case when a gray
grid and a gray background have been defined.

5 From the Insertmenu, choose Text Constant.

Or:

Choose the toolbar button representing a text constant control.

6 Move the cursor to the upper left corner of the dialog window.

Ensure that the editor window's status bar displays an x and a y value of less than 50. Note
that at this time, the text constant control's width and height has an undefined value.

7 Click to fix the text constant control's position.

A grey rectangle representing the dialog element appears, surrounded by small black squares.
At the same time, the status bar indicates that #TC-1 is selected.

8 Point to one of the small black squares.

The cursor shape now indicates the direction inwhich you can resize the text constant control.

9 Resize #TC-1 to a width of about 200.

10 Make sure that the text constant control is selected.

11 From the Editmenu, choose Copy.

12 From the Editmenu, choose Paste.

A new text constant control #TC-2 is created on top of #TC-1.

563Programming Guide

Tutorial

13 Move the new text constant control to a position below the first one by clicking and dragging
via the mouse, or via the keyboard arrow keys with the SHIFT key held down.

14 Create another text constant control below the previous text control (in the same way).

15 From the Insertmenu, choose Input Field.

Or:

Choose the toolbar button representing an input field control.

16 Position the input field control in the upper right corner of the dialog window, next to the
first text constant control (in the same way as described above for the text constant control).

17 Create two more input field controls (by duplicating the first, as above). These input field
controls should have a height of 36. Align them horizontally with respect to each other and
vertically with respect to the three text constant controls (as shown below).

18 From the Insertmenu, choose Push Button.

Or:

Choose the toolbar button representing an push button control.

19 Position the push button control below the three input field controls.

20 Create a text constant control below the push button control.

Your dialog should now look like this:

Programming Guide564

Tutorial

Assigning Attributes to the Dialog Elements

To assign attributes to the dialog elements

1 Select the first text constant control #TC-1 and from the Controlmenu, choose Attributes.

Or:

Double-click the first text constant control #TC-1.

The corresponding attributes dialog box appears.

2 In the String text box, type in the text string to be displayed: Initial Value.

3 Choose theOK button.

The attributes dialog box closes.

4 Set the following text strings for the two text constant controls below:Number of Years for
#TC-2 and Percentage Applicable for #TC-3.

5 From all three input field controls and from the fourth text constant control, remove any text
strings (that is, the Untitled strings).

6 Set the following text string for the push button control: Calculate.

Your dialog should now look like this:

565Programming Guide

Tutorial

Creating the Application's Local Data Area

The local data area in this application defines the application's linked variables. These linked
variables receive the numeric values that the end user has entered in the input field controls. The
variables and their values are used in the calculation of the push button control's click event
handler code.

To prepare the creation of your local data area, your input field controls must use linked variables

1 Select the first input field control #IF-1 and from the Controlmenu, choose Attributes.

Or:

Double-click the first input field control #IF-1.

The corresponding attributes dialog box appears.

2 Choose the browse button (that is: the button with the three dots) to the right of the String
text box.

The Source for #IF-1.STRING dialog box appears.

3 Select (and enable) the Linked variable option button.

Programming Guide566

Tutorial

4 In the Variable name text box, enter: #INITIAL-VALUE.

5 Choose theOK button to close the Source for #IF-1.STRING dialog box and then choose the
OK button to close the attributes dialog box.

6 Set the following linked variable names for the remaining two input field controls: #YEAR-NUM
for #IF-2 and #PERC-APPLIC for #IF-3.

To create the application's local data area

1 From the Dialogmenu, choose Local Data Area.

TheDialog Local Data Area dialog box appears.

2 Define your local data as follows:

1 #INITIAL-VALUE (N6.2)
1 #PERC-APPLIC (N2.1)
1 #YEAR-NUM (N2)

3 Choose theOK button.

Natural will now be able to process the input data.

Attaching Event Handler Code to the Dialog Element

To attach event handler code

1 Select the push button control labelled Calculate.

2 From the Controlmenu, select Event Handlers.

A dialog box for the corresponding event handler definition section appears.

The CLICK event is preselected: when the end user clicks on this push button control, the
specified Natural code will be triggered.

3 In the event handler editing area, enter the following Natural code in free form:

#RESULT:= #INITIAL-VALUE * (((100 - #PERC-APPLIC)
/ 100) ** #YEAR-NUM)
MOVE EDITED #RESULT (EM=Z(5)9.99) TO #TC-4.STRING

4 Choose theOK button to close the dialog box.

567Programming Guide

Tutorial

Checking, Stowing and Running the Application

To check the application for syntax errors

1 From theObjectmenu, choose Check.

A dialog box comes up with a Natural error: a variable needs to be declared.

2 In the dialog box, choose the Edit button.

The dialog's code is displayed, the cursor pointing to the error (#RESULT).

3 Choose the Cancel button.

4 From the Dialogmenu, choose Local Data Area.

5 Add the following definition:

1 #RESULT (N6.2)

6 Choose theOK button.

7 Check your application again.

The information message box should now confirm that the check was successful.

To stow your application

1 From theObjectmenu, choose Stow.

The Stow Dialog As dialog box appears.

2 Enter the name Degrdep.

3 From the Libraries drop-down list box, select the library where you want the dialog to be
stowed.

4 Choose theOK button.

The information message box now confirms that the dialog was stowed successfully.

To run your application

■ From theObjectmenu, choose Run.

Programming Guide568

Tutorial

60 Basic Terminology

■ Attribute ... 570
■ Base Dialog .. 570
■ Control .. 571
■ Dialog ... 571
■ Dialog Box ... 571
■ Dialog Editor ... 571
■ Dialog Element .. 571
■ Event .. 572
■ Event Handler ... 572
■ Handle .. 572
■ Item .. 572
■ MDI - Multiple Document Interface .. 572
■ MDI Child Window ... 573
■ MDI Frame Window ... 573
■ Modal Window .. 573
■ SDI - Single Document Interface ... 573
■ Popup ... 573
■ Window ... 573

569

Event-driven Natural uses the following basic terminology:

Attribute

A property of a dialog or a dialog element which can assume specific values.

Example: If the HAS-STATUS-BAR attribute is set to TRUE for a dialog, then the dialog contains a
status bar.

The following operations may be made on attributes:

ResultOperation

In event handler code, you can query an attribute's value at runtime. Example:Query

#L:= #DLG$WINDOW.HAS-STATUS-BAR

In event handler code, you can set an attribute to a value in the global attribute list before you
create a dialog element dynamically. Example:

Set

#PUSH.STYLE:= 'O'
PROCESS GUI ACTION ADD WITH #W
PUSHBUTTON #PUSH

In event handler code, you canmodify an attribute value of an existing dialog element at runtime.
Example:

Modify

#PUSH.STYLE:= 'C' ↩

Base Dialog

This is the main dialog of an application. It is started from the command line or via the object list.
When this dialog is closed, all other dialogs of the application are closed as well.

Programming Guide570

Basic Terminology

Control

A type of dialog element. Examples: edit area control, push button control, list box control.

Dialog

A Natural object similar to a map or a program that represents a window in an event-driven ap-
plication, plus all event handlers and attributes directly attached to thewindow. It can be awindow,
a modal window, a dialog box, an MDI child window, and an MDI frame window. The window
as such is identified by its handle, the whole dialog is represented by the value of the system
variable *DIALOG-ID.

Dialog Box

A special kind of dialog that is exclusively processed in an application. While this dialog is active,
all other dialogs of the application are disabled and do not accept any user input. If a dialog invokes
a dialog box with an OPEN DIALOG statement, the dialog returns from the OPEN DIALOG statement
only after the dialog box is closed. This allows the application to return parameters from the dialog
box to the dialog.

Dialog Editor

The Natural editor with which you create and maintain dialogs.

Dialog Element

Dialog elements are (in most cases) graphical elements inside a window that enable the end user
to interact with the event-driven application. After a dialog has been created, and its attributes
have been set, the programmer places the dialog elements inside the window; usually, this com-
prises a menu control, possibly a toolbar, and other elements, such as push button controls and
input field controls. There are two types of elements: controls and items.

571Programming Guide

Basic Terminology

Event

Occurs when a user interacts with a dialog element. An eventmay also be sent fromwithin a piece
of code (user-defined event). Example: a click event occurs when the user uses the mouse to click
on a push button control for which a piece of click event handler code has been specified. The
system variable *EVENT contains the event name.

Event Handler

Programming code that is connected with a dialog element, and is triggered when a particular
type of event occurs.

Handle

Identifies a dialog element in code and is stored in handle variables. Example: #PB-1.

Item

A type of dialog element that is part of a control. Example: selection box item, which is part of a
selection box control.

MDI - Multiple Document Interface

Allows an application tomanage several different documents or several views of the samedocument
within themain applicationwindow (MDI framewindow). These views or documents are displayed
in separate MDI child windows.

Programming Guide572

Basic Terminology

MDI Child Window

Displays a view of a document within the MDI frame window of an MDI application.

MDI Frame Window

The parent window to all other child (document) windows in an MDI application.

Modal Window

Similar to a dialog box, except that if a dialog invokes a modal window with an OPEN DIALOG
statement, the dialog returns from the OPEN DIALOG statement immediately after themodalwindow
has completed opening.

SDI - Single Document Interface

As opposed toMDI applications, SDI applications do not have anMDI framewindow that contains
the document windows. Only a single view of a single document is displayed.

Popup

A dialog with style Popup is modeless and can be moved anywhere on the desktop.

Window

The basic type of window.

573Programming Guide

Basic Terminology

574

X Event-Driven Programming Techniques

Introduction

How To Open and Close Dialogs

How To Edit a Dialog's Enhanced Source Code

How Dialogs, Controls and Items Are Related Hierarchically

How To Define Dialog Elements

How To Manipulate Dialog Elements

How To Create and Delete Dialog Elements Dynamically

How To Enable and Disable Dialog Elements

Defining and Using Context Menus

Using the Clipboard and Drag and Drop

Using the TERMINATE or STOP Statements within Dialog-based Applications

System Variables

Generated Variables

Message Files and Variables as Sources of Attribute Values

Triggering User-Defined Events

Suppressing Events

Menu Structures, Toolbars and the MDI

Executing Standardized Procedures

Linking Dialog Elements to Natural Variables

Validating Input in a Dialog Element

Storing and Retrieving Client Data for a Dialog Element

Creating Dialog Elements on a Canvas Control

Label Editing in Tree View and List View Controls

Working with ActiveX Controls

Working with Arrays of Dialog Elements

Working with Control Boxes

Working with Date and Time Picker (DTP) Controls

575

Working with Dialog Bar Controls

Working with Error Events

Working with a Group of Radio-Button Controls

Working with Image List Controls

Working with List Box Controls and Selection Box Controls

Working with List View Controls

Working with Nested Controls

Working with a Dynamic Information Line

Working with Spin Controls

Working with a Status Bar

Working with Status Bar Controls

Working with Tab Controls

Working with Tree View Controls

Working with Dynamic Information Line and Status Bar

Adding a Maximize/Minimize/System Button

Defining Color

Adding Text in a Certain Font

Adding Online Help

Defining Mnemonic and Accelerator Keys

Dynamic Data Exchange - DDE

Object Linking and Embedding - OLE

Programming Guide576

Event-Driven Programming Techniques

61 Introduction

This documentation addresses the more experienced GUI programmer and describes essential
programming techniques. There are two ways to program in the dialog editor:

■ Use the dialog editor's menu bar and toolbar to create new dialogs or dialog elements and use
the attributes window to assign attribute values to them. The dialog editor will internally gen-
erate the corresponding Natural code.

■ Open an event-handler section or an inline-subroutine section and specifyNatural code explicitly.
This code will be added to the code that is generated internally. You can also enter parameter
data areas, global data areas and local data areas in the corresponding definition sections.

You can view the current dialog's generated and specified code by choosingObject > List in the
dialog editor's menu bar.

If you want a hands-on demonstration of how to program with the dialog editor, refer to the SY-
SEXEVT library. This library contains sample dialogs demonstrating basic functionality. Before
accessing the sample dialogs, read the README file. Then execute the MENU dialog.

Note: Code written in the dialog editor must be in structured mode.

If you want to execute a Natural application using dialogs, you must use a dialog to start this ap-
plication.

For further information on event-driven programming see Introduction to Event-Driven Program-
ming.

577

578

62 How To Open and Close Dialogs

■ Opening a Dialog ... 580
■ Operands ... 580
■ Passing Parameters to the Dialog ... 581
■ Permanence in Creating, Passing and Checking Data ... 582
■ Processing Steps When Opening a Dialog .. 583
■ Closing Dialogs ... 584
■ Initializing Attribute Values ... 584

579

This chapter covers the following topics:

Opening a Dialog

An event-driven application is started by executing the base dialog. Events triggered by the end
user will then typically cause other dialogs to be started. The application ends when the base
dialog is closed.

To open a dialog from anywhere within an event-driven application

■ Use the statement OPEN DIALOG.

This statement causes the dialog to be loaded and the processing on its opening to be performed.

Control over processing returns from the opened dialog except for dialogs with the style "Dialog
Box". For those dialog styles, control returns only after the dialog has ended.

The parameters passed are accessible only during the processing on the opening of a dialog (before-
open and after-open events), except for when the parameters are declared as BY VALUE in the
parameter data area of the opened dialog or when the dialog has the style "Dialog Box".

To open a dialog from anywherewithin an event-drivenNatural application, the following syntax
is used:

[PARENT] operand2[USING]OPEN DIALOG operand1

][DIALOG-ID] operand3[GIVING][

operand4...
WITH

PARAMETERS-clause

Operands

Operand1 is the name of the dialog to be opened. If the PARAMETERS-clause is used, operand1must
be a constant (the name of a cataloged dialog).

Operand2 is the handle name of the parent.

Operand3 is a unique dialog ID returned from the creation of the dialog. It must be defined with
format/length I4.

Programming Guide580

How To Open and Close Dialogs

Passing Parameters to the Dialog

When a dialog is opened, parameters may be passed to this dialog.

As operand4 you specify the parameters that are passed to the dialog.

With the PARAMETERS-clause, parameters may be passed selectively:

PARAMETERS [parameter-name=operand 4] _ END-PARAMETERS

Note: You may only use the PARAMETERS-clause if operand1 is an alphanumeric constant
and if the dialog is cataloged.

Parameter-name is the name of the parameter as defined in the parameter data area section of the
dialog.

To avoid format/length conflicts between operands and parameters passed, see the BY VALUE option
of the DEFINE DATA statement in the Statements documentation.

When passing parameters only with operand4, a dialog may be opened as follows:

/* The following parameters are defined in the calling dialog's parameter
/* data area (not in the parameter data area of the dialog to be opened):
1 #MYDIALOG-ID (I4)
1 #MYPARM1 (A10)
/* Pass the operands #MYPARM1 and 'MYPARM2' to the parameters #DLG-PARM1 and
/* #DLG-PARM2 defined in the dialog to be opened:

OPEN DIALOG 'MYDIALOG' USING
#DLG$WINDOW GIVING
#MYDIALOG-ID WITH
#MYPARM1 'MYPARM2'

When passing parameters selectively with the PARAMETERS-clause, a dialog may be opened as
shown in the following example:

/* The following parameters are defined in the calling dialog's parameter
/* data area (not in the parameter data area of the dialog to be opened):
1 #MYDIALOG-ID (I4)
1 #MYPARM1 (A10)
/* Pass the operands #MYPARM1 and 'MYPARM2' to the parameters #DLG-PARM1 and
/* #DLG-PARM2 defined in the dialog to be opened:

OPEN DIALOG 'MYDIALOG' USING
#DLG$WINDOW GIVING
#MYDIALOG-ID WITH PARAMETERS
#DLG-PARM1=#MYPARM1

581Programming Guide

How To Open and Close Dialogs

#DLG-PARM2='MYPARM2'
END-PARAMETERS

Permanence in Creating, Passing and Checking Data

The term “permanence” is used inNatural to denote data defined in a base dialog's local data area
whose existence is guaranteed throughout the whole lifetime of the dialog. Data defined in the
global data area are not kept permanent because the global data area can be exchanged while the
application is executed.

The reference to the permanent data is kept by saving the parameter data area internally during
opening of the dialog. This reference is reused when

■ a dialog element receives an event;
■ all parameters passed from one dialog to another are permanent, provided they reference the
base dialog's local data area.

Parameters are accessible

■ during the before-open and after-open event processing on opening of a dialog or
■ if all of them reference the base dialog's local data area.

The following example illustrates a case in which two parameters are kept permanently and one
other is not. Assume the base dialog is dialog A. This base dialog now opens dialog B, passing
parameters #X and #Y. After that, dialog B passes parameters #X and #Y on to dialog C. The #X and
#Y parameterswhich are now in dialog Cwill be permanent, even if dialog B is closed. If, however,
dialog B passes its own parameter #Zwhen opening dialog C, the parameter #Z is not permanent,
because if dialog B is closed, the reference to its local data area is no longer valid. No parameter
in dialog C is accessible (#Z does not reference the base dialog's local data area).

Programming Guide582

How To Open and Close Dialogs

Processing Steps When Opening a Dialog

This section describes what happens when a dialog is opening. You can open a dialog either by
executing it, for example from the command line, or by invoking it with an OPEN DIALOG statement.

■ The dialog object is loaded and starts executing.
■ The BEFORE-ANY event-handler section is executed, the value of the system variable *EVENT being
OPEN.

■ The BEFORE-OPEN event-handler section is executed.
■ The dialog window is created as specified in the dialog editor.
■ The BEFORE-ANY event-handler section is executed. *EVENT = AFTER-OPEN.
■ All dialog elements are created as specified in the dialog editor.
■ The dialog window and all dialogs are made visible except those that are VISIBLE = FALSE.
■ The AFTER-OPEN event-handler section is executed.
■ The AFTER-ANY event-handler section is executed. *EVENT = AFTER-OPEN.
■ The AFTER-ANY event-handler section is executed. *EVENT = OPEN (not if the dialog's STYLE attribute
value is "Dialog Box").

583Programming Guide

How To Open and Close Dialogs

Closing Dialogs

To close a dialog dynamically, you specify the following:

operand1
CLOSE DIALOG [USING] [DIALOG-ID]

*DIALOG-ID

Operand1 is the identifier of the dialog as returned in the OPEN DIALOG statement.

Example:

CLOSE DIALOG *DIALOG-ID /* Close the current Dialog

The dialogwill then be erased from the screen and removed frommemory. All local data associated
with the dialog will be gone.

Note: If a modal dialog is a child in a hierarchy of dialogs, the modal dialog should not
close its parent(s) because this will result in a deadlock.

operand1

Operand1 is the name of the dialog to be closed.

To close the current dialog, you specify *DIALOG-ID.

Initializing Attribute Values

You can specify conditions for the opening and closing of a dialog: this applies to the before-open,
after-open, and close events. These conditions can be used to initialize the attribute values in the
dialog.

The following is an example of after-open event-handler code: Red foreground color is assigned
to push buttons that the user must press after entering data in the associated input fields.

DEFINE DATA LOCAL
...

1 #OK-BUTTON HANDLE OF PUSHBUTTON
1 #CALC-BUTTON HANDLE OF PUSHBUTTON
1 #SAVE-BUTTON HANDLE OF PUSHBUTTON
1 #CONVERT-BUTTON

HANDLE OF PUSHBUTTON
...

Programming Guide584

How To Open and Close Dialogs

END-DEFINE
...
#OK-BUTTON.FOREGROUND-COLOUR-NAME := RED
#CALC-BUTTON.FOREGROUND-COLOUR-NAME := RED
#SAVE-BUTTON.FOREGROUND-COLOUR-NAME := RED
#CONVERT-BUTTON.FOREGROUND-COLOUR-NAME := RED

If you want to modify attribute values of dialog elements and of the dialog before the dialog is
opened (and displayed to the end user), do not specify this in the "before open" event-handler
code, because the dialog elements and the dialog window are not yet created. Instead, create the
dialog with the dialog editor and set the attribute VISIBLE to FALSE in the Dialog Attributes
window. Then modify all the attribute values in the after-open event-handler code (when the
handles are available). Then make the dialog visible with VISIBLE = TRUE.

Example:

DEFINE DATA LOCAL
...
1 #DIA-1 HANDLE OF DIALOG
1 #OK-BUTTON HANDLE OF PUSHBUTTON
1 #CALC-BUTTON HANDLE OF PUSHBUTTON
...
END-DEFINE
...
/* AFTER OPEN event-handler code section
...
#OK-BUTTON.FOREGROUND-COLOUR-NAME := RED
#CALC-BUTTON.FOREGROUND-COLOUR-NAME := RED
#DIA-1.VISIBLE := TRUE

585Programming Guide

How To Open and Close Dialogs

586

63 How To Edit a Dialog's Enhanced Source Code

■ What Is The Enhanced Source Code Format? ... 588
■ Avoiding Incompatibilities Between Dialog Editor And Program Editor .. 589
■ How To Use The Enhanced Source Code Format ... 590

587

What Is The Enhanced Source Code Format?

The enhanced source code format enables you to edit source code that has been generated by the
dialog editor. You edit enhanced source code in a program editorwindow.When you edit a dialog,
the dialog editor stores the results in internal structures. From these structures, source code is
generated when you save, stow, list or execute any other system command on the dialog. Code is
also generated when you refresh the program editor's source code window.

You can edit enhanced source code as you do any other Natural user code. The source code syntax
is subject to a number of formal conventions, however. For a documentation of the enhanced
source code syntax, see Enhanced Source Code Format in the Dialog Editor part of the Editors docu-
mentation.

When you execute a system command on a dialog you have just edited in the program editor
source code window, the dialog editor updates its internal structures and refreshes the source
code window.

Note: The dialog editor preserves code layout only in the user code sections, such as event
handlers.

The dialog editor supports the following source formats:

■ 213. This is the format generated by Natural Version 2.1.3 (New Dimension). It is supported for
input only. You cannot generate 2.1.3 format with Natural Version 3.1 and Version 3.2.

■ 22C. This is the format generated by Natural Version 2.2.2. In Natural for Windows, Natural
for UNIX and Natural for OpenVMS, dialogs can no longer be generated in this format. It, too,
is supported for input only.

■ 22D. This is the “enhanced” source-code format that fromnowon is the standard. It is generated
for compiling, storing, and editing dialogs in Natural Version 2.2.3 and above.

The characteristics of the enhanced source code format are:

■ Dialog sources are readable and printable without requiring conversion.
■ Dialog sources consist only of legal and fully documented Natural syntax.
■ Dialog sources can be edited textually using program editor functions such as scanning for and
replacing text.

■ Dialog sources can be displayed in the Natural Debugger.
■ Dialog sources are larger than 213 or 22C format sources (by a factor between 1.25 and 3.5).
■ Any code that can be generatedwith the dialog editor can also be codedmanually. For example,
if you “draw” a push-button control onto the user interface, the corresponding code is generated
implicitly. You can also create this push-button control explicitly with the help of a source-code
window that provides you with the functions of the program editor.

Programming Guide588

How To Edit a Dialog's Enhanced Source Code

■ You can switch between the dialog editor and the program editor by selecting the source code
window or the dialog window. If you edit in either window, you need to synchronize your
updates: (graphically) modifying the dialog locks the source code window and you may not
make changes there. Correspondingly, if you change the source code, youmay notmake changes
in the dialog window, which is locked. If your editor is locked, its status bar displays "Locked".

For dialogs in the old formats, this means:

■ They remain unchanged until they are processed in the dialog editor. They can be compiled
and executed in their old format.

■ When you load them into the dialog editor, the dialogs are saved in the new format. If they are
saved in the enhanced format, you must include the local data area NGULKEY1. Note that the
storage size increases when the dialogs are saved.

■ When you list or print them and you enable the "enhanced list mode" option, the dialogs are
displayed using the enhanced source code format.

Avoiding Incompatibilities Between Dialog Editor And Program Editor

When you edit the enhanced source code format, note that some of the syntax elements accepted
by the program editor are not accepted by the dialog editor. Enhanced source code editing is not
intended as a new programming technique in addition to using the dialog editor:

■ Itmay be syntactically acceptable to replace a dialog element's numeric coordinate (a RECTANGLE-
X attribute value) with a variable reference. The dialog editor, however, will not accept this
when the changes are synchronized, andwill prompt youwhen you issue a command requiring
the source code.

■ The dialog editor may accept a reference to a variable's STRING attribute even if the variable is
not declared, but the compiler will not accept this.

In the sections that are not user code, you should avoid such incompatibilities by adding only
code that is acceptable to both the compiler and the dialog editor.

In the user code sections, such as in event-handler sections and in external or internal subroutines,
your choice of programming techniques is not restricted by the dialog editor. In these sections,
however, you have no visual editing support.

As a general rule, a mixed approach is often the best, especially when you use dialog-editor-
generated code as a starting point.

Note: In the dialog editor, you can copy dialog elements to the clipboard and when you
paste them into user code, they appear as text.

589Programming Guide

How To Edit a Dialog's Enhanced Source Code

How To Use The Enhanced Source Code Format

To edit a dialog in the enhanced source code format

1 Load the dialog into the dialog editor.

2 From the Dialogmenu, choose Source Code.

Or:

Choose the "Source Code" toolbar button.

Or:

Press CTRL+ALT+C.

The dialog's source codewindowappears and the programeditor is loaded. This editor enables
you to scan for text strings, replace them, and so on. For more information on how to use the
program editor, refer to Program Editor.

The enhanced source code format's syntactical conventions are documented in the sectionEnhanced
Source Code Format of the Dialog Editor part of the Editors documentation.

Enhanced source code can be listed and printed as usual. You can also scan for strings by using
the Find command of the Editmenu.

Note: If you are replacing strings with this command, this canmake a dialog source incom-
patible with the dialog editor.

Programming Guide590

How To Edit a Dialog's Enhanced Source Code

64 How Dialogs, Controls and Items Are Related

Hierarchically

Dialogs and their dialog elements are organized hierarchically. Typically, the dialog window
contains a number of controls. The controls are children of the window or of other controls which
are capable of acting as containers. A control may contain a number of items. For example, a list
box control may contain several list box items. The control is the parent of the items.

The dialogs themselves are also organized hierarchically. Every time the OPEN DIALOG statement
is specified, the parent of the newly created dialog must be provided as a parameter. This para-
meter may be NULL-HANDLE or the handle of an existing dialog. If NULL-HANDLE is provided, the
dialog belongs to the desktop rather than to any other dialog. This means that the dialog can be
closed and minimized independently of any other dialog in the application. A dialog having an
existing dialog as parent is closed or minimized when the parent dialog is closed or minimized.

The first dialog in an application plays a special role and is sometimes called the base dialog.When
the base dialog is closed, all other dialogs in the application are also closed, whether they are
children of the base dialog or not.

All children on one hierarchical level are sorted in the sequence of their creation. Each dialog ele-
ment therefore always “knows” its parent, its predecessor and successor (on the same hierarchical
level), and its first and last child (if present). You can retrieve this information by using the following
attributes:

■ PARENT

■ PREDECESSOR

■ SUCCESSOR

■ FIRST-CHILD

■ LAST-CHILD

591

These attributes contain handle values of dialog elements. If their value is NULL, the dialog element
has no parent, successor, or child. The following example demonstrates how to go through all
dialog elements of a dialog.

Example 1:

1 #CONTROL HANDLE OF GUI

#CONTROL := #DLG$WINDOW.FIRST-CHILD
REPEAT UNTIL #CONTROL = NULL-HANDLE

...
#CONTROL := #CONTROL.SUCCESSOR

END-REPEAT

List box controls and list box items contain an additional attribute:

SELECTED-SUCCESSOR can be set for either the list box control itself or for any of its items. It points
to the next selected item in a list box control. For the list box control itself, it points to the first se-
lected item.

Example 2:

1 #ITEM HANDLE OF LISTBOXITEM

#ITEM := #LISTBOX.SELECTED-SUCCESSOR
REPEAT UNTIL #ITEM = NULL-HANDLE

...
#ITEM := #ITEM.SELECTED-SUCCESSOR

END-REPEAT

The above example is the query necessary to find all selected items in a list box control where
multiple selection is allowed (MULTI-SELECTION attribute).

Programming Guide592

How Dialogs, Controls and Items Are Related Hierarchically

65 How To Define Dialog Elements

■ Introduction .. 594
■ HANDLE OF GUI ... 595
■ NULL-HANDLE ... 595

593

Introduction

Dialog elements are uniquely identified by a handle. A handle is a binary value that is returned
when a dialog element is created. A handle must be defined in a DEFINE DATA statement of the
dialog.

You can define a handle

■ by creating a dialog or a dialog element with the dialog editor; in this case, the handle definition
is generated;

■ by explicitly entering the definition in a global, local, or parameter data area of the dialog;
■ by explicitly entering the definition in a subprogram or a subroutine.

Note: Handles of ActiveX controls are defined in a slightly different way than the standard
handle definition described below. This is described inWorking with ActiveX Controls.

A handle is defined inside a DEFINE DATA statement in the following way:

level handle-name [(array-defintion)] HANDLE OF dialog-element-type

Handles may be defined on any level.

Handle-name is the name to be assigned to the handle; the naming conventions for user-defined
variables apply.

Dialog-element-type is the type of dialog element. Its possible values are the values of the TYPE
attribute. It may not be redefined and not be contained in a redefinition of a group.

Examples:

1 #SAVEAS-MENUITEM HANDLE OF MENUITEM
1 #OK-BUTTON (1:10) HANDLE OF PUSHBUTTON

When you have defined a handle, you can use the handle-namewith handle attribute operands
in those Natural statements where an operand may be specified. With handle attribute operands,
you can, for example, dynamically query, set, or modify attribute values for the defined dialog-
element-type. This is themost important programming technique in the dialog editor. For details,
see the section How To Manipulate Dialog Elements.

If there is a dialog element handle of the same name in two different dialogs, the PARENT attribute
ensures that Natural knows the difference between the two handles (two different PARENT values).
Handles may be passed as parameters or may be assigned from one handle variable to another.

Programming Guide594

How To Define Dialog Elements

HANDLE OF GUI

In addition to the handle types referring to one dialog element, the generic handle type HANDLE
OF GUI is available. In event-handler code, you can use HANDLE OF GUI to refer to the handle of
any type of dialog element.

This can be useful, for example, if you are querying an attribute value in all dialog elements on
one level: you go through the dialog elements one after the other; in the course of this query, it is
not clear which type of dialog element is going to be queried next. Then a GUI handle makes it
possible to query the next dialog element regardless of its type. This saves a lot of coding, because
otherwise, you would have to query the attribute's value of each dialog element separately.

Example:

...
1 #CONTROL HANDLE OF GUI
...
#CONTROL := #DLG$WINDOW.FIRST-CHILD
REPEAT UNTIL #CONTROL = NULL-HANDLE

...
#CONTROL := #CONTROL.SUCCESSOR

END-REPEAT

NULL-HANDLE

The HANDLE constant NULL-HANDLEmay be used to query, set or modify a NULL value of a HANDLE.
Such a NULL value means that the dialog element is nonexistent (even if it has been created expli-
citly).

Example:

DEFINE DATA PARAMETER
1 #PUSH HANDLE OF PUSHBUTTON

END-DEFINE
...
IF #PUSH = NULL-HANDLE
...

The HANDLE constant NULL-HANDLE represents the NULL value of a HANDLE variable or of an attribute
with format HANDLE. For handle variables, the value indicates that the expression handle.attribute
refers to the global attribute list. For attributes, this value indicates that no value is currently set.

595Programming Guide

How To Define Dialog Elements

596

66 How To Manipulate Dialog Elements

■ Introduction .. 598
■ Querying, Setting and Modifying Attribute Values ... 598
■ Querying and Modifying Unicode Attribute Values .. 599
■ Restrictions .. 600
■ Numeric/Alphanumeric Assignment ... 600

597

Introduction

To manipulate dialog elements, Natural provides you with handle attribute operands. You use
handle attribute operands wherever an operand may be specified in a Natural statement. This is
the most important programming technique in event-handler code.

Important: You must have defined a handle.

Note: ActiveX controls are manipulated in a slightly different way than the standard way
described below. This is described inWorking with ActiveX Controls.

Handle attribute operands may be specified as follows:

handle.name - attribute.name [(index-specification)]

The handle-name is the handle of the dialog-element-type as defined in the HANDLE definition
of the DEFINE DATA statement.

The attribute-name is the name of an attribute which has to be valid for the dialog-element-
type of the handle.

Examples:

1 #PB-1 HANDLE OF PUSHBUTTON /* #PB-1 is a handle-name of the
/* dialog-element-type PUSHBUTTON

RESET #PB-1.STRING... /* #PB-1.STRING is the handle attribute operand
/* where STRING is a valid attribute-name of the
/* dialog-element-type PUSHBUTTON

1 #RB-1(1:5) HANDLE OF RADIOBUTTON /* #RB-1 is an array of five RADIOBUTTONs
IF #RB-1.CHECKED(3) = CHECKED /* If the third radio-button control is

THEN... /* checked ...

Querying, Setting and Modifying Attribute Values

In most applications, it will be necessary

■ to set an attribute value before creating the dialog element,
■ to modify the value after creating the dialog element, and
■ to query an attribute value.

Programming Guide598

How To Manipulate Dialog Elements

In some cases, it may be necessary to modify and query some attributes during processing, for
example to query the checked/not checked state of a radio-button control or to disable (= modify)
a menu item.

You can do that, for example, in the ASSIGN, MOVE or CALLNAT statements.

Examples:

1 #PB-1 HANDLE OF PUSHBUTTON /* #PB-1 is a handle-name of the
... /* dialog-element-type PUSHBUTTON
#PB-1.STRING:= 'MY BUTTON' /* Set or modify the value of the STRING

/* attribute to 'MY BUTTON'
#TEXT:= #PB-1.STRING /* Query the value of the STRING attribute

/* and assign the value to #TEXT
CALLNAT 'SUBPGM1' #PB-1.STRING /* Query the value of the STRING attribute

/* and pass it on to the subprogram

When you use the handle-name variable only on the left side of the statements, as in the first of
the three examples above, the attribute value is set or modified, that is, it is assigned the value of
the specified operand.

When you use the handle-name variable on the right side of the statements, as in the second ex-
ample, the attribute value is queried, that is, the value is assigned to the operand.

Once a handle has been defined (either explicitly in specified Natural code, or implicitly with the
dialog editor), it can be usedwithmostNatural statements.However, only a specific set of attributes
can be queried, set ormodified for a particular dialog element. To find outwhich values an attribute
can have, see the section Attributes in the Dialog Component Reference.

Although an exact data type is specified for the values of most attributes, it is sufficient to supply
move-compatible values to a handle attribute operand. The rules are the same as those for Natural
variables.

Querying and Modifying Unicode Attribute Values

All alphanumeric attributes are stored inUnicode form internally and are thus locale-independent.

However, in order to allow attribute values to be used asNatural statement operands, it is necessary
for the data to be transferred through a temporary internal data field that is accessible to the Nat-
ural Run-time. This internal field has the format and length as is documented for the corresponding
attribute, which (for historical, technical and compatibility reasons) is format A for alphanumeric
attributes by default and cannot be changed. The upshot of this is that alphanumeric attribute ac-
cesses will fail by default if the value being transferred contains characters that cannot be repres-
ented in the active code page. For example:

599Programming Guide

How To Manipulate Dialog Elements

#PB-1.STRING := U'оши́бка' /* --> NAT3413 ERROR in non-Cyrillic locales

The solution to this problem is to inform Natural that the temporary internal data field should be
created with format U rather than with format A. This is done by appending a “-U” suffix to the
name of any alphanumeric attribute. For example:

#PB-1.STRING-U := U'оши́бка' /* works in all locales

It is important to note that only the use of the “-U” suffix only has an effect on the format of the
temporary internal data field, not on the stored attribute. For example, there is only one STRING
attribute, regardless of whether it is addressed via the STRING or STRING-U notation. The same
storage location is used in both cases.

As a general rule, if alphanumeric attribute values are being set or retrieved that contain at least one
character that is not representable in the current code page, then the attribute name should be suffixed with
a “-U”.

Restrictions

Handle attribute operands must not be used in the following statements:

AT BREAK, FIND, HISTOGRAM, INPUT, READ, READ WORK FILE.

User-defined variables can be used instead.

Numeric/Alphanumeric Assignment

If you assign numeric operands to alphanumeric attributes, the values of these attributes will be
in a non-displayable format. The Natural arithmetic assignment rules apply.

If you need a displayable format, you can use MOVE EDITED.

Examples:

#PB-1.STRING:= -12.34 /* Non-displayable format
MOVE EDITED #I4 (EM = -Z(9)9) TO #PB-1.STRING /* Displayable format

The following edit masks may be used for the various format/length definitions of numeric oper-
ands:

Programming Guide600

How To Manipulate Dialog Elements

Edit MaskFormat/Length

-ZZ9I1

-Z(5)9I2

-Z(9)9I4

-Z(n).9(m)Nn.m/Pn.m

601Programming Guide

How To Manipulate Dialog Elements

602

67 How To Create and Delete Dialog Elements Dynamically

■ Introduction .. 604
■ Global Attribute List .. 604
■ Creating Dialog Elements Statically and Dynamically .. 604
■ How to Handle Events of Dynamically Created Dialog Elements .. 606

603

Introduction

Dialog elements are usually added to a dialog by means of the dialog editor. However, they can
also be created and deleted dynamically. This may be done, for example, when the layout of a
dialog is strongly context-sensitive.

A dialog element is created dynamically with the ADD action of the PROCESS GUI statement. This
action returns a handle to the newly created dialog element. As soon as the dialog element is created,
this handle points to a set of attributes specified for the dialog element just created.

Note: ActiveX controls are created in a slightly different way than the standard way de-
scribed below. This is described inWorking with ActiveX Controls.

For more information on the actions available, and on the parameters that can be passed, see Ex-
ecuting Standardized Procedures.

Global Attribute List

Bymodifying any handle attribute operand of the form handlename.attributename (for example,
#PB-1.STRING), you change an attribute value of the specific dialog element. As long as the dialog
element is not yet created and the handle variable has its initial value (NULL-HANDLE), the handle
attribute operand handlename.attributename refers to the global attribute list.

The global attribute list is a collection of all attributes defined for any dialog element. Natural
contains one such collection.Whenever a dialog element is created, it “inherits” its attributes from
this global attribute list. It does not inherit them when you create the dialog element with the
PROCESS GUI statement action ADD using the WITH PARAMETERS option.

Creating Dialog Elements Statically and Dynamically

To define a dialog element statically (in the dialog editor), with an individual set of attributes, you
must first set the attributes in the global attribute list to the desired values and then create the
dialog element. After creation, the values of the attributes in the global attribute list remain intact.
The next created dialog element gets the same attributes from the global attribute list as the previous
one, except those that have been modified.

The status of the global attribute list as found in the “after open” event handler is influenced by
the dialog elements defined statically. Therefore, before you start creating dialog elements dynam-
ically in the “after open” event handler, you should reset the attributes by means of the PROCESS
GUI action RESET-ATTRIBUTES to prevent your dialog elements from inheriting unexpected values

Programming Guide604

How To Create and Delete Dialog Elements Dynamically

from the global attribute list. If you want to avoid this inheritance problem, use the PROCESS GUI
statement action ADDwith the WITH PARAMETERS option.

Unexpected values may also result from having attribute values that mean different things if used
by different types of dialog elements. For example, the value s of the attribute STYLEmeans “scaled”
for the dialog element type bitmap control but “solid” for the dialog element type line control.

The PROCESS GUI action ADD is used to define a dialog element dynamically. This clause of the
PROCESS GUI statement enables you to specify the attribute valueswithin the statement. The inher-
itance of attributes from the global attribute list does not affect the PROCESS GUI statement action
ADD. The attributes specified in the statement are transferred to the global attribute list before the
action ADD is performed.

Note: When you use the PROCESS GUI statement with Parameter Clause 2 of the ADD action,
the global attribute list is not used or affected. For parameters which are needed to create
the dialog element, but which were not specified in the WITH PARAMETERS section of the
PROCESS GUI action ADD statement, the default value is taken. Apart from these, only the
parameters which are passed explicitly in the parameter list are used to create the dialog
element.

To create list-box and selection-box items dynamically, it may be more convenient to use the
PROCESS GUI action ADD-ITEMS. This allows you to insert several items at a time.

Example:

/* #PB-A inherits the current settings of the global attribute list
#PB-A.STRING := 'TEST1'
PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-A
#PB-B.STRING := 'TEST2'
/* #PB-B has the same attributes as #PB-A except STRING. This leads to #PB-B
/* covering #PB-A.
PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-B
COMPUTE #PB-C.RECTANGLE-Y = #PB-B.RECTANGLE-Y + #PB-C.RECTANGLE-H + 20
/* #PB-B has the same attributes as #PB-A except RECTANGLE-Y
/* #PB-C will be located 20 pixels below #PB-B
PROCESS GUI ACTION ADD WITH #DLG$WINDOW PUSHBUTTON #PB-C

To delete dialog elements dynamically, you use the PROCESS GUI action DELETE. You can also use
this technique to delete dialog elements createdwith the dialog editor (at design time). You should,
however, avoid using the handle of the deleted dialog element because this is invalid.

Dialog elements often do not have to be created dynamically. In some cases, it is sufficient tomake
dialog elements VISIBLE = TRUE and VISIBLE = FALSE, depending on the context. This technique
is more efficient and easier to handle. It also enables you to “insert” dialog elements anywhere in
the navigation sequence.

Example:

605Programming Guide

How To Create and Delete Dialog Elements Dynamically

DEFINE DATA LOCAL
...
1 #PB-1 HANDLE OF PUSHBUTTON
...

END-DEFINE
...
#PB-1.VISIBLE := FALSE
...
IF... /* Logical condition

#PB-1.VISIBLE := TRUE
END-IF

How to Handle Events of Dynamically Created Dialog Elements

When a dialog element is created dynamically, you cannot use the dialog editor to associate events
to it. Instead, youmust handle all events of all dynamically created dialog elements in the DEFAULT
event. In this event, you must filter out which event occurred for which dialog element. The code
for this is similar to the code generated by the dialog editor. The general structure is:

Example:

DECIDE ON FIRST *CONTROL
VALUE #PB-A

DECIDE ON FIRST *EVENT
VALUE 'CLICK'

/* Click event-handler code
NONE

IGNORE
END-DECIDE

VALUE #PB-B
...

VALUE #PB-C
...

END-DECIDE

In the case of event code for dynamically created ActiveX controls, where event parameters are used,
it is necessary to precede the event code with an OPTIONS 2 statement containing the name of the
event, otherwise the compiler will not be able to process parameter references (e.g.,
#OCX-1.<<PARAMETER-...>>) successfully. However, in contrast to the implicit generation of the
OPTIONS statement by the dialog editor for events for statically created controls, no OPTIONS 3
statement should be coded in this case. Otherwise the dialog editor would falsely interpret the
OPTIONS 3 statement as the end marker for the DEFAULT event, resulting in a scanning error on
attempting to load the dialog.

Example:

Programming Guide606

How To Create and Delete Dialog Elements Dynamically

DECIDE ON FIRST *CONTROL
VALUE #OCX-1 /* MS Calendar control

DECIDE ON FIRST *EVENT
VALUE '-602' /* DispID for KeyDown event

OPTIONS 2 KeyDown
/* KeyDown event-handler code containing parameter
/* access (e.g. #OCX-1.<<parameter-shift>>)

NONE
IGNORE

END-DECIDE
...
END-DECIDE

607Programming Guide

How To Create and Delete Dialog Elements Dynamically

608

68 How To Enable and Disable Dialog Elements

During end-user interaction, it may be implicitly clear that certain dialog elements must not be
used. For example, if a dialog requiring personnel data contains a group of radio button controls
for marital status and an input field control for date of marriage, the input field control must be
disabled whenever the marital status is other than married.

There are two ways to do this:

■ Use Natural code to enable/disable a dialog element dynamically.
■ Use the dialog editor (to disable a dialog element initially).

The first method is used more often.

The Natural code might look like this:

/*First alternative
...
IF #RB-1.ENABLED = TRUE /* Logical condition

#IF-1.ENABLED := TRUE /* Set ENABLED to TRUE
END-IF
...
/*Second alternative
#PB-1.ENABLED := #RB-1.ENABLED

When you use the dialog editor, you set the attribute ENABLED to TRUE by marking the Enabled
entry in the dialog element's attributes window.

To disable editing in input-field controls, selection box controls and edit area controls, it is not al-
ways necessary to disable these dialog elements entirely. It may be sufficient to make them MODI-
FIABLE = FALSE.

609

610

69 Defining and Using Context Menus

■ Introduction .. 612
■ Construction ... 612
■ Association ... 613
■ Invocation .. 614
■ Manual Invocation ... 617
■ Sharing of Context Menus ... 618

611

Introduction

As from Natural v4.1.1, it is possible to create context menus for use within Natural applications.
The context menus can be completely static (i.e., the menu contents are known in advance and
can be built via the dialog editor) or wholly or partially dynamic (i.e., the menu contents and/or
state depend on the runtime context and are not completely known at design time).

Construction

A context menu is very similar in concept to a submenu. Therefore, the same menu editor is used
for editing a context menu as is used for editing a dialog's menu bar. Menu items can be added
to context menus, and events associated with them, in exactly the same way as for menu-bar
submenus. There are no functional differences to the menu bar editor, except that theOLE combo
box (which is applicable only to top-level menu-bar submenus) will always be disabled. It should
be noted, however, that any accelerators defined for context menu items will be globally available
as long as thatmenu item exists. Furthermore, the acceleratorwill trigger themenu item forwhich
it is defined even if the context menu is not being displayed or if the focus is on a control using a
different context menu or no context menu at all.

The context menu editor may be invoked via either a new menu item, Context menus... on the
Dialogmenu, or via its associated accelerator (CTRL+ALT+X by default), or toolbar icon. However,
because the contextmenu editor can only edit one contextmenu editor at a time, the context-menu
editor is not invoked directly. Instead, theDialog Context Menuswindow is shown, where oper-
ations on the context menu as a whole are made, and from which the menu editor for a given
(selected) context menu can be invoked.

Internally, in order to distinguish between submenus and context menus, context menus have a
new type, CONTEXT MENU. Otherwise, the generated code in both cases is identical. Here is some
sample code illustrating the statements used to build up a simple context menu containing two
menu items:

/* CREATE CONTEXT MENU ITSELF:
PROCESS GUI ACTION ADD WITH PARAMETERS

HANDLE-VARIABLE = #CONTEXT-MENU-1
TYPE = CONTEXTMENU
PARENT = #DLG$WINDOW

END-PARAMETERS GIVING *ERROR
/* ADD FIRST MENU ITEM:
PROCESS GUI ACTION ADD WITH PARAMETERS

HANDLE-VARIABLE = #MITEM-1
TYPE = MENUITEM
DIL-TEXT = 'Invokes the first item'

Programming Guide612

Defining and Using Context Menus

PARENT = #CONTEXT-MENU-1
STRING = 'Item 1'

END-PARAMETERS GIVING *ERROR
/* ADD SECOND MENU ITEM:
PROCESS GUI ACTION ADD WITH PARAMETERS

HANDLE-VARIABLE = #MITEM-2
TYPE = MENUITEM
DIL-TEXT = 'Invokes the second item'
PARENT = #CONTEXT-MENU-1
STRING = 'Item 2'

END-PARAMETERS GIVING *ERROR

Note that if context menus or context-menu items are created dynamically in user-written code,
the context menu or menu items will not be visible to the dialog editor. For example, the dynam-
ically created menu item will not be visible in the context menu list box, and the dynamically
created menu items will not be visible in the context menu editor.

Association

After creating a context menu, the context menu needs to be associated with a Natural object.
Contextmenus are supported for almost all controls types capable of receiving the keyboard focus
and for the dialog window itself. The full list includes ActiveX controls, bitmaps, canvasses, edit
areas and input fields, list boxes, push buttons, radio buttons, scroll bars, selection boxes, table
controls, toggle buttons, standard and MDI child windows, and MDI frame windows.

For all object types supporting context menus, the corresponding attribute dialogs in the dialog
editor include a read-only combo box listing all contextmenus created by the dialog editor, together
with an empty entry. The selection of the empty entry implies that no context menu is to be used
for this object, and is the default.

Internally, the association is achieved by a new attribute, CONTEXT MENU, which should be set to
the handle of a context menu. This attribute can be assigned at or after object creation time, and
defaults to NULL-HANDLE if not specified, indicating the absence of a context menu. For context
menus created by the dialog editor, the context menu is specified at control creation time as illus-
trated below:

PROCESS GUI ACTION ADD WITH
PARAMETERS

HANDLE-VARIABLE = #LB-1
TYPE = LISTBOX
RECTANGLE-X = 585
RECTANGLE-Y = 293
RECTANGLE-W = 142
RECTANGLE-H = 209
MULTI-SELECTION = TRUE

613Programming Guide

Defining and Using Context Menus

SORTED = FALSE
PARENT = #DLG$WINDOW
CONTEXT-MENU = #CONTEXT-MENU-1
SUPPRESS-FILL-EVENT = SUPPRESSED

END-PARAMETERS GIVING *ERROR

The same syntax can also be used for controls created in user-written event code. In other cases,
where the controlwas created by the dialog editor but the contextmenuwas not, the contextmenu
attribute must be assigned to the control after its creation, e.g., in the dialog's AFTER-OPEN event:

/* CONTEXT MENU SPECIFIED AFTER CREATION:

#LB-2.CONTEXT-MENU := #CONTEXT-MENU-2

Note that a context menu is not destroyed when an object using it is destroyed. Instead, it is des-
troyed when its parent object (typically, the dialog for which the context menu was defined) is
destroyed. Similarly, the assignment of a new menu handle to the CONTEXT MENU attribute where
one is already assigned does not result in the previous context menu being destroyed. Thus, using
the above examples, neither of the following statements results in CONTEXT-MENU-1 being destroyed:

PROCESS GUI ACTION DELETE WITH #LB-1 /* #CONTEXT-MENU-1 LIVES ON

#LB-1.CONTEXT-MENU := #CONTEXT-MENU-2 /* SAME HERE

Invocation

The context menu invocation process in Natural is as follows:

1. If the context menu is accessed via the mouse (i.e., secondary mouse button click), the target
control is initially assumed to be the control immediately under the mouse cursor. Otherwise,
if the context menu is accessed via the keyboard (i.e., either via the context menu key, if any,
or via the key combination Shift+F10), the target control is initially assumed to be the control that
currently has the keyboard focus.

2. The control's click position is set, relative to the target control's client area. If the context menu
is accessed via the keyboard, the click position is set to (0, 0).

3. A CONTEXT-MENU event is raised for the target control, if not suppressed via the SUPPRESS-CON-
TEXT-MENU-EVENT attribute.

4. The target control's CONTEXT-MENU attribute is queried. Depending on its value and the type of
the target control, the following action is taken:
■ If the attribute is set to NULL-HANDLE and the target control is a dialog, the context menu in-
vocation process is aborted, without any context menu having been displayed.

Programming Guide614

Defining and Using Context Menus

■ If the attribute is set to NULL-HANDLE and the target control is a dialog element, the target
control is assumed to be the dialog element's PARENT, and the contextmenu invocation process
repeats starting with step 2 above.

■ If the attribute is set to the handle of a context menu, this context menu is taken as being the
context menu that needs to be displayed (i.e., the target context menu), and processing con-
tinues with step 5 below.

5. A BEFORE-OPEN event is raised for the target context menu, if not suppressed.

6. The target context menu's ENABLED attribute is queried. If it is set to FALSE, the context menu is
not displayed.

7. Otherwise, a COMMAND-STATUS event is raised for the target dialog, if not suppressed. The target
dialog is the dialog containing the target control, if it is a dialog element, or the target control
itself, if it is a dialog.

8. The context menu is displayed at the click position set in step 2 above.

The actual navigation within the context menu and the triggering of the events associated with
the menu items is done by Windows and Natural with no intervention from the application.

Note that the above process continues up through the control hierarchy, starting with the initial
target control, until if finds a dialog or dialog element with a context menu (if any), and then uses
that context menu.

The purpose of the CONTEXT-MENU event is to allow application to select the appropriate context
menu (by modifying the target control's CONTEXT-MENU attribute) from a number of possible can-
didates according to the context. For an example of using multiple context menus, seeWorking
with List View Controls.

Similarly, the context menu's BEFORE-OPEN event gives the application the chance to modify the
context menu according to the current program state. For example, menu items could be added
or deleted, or particular menu items grayed or checked. Here is some sample code for the
BEFORE-OPEN event:

/* DELETE FIRST MENU ITEM:
PROCESS GUI ACTION DELETE WITH #MITEM-1
/* CHECK SECOND MENU ITEM:
#MITEM-2.CHECKED := CHECKED
/* DISABLE THIRD MENU ITEM:
#MITEM-3.ENABLED := FALSE
/* INSERT NEW MENU ITEM BEFORE #MITEM-3:
PROCESS GUI ACTION ADD WITH PARAMETERS

HANDLE-VARIABLE = #MITEM-4
TYPE = MENUITEM
DIL-TEXT = 'Invokes the first item'
PARENT = #CONTEXT-MENU-1
STRING = 'Item 3'

615Programming Guide

Defining and Using Context Menus

SUCCESSOR = #MITEM-3
END-PARAMETERS GIVING *ERROR

For context menus not created by the dialog editor, the handling of the BEFORE-OPEN event must
be done in the DEFAULT event for the dialog. Note also that if a control or dialog is disabled, no
context menu is displayed, and the BEFORE-OPEN event is also not triggered. The same applies if
the context menu itself is disabled. For example:

#CONTEXT-MENU-1.ENABLED := FALSE /* DISABLE CONTEXT MENU DISPLAY

Note that it is possible to disable the context menu in this way during the BEFORE-OPEN event, al-
lowing selective disabling of the context menu depending on the mouse cursor position within
the control. For example, it might be desired to only display a context menu if the mouse cursor
is over a selected list-box item. Determining whether this is the case is possible via the use of two
PROCESS GUI ACTION calls:

■ INQ-CLICKPOSITION has been extended to controls other than bitmaps and canvasses to return
the (X, Y) position of the rightmouse button clickwithin the control. In addition, these parameters
are now optional, and a new optional parameter has been introduced that is set to TRUE if the
context menu was accessed via the mouse, or FALSE if it was accessed by the keyboard. In the
latter case, the click position is set to (0, 0). All this information is updated immediately prior
to the sending of the BEFORE-OPEN event.

■ INQ-ITEM-BY-POSITION. This allows translation of the relative co-ordinate returned by
INQ-CLICKPOSITION applied to a list box to the corresponding item.

As an example of the use of these two new actions, consider the situation where we want to detect
whether the cursor was over a selected list-box item when the right mouse button was pressed in
order to determinewhether to display a contextmenu or not. This can be achieved by the following
code in the BEFORE-OPEN event of the associated context menu:

PROCESS GUI ACTION INQ-CLICKPOSITION WITH
#LB-1 #X-OFFSET #Y-OFFSET

PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
#LB-1 #X-OFFSET #Y-OFFSET #LBITEM

#MENU = *CONTROL
IF #LBITEM = NULL-HANDLE /* NO ITEM UNDER (MOUSE) CURSOR */

#MENU.ENABLED := FALSE
ELSE

IF #LBITEM.SELECTED = FALSE /* ITEM UNDER CURSOR DESELECTED */
#MENU.ENABLED := FALSE

ELSE /* ITEM UNDER CURSOR IS SELECTED */
#MENU.ENABLED := TRUE

END-IF
END-IF

Programming Guide616

Defining and Using Context Menus

In some cases, it may be desired to automatically select the item under the mouse cursor if it is
not already selected, clearing any existing selection. For list boxes, it is possible to achieve this by
using the new AUTOSELECT attribute, either directly or via the new Autoselect check box in the
List Box Attributeswindow in the dialog editor. If this attribute is set to TRUE, Natural will auto-
matically update the selection before sending the BEFORE-OPEN event, if the context menu was in-
voked over an unselected list-box item.

For table controls, any change in the selection must be done via the application itself in the
BEFORE-OPEN event. Tomake this possible, another new PROCESS GUI ACTION has been introduced
for table controls:

■ TABLE-INQUIRE-CELL. This returns the cell's row and column number (starting from 1) for a rel-
ative (X, Y) position within the table. This position can (and would typically be) the position
returned by a previous call to PROCESS GUI ACTION INQ-CLICKPOSITION.

The COMMAND-STATUS event is an alternative location for the application to perform any updating
such as graying and checking of commands (i.e., menu items, tool bar items and signals). If you
are already using this event, you do not need to perform these actions in the BEFORE-OPEN event.

Manual Invocation

In addition to the automatic context menu invocation process described above, it is also possible
to invoke a particular context menu manually at a specific position via the SHOW-CONTEXT-MENU
action.

This is primarily intended for (but not restricted to) usewithActiveX controls where the automatic
mechanism is not always applicable. This is because some ActiveX controls, depending on their
internal implementation, do not raise the message used by Natural to trigger the context menu
display. In such cases, if the ActiveX control raises an event when the secondary mouse button is
pressed, the context menu can be manually displayed within the event handler for that event via
this action.

For example, assuming we wish to display the context menu #CTXMENU-1 for the Microsoft Rich
Textbox ActiveX Control, #OCX-1, we could use the following code in the control's MouseDown
event handler:

IF #OCX-1.<<PARAMETER-Button>> = 2
#X := #OCX-1.<<PARAMETER-x>> + 2
#Y := #OCX-1.<<PARAMETER-y>> + 2
PROCESS GUI ACTION SHOW-CONTEXT-MENU WITH

#CTXMENU-1 #OCX-1 #X #Y GIVING *ERROR
END-IF

where the following local data definitions are assumed:

617Programming Guide

Defining and Using Context Menus

01 #X (I4)
01 #Y (I4)

Note that the above code first checks whether the secondary mouse button was pressed, then in-
vokes a context menu manually, based on the position passed by the control. The position is,
however, first corrected slightly to account for the fact that the position supplied by the control is
relative to the ActiveX control (which has a 2-pixel sunken border), whereas the position used to
display the context menu is assumed to be relative to the ActiveX control's containerwindow
(which has no border).

Note that some ActiveX controls may return coordinates in units other than pixels, such as twips
(twentieths of a point). The following example shows how to convert co-ordinates (#X, #Y) from
twips to pixels:

#CONTROL := *CONTROL
/* Convert x-coordinate
MULTIPLY #X BY #CONTROL.DPI
DIVIDE #X BY 1440
/* Convert y-coordinate
MULTIPLY #Y BY #CONTROL.DPI
DIVIDE #Y BY 1440

where #CONTROL is defined as HANDLE OF GUI, and #X and #Y are assumed to be of format I4.

The value 1440 is the number of twips per logical inch, whereas the DPI attribute applied to a
dialog element returns the number of pixels per logical inch.

Sharing of Context Menus

It is of course possible to associate the same context menu with more than one object (i.e., control
or dialog). For example:

#LB-1.CONTEXT-MENU := #CTXMENU-1
#LB-2.CONTEXT-MENU := #CTXMENU-1

In such a scenario,we need to be able to determine forwhich control the contextmenuwas invoked.
We cannot use *CONTROL in the BEFORE-OPEN event, because this will contain the handle of the
context menu itself. Instead, it is necessary to inquire which control has the focus, since Natural
automatically places the focus on the control for which the context menu is being invoked. Here
is some sample BEFORE-OPEN event code illustrating the use of this technique:

Programming Guide618

Defining and Using Context Menus

PROCESS GUI ACTION GET-FOCUS WITH #CONTROL
DECIDE ON FIRST VALUE OF #CONTROL

VALUE #LB-1
#MITEM-17.ENABLED := FALSE

VALUE #LB-2
#MITEM-17.CHECKED := CHECKED

NONE
IGNORE

END-DECIDE

However, a better approach, which works in all cases, is to query the context menu's CONTROL at-
tribute instead:

#CONTROL := *CONTROL
DECIDE ON FIRST VALUE OF #CONTROL.CONTROL

...
END-DECIDE

619Programming Guide

Defining and Using Context Menus

620

70 Using the Clipboard and Drag and Drop

■ Introduction .. 622
■ Clipboard Specifics .. 624
■ Drag and Drop Specifics ... 625
■ Drag and Drop Insertion Marks ... 627
■ Drag-Drop Checklist ... 628

621

Introduction

Both clipboard and drag/drop data transfermake use of a logical clipboard at theNatural language
level, allowing a single set of methods to handle both requirements. The PROCESS GUI actions for
handling the logical clipboard are as follows: OPEN-CLIPBOARD, SET-CLIPBOARD-DATA,
CLOSE-CLIPBOARD, GET-CLIPBOARD-DATA and INQ-FORMAT-AVAILABLE. Each Natural process has
exactly one logical clipboard, which is why it is referred to in the product documentation as the
“local” clipboard.

OPEN-CLIPBOARD is the first step in building up the logical clipboard data. It takes an optional
parameter (owner window), which is typically the handle of the control sourcing the data. If
anything was previously on the logical clipboard, this action empties it. Note that you don't need
to call this for drag and drop, because Natural does this implicitly before raising the BEGIN-DRAG
event (see below).

SET-CLIPBOARD-DATA puts the actual data on the logical clipboard. The first parameter is the clip-
board format, specified as a string. There are two pre-defined formats (defined in NGULKEY1 as
CF-TEXT and CF-FILELIST), which are used for standard text transfer, and lists of files (suitable
for data exchange with theWindows Explorer andmany other applications) respectively. In addi-
tion, an arbitrary string (which should not begin with a dgit) should be used to indicate a private
clipboard format that onlyNatural applications can understand (they just need to know the format
string so they can pass it to GET-CLIPBOARD-DATA to retrieve the data). The second and subsequent
arguments are an arbitrary number of data operands. These can be any combination of arrays
(incl. index ranges) or scalars (incl. dynamic and large alpha variables). Arrays are internally ex-
panded into their individual elements, which are then handled individually as for scalars.

For example, the following code:

DEFINE DATA LOCAL
1 #ARR(A1/2,3) INIT (1,1)<'A'> (1,2)<'B'> (1,3)<'C'>

(2,1)<'X'> (2,2)<'Y'> (2,3)<'Z'>
END-DEFINE
PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH CF-TEXT #ARR(*,*)

is equivalent to:

PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH CF-TEXT
'A' 'B' 'C' 'X' 'Y' 'Z'

For the pre-defined formats, the operands must be alphanumeric (format A). For private formats,
the data arguments can be of almost any type. Exception: handle variables (incl. HANDLE OF OBJECT)
are not supported, because they are process-specific. The data for private formats is stored “as-is”
(i.e., no conversion).

Programming Guide622

Using the Clipboard and Drag and Drop

Note that multiple data formats can be placed on the clipboard by performing a
SET-CLIPBOARD-DATA action for each required format. However, any call to SET-CLIPBOARD-DATA
for a particular format replaces any data that may already exist in that format.

Note also that the data is not placed on the Windows clipboard. This is done when the logical
clipboard is closed (see below).

CLOSE-CLIPBOARD closes the logical clipboard, and places the data on the Windows clipboard, so
that it becomes available for pasting into other applications. The data cannot be modified by
SET-CLIPBOARD-DATA after this call. Note that this call is not necessary for drag and drop because
you usually don't need to also make the dragged data available for pasting. Drag and drop can
work directly with the logical clipboard.

GET-CLIPBOARD-DATA is used by the application performing the paste or acting as the drop target
to retrieves the data from the drag-drop clipboard (if a drag and drop operation is in progress) or
from the Windows clipboard otherwise. The drag-drop clipboard is a synonym for the logical
clipboard belonging to the source Natural process. SET-CLIPBOARD-DATA, a clipboard format is
specified, followed by an arbitrary list of data operands (with the same format type restrictions).
For private formats, the operands need not have the same format type as used in the
GET-CLIPBOARD-DATA action. For example, you can place an integer on the clipboard and read it
back into a packed numeric (P) variable. Internally, a MOVE conversion is done. Therefore, if different
format types are used for setting and getting the data, they must be MOVE-compatible.

For pre-defined formats, where the individual data items are either delimited by CR/LF (for CF-
TEXT format) or by null-terminators (for CF-FILELIST format), only one item is usually read into
each receiving field. Exception: If the last receiving field is a dynamic alpha variable, it receives
all remaining data items, including the delimiters. This exception allows the application to use
(for example) a single dynamic alpha variable to set and get multiple lines of data or multiple
file/directory names. Regardless of the format used, if too many receiving operands are specified,
the excess fields are reset (see the RESET statement). Note that individual data fieldsmay be skipped
by using the nX notation. For example, 5x skips 5 data items (where a “data item” is a single line
for CF-TEXT format).

INQ-FORMAT-AVAILABLE is used for querying whether data is available in a given format (see spe-
cification for syntax). It is typically used to determine whether to enable or disable the Paste
command, or whether to display the “no drop” cursor for drag/drop operations.

623Programming Guide

Using the Clipboard and Drag and Drop

Clipboard Specifics

The actual clipboard data transfer has been covered above. However, Natural allows you to define
signals, menu items and toolbar items of the special types Cut, Copy, Paste, Delete and Undo,
which (unlike normal commands) do not raise CLICK events. For input fields, edit areas, selection
boxes and table controls, it's obvious what Natural should do, and Natural does this implicitly.
For Natural, these commands now support list boxes and ActiveX controls. However, the mech-
anism is different in this case, because it is ambiguous as to how Natural should respond to these
commands. Therefore, Natural needs some assistance from the application. This assistance comes
in the form of six new events: CUT, COPY, PASTE, DELETE, UNDO and CLIPBOARD-STATUS, all of which
are suppressible (via the new SUPPRESS-CUT-EVENT, SUPPRESS-COPY-EVENT, SUPPRESS-PASTE-EVENT,
SUPPRESS-DELETE-EVENT,SUPPRESS-UNDO-EVENT andSUPPRESS-CLIPBOARD-STATUS-EVENT attributes).
All six events are suppressed by default. The CUT, COPY, PASTE, DELETE and UNDO events are raised
whenever the respective command is triggered. The corresponding event suppression flags are
used byNatural to decide whether to enable or disable the corresponding command(s) in the user
interface.

The CLIPBOARD-STATUS event is sent to the focus control during idle processing to give the applic-
ation a chance to set these event suppression flags dynamically according to the context (e.g.,
whether or not there is an active selection). Natural raises this event before it queries the event
suppression flags for the purpose of clipboard command status updating). Note that these new
events are (currently) only sent to list boxes and ActiveX controls (and, of course, only if they
currently have the focus). Input fields, selection boxes, etc., are still handled implicitly.

The CLIPBOARD-STATUS event is only raised if there is at least one clipboard command in the user
interface that needs to be updated.

The following example shows a typical CLIPBOARD-STATUS event for a list box control:

DEFINE DATA LOCAL
1 #CONTROL HANDLE OF GUI
1 #FMT (A10) CONST<'MYDATAFMT'>
1 #AVAIL (L)
END-DEFINE
...
#CONTROL := *CONTROL
/*
/*
Cut, Copy & Delete are enabled if an item is selected,
/*or disabled otherwise
/*
IF #CONTROL.SELECTED-SUCCESSOR <> NULL-HANDLE

#CONTROL.SUPPRESS-CUT-EVENT := NOT-SUPPRESSED
#CONTROL.SUPPRESS-COPY-EVENT := NOT-SUPPRESSED
#CONTROL.SUPPRESS-DELETE-EVENT := NOT-SUPPRESSEDELSE

Programming Guide624

Using the Clipboard and Drag and Drop

#CONTROL.SUPPRESS-CUT-EVENT := SUPPRESSED
#CONTROL.SUPPRESS-COPY-EVENT := SUPPRESSED
#CONTROL.SUPPRESS-DELETE-EVENT := SUPPRESSED

END-IF
/*
/* Paste command is enabled if data is available in a
/* recognized format, or disabled otherwise
/*
PROCESS GUI ACTION INQ-FORMAT-AVAILABLE
WITH #FMT #AVAIL GIVING *ERROR
/*
IF #BOOL

#CONTROL.SUPPRESS-PASTE-EVENT := NOT-SUPPRESSED
ELSE

#CONTROL.SUPPRESS-PASTE-EVENT := SUPPRESSED
END-IF

Drag and Drop Specifics

Drag and drop operations can be triggered automatically (for list boxes and bitmap controls) or
manually, via the new PERFORM-DRAG-DROP action (typically for ActiveX controls in response to
control-specificmouse click or drag start events). For automatic drag/drop, themouse cursormust
be over the active selection (if any). Formanual drag/drop, the parameters for PERFORM-DRAG-DROP
include the handle of the control that should receive the drag/drop events (the drag source), and
an optional flag indicating whether drag and drop should begin immediately, or only after the
user moves the mouse a system-defined minimum number of pixels. Both automatic and manual
drag/drop use the same code internally, so the same events are received in both cases.

Drag/drop is controlled by by two new I4 attributes, DRAG-MODE (for drag sources) and DROP-MODE
(for drop targets). These attributes can be set to one of 8 values (defined in NGULKEY1): DM-NONE
(no drag/drop allowed), DM-COPY (copy allowed), DM-MOVE (move allowed), DM-COPYMOVE (copy
and move allowed), DM-LINK (link allowed), DM-COPYLINK (copy and link allowed), DM-MOVELINK
(move and link allowed), DM-COPYMOVELINK (copy, move and link allowed). Link operations imply
that the drop target should create a link to the source data, rather than creating a copy of it. For
file operations, desktop shortcuts are typically used (not currently explicitly supported byNatural).
Drag operations are only initiated if the source's DRAG-MODE attribute is set to something other that
the default DM-NONE value. In addition, the application must respond to the BEGIN-DRAG event (see
below).

Control types capable of acting as drop targets are: ActiveX controls, bitmap controls, list boxes,
control boxes, edit areas, and dialogs (tab controls and table controls are planned for the future
but are not currently supported). These windows are, however, only registered with OLE as drop
targets if their DROP-MODE attribute is set to something other that the default DM-NONE value. During
a drag/drop operation, OLE automatically searches up through the window hierarchy, starting
with the window immediately under the cursor, until it finds a window that has been registered

625Programming Guide

Using the Clipboard and Drag and Drop

as a drop target. This is the window that gets the OLE drop notifications and therefore is the
window that receives the Natural drag/drop events (see below).

The new drag/drop related events are: BEGIN-DRAG, END-DRAG, DRAG-ENTER, DRAG-OVER and
DRAG-LEAVE. In addition, the existing DRAG-DROP event (for theMickeyMouse non-OLE drag/drop
support for bitmap controls) is also used. All events are suppressible via the appropriate event
suppression attributes (SUPPRESS-BEGIN-DRAG-EVENT etc.), all of which are SUPPRESSED by default.

The BEGIN-DRAG event (if not suppressed) is sent to the drag source on initiation of a drag operation.
The application must use the SET-CLIPBOARD-DATA action to place some data on the drag/drop
clipboard before returning from this event, otherwise the drag/drop operation is implicitly cancelled
without the mouse cursor having changed. Note that there is no need to call either of the
OPEN-CLIPBOARD or CLOSE-CLIPBOARD actions.

The END-DRAG event (if not suppressed) is sent to the drag source after a drag/drop operation has
completed (even if the drag operation was cancelled). The main use of this event is to delete the
source data if a Move operation occurred. The application can find out whether a Move operation
has occurred by calling the existing INQ-DRAG-DROP action, which has been extended with two
new optional integer output parameters. The first of these new parameters indicates whichmouse
buttons are currently pressed (1 = Left button, 2 = Right button, 4 =Middle button, or a combination
thereof). The second newparameter is the onewe need here, and contains the drop effect resulting
from a drag/drop operation (DM-NONE if no drop or if the operation was cancelled, DM-COPY if a
Copy operation was performed, DM-MOVE if a Move operation was performed, and DM-LINK if a
link operation was performed.

The DRAG-ENTER event (if not suppressed) is sent to the drop target when the drag cursor (re-)enters
the region occupied by the drop target. The application typically responds to this event by calling
the INQ-FORMAT-AVAILABLE action to find out if a compatible data format is available on the clip-
board, and then setting the SUPPRESS-DRAG-DROP-EVENT attribute accordingly. The SUPPRESS-DRAG-
DROP-EVENT is important because it not only determines whether the DRAG-DROP event should be
raised, but also informs Natural as to whether a drop should be allowed. After raising the
DRAG-ENTER and DRAG-OVER events, Natural inspects the SUPPRESS-DRAG-DROP-EVENT attribute and
displays a “no drop” symbol. Otherwise, the drop effect is determined by the combination of the
drag source's DRAG-MODE value, the drop target's DROP-MODE value, and the augmentation keys
(SHIFT and CTRL) that are currently being pressed.

The DRAG-OVER event (if not suppressed) is frequently sent to the drop target as the drag cursor
moves over the drop target. It can be used, for example, to update the drop emphasis (if any) as
the user traverses the items within the control and/or to update the SUPPRESS-DRAG-DROP-EVENT
attribute if the feasibility of a drop operation depends on the position within the drop target.

The DRAG-LEAVE event (if not suppressed) is sent to the drop target when the drag cursor leaves
the region occupied by the drop target without a drop having occurred. This is mainly used (if at
all) to remove the drop emphasis (if any) applied in the DRAG-OVER event.

Programming Guide626

Using the Clipboard and Drag and Drop

The DRAG-DROP event (if not suppressed) is sent to the drop target when the user performs a drop.
drag cursor leaves the region occupied by the drop target without a drop having occurred. The
application should respond to this by effectively performing a Paste operation, using the current
relative positionwithin the control, if necessary. Both the relative position and the type of operation
can be retrieved via the INQ-DRAG-DROP action. The latter is returned in the new (optional) “drop
effect” parameter (see the description of the END-DRAG event above for more information).

Drag and Drop Insertion Marks

For list boxes, a new "insertion mark (i)" style can be used to indicate that a dashed horizontal line
be used to indicate the current insert position when the drag cursor is moved over the control
(assuming it is a drop target). The application cannot query the insertion mark position directly,
but can find out where to insert the data by querying the relative position within the control via
the INQ-DRAG-DROP action, then passing these coordinates to the INQ-ITEM-BY-POSITION action,
as in the following example:

DEFINE DATA LOCAL
1 #Y (I4)
1 #CONTROL HANDLE OF GUI
1 #ITEM HANDLE OF GUIEND-DEFINE
...
/* DRAG-DROP event:
PROCESS GUI ACTION INQ-DRAG-DROP WITH 4X #Y GIVING *ERROR
*
IF #Y < 0

#Y := 0
END-IF
#CONTROL := *CONTROL
PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
#CONTROL 0 #Y #ITEM GIVING *ERROR

After the above code has executed, the variable #ITEM contains the handle of the item immediately
following the insertion point. You can then dynamically insert one or more list box items at this
position by calling the ADD actionwith the WITH PARAMETERS clause, setting the SUCCESSOR attribute
to #ITEM.

Note that the correction for negative y-coordinate in the above example is necessary to cover the
situation where the drop position is on the list boxes top border. If no correction would be made
here, #ITEMwould be set to NULL-HANDLE and the new list box item(s) would be added undesirably
at the end of the list instead of at the beginning if we were to directly use #ITEM as the SUCCESSOR
attribute, as described above.

627Programming Guide

Using the Clipboard and Drag and Drop

Drag-Drop Checklist

For convenience, here is a brief overview of the steps involved in implementing drag-drop in
Natural applications:

1. Set the DRAG-MODE for each drag source. If the drag source is a bitmap control, its DRAGGABLE
attribute must also be set to TRUE.

2. Set SET-CLIPBOARD-DATA in the BEGIN-DRAG event for each drag source to provide the transfer
data.

3. Set the DROP-MODE for each drop target.

4. In the DRAG-ENTER event, use the INQ-FORMAT-AVAILABLE action to set the SUPPRESS-DRAG-DROP-
EVENT attribute to NOT-SUPPRESSED (0) if a supported clipboard format is available, or
SUPPRESSED (1) otherwise. If the control can also act as a drag source and you need to prohibit
drag-drop operations within the control, call INQ-DRAG-DROP to get the source control handle
and compare it to the current control (*CONTROL), suppressing the drag-drop event if both are
identical.

5. If the effect of the drop is position-sensitive within the target control, use the INQ-DRAG-DROP
action within the DRAG-OVER event to get the current position, determine the item under the
drag cursor (e.g. via the INQ-ITEM-BY-POSITION action) and set the SUPPRESS-DRAG-DROP-EVENT
attribute appropriately. Highlight the current item if desired.

6. If the current itemwas highlighted in step 5 above, unhighlight it (if necessary) in the DRAG-LEAVE
and (potentially) DRAG-DROP events.

7. Use GET-CLIPBOARD-DATA in the DRAG-DROP event to retrieve the transfer data and process it
accordingly.

8. In the END-DRAG event for the drag source, delete the source data if the drop effect returned by
INQ-DRAG-DROP is set to DM-MOVE.

9. If the drag source is an ActiveX control, call the PERFORM-DRAG-DROP action to initiate the drag-
drop operation in response to a "MouseDown" event (for example) if a locationwithin the current
selection is clicked.

Example - Use of X-Arrays for Transferring Data

One of the problems in setting or retrieving data that may need to be placed or already have been
placed on the Windows or drag-drop clipboard in response to a user interaction is being able to
cope with an arbitrary amount of data at run-time. For example, the user may select a single, a
few, or possibly even hundreds or thousands of list box items before performing a clipboard or
drag-drop operation on them. With fixed-size arrays, one would have to define huge arrays to
cope with the worst-case scenario, even though typically only a small percentage would be used
most of the time.

Programming Guide628

Using the Clipboard and Drag and Drop

There are two possible solutions to this problem available in Natural. The first way is to use a
single dynamic alpha variable to contain all items to be set or retrieved. The application is then
responsible for building up the items (including delimiters) in the dynamic variable before calling
SET-CLIPBOARD-DATA, and for extracting the items from the dynamic variable after calling
GET-CLIPBOARD-DATA. This approach is not possible for private formats, because these are not de-
limited.

The second approach is tomake use of X-Arrays. For setting clipboard data, these behave similarly
to fixed-size arrays, except that their size can bemodified to contain exactly the number of elements
needed in a specific situation. For example, if there are 17 items that need to be written to the
clipboard, then you can use:

DEFINE DATA LOCAL
1 #X-ARR(A80/1:*)
1 #UPB (I4) INIT <17>
END-DEFINE
RESIZE ARRAY #X-ARR TO (1:#UPB)
PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH CF-TEXT #X-ARR(*)

instead of having to use a wastefully large fixed array, of which only a small range is used:

DEFINE DATA LOCAL
1 #ARR(A80/10000)
1 #UPB (I4) INIT <17>
END-DEFINE
PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH CF-TEXT ARR(1:#UPB)

When retrieving clipboard data, X-Arrays are even more useful, because the application does not
know in advance how many items are on the clipboard. Passing all array elements (10,000 in the
above example) would be relatively slow, because all unused elements need to be reset.

However, if an X-Array is used instead, Natural automatically resizes the array to (1:N), where N
is the minimum of the number of items (remaining) on the clipboard and the array's maximum
upper bound (as defined in DEFINE-DATA, where * indicates the maximum possible value). Note
that there are three restrictions on the use of X-Arrays in conjunction with GET-CLIPBOARD-DATA:

■ The X-Array must be the last (or only) parameter.
■ Only 1-dimensional X-Arrays are supported.
■ The X-Arrays defined range must include the element 1.

Here is an example program illustrating the use of a dynamic X-Array for retrieving clipboard
data, including the use of a second X-Array to store and display the data lengths:

629Programming Guide

Using the Clipboard and Drag and Drop

DEFINE DATA LOCAL
1 #FMT (A10) CONST<'MYDATAFMT'>
1 #X-ARR (A/1:*) DYNAMIC
1 #X-LEN (I4/1:*)
1 #UPB (I4)
1 #I (I4)
END-DEFINE
PROCESS GUI ACTION OPEN-CLIPBOARD GIVING *ERROR
PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH #FMT

'MIKE' 'FRED' 'JIM' 'LULU' 'FRANK' 'JANA' 'ELIZABETH'
'TONY'

GIVING *ERROR
PROCESS GUI ACTION CLOSE-CLIPBOARD GIVING *ERROR
PROCESS GUI ACTION GET-CLIPBOARD-DATA WITH #FMT #X-ARR(*)

GIVING *ERROR
#UPB := *UBOUND(#X-ARR)
RESIZE ARRAY #X-LEN TO (1:#UPB)
FOR #I 1 #UPB

#X-LEN(#I) := *LENGTH(#X-ARR(#I))
END-FOR
DISPLAY #X-ARR(*) (AL=10) #X-LEN(*) / '*** END OF DATA ***'
END

Programming Guide630

Using the Clipboard and Drag and Drop

71 System Variables

Whenever you specify an event to occur with a given dialog element, the dialog editor generates
code containing the Natural system variables *CONTROL, *DIALOG-ID and *EVENT.

During the processing, *CONTROL contains the dialog element's handle, *EVENT contains the event
name and *DIALOG-ID identifies an instance of a dialog.

You can reference these system variables whenever you enter Natural code within the dialog ed-
itor. If, for example, the end user clicks on a push button control and the event handler calls a
shared subroutine, you can use these system variables as logical condition criteria to trigger the
subroutine.

For further details on these system variables, see the System Variables documentation.

631

632

72 Generated Variables

■ #DLG$PARENT .. 634
■ #DLG$WINDOW ... 634

633

#DLG$PARENT

You use this generated variable of type "user" to work with MDI child windows, for example.
When you create a dialog, Natural generates this variable in order to hold the handle of the parent
dialog. In event-handler code, you can, for example, use this variable to open anMDI child dialog
from another MDI child dialog, as shown below.

Note: You should not use names for user-defined variables that begin with #DLG$ to avoid
conflicts with generated variables.

Example:

OPEN DIALOG 'MDICHILD' #DLG$PARENT #CHILD-ID

#DLG$WINDOW

You use this generated variable to dynamically set the attributes within a dialog.When you create
a dialog, Natural generates this variable in order to hold the handle of the dialog window.
#DLG$WINDOW is the default name of this variable; you may change it by overwriting theName
entry in the upper left of the dialog's attributes window. In event-handler code, you can, for ex-
ample, use this variable to minimize the dialog window if certain logical condition criteria are
met, as shown below.

#DLG$WINDOW represents the graphical user interface aspects of a dialog, while the *DIALOG-ID
system variable represents the runtime aspects. *DIALOG-IDmust be used in OPEN DIALOG, CLOSE
DIALOG and SEND EVENT statements.

Note: You should not use names for user-defined variables that begin with #DLG$ to avoid
conflicts with generated variables.

Example:

...
IF ...

#DLG$WINDOW.MINIMIZED := TRUE
END-IF
...

Programming Guide634

Generated Variables

73 Using the TERMINATE or STOP Statements within

Dialog-based Applications
■ Introduction .. 636
■ Solution ... 636
■ Example .. 636

635

Introduction

The execution of the TERMINATE and STOP statements relies on stack-based exception handling
in order to immediately abort the application’s execution, which is not guaranteed to work within
event-driven (i.e., dialog-based) applications in consumer versions ofWindows. In particular, this
can be the casewhere one ormore events on theNatural call stack have been synchronously raised
in response to the corresponding system event(s). This is because the relevant section of the system
call stack in such situations can containWindows system code that has been compiledwith a small
performance optimization to not generate the required stack frame information at run-time.

Furthermore, because the Windows system code involved changes over time, a TERMINATE or
STOP statement that works on one version of Windows is not guaranteed to continue to work on
all later versions, or even on all later Service Packs for the same version.

For these reasons, the use of the TERMINATE and STOP statements in dialog-based applications
is discouraged.

Solution

A universal solution is not available. However, in many cases, the problem can be circumvented
by performing the termination asynchronously. For example, instead of coding a TERMINATE
or STOP statement directly, one instead asynchronously invokes a user-defined event for the
dialog via the CALL-DIALOG action, and places the TERMINATE or STOP statement within the
event handler for the user-defined event, as illustrated in the example below.

In particular, this workaround is applicable in situations where no dialog boxes are active.

Example

Suppose that the CLOSE event for a modeless dialog contains a TERMINATE statement.

/* CLOSE event
TERMINATE

This TERMINATE statement fails in some Windows versions in the case where the user attempts
to close the dialog via the Close (X) icon.

To solve this problem, we can firstly define a user-defined event for the dialog (e.g., with the name
“TERMINATE”), and insert the TERMINATE statement there:

Programming Guide636

Using the TERMINATE or STOP Statements within Dialog-based Applications

/* TERMINATE event
TERMINATE

Secondly, we replace the original TERMINATE statement in the CLOSE event with the following
two statements:

/* CLOSE event
PROCESS GUI ACTION CALL-DIALOG WITH

#DLG$WINDOW NULL-HANDLE 'TERMINATE' FALSE GIVING *ERROR
ESCAPE ROUTINE IMMEDIATE

TheCALL-DIALOGactionwith the FALSE parameter causes the TERMINATE event to be executed
asynchronously. The ESCAPE statement by-passes any subsequent event code and is absolutely
necessary in this case to ensure that the DELETE-WINDOWaction generated by the Dialog Editor
is not performed, so that the dialog remains active until the TERMINATE event is received.

637Programming Guide

Using the TERMINATE or STOP Statements within Dialog-based Applications

638

74 Message Files and Variables as Sources of Attribute

Values

Most dialog elements have a STRING attribute. As an alternative to specifying the attribute value
by typing in the text in the String entry of the attributes window, you can select a variable or a
message file number from which the text is taken at runtime. In this case, the attribute value is
determined by the variable's current value or the selected message file at the dialog element's
creation time. You can also specify attribute sources for the BITMAP-FILE-NAME, DIL-TEXT and AC-
CELERATOR attributes.

To select a message file number or specify a variable

1 Invoke the dialog element's attribute window.

2 Choose the Source button to the right of the String entry.

TheAttribute Source dialog box appears. The default attribute source is "Constant"; you can
also enter the number of the message file, or enter the variable name.

Note: If you are using an integer variable as the source of an attribute value, note that at
runtime, the message with the corresponding number from your message file will be dis-
played. To avoid this, you can MOVE the contents of this integer variable to a variable of
format N, for example.

639

640

75 Triggering User-Defined Events

■ Introduction .. 642
■ Passing Parameters to the Dialog ... 643

641

Introduction

Aside from standard events, such as before-open, youmay define user-defined events for dialogs.
User-defined events are useful whenever it is necessary for one dialog to cause an action to occur
in another dialog.

A user-defined event occurs whenever you have specified a SEND EVENT statement in dialog A
with the name of a user-defined event in the target dialog B. This target dialog B for which you
wish to trigger the user-defined event must already be active. You can activate dialog B by using
the OPEN DIALOG statement. If you do not issue the OPEN DIALOG statement first, the SEND EVENT
statement will cause a runtime error.

You can define your own events for dialogs by choosing theNew button in the Events dialog
event handler menu or from the dialog's context menu. Enter any name for your newly-defined
event and specify the corresponding event section. It is recommended that this name begin with
a hash (#) to distinguish your event from predefined events.

During execution of an event handler, the SEND EVENT statement triggers the user-defined event
handler in a different dialog. After this user-defined event handler has been executed, control will
be returned to the previous dialog, whose execution will resume at the statement following the
SEND EVENT statement. This can be compared to a CALLNAT statement that causes a subprogram to
be executed.

Similar to the OPEN DIALOG statement, parameters may be passed to the dialog. In order to pass
parameters selectively (PARAMETERS-clause), you have to specify the name of the dialog in addition
to the identifier of the dialog (operand2).

The SEND EVENT statement must not trigger an event in a dialog that is about to process an event.
This is the case, for example, when dialog A sends an event to dialog B and the event handler in
dialog B sends an event to dialog A which has not yet finished its event handling. A similar case
is when dialog A opens dialog B and the before-open or after-open event contains a SEND EVENT
back to dialog A.

To trigger a user-defined event, you specify the following syntax:

SEND EVENT operand1 TO [DIALOG-ID] operand2

WITH operand3... USING [DIALOG] 'dialog-name'
WITH PARAMETRS-clause

Operands

Operand1 is the name of the event to be sent.

Programming Guide642

Triggering User-Defined Events

Operand2 is the identifier of the dialog receiving the user-defined event and must be defined with
format/length I4. You can retrieve this identifier, for example, by querying the value of
#DLG$PARENT.CLIENT-DATA.

Passing Parameters to the Dialog

It is possible to pass parameters to the dialog receiving the user event.

As operand3 you specify the parameters which are passed to the dialog.

With the PARAMETERS-clause, parameters may be passed selectively.

PARAMETERS-clause

PARAMETERS [parameter-name = operand3]_ END-PARAMETERS

Note: You may only use the PARAMETERS-clause if the target dialog is cataloged.

Dialog-name is the name of the dialog receiving the user-defined event.

When you use only operand3 to pass parameters, it might look like this:

/* The following parameters are defined in the dialog's
/* parameter data area:
1 #DLG-PARM1 (A10)
1 #DLG-PARM2 (A10)
1 #DLG-PARM3 (A10)
1 #DLG-PARM4 (A10)
/* When sending the user-defined event, pass the operands #MYPARM1 'MYPARM2' to
the parameters #DLG-PARM1 and #DLG-PARM2:
SEND EVENT 'MYEVENT' TO #DLG$DIA-ID WITH #MYPARM1 'MYPARM2'

When you use the PARAMETERS-clause, the user-defined event might look like this:

/* The following parameters are defined in the dialog's
/* parameter data area:
1 #DLG-PARM1 (A10)
1 #DLG-PARM2 (A10)
1 #DLG-PARM3 (A10)
1 #DLG-PARM4 (A10)
/* When sending the user-defined event, the operand #MYPARM2 is passed to the
/* parameter #DLG-PARM2 and the operand 'MYPARM3' is passed to the parameter
/* #DLG-PARM3:
SEND EVENT 'MYEVENT' TO #DLG$DIA-ID

643Programming Guide

Triggering User-Defined Events

USING DIALOG 'MYDIALOG'
WITH PARAMETERS

#DLG-PARM3='MYPARM3'
#DLG-PARM2=#MYPARM2

END-PARAMETERS

To avoid format/length conflicts between operands passed and their parameter definitions, see
the BY VALUE option of the DEFINE DATA statement in the Statements documentation.

Programming Guide644

Triggering User-Defined Events

76 Suppressing Events

If an event occurs, normally an event handler will be triggered. It may, however, sometimes be
necessary to dynamically suppress the execution of the event-handler code whenever the event
has occurred. For example, if you want to modify the string of an input field control within the
change-event handler, youmust suppress the change event beforemodification to avoid an infinite
loop because the modification itself triggers a change event.

The event-handler code may look like this:

...
IF... /* Logical condition criteria

#IF-1.SUPPRESS-CHANGE-EVENT := SUPPRESSED /* Suppress the event
END-IF
...

By default, the dialog editor generates code to suppress all events for which no event handler code
has been entered. In the dialog editor, you can also suppress an event with the Suppress option
in the Events... dialog box.

If you suppress an event, the before-any and after-any events are also suppressed for this event.

645

646

77 Menu Structures, Toolbars and the MDI

■ Creating a Menu Structure ... 648
■ Parent-Child Hierarchy in Menu Structures ... 650
■ Creating a Toolbar ... 650
■ Sharing Menu Structures, Toolbars and DILs (MDI Application) ... 651

647

Creating a Menu Structure

A menu structure consists of three types of dialog elements:

■ menu-bar controls,
■ menu items,
■ submenu controls.

A menu structure has one menu-bar control consisting of several menu items. The menu bar with
its items is displayed directly beneath the window's title bar. Each menu item may be simple or
may represent a submenu control, which allows you to pull down several menu items grouped
vertically. Therefore, submenu controls may contain items representing a submenu control one
level lower. A submenu control becomes visible when the representing item in the menu-bar
control or the parent submenu control is clicked upon.

There are two ways to create menu structures:

■ Use the dialog editor; or
■ use Natural code.

If you use the dialog editor

1. Check theMenu Bar entry in the dialog's attribute window. ChooseOK. When you go back to
the dialog, a dummy menu-bar control appears.

2. Double-click on the dummymenu-bar control, or from theNaturalMenu, selectDialog >Menu
Bar, or use CTRL+M. TheDialog Menu Bar dialog box appears. This dialog box is divided into
three group frames: menu bar, selected submenu and selected menu item.

3. In the selected menu items group frame, useNew to add a menu item behind the selected pos-
ition, or at the beginning. Now use the selected menu-item group frame to modify attribute
values or add event handlers to the new menu item.

Normal menu items have a click event whose code is executed when the end user clicks on the
menu item.

Note: The MENU-ITEM-TYPE of themenu item can also be "Separator", in which case the item
is no text item.

If you use Natural code

1. Create a Menu Bar with the PARENT attribute set to NULL-HANDLE or windowhandle.

2. To create a simple menu item: the PARENT attribute must have the value menubarhandlename.

Programming Guide648

Menu Structures, Toolbars and the MDI

3. To create a submenu control: the submenu control's PARENT attribute must have the value
NULL-HANDLE or windowhandlename. Then create amenu itemwith PARENT = menubarhandlename
and MENU-HANDLE = submenuhandlename.

4. Then associate the menu bar with a dialog window by updating the window's MENU-HANDLE
attribute with the handle of the menu bar as set in the first step.

5. The event handling for the dynamically created menu items must be done in the default event
handler, as described in the section How to Create and Delete Dialog Elements Dynamically.

The PARENT attribute determines when the menu bar or the submenu control will be destroyed.
When PARENT = windowhandlename, the menu bar/the submenu control will be destroyed when
the window is destroyed. This is the default setting, which is also used by the dialog editor. If
PARENT = NULL-HANDLE, themenu bar/the submenu control will be destroyed onlywhen the applic-
ation is terminated.

If you define themenu structure's handles inside a global data area, you can share these definitions
among several dialogs.

To build the above menu structure

1 Define the handles of the menu-bar control, the menu items, and the submenu control(s) as
the user-defined variables in the handler of the applicable event.

2 Create the controls and items by assigning values to the attributes (PARENT, ...) and by executing
the PROCESS GUI statement action ADD.

3 Create the controls and items in the sequence menu-bar control, submenu control with menu
items.

4 Insert the controls and items in the sequence submenu control into menu-bar control, and
menu-bar control into dialog window.

You can study how to build a menu structure in code by using the enhanced dialog list mode to
list a dialog with an editor-built menu. To get a code model for creating a menu item, create a
menu bar control with the dialog editor, go to themenu-bar control attributeswindow, cut amenu
item and paste it into any chosen event-handler section. The generated code for the menu item
appears.

649Programming Guide

Menu Structures, Toolbars and the MDI

Parent-Child Hierarchy in Menu Structures

Sometimes, it is necessary to use code for going through each element in a menu structure. For
menus, the parent-child hierarchy is structured in a way that is not evident from the graphical
representation of the menu structure.

In the above diagram, the first child of the dialog would be the menu-bar control. Its successor
would be submenu control S1, and so on. To go from menu item MI-1 to submenu S1, you query
for the MENU-HANDLE attribute value of MI-1. The value you get is the handle value of S1.

Creating a Toolbar

There are two ways of creating toolbars and their items:

■ Use the dialog editor; or
■ use Natural code to create them dynamically.

To use the dialog editor

1 Double-click on the toolbar or from the Natural Menu, selectDialog > Toolbar. The toolbar
attributes window opens.

Programming Guide650

Menu Structures, Toolbars and the MDI

2 Add toolbar items by choosing theNew button.

3 Assign bitmap file names and other attribute values to the new toolbar item.

If you want to use Natural code for dynamic creation, you can study how to build a tool bar in
code. Use the enhanced dialog list mode to list a dialog with an editor-built tool bar.

Sharing Menu Structures, Toolbars and DILs (MDI Application)

An MDI (multiple document interface) application consists of a frame dialog that provides the
menu structure, toolbar, and DIL shared among all child dialogs. An MDI frame dialog allows
you to tile or cascade its child dialogs.

Note: Youmay only share the toolbar if the PARENT of the toolbar is the dialog of the highest
level (the main dialog of an application).

To create an MDI frame dialog

1 Use the dialog editor, and go to the dialog object's attributes window.

2 Choose "MDI frame window" in the Type entry.

An MDI frame dialog must not contain dialog elements other than menu-bar control, submenu
control, menu item, toolbar, and toolbar item.

To create an MDI child dialog

1 Use the dialog editor, and go to the dialog object's attributes window.

2 Choose "MDI child window" in the Type entry.

An MDI child dialog:

■ can be moved and sized only inside the area of their MDI frame dialog;
■ can be maximized to the full size of the area of their MDI frame dialog;
■ can be minimized, after which its icon appears at the bottom of its MDI frame dialog;
■ can have its own menu structure, toolbar, and DIL. Those do not appear inside the child dialog
but are displayed in the MDI frame dialog when the child dialog is active. When another MDI
child dialog becomes active, the menu structure, toolbar, and DIL change at the same time;

■ can be arranged in a tile or cascade by setting a menu item's attribute MENU-ITEM-TYPE to the
values "MDI Cascade" or "MDI Tile";

■ can have its title added to the end of an MDI-WINDOWMENU type submenu control. By
choosing one of these menu items, the corresponding MDI child dialog becomes active.

651Programming Guide

Menu Structures, Toolbars and the MDI

If you want to open an MDI child dialog from within an MDI frame dialog, you can, for example,
create a menu item in a menu structure of an MDI frame dialog and define a click event for the
menu item. You then write the OPEN DIALOG code for opening an MDI child dialog in the click
event handler. The end user will open the MDI child dialog from within the MDI frame dialog by
clicking on the menu item, triggering the click event handler.

Example:

OPEN DIALOG 'MDICHILD' #DLG$WINDOW #CHILD-ID

The first operand is the name of the dialog created by the dialog editor by selecting "MDI child
window" in theType selection box. The second operand is the parent of the newMDI child dialog.
This must be the MDI frame dialog. The third operand is a Natural variable defined as I4 in the
dialog's data areas. This variable receives the dialog ID returned by the system.

Note: #DLG$WINDOW is a generated variable.

You can also open an MDI child dialog from within another MDI child dialog (open a sibling of
your MDI child dialog). Then you write a similar click-event handler as above:

OPEN DIALOG 'MDICHILD' #DLG$PARENT #CHILD-ID

The first and the third operands are the same as above. The second operand must be the parent
of both MDI child dialogs.

Note: #DLG$PARENT is a generated variable.

Programming Guide652

Menu Structures, Toolbars and the MDI

78 Executing Standardized Procedures

■ Introduction .. 654
■ PROCESS GUI Statement .. 654

653

Introduction

For procedures frequently needed in event-driven applications, the following is available:

■ a set of PROCESS GUI statement actions and
■ a set of NGU-prefixed subprograms and dialogs in library SYSTEM.

Examples for frequently needed procedures are starting up amessage box, reading the lines entered
into an edit area control, or dynamically creating dialog elements.

For your convenience, the local data areasNGULKEY1 andNGULFCT1 are automatically included
in the list of local data areas used by any new dialog.

■ NGULFCT1 is necessary to use the NGU-prefixed subprograms and dialogs;
■ NGULKEY1 lists reserved keywords to be used in any event-handler code. This enables you to
refer to certain attribute values by the more meaningful keyword rather than by the numeric
IDs. It also enables you to use meaningful dialog element names as parameters.

For more information on the PROCESS GUI statement actions, subprograms and dialogs available,
and on the parameters that can be passed, refer to the Dialog Component Reference.

PROCESS GUI Statement

The PROCESS GUI statement is used to perform an action. An action in this context is a procedure
frequently needed in event-driven applications.

As action-name, you specify the name of the action to be invoked.

As operand1, you specify the parameter(s) to be passed to the action. The parameters are passed
in the sequence in which they are specified.

For the action ADD, you can also pass parameters by name (instead of position); to do so, you use
the PARAMETERS-clause:

PARAMETERS [parameter-name = operand1]_ END-PARAMETERS

This clause can only be used for the action ADD, not for any other action.

As operand2, you can specify a field to receive the response code from the invoked action after
the action has been performed.

Programming Guide654

Executing Standardized Procedures

79 Linking Dialog Elements to Natural Variables

In cases where you want to map database fields or other program variables to the user interface,
input field controls and selection box controls may be linked to Natural variables. This makes it
easier to modify and query them.

If the end user has entered data in an input-field control or a sebox control and sets the focus to
another dialog element, a leave event occurs and the content (STRING) is moved to the variable.
Thus, the variable is updated. Note that the variable will not be updated if the end user enters data
and a change event occurs.

To refresh the content of the dialog element after the linked variable has been modified in code

■ Use the PROCESS GUI statement action REFRESH-LINKS.

Modifying and querying input field controls with the ASSIGN statementwould normallywork like
this:

...
#IF-1.STRING := '12345'
#TEXT := #IF-1.STRING
...

However, you can also link a Natural variable to the input field control or selection box control.
You can also link an indexed variable to a dialog element or an array of dialog elements.

To link a variable inNatural code, set the attribute LINKED to TRUE andmodify the attribute VARIABLE
by setting it to the Natural variable name:

655

...
#IF-1.LINKED := TRUE
#IF-1.VARIABLE := MYVARIABLE
...

To use the dialog editor to enter the name of the Natural variable

1. Double-click on your input field control. The corresponding attributes window appears.

2. Choose the Source button to the right of the String entry. The Source for handlename dialog
box appears.

3. Choose Linked variable.

4. Enter the variable name (such as MYVARIABLE in the example above).

There are two possibilities to link an indexed variable such as MYVARIABLE (A20/1:5):

■ you link a single dialog element to the indexed variable; then you specify the index, such as
MYVARIABLE(2) in the variable name field of the Source for handlename dialog box, or

■ you link an array of dialog elements to the indexed variable; then you do not specify an index
in the variable name field. In this case, the occurrences of the array and the index of the variable
must be compatible. MYVARIABLE (A20/1:5) could be linked to a one-dimensional array with
up to five occurrences.

Programming Guide656

Linking Dialog Elements to Natural Variables

80 Validating Input in a Dialog Element

If an input field control or a selection box control is linked to aNatural variable, this dialog element
may be checked automaticallywhen it loses the focus to another dialog element in the same dialog.
This enables you to validate the end user's input. An input field control or a selection box control
will not be checked when the end user clicks on a menu item or switches to another application.

If you specify an edit mask with one of these two dialog elements, the field content is checked
against this edit mask plus the Natural data type of the linked variable.

If no edit mask is specified, the field content is checked against the Natural data type only.

There are two ways of specifying an edit mask in an input field control or a selection box control:

■ Use Natural code; or
■ use the dialog editor.

The Natural code might look like this:

...
/* Create an input-field control

1 #IF-1 HANDLE OF INPUTFIELD
...
/* Assign the Edit Mask
#IF-1.EDIT-MASK := '999'

To specify the edit mask with the dialog editor

■ Open the input field control's attribute window and use the Edit Mask entry.

When the field check fails, amessage box comes upwhere the end user can chooseRetry orCancel.
Retrymeans that the entered text string remains unchanged and can be corrected. Cancelmeans
that the field is reset to the current content of the linked variable.

657

658

81 Storing and Retrieving Client Data for a Dialog Element

■ Introduction .. 660
■ Integer Data ... 660
■ Handle Data ... 661
■ Keyed Alphanumeric Client Data .. 661
■ Keyed Client Data in Native Format ... 664
■ Key Enumeration ... 667

659

Introduction

This section refers to the association of arbitrary user-defined information (“client data”) with a
(dialog or) dialog element. There are various complementary ways of achieving this, which will
be discussed in detail in the following sections. The attributes and actions relating to the manipu-
lation of client data in Natural are (in the order they are discussed in this document):

■ CLIENT-DATA attribute
■ CLIENT-HANDLE attribute
■ CLIENT-KEY attribute
■ CLIENT-VALUE attribute
■ SET-CLIENT-VALUE action
■ GET-CLIENT-VALUE action
■ ENUM-CLIENT-KEYS action

Integer Data

For a number of dialog element types, the CLIENT-DATA attribute may be used to associate a single
arbitrary 4-byte integer value with the dialog element. This may be useful for linking data to a
specific dialog element. A list box item, for example, can receive and pass on the ISN of a database
record. The CLIENT-DATA attribute value may be changed at any time.

In Natural code, this might look like this:

DEFINE DATA
LOCAL

1 #LBITEM-1 HANDLE OF LISTBOXITEM

1 #ISN (I4)
...

END-DEFINE
...
READ...

#LBITEM-1.CLIENT-DATA:= #ISN
END-READ
...

Note: The CLIENT-DATA attribute of a dialog is reserved for its dialog ID, and should not be
used for the storage of user-defined client data.

Programming Guide660

Storing and Retrieving Client Data for a Dialog Element

Handle Data

Similarly, for all dialog element types, the CLIENT-HANDLE attribute may be used to associate a
single arbitrary GUI object handle with the dialog element. For example, in the sectionWorking
withDialogBarControls, sample generic code is provided for building up a contextmenu containg
entries for each tool bar control and dialog bar control in use by the dialog, allowing the user to
individually show and hide them. In this example, the CLIENT-HANDLE attribute of each suchmenu
item is set to the handle of the respective tool or dialog bar, allowing it to be both simply and
directly retrieved when the menu item is clicked.

Keyed Alphanumeric Client Data

Note: The term “keyed” refers to the ability to store multiple items of information for a
given dialog element, each item being stored under a unique retrieval key.

Client data may also be set and retrieved as an alphanumeric string of up to 253 characters by
using the CLIENT-KEY and CLIENT-VALUE attributes in combination.

To update a dialog element with a particular string

1 You first assign a value to the dialog element's CLIENT-KEY attribute, if this attribute does not
already contained the desired value. This determines the key under which the string is to be
stored for a dialog element.

2 You then assign an alphanumeric string to the CLIENT-VALUE attribute of the dialog element.

This enables you to store a number of key/value pairs for one dialog element.

Example:

#LB-1.CLIENT-KEY:= 'ANYKEY'
#LB-1.CLIENT-VALUE:= 'ANYSTRING' /* The string to be stored

Note: In this and all following examples, the handle variable #LB-1 is used, which (by con-
vention) normally refers to a list box. However, with the exception of the CLIENT-DATA at-
tribute, client data can be associated with GUI objects of any type, even those without a
user interface, such as timers or signals.

661Programming Guide

Storing and Retrieving Client Data for a Dialog Element

To query a dialog element for a particular string

1 You first assign a CLIENT-KEY value to the dialog element, if this attribute does not already
contained the desired value.

2 Then you query the CLIENT-VALUE attribute for the dialog element to retrieve the corresponding
value.

If you query the CLIENT-VALUE of a CLIENT-KEY and there is no such key among the key/value
pairs of the dialog element, an empty string is returned.

Example:

#LB-1.CLIENT-KEY:= 'ANYKEY'
IF #LB-1.CLIENT-VALUE EQ 'ANYSTRING' THEN
...
END-IF

If non-alphanumeric data is to be stored and retrieved, getting the data back into the original
format may be a little more complicated, as shown below.

Example:

DEFINE DATA LOCAL
01 #DATE (D)
...
END-DEFINE

#LB-1.CLIENT-KEY := 'ANYKEY'
/* Store the current date
#LB-1.CLIENT-VALUE := *DATX

/* Retrieve it as a date (D) field
STACK TOP DATA #LB-1.CLIENT-VALUE
INPUT #DATE

The STACK statement retrieves the client value in alphanumeric form and places it one the Natural
stack, from which the INPUT statement unstacks it into the specified variable, #DATE, implicitly
converting the data from alphanumeric to date form. Alternatively, it would be possible to retrieve
the client value into an alphanumeric variable, followed by explicitly converting it to the date field
via a MOVE EDITED statement. However, the above approach has the advantage that it is not de-
pendent on the date format (DTFORM), as well as not requiring the above-mentioned alphanumeric
variable.

For some data types, such as dates and times, the default alphanumeric representation of the type
(as used by the CLIENT-VALUE attribute) does not contain all the information contained in the ori-

Programming Guide662

Storing and Retrieving Client Data for a Dialog Element

ginal data type. For example, the default alphanumeric represention for time (T) values only contains
the hours, minutes and seconds, and does not contain either the date component or tenths of a
second. Similarly, the default alphanumeric represention for date (D) values does not contain
century information. Thus, in order for the correct century to be assumed in the above example,
it may be necessary to set the “Sliding Window” (YSLW) parameter correctly before running the
program.

If a dynamic alpha variable is used to directly receive the CLIENT-VALUE attribute value, the resulting
value will have a length of 253 characters, being padded with blanks if necessary. This is due to
the use of an attribute buffer of format A253 internally, andwill be discussed later. The same effect
is obtained when assigning an explicitly-defined A253 field to a dynamic variable. In either case,
to prevent these trailing blanks from being stored in the dynamic variable, a COMPRESS statement
should be used instead of a simple MOVE or assignment, as shown below.

DEFINE DATA LOCAL 01 #DYN (A) DYNAMIC ... END-DEFINE
#DYN := 'ANYSTRING' /* Set the client data #LB-1.CLIENT-KEY := 'ANYKEY' ↩
#LB-1.CLIENT-VALUE
:= #DYN /* Retrieve value as 253-character string: #DYN := #LB-1.CLIENT-VALUE
/* Retrieve value without trailing blanks: COMPRESS #LB-1.CLIENT-VALUE INTO #DYN

Regardless of which of these approaches are used, any trailing blanks in dynamic alphanumeric
variables are effectively lost if stored and retrieved via the CLIENT-VALUE attribute.

To delete a particular string for a dialog element

1 You first assign a CLIENT-KEY value to the dialog element, if this attribute does not already
contained the desired value.

2 Then you RESET (or explicitly assign an all-blank value to) the CLIENT-VALUE attribute for the
dialog element to delete the corresponding value.

Example:

#LB-1.CLIENT-KEY:= 'ANYKEY' RESET #LB-1.CLIENT-VALUE

663Programming Guide

Storing and Retrieving Client Data for a Dialog Element

Keyed Client Data in Native Format

As an alternative to setting client data in alphanumeric string form using the CLIENT-KEY and
CLIENT-VALUE attributes in combination, the SET-CLIENT-VALUE and GET-CLIENT-VALUE actions
may be used to store and retrieve client data directly in the supplied format, with no conversion.
The value may, however, be stored in compressed form. In particular, trailing blanks in non-dy-
namic alphanumeric data are not stored, in order to save space. For example, if you supply an
A253 field containing the value FRED followed by 249 filler blanks, only the A4 value FREDwill be
stored as client data internally. This latter optimization also applies to client data stored via the
CLIENT-VALUE attribute.

The two techniques may be intermixed (i.e., one technique used to set the data and the other
technique used to retrieve it). However, the use of the actions provides a number of advantages
over the use of the attributes, as will become clear in the following sections.

To update client data for a dialog element using the action-based technique

■ Call the SET-CLIENT-VALUE action, passing the handle of the dialog element, the (client) key
under which the value is to be stored, and the value itself. Alternatively, the key parameter
can be omitted, in which case the current value of the dialog element's CLIENT-KEY attribute
is implicitly used as the key.

Example:

#LB-1.CLIENT-KEY := 'ANYKEY' /* The following three statements are equivalent
ways of setting the same /* information: /* (1) attribute-based approach: ↩
#LB-1.CLIENT-VALUE
:= 'ANYVALUE' /* (2) action-based approach, with explicitly-specified key PROCESS
GUI ACTION SET-CLIENT-VALUE WITH #LB-1 'ANYVALUE' 'ANYKEY' GIVING *ERROR /* (3)
action-based approach without key; CLIENT-KEY attribute implicitly used PROCESS
GUI ACTION SET-CLIENT-VALUE WITH #LB-1 'ANYVALUE' GIVING *ERROR

A significant advantage of storing client data via the SET-CLIENT-VALUE action is that there is no
intermediate conversion to alphanumeric (A253) format involved, as is the case if the CLIENT-
VALUE attribute is used. This is shown in the following diagram, where format X is used to imply
any particular data type, and format An represents an alphanumeric value stripped of any trailing
blanks:

Programming Guide664

Storing and Retrieving Client Data for a Dialog Element

Here we see that the storage and retrieval of client data via the CLIENT-VALUE attribute is a two-
step process (as is indeed the case for all attributes in Natural) depicted by the arrows (1) and (2)
above, involving an attribute buffer corresponding to the defined format for the attribute - in this
case A253. In contrast, the use of the SET-CLIENT-VALUE and GET-CLIENT-VALUE actions is a single
step process that is effectively equivalent to performing step (2) alone, by-passing the conversion
between the attribute buffer and the source or target field. This offers the following advantages
(aside from being somewhat faster):

■ Alphanumeric data longer than 253 characters may be stored without truncation, due to not
having to pass through the attribute buffer.

■ Handle values may be stored. These are incompatible with the use of an alphanumeric attribute
buffer, because conversions between handles and alphanumeric fields are not allowed.

■ If the data is being sourced from a dynamic alphanumeric variable, any trailing blanks are pre-
served. If the attribute buffer is used, trailing blanks become indistinguishable from (and are
assumed to be) buffer filler characters and are thus stripped from the value when it is stored.

■ Because the data is stored without conversion to and from alphanumeric format, non-alphanu-
meric data may be stored without any loss of information. For example, date information and
tenths of a second are not lost when time values are stored, and century information is not lost
when dates are stored.

In addition, there are other advantages to using the action-based approach for client data storage:

■ Alphanumeric values consisting entirely of blanks may be stored. This is not possible via the
CLIENT-VALUE attribute, as this would imply a delete operation.

■ Error codes (e.g., in the case where an invalid control handle is passed) are returned in the
GIVING field (if specified), without standard error handling necessarily being invoked (although
this can be achieved, if desired, by the use of GIVING *ERROR).

665Programming Guide

Storing and Retrieving Client Data for a Dialog Element

To query client data for a dialog element using the action-based technique

■ Call the GET-CLIENT-VALUE action, passing the handle of the dialog element, the (client) key
for which the value is to be retrieved, and a field to receive the value itself. Alternatively, the
key parameter can be omitted, inwhich case the current value of the dialog element's CLIENT-
KEY attribute is implicitly used as the key.

Example:

DEFINE DATA LOCAL 01 #VALUE (A253) ... END-DEFINE PROCESS GUI ACTION GET-CLIENT-VALUE
WITH #LB-1 #VALUE 'ANYKEY' GIVING *ERROR IF #VALUE <> ' ' /* Value found ... ELSE
/* Value not found ... END-IF

Note that the format of the field specified to receive the value must be MOVE-compatible with the
format of the stored value.

If the specified key is not found for the specified dialog element, the value field is RESET. For ex-
ample, an alphanumeric receiving field is filled with blanks, and a numeric receiving field is set
to zero.

However, if such values can be explicitly stored for this key by the program, the value alone cannot
be used to determine whether the requested client data was found.

To query client data if resetted values are being explicitly stored

■ Call the GET-CLIENT-VALUE action, also passing (in addition to the standard parameters
mentioned above) a field of type L to receive the found/not found status.

Example:

DEFINE DATA LOCAL 01 #VALUE (A253) 01 #FOUND (L) ... END-DEFINE * PROCESS GUI
ACTION GET-CLIENT-VALUE WITH #LB-1 #VALUE 'ANYKEY' #FOUND GIVING *ERROR * IF #FOUND
... END-IF

Themain advantage of reading client data via the GET-CLIENT-VALUE action is again the avoidance
of going via an attribute buffer (see earlier diagram), implying that no intermediate conversion to
or from alphanumeric (A253) format involved, as is the case if the CLIENT-VALUE attribute is used.
Instead, the stored data is converted directly to the format of the receiving field for the value. This
offers the following advantages:

■ Alphanumeric data longer than 253 characters may be retrieved, without being truncated to the
length of the (not used) CLIENT-VALUE attribute buffer.

■ Handle values may be retrieved, which are not MOVE-compatible with the alphanumeric format
of the CLIENT-VALUE attribute buffer.

Programming Guide666

Storing and Retrieving Client Data for a Dialog Element

■ If the data is being read into a dynamic alphanumeric variable, any trailing blanks in stored al-
phanumeric data are preserved. If the CLIENT-VALUE attribute is used, the dynamic variable
would receive the buffer's filler characters and be unable to distinguish them from any trailing
blanks in the original data.

In addition, Stored alphanumeric values consisting entirely of blanks may be recognized. This is
not possible via the CLIENT-VALUE attribute, as there is noway to distinguish them from the implicit
“not found” value.

To delete client data for a dialog element using the action-based technique

■ Call the SET-CLIENT-VALUE action, passing the handle of the dialog element and the (client)
key for which the value is to be deleted, but omitting the value itself. Alternatively, the key
parameter can be omitted, in which case the current value of the dialog element's CLIENT-KEY
attribute is implicitly used as the key.

Example:

/* No value supplied => delete any existing value for specified key PROCESS GUI
ACTION SET-CLIENT-VALUE WITH #LB-1 1X 'ANYKEY' GIVING *ERROR /* Alternatively,
a mixed attribute/action approach can be used: #LB-1.CLIENT-KEY := 'ANYKEY' PROCESS
GUI ACTION SET-CLIENT-VALUE WITH #LB-1 GIVING *ERROR

Key Enumeration

The above sections have dealt with the creation, updating, querying and deletion of client key and
client value data. Inmost cases this is enough. However, in some situations, the keys that are being
used by a dialog element are either not known to the code that reads them, or it is necessary to be
able to verify that the expected keys are present for debugging or testing purposes. The iterative
process of retrieving the keys currently being used by a particular dialog element is known as key
enumeration.

To enumerate the client keys for a dialog element

1 Call the ENUM-CLIENT-KEYS action, passing the handle of the dialog element for which the
client keys should be enumerated, but omitting the key parameter. This has the effect of reset-
ting the dialog element's enumeration cursor (i.e., position) back to the beginning of its internal
key list. Since the enumeration cursor is initially reset when a dialog element is created, this
step is strictly not required for the first key enumeration for a particular dialog element.
However, it is good practice to explicitly reset the cursor in this manner, in order to make the
enumeration context-insensitive.

667Programming Guide

Storing and Retrieving Client Data for a Dialog Element

2 Call the ENUM-CLIENT-KEYS action again, passing the handle of the dialog element and the
key parameter, into which the first key (if any) will be returned.

3 If the key field was internally RESET to blanks by the above call, this indicates that no (more)
keys remain, and the program should terminate the enumeration process.

4 Otherwise, go back to step 2 in order to retrieve the next key (if any).

Example:

/* Enumerate and output all client keys in use by
control #LB-1: /* (1) Reset enumeration cursor: PROCESS GUI ACTION ENUM-CLIENT-KEYS
WITH #LB-1 GIVING *ERROR /* (2) Enumerate and delete the keys one-by-one: REPEAT
PROCESS GUI ACTION ENUM-CLIENT-KEYS WITH #LB-1 #LB-1.CLIENT-KEY GIVING *ERROR
IF #LB-1.CLIENT-KEY <> ' ' RESET #LB-1.CLIENT-VALUE /* delete the key END-IF WHILE
#LB-1.CLIENT-KEY <> ' ' END-REPEAT

This example illustrates that the ENUM-CLIENT-KEYS action is tolerant of keys being deleted during
the enumeration process. If (as shown here) the last enumerated (i.e., “current”) key is deleted,
Natural automaticallymoves the internal enumeration cursor to its predecessor in th enumeration
sequence, or resets it if there no predecessor. In either case, the next key returned by
ENUM-CLIENT-KEYS is the one thatwould have been returned had the previous key not been deleted.

Note: The sequence in which the keys are enumerated is implementation-dependent and
is not guaranteed to remain the same in future Natural versions. Therefore, do not code
your programs such that they are dependent on any particular enumeration sequence.

Programming Guide668

Storing and Retrieving Client Data for a Dialog Element

82 Creating Dialog Elements on a Canvas Control

You can use a canvas control as a background to draw the following dialog elements on it: the
rectangle, line and graphictext controls. These dialog elements “visualize” information. You can,
for example, create three or four rectangle controls, fill them with color and change their size at
runtime. This way, you can build your own bar chart.

Once you have created a canvas control in the dialog, you can go on to create the rectangle, line
and graphictext controls in it.

Note: Graphictext controls do not repaint the background of the rectangle in which they
are located. The background of the rectangle is specified at creation time of the graphictext
control. What they do repaint is only the text specified in the text attribute.

To create dialog elements on a canvas control

■ Use the PROCESS GUI statement action ADD.

The rectangle, line and graphictext controls are then displayed inside the borders of the canvas
control; if they exceed the canvas borders, they are clipped.

The following attributes are useful for controlling the behavior of the canvas control and the dialog
elements on it:

■ OFFSET-X and OFFSET-Y determine the x and y axis offset of the canvas control's upper border
against the upper border of the area by which the rectangle, line or graphictext control have
exceeded the canvas control's borders.

■ RECTANGLE-X, RECTANGLE-Y, RECTANGLE-W and RECTANGLE-H determine the size of a rectangle
control and its position relative to the underlying canvas control.

■ P1-X, P1-Y, P2-X and P2-Y determine the start position (P1xx) and the end position (P2xx) of a
line control relative to the underlying canvas control.

The following example illustrates how to create a canvas control

669

/* In the dialog's local data area, the following must be defined:
01 #CNV1 HANDLE OF CANVAS
01 #XAX HANDLE OF LINE
01 #YAX HANDLE OF LINE
01 #H1 HANDLE OF RECTANGLE
01 #H2 HANDLE OF RECTANGLE
01 #H3 HANDLE OF RECTANGLE
01 #H4 HANDLE OF RECTANGLE
01 #RESPONSE (I4)
/* In the dialog's AFTER-OPEN event handler, the following must be defined:
PROCESS GUI ACTION ADD WITH
PARAMETERS

PARENT = #DLG$WINDOW
TYPE = CANVAS
HANDLE-VARIABLE = #CNV1
RECTANGLE-X = 20
RECTANGLE-Y = 20
RECTANGLE-W = 200
RECTANGLE-H = 200
STYLE = 'F'

END-PARAMETERS
GIVING RESPONSE
PROCESS GUI ACTION ADD WITH
PARAMETERS

PARENT = #CNV1
TYPE = LINE
HANDLE-VARIABLE = #YAX
STYLE = 'S'
P1-X = 20
P1-Y = 20
P2-X = 20
P2-Y = 180

END-PARAMETERS
GIVING RESPONSE
PROCESS GUI ACTION ADD WITH
PARAMETERS

PARENT = #CNV1
TYPE = LINE
HANDLE-VARIABLE = #XAX
P1-X = 180
P1-Y = 180
P2-X = 20
P2-Y = 180

END-PARAMETERS
GIVING RESPONSE
PROCESS GUI ACTION ADD WITH
PARAMETERS

PARENT = #CNV1
TYPE = RECTANGLE
HANDLE-VARIABLE = #H1
RECTANGLE-X = 20

Programming Guide670

Creating Dialog Elements on a Canvas Control

RECTANGLE-Y = 180
RECTANGLE-H = 20
RECTANGLE-W = -60
FOREGROUND-COLOUR-NAME = BLACK
BACKGROUND-COLOUR-NAME = RED

END-PARAMETERS
GIVING RESPONSE
PROCESS GUI ACTION ADD WITH
PARAMETERS

PARENT = #CNV1
TYPE = RECTANGLE
HANDLE-VARIABLE = #H2
RECTANGLE-X = 40
RECTANGLE-Y = 180
RECTANGLE-H = 20
RECTANGLE-W = -40
FOREGROUND-COLOUR-NAME = BLACK
BACKGROUND-COLOUR-NAME = BLUE

END-PARAMETERS
GIVING RESPONSE
PROCESS GUI ACTION ADD WITH PARAMETERS

PARENT = #CNV1
TYPE = RECTANGLE
HANDLE-VARIABLE = #H3
RECTANGLE-X = 60
RECTANGLE-Y = 180
RECTANGLE-H = 20
RECTANGLE-W = -55
FOREGROUND-COLOUR-NAME = BLACK
BACKGROUND-COLOUR-NAME = GREEN

END-PARAMETERS
GIVING RESPONSE
PROCESS GUI ACTION ADD WITH
PARAMETERS

PARENT = #CNV1
TYPE = RECTANGLE
HANDLE-VARIABLE = #H4
RECTANGLE-X = 80
RECTANGLE-Y = 180
RECTANGLE-H = 20
RECTANGLE-W = -80
FOREGROUND-COLOUR-NAME = BLACK
BACKGROUND-COLOUR-NAME = MAGENTA

END-PARAMETERS
GIVING RESPONSE

671Programming Guide

Creating Dialog Elements on a Canvas Control

672

83 Label Editing in Tree View and List View Controls

■ Introduction .. 674
■ Label Editing ... 674
■ Changing an Item's Label Programmatically .. 676

673

Introduction

This section describes the process of editing item labels for both tree view and list view controls.
The word “item” is therefore used throughout, in place of “tree view item” and “list view item”,
respectively.

Label Editing

The editing of an item's label, unless prohibited (see below), may be initiated in one of three ways:

1. By the user, by clicking on the label of a selected item.

2. By the user, by pressing the F2 key (whereupon the itemwith the focus rectangle, if any, is edited).

3. By the program, by calling the EDIT-LABEL action.

Regardless of the means of initiation, the sequence of actions taken by Natural in response is
identical:

1. The control's MODIFIABLE attribute is examined. If this is FALSE (e.g., theModifiable optionwas
not checked in the control's attributeswindow), no further action occurs and label editingmode
is not entered.

2. The control's ITEM attribute is set to the handle of the item forwhich label editingwas requested
(the “target” item).

3. Unless suppressed, a BEFORE-EDIT event is raised for the control.

4. The target item's MODIFIABLE attribute is examined. If this is FALSE, no further action occurs
and label editing mode is not entered.

5. Label editing mode is entered. The user may cancel any changes he has made via the ESC key.
In this case, the original label is restored, edit mode exited, and no further action taken. Altern-
atively, the user can commit the changes (e.g. by pressing the ENTER key or setting the focus to
another window or control).

6. The target item's STRING attribute is updated with the new label text.

7. Unless suppressed, an AFTER-EDIT event is raised for the control.

8. If the item's label is no longer identical to the item's STRING attribute (i.e., the application mod-
ified the attribute during the AFTER-EDIT event), the item's label is updated accordingly.

The purpose of the BEFORE-EDIT event is twofold. Firstly, it allows the application to dynamically
set the item's MODIFIABLE attribute (thus allowing or preventing label editing from taking place)
according to the particular context. Secondly, it gives the application a chance to save the original
label in case it wishes to restore it later in the AFTER-EDIT event.

Programming Guide674

Label Editing in Tree View and List View Controls

The AFTER-EDIT event has four options:

1. Do nothing, which case the new item label will be accepted.

2. Reject the new label, by restoring the previous value for the item's STRING attribute (as saved
in the BEFORE-EDIT event).

3. Reject the new label, by setting the the item's STRING attribute to some other value that neither
matches the new nor old label (e.g. silently “correcting” the label entered by the user).

4. Re-enter edit mode for the item, forcing the user to modify the label again (possibly after dis-
playing a message box to inform the user that the newly entered label is invalid).

As an example demonstrating some of the above topics, consider the following example. Firstly,
we define some local data variables which we will need later:

01 #CONTROL HANDLE OF GUI 01 #ITEM HANDLE OF GUI
01 #LABEL (A) DYNAMIC 01 #POS (I4)

Having done this, we can canwrite a trivial BEFORE-EDIT event, wherewe simply save the existing
label of the item about to be edited in the dynamic variable #LABEL:

#CONTROL := *CONTROL #ITEM := #CONTROL.ITEM #LABEL
:= #ITEM.STRING

To illustrate a few of the above techniques, we use the following AFTER-EDIT handler:

#CONTROL := *CONTROL #ITEM := #CONTROL.ITEM IF
#ITEM.STRING = ' ' #ITEM.STRING := #LABEL ELSE EXAMINE #ITEM.STRING TRANSLATE
INTO LOWER EXAMINE #ITEM.STRING FOR ' ' GIVING POSITION #POS IF #POS > 0 PROCESS
GUI ACTION CALL-DIALOG WITH #DLG$WINDOW #ITEM 'EDIT-LABEL' FALSE END-IF END-IF

The above code performs the following actions:

1. If the new item label consists only of blank, the old item label, as saved in the BEFORE-EDIT
event is restored.

2. Otherwise, the new item label is converted into lower case (EXAMINE TRANSLATE).

3. Then, if the new item label contains a blank, we treat the data as invalid and raise an asynchron-
ous user-defined event for the item in order to request corrected data from the user (more later).

The asynchronous event allows an invalid item label to be provisionally accepted. However, on
receipt of the user-defined EDIT-LABEL event, we display a message box to inform the user that
the data is invalid and in need of correction, then re-enter label editing mode. This is done via the
following code in the DEFAULT event handler for the dialog:

675Programming Guide

Label Editing in Tree View and List View Controls

IF *EVENT = 'EDIT-LABEL' #ITEM := *CONTROL OPEN
DIALOG NGU-MESSAGEBOX USING #ITEM.PARENT WITH #BUTTON 'Invalid data - please ↩
re-enter'
'Label Edit' '!O' PROCESS GUI ACTION EDIT-LABEL WITH #ITEM GIVING *ERROR END-IF

If it is sufficient to set an edit mask and/or maximum label length in characters, and/or specify
that only upper case characters should be allowed, this can be achieved without any coding by
setting the EDIT-MASK attribute, LENGTH attribute or Upper case (U) STYLE flag (respectively) for
the appropriate item(s). If an edit mask is specified, Natural automatically restores the old label,
issuing a beep (if enabled), if the entered label does not match the mask.

Changing an Item's Label Programmatically

An item's label may be set directly via its STRING attribute. For example:

#ITEM.STRING := New label'

where #ITEM is the handle of the corresponding tree view or list view item.

In this case, only the item's edit mask (if any) is used. All other aspects of label editing described
above do not apply here. In particular:

1. The label is changed regardless of the value of the MODIFIABLE attribute for the control and the
item.

2. No BEFORE-EDIT or AFTER-EDIT events are raised.

3. The control's ITEM attribute is not set.

4. The text is not automatically translated to upper case if the item's Upper case (U) STYLE flag is
set.

5. The supplied label can exceed the limit (if any) imposed by the item's LENGTH attribute.

Programming Guide676

Label Editing in Tree View and List View Controls

84 Working with ActiveX Controls

■ Terminology .. 678
■ How To Define an ActiveX Control ... 678
■ How To Create an ActiveX Control .. 678
■ Accessing Simple Properties .. 679
■ Colors ... 680
■ Pictures ... 681
■ Fonts .. 681
■ Variants ... 683
■ Arrays ... 684
■ Using the PROCESS GUI Statement ... 684

677

ActiveX controls are third-party custom controls that you can integrate in a Natural dialog.

Terminology

ActiveX controls and Natural use different terminology in two cases:

NaturalActiveX Control

AttributeProperty

PROCESS GUI Statement ActionMethod

How To Define an ActiveX Control

The handle of an ActiveX control is defined similar as a built-in dialog element, but its individual
aspects are coded in double angle brackets.

Example:

01 #OCX-1 HANDLE OF <<OCX-Table.TableCtrl.1 [Table Control]>>

In the above example, Table.TableCtrl.1 is the program ID (ProgID) under which the ActiveX
control is registered in the system registry. The prefix OCX- identifies the control as an ActiveX
control. [Table Control] is an optional part of the definition and provides a readable name.

How To Create an ActiveX Control

You create an instance of an ActiveX control by using the PROCESS GUI statement action ADD. To
do so, the value of the TYPE attributemust be the ActiveX control's ProgID prefixedwith the string
OCX- and put in double angle brackets. The ProgID is the nameunderwhich the control is registered
in the system registry. You can additionally provide a readable name in square brackets. In addition
to that, you can set Natural attributes such as RECTANGLE-X as well as the ActiveX control's prop-
erties. The property name must be preceded by the string PROPERTY- and this combination must
be put in double angle brackets. Furthermore, you can suppress the ActiveX control's events. To
do this, the event name must be preceded by the string SUPPRESS-EVENT this combination must
be delimited by double angle brackets. The value of the SUPPRESS-EVENT property is either the
Natural keyword SUPPRESSED or NOT-SUPPRESSED.

Example:

Programming Guide678

Working with ActiveX Controls

PROCESS GUI ACTION ADD
WITH PARAMETERS

HANDLE-VARIABLE = #OCX-1
TYPE = <<OCX-Table.TableCtrl.1 [Table Control]>>
PARENT = #DLG$WINDOW
RECTANGLE-X = 44
RECTANGLE-Y = 31
RECTANGLE-W = 103
RECTANGLE-H = 46
<<PROPERTY-HeaderColor>> = H'FF0080'
<<PROPERTY-Rows>> = 16
<<PROPERTY-Columns>> = 4
<<SUPPRESS-EVENT-RowMoved>> = SUPPRESSED
<<SUPPRESS-EVENT-ColMoved>> = SUPPRESSED

END-PARAMETERS

Accessing Simple Properties

Simple properties are properties that do not have parameters. Simple properties of an ActiveX
control are addressed like attributes of built-in controls. The attribute name is built by prefixing
the property namewith PROPERTY- and enclosing it in angle brackets.The properties of anActiveX
control are displayed in the Component Browser. The following examples assume that theActiveX
control #OCX-1 has the simple properties CurrentRow and CurrentCol.

Example:

* Get the value of a property.
#MYROW := #OCX-1.<<PROPERTY-CurrentRow>>
* Put the value of a property.
#OCX-1.<<PROPERTY-CurrentCol>> := 17

The data types of ActiveX control properties are those defined by OLE Automation. In Natural,
each of these data types is mapped to a corresponding Natural data type. The following table
shows which OLE Automation data type is mapped to which Natural data type.

NATURAL data typeOLE Automation data type

LVT_BOOL

A dynamicVT_BSTR

P15.4VT_CY

TVT_DATE

Pn.mVT_DECIMAL

HANDLE OF OBJECTVT_DISPATCH

679Programming Guide

Working with ActiveX Controls

NATURAL data typeOLE Automation data type

I4VT_ERROR

I2VT_I1

I2VT_I2

I4VT_I4

I4VT_INT

F4VT_R4

F8VT_R8

B1VT_U1

B2VT_U2

B4VT_U4

B4VT_UINT

HANDLE OF OBJECTVT_UNKNOWN

(any Natural data type)VT_VARIANT

B3OLE_COLOR (VT_UI4)

VT_FONT (VT_DISPATCH IFontDisp*) HANDLE OF FONT
HANDLE OF OBJECT (IFontDisp*)
A dynamic

VT_PICTURE (VT_DISPATCH IPictureDisp*) HANDLE OF OBJECT (IPictureDisp*)
A dynamic

Read the table in the following way: Assume an ActiveX control #OCX-1 has a property named
"Size", which is of type VT_R8. Then the expression #OCX-1.<<PROPERTY-SIZE>> has the type F8
in Natural.

Note: The Component Browser displays the corresponding Natural data types directly.

Some special data types are considered individually in the following:

Colors

A property of type Color appears in Natural as a B3 value. The B3 value is interpreted as an RGB
color value. The three bytes contain the red, green and blue elements of the color, respectively.
Thus for exampleH'FF0000' corresponds to red,H'00FF00' corresponds to green,H'0000FF' corres-
ponds to blue and so on.

Example:

Programming Guide680

Working with ActiveX Controls

...
01 #COLOR-RED (B3)
...
#COLOR-RED := H'FF0000'
#OCX-1.<<PROPERTY-BackColor>> := #COLOR-RED
...

Pictures

A property of type Picture appears in Natural as HANDLE OF OBJECT. Alternatively you can assign
an Alpha value to a Picture property. The Alpha valuemust then contain the file name of a Bitmap
(.bmp) file.

Example (usage of Picture properties):

...
01 #MYPICTURE HANDLE OF OBJECT
...
* Assign a Bitmap file name to a Picture property.
#OCX-1.<<PROPERTY-Picture>>:= '11100102.bmp'
*
* Get it back as an object handle.
#MYPICTURE := #OCX-1.<<PROPERTY-Picture>>
*
* Assign the object handle to a Picture property of another control.
#OCX-2.<<PROPERTY-Picture>>:= #MYPICTURE
...

Fonts

A property of type Font appears in Natural as HANDLE OF OBJECT. You can alternatively assign a
HANDLE OF FONT to a Font property. Additionally you can assign anAlpha value to a Font property.
The Alpha value must then contain a font specification in the form that is returned by the STRING
attribute of a HANDLE OF FONT.

Example 1 (using HANDLE OF OBJECT):

681Programming Guide

Working with ActiveX Controls

...
01 #MYFONT HANDLE OF OBJECT
...
* Create a Font object.
CREATE OBJECT #MYFONT OF CLASS 'StdFont'
#MYFONT.Name := 'Wingdings'
#MYFONT.Size := 20
#MYFONT.Bold := TRUE
*
* Assign the Font object as value to a Font property.
#OCX-1.<<PROPERTY-TitleFont>> := #MYFONT
...

Example 2 (using HANDLE OF FONT):

...
01 #FONT-TAHOMA-BOLD-2 HANDLE OF FONT
...
* Create a Font handle.
PROCESS GUI ACTION ADD WITH PARAMETERS

HANDLE-VARIABLE = #FONT-TAHOMA-BOLD-2
TYPE = FONT
PARENT = #DLG$WINDOW
STRING = '/Tahoma/Bold/0 x -27/ANSI VARIABLE SWISS DRAFT/W/2/3/'

END-PARAMETERS GIVING *ERROR
...
* Assign the Font handle as value to a Font property.
#OCX-1.<<PROPERTY-TitleFont>> := #FONT-TAHOMA-BOLD-2
...

Example 3 (using a font specification string):

...
01 #FONT-TAHOMA-BOLD-2 HANDLE OF FONT
...
* Create a Font handle.
PROCESS GUI ACTION ADD WITH PARAMETERS

HANDLE-VARIABLE = #FONT-TAHOMA-BOLD-2
TYPE = FONT
PARENT = #DLG$WINDOW
STRING = '/Tahoma/Bold/0 x -27/ANSI VARIABLE SWISS DRAFT/W/2/3/'

END-PARAMETERS GIVING *ERROR
...
* Assign the font specification as value to a Font property.
#OCX-1.<<PROPERTY-TitleFont>> := #FONT-TAHOMA-BOLD-2.STRING
...

Programming Guide682

Working with ActiveX Controls

Variants

A property of type Variant is compatible with any Natural data type. This means that the type of
the expression #OCX-1.<<PROPERTY-Value>> is not checked by the compiler, if "Value" is a property
of type Variant. So the assignments #OCX-1.<<PROPERTY-Value >> := #MYVAL and #MYVAL :=
#OCX-1.<<PROPERTY-Value >> are allowed independently of the type of the variable #MYVAL. It is
however up to the ActiveX control to accept or reject a particular property value at runtime, or to
deliver the value in the requested format. If it does not, the ActiveX control will usually raise an
exception. This exception is returned as a Natural error code to the Natural program. Here it can
be handled in the usual way in an ON ERROR block. You should check the documentation of the
ActiveX control to find out which data formats are actually allowed for a particular property of
type Variant.

An expression like #OCX-1.<<PROPERTY-Value>> (where "Value" is a Variant property) can occur
as source operand in any statement. However, it can be used as target operand only in assignment
statements.

Examples (usage of Variant properties):

(Assume that "Value" is a property of type Variant of the ActiveX control #OCX-1)

...
01 #STR1 (A100)
01 #STR2 (A100)
...
* These statements are allowed, because the Variant property is used
* as source operand (its value is read).
#STR1 := #OCX-1.<<PROPERTY-Value>>
COMPRESS #OCX-1.<<PROPERTY-Value>> 'XYZ' to #STR2
...
* This leads to an error at compiletime, because the Variant
* property is used as target operand (its value is modified) in
* a statement other than an assignment.
COMPRESS #STR1 "XYZ" to #OCX-1.<<PROPERTY-Value>>
...
* This statement is allowed, because the Variant property is used
* as target operand in an assignment.
COMPRESS #STR1 'XYZ' to #STR2
#OCX-1.<<PROPERTY-Value>> := #STR2
...

683Programming Guide

Working with ActiveX Controls

Arrays

A property of type SAFEARRAY of up to three dimensions appears in a Natural program as an
array with the same dimension count, occurrence count per dimension and the corresponding
format. (Properties of type SAFEARRAY with more than three dimensions cannot be used in
Natural programs.) The dimension and occurrence count of an array property is not determined
at compiletime but only at runtime. This is because this information is variable and is not defined
at compiletime. The format however is checked at compiletime.

Array properties are always accessed as a whole. So no index notation is necessary and allowed
with an array property.

Examples (usage of Array properties):

(Assume that "Values" is a property of the ActiveX control #OCX-1 an has the type SAFEARRAY
of VT_I4)

...
01 #VAL-L (L/1:10)
01 #VAL-I (I4/1:10)
...
* This statement is allowed, because the format of the property
* is data transfer compatible with the format of the receiving array.
* However, if it turns out at runtime that the dimension count or
* occurrence count per dimension do not match, a runtime error will
* occur.
VAL-I(*) := #OCX-1.<<PROPERTY-Values>>
...
* This statement leads to an error at compiletime, because
* the format of the property is not data transfer compatible with
* the format of the receiving array.
VAL-L(*) := #OCX-1.<<PROPERTY-Values>>
...

Using the PROCESS GUI Statement

Themethods of ActiveX controls are called as actions in a PROCESS GUI statement. The same is the
case with the complex properties of ActiveX controls (i. e. properties that have parameters). The
methods and properties of an ActiveX control are displayed in the Component Browser.

This section covers the following topics:

■ Performing Methods
■ Getting Property Values

Programming Guide684

Working with ActiveX Controls

■ Putting Property Values
■ Optional Parameters
■ Error Handling
■ Using Events With Parameters
■ Suppressing Events At Runtime

Performing Methods

To perform a method of an ActiveX control the PROCESS GUI statement is used. The name of the
corresponding PROCESS GUI action is built by prefixing themethod namewith METHOD- and enclos-
ing it in angle brackets. The ActiveX control handle and themethod parameters (if any) are passed
in the WITH clause of the PROCESS GUI statement. The return value of themethod (if any) is received
in the variable specified in the USING clause of the PROCESS GUI statement.

This means: To perform a method, you enter a statement

PROCESS GUI ACTION <<METHOD-methodname>> WITHhandlename [parameter]...

[USING method-return-operand]..

Examples:

* Performing a method without parameters:
PROCESS GUI ACTION <<METHOD-AboutBox>> WITH #OCX-1
* Performing a method with parameters:
PROCESS GUI ACTION <<METHOD-CreateItem>> WITH #OCX-1 #ROW #COL #TEXT
* Performing a method with parameters and a return value:
PROCESS GUI ACTION <<METHOD-RemoveItem>> WITH #OCX-1 #ROW #COL USING #RETURN

Formats and length of the method parameters and the return value are checked at compiletime
against the definition of the method, as it is displayed in the Component Browser.

Getting Property Values

To get the value of a property that has parameters, the name of the corresponding PROCESS GUI
action is built by prefixing the property name with GET-PROPERTY- and enclosing it in angle
brackets. The ActiveX control handle and the property parameters (if any) are passed in the WITH
clause of the PROCESS GUI statement. The property value is received in the USING clause of the
PROCESS GUI statement.

This means: To get the value of a property that has parameters, you enter a statement

685Programming Guide

Working with ActiveX Controls

PROCESS GUI ACTION <<GET-PROPERTY-propertyname>> WITHhandlename [parameter]

... USING get-property-operand

Example:

PROCESS GUI ACTION <<GET-PROPERTY-ItemHeight>> WITH #OCX-1 #ROW #COL USING #ITEMHEIGHT

Formats and length of the property parameters and the property value are checked at compiletime
against the definition of the method, as it is displayed in the Component Browser.

Putting Property Values

To put the value of a property that has parameters, the name of the corresponding PROCESS GUI
action is built by prefixing the property name with PUT-PROPERTY- and enclosing it in angle
brackets. The ActiveX control handle and the property parameters (if any) are passed in the WITH
clause of the PROCESS GUI statement. The property value is passed in the USING clause of the
PROCESS GUI statement.

This means: To put the value of a property that has parameters, you enter a statement

PROCESS GUI ACTION <<PUT-PROPERTY-propertyname>> WITHhandlename [parameter]

... USING put-property-operand

Example:

PROCESS GUI ACTION <<PUT-PROPERTY-ItemHeight>> WITH #OCX-1 #ROW #COL USING #ITEMHEIGHT

Formats and length of the property parameters and the property value are checked at compiletime
against the definition of the method, as it is displayed in the Component Browser.

Optional Parameters

Methods of ActiveX controls can have optional parameters. This is also true for parameterized
properties. Optional parameters need not to be specified when the method is called. To omit an
optional parameter, use the placeholder 1X in the PROCESS GUI statement. To omit n optional
parameters, use the placeholder nX.

In the following example it is assumed that the method SetAddress of the ActiveX control #OCX-1
has the parameters FirstName, MiddleInitial, LastName, Street and City, where MiddleInitial,
Street and City are optional. Then the following statements are correct:

Programming Guide686

Working with ActiveX Controls

* Specifying all parameters.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName MiddleInitial LastName Street City
* Omitting one optional parameter.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName 1X LastName Street City
* Omitting the optional parameters at end explicitly.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName MiddleInitial LastName 2X
* Omitting the optional parameters at end implicitly.
PROCESS GUI ACTION <<METHOD-SetAddress>> WITH #OCX-1
FirstName MiddleInitial LastName

Omitting a non-optional (mandatory) parameter results in a syntax error.

Error Handling

The GIVING clause of the PROCESS GUI statement can be used as usual to handle error conditions.
The error code can either be caught in a user variable and then be handled, or the normal Natural
error handling can be triggered and the error condition be handled in an ON ERROR block.

Example:

DEFINE DATA LOCAL
1 #RESULT-CODE (N7)
...
END-DEFINE
...
* Catching the error code in a user variable:
PROCESS GUI ACTION <<METHOD-RemoveItem>> WITH #OCX-1 #ROW #COL USING #RETURN GIVING ↩
#RESULT-CODE
*
* Triggering the Natural error handling:
PROCESS GUI ACTION <<METHOD-RemoveItem>> WITH #OCX-1 #ROW #COL USING #RETURN GIVING ↩
*ERROR-NR
...

Special error conditions that can occur during the execution of ActiveX control methods are:

■ Amethod parameter, method return value or property value could not be converted to the data
format expected by the ActiveX control. (These format checks are normally already done at
compiletime. In these cases no runtime error can be expected. However, note that method
parameters, method return values or property values defined as Variant are not checked at
compiletime. This applies also for arrays and for those data types that can bemapped to several
possible Natural data types.)

■ A COM or Automation error occurs while locating and executing a method.

687Programming Guide

Working with ActiveX Controls

■ The ActiveX control raises an exception during the execution of a method.

In these cases the error message contains further information provided by the ActiveX control,
which can be used to determine the reason of the error with the help of the documentation of the
ActiveX control.

Using Events With Parameters

Events sent by ActiveX controls can have parameters. In the controls event-handler sections, these
parameters can be queried. Parameters passed by reference can also be modified. The events of
an ActiveX control, the names and data types of the parameters and the fact if a parameter is
passed by value or by reference is all displayed in the Component Browser.

Event parameters of an ActiveX control are addressed like attributes of built-in controls. The at-
tribute name is built by prefixing the parameter name with PARAMETER- and enclosing it in angle
brackets. Alternatively, parameters can be addressed by position. This means the attribute name
is built by prefixing the number of the parameter with PARAMETER- and enclosing it in angle
brackets. The first parameter of an event has the number 1, the second the number 2 and so on.
These attribute names are only valid inside the event handler of that particular event.

In the following examples it is assumed that a particular event of the ActiveX control #OCX-1 has
the parameters KeyCode and Cancel. Then the event handler of that event might contain the fol-
lowing statements:

* Querying a parameter by name:
#PRESSEDKEY := #OCX-1.<<PARAMETER-KeyCode>>
* Querying a parameter by position:
#PRESSEDKEY := #OCX-1.<<PARAMETER-1>>

Parameters that are passed by reference can be modified in the event handler. In the following
example it is assumed that the Cancel parameter is passed by reference and is thus modifiable.
Then the event handler might contain the following statements:

* Modifying a parameter by name:
#OCX-1.<<PARAMETER-Cancel>>:= TRUE
* Modifying a parameter by position:
#OCX-1.<<PARAMETER-2>>:= TRUE

Programming Guide688

Working with ActiveX Controls

Suppressing Events At Runtime

To suppress or unsuppress an event of an ActiveX control at runtime, modify the corresponding
suppress event attribute of the control. The name of the suppress event attribute is built by prefixing
the event namewith SUPPRESS-EVENT- and enclosing it in angle brackets. The events of anActiveX
control are displayed in the Component Browser.

The following example assumes that the ActiveX control #OCX-1 has the event ColMoved.

* Suppress the event.
#OCX-1.<<SUPPRESS-EVENT-ColMoved>> := SUPPRESSED
* Unsuppress the event.
#OCX-1.<<SUPPRESS-EVENT-ColMoved>> := NOT-SUPPRESSED

689Programming Guide

Working with ActiveX Controls

690

85 Working with Arrays of Dialog Elements

It is sometimes convenient to arrange dialog elements in one or two dimensions. If, for example,
you want to arrange several radio button controls in one column, it is possible to draw the first
one and specify the others as a one-dimensional array.

To work with arrays of dialog elements

1 Choose theArray button in the radio button control's attributes window. TheArray Specific-
ation dialog box appears.

2 Enter:

■ the number of dimensions;
■ the bounds of the first and second dimension, if applicable;
■ the spacing on the x and y axis in pixels (depending on whether the array is arranged in
rows or in columns);

■ the arrangement (rows or columns).

The array will now be treated as a graphical entity. Note that you will have to assign a common
GROUP-ID attribute to each radio button control. This will enable you to treat the array as a logical
entity.

For each dialog element in an array, the following attributes may be specified separately:

■ STRING

■ DIL-TEXT

■ BITMAP-FILE-NAME

In an event handler for an array of dialog elements, the system variable *CONTROLwill denote one
of the array elements.

691

If a variable is selected as the source of an attribute value, the array must contain at least the index
ranges of the dialog element.

If a message file ID is specified as the source of an attribute value, consecutive messages are taken
for the array's sequence of dialog elements.

In an array of dialog elements, you can assign one value to all dialog elements in the array using
the (*) notation or a range, such as in the following examples:

#PB-1.ENABLED(*) := TRUE /*invalid
#PB-1.ENABLED(1:3) := TRUE /*invalid

An alternative way of creating a sequence of identical dialog elements is to duplicate or copy and
paste an individual dialog element and use the grid plus the cross-hair cursor to place them.

The following example illustrates how to set the STRING attribute of occurence 2 in a one-dimen-
sional push button array:

#PB-2.STRING(2) := 'HUGO'

Programming Guide692

Working with Arrays of Dialog Elements

86 Working with Control Boxes

■ Introduction .. 694
■ Purpose of Exclusive Control Boxes .. 694
■ Examples of Use of Exclusive Control Boxes ... 695
■ Creation of the Wizard Pages ... 696

693

Introduction

A control box is is used to enhance the effectiveness of the nested control support. However,
control boxes have a number of unique features that merit their separate discussion.

Control boxes are, in themselves, fairly inert controls, belonging to the same category as text con-
stants and group frames in that they cannot receive the focus and do not receive any mouse or
keyboard input. Instead, they are intended to act as general-purpose containers for other controls
(including, possibly, other control boxes), in order to build up a control hierarchy. In doing so,
control boxes support three styles which are worthy of special mention here:

■ Because it is often desirable to be able to group controls together for convenience, but not desir-
able that the user actually sees the container itself, control boxes can be marked with the style
"transparent". In this case, no parts of the control box are drawn, and any underlying colors and
controls show through.

■ Control boxes can also be marked with the style "exclusive". When an exclusive control box is
made visible, either in the dialog editor or at runtime, all other sibling control boxes that are
alsomarked as "exclusive" are hidden. This applies to edit-time and runtime in a slightly different
way. At runtime, setting the VISIBLE attribute of an exclusive control box to TRUE hides all its
exclusive siblings and sets their VISIBLE attribute to FALSE. At edit-time, whenever an exclusive
control box or one of its descendants is selected, the exclusive control box becomes visible and
all other exclusive siblings are hidden. However, in this latter case the VISIBLE attribute of the
controls concerned is unaffected. This implies that the exclusive control box that is initially visible
when the dialog is run is independent of the exclusive control box that was visible at the time
the dialog was last saved.

■ Additionally, control boxes support the "size to parent" style. When a container control, or the
dialog itself, is resized, all child control boxes (if any) with this style set are resized to entirely
fill the parent's client area. The same applies when this style is first set in the dialog editor.
However, it is still possible to resize such control boxes independently of their container.

Purpose of Exclusive Control Boxes

Exclusive control boxes, as described above, are primarily intended for situations where it is ne-
cessary to manage several overlapping “pages” of controls occupying the same region of a dialog.
Without the auto-hiding feature which exclusive control boxes provide, it would be very difficult
indeed for a user to handle this situation in the dialog editor, as many controls would be partially
or completely overlapped by others. Of course, one could move the control to the front of the
control sequence during editing, but this would be highly inconvenient, and one would have to
remember to move the control back before continuing.

Programming Guide694

Working with Control Boxes

Using exclusive control boxes, editing a control in this situation is as simple as selecting it. For
controls that are not currently on display, the selection can be made via the combo box in the
dialog editor's status bar or by using the TAB key to walk through the controls sequentially until
the target control is reached. When a control that is a descendant of an exclusive control box is
selected, that exclusive control box is made visible (if not already so), and the previously visible
exclusive control box is hidden. These changes have no impact on the generated dialog source
code and the runtime state of the dialog.

Examples of Use of Exclusive Control Boxes

Although the design of control boxeswas intended to keep themas general as possible, two possible
situations where overlapping control pages are desired (and hence where exclusive control boxes
become extremely useful) are worthy of special mention here:

■ Wizard dialogs.
■ Tabbed dialogs (“Property sheets”).

Within the rectangle highlighted in red, the so-called "wizard pages" are displayed. Within this
area, we use a 2-level hierarchy of control boxes in order to implement the required functionality:

695Programming Guide

Working with Control Boxes

Here, #CTLBOX-1 is used as the “master” control box, which makes resizing of the pages easier
later, should this become necessary. Because all child control boxes are markedwith the style "size
to parent", we can resize the wizard page area simply by resizing #CTLBOX-1.

The child control boxes are used to implement the actual wizard pages. #CTLBOX-2 contains the
controls used for wizard page 1, #CTLBOX-3 contains the controls for wizard page 2, and so on.

Creation of the Wizard Pages

Creation of the wizard pages typically involves the following steps:

1. Create the top-level (“master”) control box as for any other control.

2. Via its attributes window, set the "transparent" style.

3. Create another control box within the first one. The new control box automatically becomes a
child of the first one, because control boxes are always containers.

4. Via the attributes window for the child control box, set the "transparent", "exclusive" and "size
to parent" styles. Because the "size to parent" style is set, the child control box expands to fill
its container.

5. Now you can start adding the controls onto the newly-created control box, which becomes
wizard page 1.

6. Adding a new wizard page is most easily achieved by selecting the child control box you wish
to immediately precede the newone, then using the clipboard copy and paste commands. Before

Programming Guide696

Working with Control Boxes

doing the copy, Natural will prompt you as towhether youwant the child controls to be copied,
too. Answer this question withNo.

7. Because the newly added child control box also has the exclusive flag set, the previously dis-
played child control box is hidden, and the new blank one is shown, ready for you to start
adding a new set of controls as for the first wizard page.

Switching between the wizard pages at edit-time

Switching between the pages at edit time can bemost simply achieved by selecting the child control
box for the appropriate page, or one of the controls on it, from the combo box in the dialog editor's
status bar.

Creating the divider line

The divider line between the push buttons and the wizard pages can be implemented as a very
thin group box (2 pixels high) with no caption. The still slightly visible sides of the group box at
each end can bemasked out by using a transparent control boxwhich comes after the group frame
in the control sequence. Make sure the "control clipping" style for the dialog is switched on for
this technique to work.

Implementing the Back and Next push buttons

Firstly, define a local variable for the dialog to store the handle of the currently active page. E.g.:

01 #ACTPAGE HANDLE OF CONTROLBOX ...

Secondly, set this variable to the handle of the first wizard page in the AFTER-OPEN event for the
dialog:

#ACTPAGE := #CTLBOX-1.FIRST-CHILD ..

where #CTLBOX-1 is the handle of the top-level control box. Now we are ready to implement the
CLICK event code for theNext push button (#PB-NEXT). This could look something like this:

IF #ACTPAGE.SUCCESSOR = NULL-HANDLE
CLOSE DIALOG *DIALOG-ID

ELSE
REPEAT

#ACTPAGE := #ACTPAGE.SUCCESSOR
WHILE #ACTPAGE.ENABLED = FALSE

END-REPEAT
#ACTPAGE.VISIBLE := TRUE
IF #ACTPAGE.SUCCESSOR = NULL-HANDLE

697Programming Guide

Working with Control Boxes

#PB-NEXT.STRING := 'Finish'
#PB-BACK.ENABLED := FALSE
#PB-CANCEL.ENABLED := FALSE

ELSE
#PB-BACK.ENABLED := TRUE

END-IF
END-IF
..

Note that this logic does not be modified if further wizard pages are added later. Note also that
any intermediate wizard pages whose corresponding control box has been disabled are ignored.
This allows certain wizard pages to be skipped, based on previous input, by simply setting the
relevant control box ENABLED attribute to FALSE. When the last page is reached, the text for the
Next push button is changed to "Finish".

The CLICK event code for the Back push button (#PB-BACK) is very similar:

REPEAT
#ACTPAGE := #ACTPAGE.PREDECESSOR
WHILE #ACTPAGE.ENABLED = FALSE

END-REPEAT
IF #ACTPAGE.PREDECESSOR = NULL-HANDLE

#PB-BACK.ENABLED := FALSE
END-IF
#ACTPAGE.VISIBLE := TRUE
..

Note that the Back push button should be initially disabled in the dialog editor.

Clearing all controls on a wizard page

This can be conveniently achieved by selecting any (highest-level) control on the relevant page,
then performing a Select All from the Editmenu to additionally select all the controls siblings.
The selected controls can then be deleted as normal.

Example 2 - a tabbed dialog

A tabbed dialog (sometimes called a “property sheet”) is very similar in concept to awizard dialog.
The only substantial difference is that instead of navigating between the control “pages” via the
Next and Back push buttons, the user directly accesses the page he wants by clicking on the ap-
propriate tab. The control page hierarchy can be built up and handled in the dialog editor in the
same way as in the wizard dialog example above. Several ActiveX controls are available which
provide the actual tabs.

It should be noted, however, that the switching between the pages (i.e., switching between the
corresponding control boxes) is not automatic. The Natural programmer must insert code for the
ActiveX event raised by a tab switch, find out which tab is selected, and set the VISIBLE attribute

Programming Guide698

Working with Control Boxes

of the appropriate (exclusive) control box to TRUE. This cannot be done implicitly byNatural because
each ActiveX control can implement its functionality in any way it chooses. There is no standard
event raised for a tab switch and no standard method with standard parameters (or standard
property) for determining the currently active tab.

An example tabbed dialog,making use of theMicrosoft "Tab Strip" ActiveX control (V4-NEST.NS3)
is shipped as part of the Natural example libraries.

699Programming Guide

Working with Control Boxes

700

87 Working with Date and Time Picker (DTP) Controls

■ Introduction .. 702
■ Date and Time Formats .. 702
■ Inputting Dates and Times ... 703
■ Null Values ... 704
■ Calendar Colors and Font ... 704

701

Introduction

A date and time picker (DTP) control is used to simplify the input of date or time information for
the user. A DTP control appears and behaves similarly to a spin control for the input of times and
optionally as either a spin control or selection box for the input of dates. In the latter case, a month
calendar appears instead of the typical list box when the user clicks on the button displaying the
down arrow.

Date and Time Formats

By default, the date and time information is displayed according to the date and time formats
defined for the current regional settings. BecauseWindows provides two alternative date formats,
one long and one short (both of which may be changed by the user), and because the short date
format may not contain century information, one of three STYLE flags determines which of the
standard date formats should be used. These (mutually exclusive) formats are:

■ "Short date (s)", implying that the standard short date format for the current regional settings
should be used.

■ "Century date (c)", implying that the standard short date format for the current regional settings
should be used, but extended to provide century information if this is not already the case. Note
that in many cases, the short date format already includes century information, in which case
this style does not change the appearance of the date.

■ "Long date (d)", implying that the standard long date format for the current regional settings
should be used

In addition. The "Time (t)" style flag is provided in order to indicate that the control should display
time (instead of date) information.

If these standard formats are not sufficient, they can be overridden by proving a custom format
string using the EDIT-MASK attribute. Note, however, that the format string specifiers do not cor-
respond to those used for edit masks elsewhere within Natural. The following table lists the
available specifiers and their meanings:

DescriptionSpecifier

The one- or two-digit day.d

The two-digit day. Single-digit day values are preceded by a zero.dd

The three-character weekday abbreviation.ddd

The full weekday name.dddd

The one- or two-digit hour in 12-hour format.h

The two-digit hour in 12-hour format. Single-digit values are preceded by a zero.hh

Programming Guide702

Working with Date and Time Picker (DTP) Controls

DescriptionSpecifier

The one- or two-digit hour in 24-hour format.H

The two-digit hour in 24-hour format. Single-digit values are preceded by a zero.HH

The one- or two-digit minute.m

The two-digit minute. Single-digit values are preceded by a zero.mm

The one- or two-digit second.s

The two-digit second. Single-digit values are preceded by a zero.ss

The one- or two-digit month number.M

The two-digit month number. Single-digit values are preceded by a zero.MM

The three-character month abbreviation.MMM

The full month name.MMMM

The one-letter AM/PM abbreviation (that is, AM is displayed as A).t

The two-letter AM/PM abbreviation (that is, AM is displayed as AM).tt

The last two digits of the year (that is, 2005 would be displayed as 05).yy

The full year (that is, 2005 would be displayed as 2005).yyyy

In addition, any characters in quotes are displayed exactly as specified. To specify the quote
character itself within a quoted string, two consecutive single quote characters should be used.
Spaces and punctuation marks (such as the comma) do not need to be quoted.

For example, in order to display the string "John's birthday is Friday, December 31, 1969", the DTP
control's EDIT-MASK attribute would be set to "John' 's birthday is' dddd, MMMM d, yyyy".

Inputting Dates and Times

The DTP control provides several ways of modifying the specified information:

■ By the user, by entering numerical information (day numbers, etc.) directly.
■ By the user, by incrementing or decrementing the selected field (e.g. day number, month name)
via the + or - keys, respectively.

■ By the user, if the DTP control has either the "Time (t)" or "Up-down (u)" style, by selecting the
required field and incrementing or decrementing the value via the up-down ("spin") control.

■ By the user, if the DTP control is using a month calendar, by pressing the down arrow to open
the month calendar and navigating to the required date. Unlike the above method, this method
updates all date fields simultaneously.

■ Programmatically, by updating the TIME attribute with the required date or time.

For example, to set the date or time in a DTP control to the current date or time, use the following
assignments:

703Programming Guide

Working with Date and Time Picker (DTP) Controls

#DTP-1.TIME := *DATX

or

#DTP-1.TIME := *TIMX

respectively, where #DTP-1 is assumed to be the handle of the DTP control.

Note that the DTP control stores both date and time information, even though it only allows
editing of the date or time component, depending on the control's style.

If the DTP control's date or time is modified by the user, a CHANGE event is raised for the control
(if not suppressed). This does not happen if the DTP control is modified programmatically.

Null Values

If the "Allow 'no value' (n)" style is specified for the DTP control, the control displays a check box.
If this check box is unchecked, the interpretation is that there is no date or time associated with
the control. The application can test for this state by querying the control's CHECKED attribute. It
can also revert the control to the "no value" state by setting the CHECKED attribute back to UNCHECKED.
Note that it is, however, not possible to explicitly set the CHECKED attribute to CHECKED, as this is
done implicitlywhenever a date or time is applied to the control. Furthermore, the CHECKED attribute
may not be set at all for DTP controls without the "Allow 'no value' (n)" style.

Calendar Colors and Font

The colors and font used by the month calendar (if any) associated with the DTP control may be
changed by use of the SET-AUX-COLOR and SET-AUX-FONT actions, respectively.

Programming Guide704

Working with Date and Time Picker (DTP) Controls

88 Working with Dialog Bar Controls

■ Introduction .. 706
■ Creating a Dialog Bar Control ... 706
■ Types of Dialog Bar Control ... 706
■ UI Transparency .. 709
■ Client-Size Event ... 709
■ Close Button ... 710
■ Sample Code .. 710

705

Introduction

A dialog bar is similar to a tool bar control in that it can either docked to one of the interior sides
of the dialog's frame or (optionally) floated in its own separate window. Unlike tool bar controls,
however, dialog bar controls are conceived general-purpose container controls and are not dedicated
to containing primarily tool bar items. Furthermore, there are a number of other visual and beha-
vioral differences between tool bar controls and dialog bars, some of which are discussed below.

A good example of a dialog bar control is the library workspace window in Natural Studio.

Creating a Dialog Bar Control

Dialog bar controls are created in the dialog editor in the same way as other standard controls
(such as list boxes or push buttons) are. That is, they are either created statically in the dialog ed-
itor via the Insertmenu or by drag and drop from the Insert tool bar, or dynamically at run-time
by using a PROCESS GUI ACTION ADD statement with the TYPE attribute set to DIALOGBAR.

Types of Dialog Bar Control

A dialog bar control can exist in one of the following three basic forms (in order of complexity):

1. Neither dockable nor sizeable.

2. Dockable, but not sizeable.

3. Dockable and sizeable.

The dialog bar control is dockable if its DRAGGABLE attribute is set. It is sizeable if the "Dynamic
(Y)" STYLE flag is set.

The following example shows an example of a non-dockable, non-sizeable dialog bar. The edit
area on the right fills the entire client area of the dialog. The dialog bar cannot be dragged by the
user and extends to fill the entire length of the side on which it is positioned:

Programming Guide706

Working with Dialog Bar Controls

Setting the “dockable” state in the Dialog Bar Attributeswindow in the dialog editor causes the
window to be draggable by the user. Note also that the dialog bar no longer extends to occupy
the full length of the side to which it is docked (another dialog bar control or tool bar control could
be docked underneath it):

The user can drag the dialog bar control and re-dock it to another side of the owner dialog, or float
it in its own separate window, as shown below:

If the dialog bar control ismade sizeable (by checking the "Dynamic (Y)" style flag in theAttributes
window), a longitudinal splitter bar appears, allowing the dialog bar control to be resized. Note
that sizeable dialog bar controls expand to fill the entire length of the side they are docked to that
is not occupied by non-sizeable bars:

707Programming Guide

Working with Dialog Bar Controls

If a gripper bar, zoom and close button are added (by setting the "Gripper (g)", "Zoom button (z)"
and "Close button (x)" style flags in the Attributeswindow), the dialog bar control takes on the
familiar appearance of the control used to display the library workspace in Natural Studio. Note
that the zoom button is disabled, because there is no other sizeable dialog bar control on the same
row:

If a second sizeable dialog bar control is added, and docked alongside the first on the same row,
a transverse splitter bar appears allowing the relative sizes of the two dialog bar controls to be
changed. Note that the zoom button is now enabled:

Clicking on the zoom button toggles between the maximized and restored states of a sizeable
dialog bar control. Maximizing a dialog bar control causes the other sizeable dialog bar controls

Programming Guide708

Working with Dialog Bar Controls

on the same row to be minimized, and the released space to be taken up by the maximized bar,
as shown below:

Note that the direction of the arrow is displayed by the zoom button on the maximized bar has
changed direction in order to indicate that the next time this button is pressed, the bar will be re-
stored, rather than maximized. When a bar is restored, all sizeable dialog bars on the row revert
to their normalized sizes. These are usually the sizes prior to themaximize operation, unless there
has been a change in the visible bars on the row in themeantime (e.g., visible bar hidden or hidden
bar shown, new bar docked on row, etc.).

Note that if the length of a bar on a row is changed via a tranverse splitter bar, all visible bars on
the row are automatically restored.

UI Transparency

A dockable dialog bar control may normally be dragged via either its gripper bar (if any) or its
background. If the "UI transparent (T)" style is set, however, the bar may only be dragged via its
gripper bar (if any). If such a (sizeable) bar does not have a gripper bar, resizing of the control is
only possible via the splitter bar(s), whichmay be a desirable feature in some situations. Addition-
ally, only allowing dragging via the gripper bar helps prevent unintentional initiation of drag
operations.

Client-Size Event

The dialog's client window is reduced in size to exclude the areas occupied by tool bar, status bar
and dialog bar controls. If a dockable window (tool bar or dialog bar control) is floated, re-docked
to another side of the owner window, or is shown or hidden, the size of the client window can
change, even though the exterior dimensions of the window have not altered. Because the SIZE
event is reserved for changes in a dialog's exterior size, applications which need to keep track of
the size of the client window should instead use the CLIENT-SIZE event for this purpose. The ac-

709Programming Guide

Working with Dialog Bar Controls

tual size of the dialog client window can then be determined within this event by means of the
INQ-INNER-RECT action.

Close Button

The close button (if present) hides a dialog bar control rather than closing it, as is also the case for
the close button on floated tool bar controls. It is up to the application to provide a method of re-
showing the bar. The next section provides some code for doing this (amongst other things).

Sample Code

Below is a full listing of an external subroutine that can, in most cases, be used “as-is” in order to
allow user control over the display of tool bars and dialog bars. The code is designed to be
powerful enough to cope withMDI applications, but also works with non-MDI (i.e., SDI) applica-
tions.

The subroutine appends the tool and dialog bar captions (STRING attribute) to the dialog's context
menu. If the dialog does not have a context menu, one is created and assigned to the dialog auto-
matically. It assumes that, in anMDI application, there are some tool bars and dialog bars that are
global (i.e., relevant for all types of MDI child dialogs) and some which are private (i.e., relevant
only for one type of MDI child dialog). For example, in Natural Studio, the Object tool bar is an
example of a global tool bar, whereas the dialog editor options tool bar is private to the dialog
editor. When the user switches between MDI child dialogs, the context menu is changed to only
show the global tool bars plus any private tool bars relevant to the currently active dialog. Further-
more, the same private bars are displayed as the last time this dialog was displayed (if the Save
layout check box in the Dialog Attributeswindow is checked, the subset of bars shown is even
retained between sessions).

The subroutine should be called in the AFTER-ANY event handler of the main dialog (i.e., the MDI
frame dialog for MDI applications), as follows (assuming the main dialog's handle variable name
is set to the default value of #DLG$WINDOW):

PERFORM PROCESS-BAR-COMMANDS #DLG$WINDOW

In addition, the following steps are optional:

1. The bars are listed in the contextmenu in the order inwhich they appear in the control sequence.
Therefore, you may wish to re-sequence the tool and dialog bars (e.g., to ensure that the global
tool bars are displayed before the private ones in MDI applications).

2. The code does not insert a separator before the list of available bars on the context menu.
Therefore, if you are already using a context menu for the dialog, you would probably want to
ensure that your context menu ends with a separator.

Programming Guide710

Working with Dialog Bar Controls

3. ForMDI applications, for each private bar, you should enter the name of the dialog (e.g. "CHILD"
if the dialog's file name isCHILD.NS3) to which the tool bar “belongs” into theControl ID field
of the Attributeswindow for the bar in the dialog editor. For each global bar, leave this field
empty. If you wish the bar to be displayed only when no MDI child dialog is active, enter the
name of the MDI frame dialog here.

4. For MDI applications, you should uncheck the Enabled check box in the Attributeswindow
for each bar that should not be displayed by default.

DEFINE DATA
PARAMETER

1 #DIALOG HANDLE OF GUI
LOCAL

1 #CONTROL HANDLE OF GUI
1 #ACTIVE-DLG HANDLE OF GUI
1 #CTXMENU HANDLE OF CONTEXTMENU
1 #MITEM-DYN HANDLE OF MENUITEM

LOCAL USING NGULKEY1
END-DEFINE
*
DEFINE SUBROUTINE PROCESS-BAR-COMMANDS

DECIDE ON FIRST *EVENT
VALUE 'COMMAND-STATUS'

PERFORM COMMAND-STATUS
VALUE 'IDLE'

PERFORM IDLE
VALUE 'CLICK'
PERFORM CLICK

VALUE 'BEFORE-OPEN'
PERFORM BEFORE-OPEN

VALUE 'AFTER-OPEN'
PERFORM AFTER-OPEN

NONE
IGNORE

END-DECIDE
*

DEFINE SUBROUTINE COMMAND-STATUS
/* Must enable our commands, otherwise they're automatically disabled!
#CTXMENU := #DIALOG.CONTEXT-MENU
#MITEM-DYN := #CTXMENU.FIRST-CHILD
REPEAT WHILE #MITEM-DYN <> NULL-HANDLE

IF #MITEM-DYN.CLIENT-HANDLE <> NULL-HANDLE
#MITEM-DYN.ENABLED := TRUE

END-IF
#MITEM-DYN := #MITEM-DYN.SUCCESSOR

END-REPEAT
END-SUBROUTINE

*
DEFINE SUBROUTINE IDLE

PERFORM SWITCH-BARS

711Programming Guide

Working with Dialog Bar Controls

END-SUBROUTINE
*

DEFINE SUBROUTINE CLICK
#CONTROL := *CONTROL
IF #CONTROL.TYPE = MENUITEM AND #CONTROL.PARENT = #DIALOG.CONTEXT-MENU

#MITEM-DYN := #CONTROL
#CONTROL := #MITEM-DYN.CLIENT-HANDLE
IF #CONTROL <> NULL-HANDLE

IF #MITEM-DYN.CHECKED = CHECKED
#CONTROL.ENABLED := FALSE
#CONTROL.VISIBLE := FALSE

ELSE
#CONTROL.ENABLED := TRUE
#CONTROL.VISIBLE := TRUE

END-IF
END-IF

END-IF
END-SUBROUTINE

*
DEFINE SUBROUTINE BEFORE-OPEN

#CTXMENU := #DIALOG.CONTEXT-MENU
#MITEM-DYN := #CTXMENU.FIRST-CHILD
REPEAT WHILE #MITEM-DYN <> NULL-HANDLE

IF #MITEM-DYN.CLIENT-HANDLE <> NULL-HANDLE
#CONTROL := #MITEM-DYN.CLIENT-HANDLE

IF #CONTROL.VISIBLE
#MITEM-DYN.CHECKED := CHECKED

ELSE
#MITEM-DYN.CHECKED := UNCHECKED

END-IF
END-IF
#MITEM-DYN := #MITEM-DYN.SUCCESSOR
END-REPEAT

END-SUBROUTINE
*

DEFINE SUBROUTINE AFTER-OPEN
/* for MDI frames, unsuppress IDLE event to track active child change
IF #DIALOG.TYPE = MDIFRAME

#DIALOG.SUPPRESS-IDLE-EVENT := NOT-SUPPRESSED
END-IF
/* if dialog has no context menu, create one
#CTXMENU := #DIALOG.CONTEXT-MENU
IF #CTXMENU = NULL-HANDLE

PROCESS GUI ACTION ADD WITH PARAMETERS
HANDLE-VARIABLE = #CTXMENU
TYPE = CONTEXTMENU
PARENT = #DIALOG

END-PARAMETERS GIVING *ERROR
#DIALOG.CONTEXT-MENU := #CTXMENU

END-IF
/* unsuppress context menu's BEFORE-OPEN event for item update
#CTXMENU.SUPPRESS-BEFORE-OPEN-EVENT := NOT-SUPPRESSED

Programming Guide712

Working with Dialog Bar Controls

/* display bars according to context
PERFORM SWITCH-BARS
END-SUBROUTINE

*
DEFINE SUBROUTINE SWITCH-BARS

IF #DIALOG.TYPE = MDIFRAME
#ACTIVE-DLG := #DIALOG.ACTIVE-CHILD

END-IF
IF #ACTIVE-DLG = NULL-HANDLE
#ACTIVE-DLG := #DIALOG

END-IF
IF #ACTIVE-DLG <> #DIALOG.CLIENT-HANDLE
#CTXMENU := #DIALOG.CONTEXT-MENU
IF #CTXMENU <> NULL-HANDLE

/* Remove any dynamic menu items previously created
#CONTROL := #CTXMENU.FIRST-CHILD
REPEAT WHILE #CONTROL <> NULL-HANDLE
#MITEM-DYN := #CONTROL.SUCCESSOR
IF #CONTROL.CLIENT-HANDLE <> NULL-HANDLE

PROCESS GUI ACTION DELETE WITH #CONTROL
END-IF
#CONTROL := #MITEM-DYN

END-REPEAT
/* Search for all tool bar and dialog bar controls
#CONTROL := #DIALOG.FOLLOWS
REPEAT WHILE #CONTROL <> #DIALOG

IF #CONTROL.TYPE = TOOLBARCTRL OR
#CONTROL.TYPE = DIALOGBAR

#CONTROL.CLIENT-KEY := 'CONTROL-ID'
IF #CONTROL.CLIENT-VALUE = ' ' OR

#CONTROL.CLIENT-VALUE = #ACTIVE-DLG.NAME
#CONTROL.VISIBLE := #CONTROL.ENABLED
/* Create menu entry for bar
PROCESS GUI ACTION ADD WITH PARAMETERS
HANDLE-VARIABLE = #MITEM-DYN
TYPE = MENUITEM
PARENT = #CTXMENU
STRING = #CONTROL.STRING
SUCCESSOR = #MITEM-DYN
CLIENT-HANDLE = #CONTROL

END-PARAMETERS GIVING *ERROR
ELSE
#CONTROL.VISIBLE := FALSE

END-IF
END-IF
#CONTROL := #CONTROL.FOLLOWS

END-REPEAT
END-IF
/* Save handle of currently active dialog
#DIALOG.CLIENT-HANDLE := #ACTIVE-DLG

END-IF
END-SUBROUTINE

713Programming Guide

Working with Dialog Bar Controls

END-SUBROUTINE
END

Programming Guide714

Working with Dialog Bar Controls

89 Working with Error Events

When a runtime error occurs while a dialog is active, the dialog receives an error event. You can
specify event-handler code to be executed whenever this error occurs. If no error event-handler
code is specified, Natural aborts with an error message and all dialogs will be closed.

You can continue normal dialog processing after error handling by specifying an ESCAPE ROUTINE
statement at the end of the event-handler code.

The dialog editor generates an ON ERROR statement for the event handler. If, for example, youwant
to prevent the end user from closing the entire application when trying to divide an integer by
zero, and the parameter ZD is set to ON, the error event-handler code might look like this:

COMPRESS 'Natural error' *ERROR 'occurred.' INTO #DLG$WINDOW.STATUS-TEXT
ESCAPE ROUTINE

715

716

90 Working with a Group of Radio Button Controls

Radio button controls are created just like push button controls or toggle button controls; however,
they are grouped using the GROUP-ID attribute. If you define a number of radio button controls as
a group, only one button is selected at any time. The GROUP-ID attribute provides this selection
logic.

You group several radio button controls by assigning them the same GROUP-ID value (group
number) in their attributeswindows. If the end user clicks on a radio button control, all other radio-
button controls in the dialog with the same GROUP-IDwill be deselected. They will also be
deselected if one radio button control is selected by code like the following:

...
1 #RB-1 HANDLE OF RADIOBUTTON

...
#RB-1.CHECKED := CHECKED /* Set the CHECKED attribute to value CHECKED
...

You also have to bear in mind that the end user should be able to use the keyboard for navigation
inside a group of radio button controls: TAB selects the first radio button control, and the arrow
keys enable you to navigate within the radio button group. To ensure that Natural automatically
allows for such navigation, the radio button controls must follow each other directly in the navig-
ation sequence. If you are dynamically adding a radio button control via the PROCESS GUI statement
action ADD, this can be achieved by specifying a value for the button's FOLLOWS attribute.

To edit the navigation sequence

■ From the Dialogmenu, choose Control Sequence.

717

718

91 Working with Image List Controls

■ Introduction .. 720
■ Creating the Image List Control .. 720
■ Adding Images .. 720
■ Composite Images ... 721
■ Scaling and Transparency ... 721
■ Bitmaps vs. Icons .. 722
■ Using an Image List ... 723
■ Referencing Images from the Image List .. 723
■ Overlay Images ... 724
■ Modifying Images .. 725
■ Deleting Images .. 726
■ Deleting the Image List Control ... 726

719

Introduction

An image list control is a container of ordered images that can be associatedwith particular control
types, such as list view and tree view controls. It allows images to be efficiently re-used by the
control's items without the image being re-loaded from the disk each time. It also ensures that all
images are compatible (e.g., are of the same size and color organization).

Creating the Image List Control

Image list controls are created, as usual, via the ADD action:

PROCESS GUI ACTION ADD WITH
PARAMETERS

HANDLE-VARIABLE = #IMGLST-1
TYPE = IMAGELIST
PARENT = #DLG$WINDOW
STYLE = 'LS'

END-PARAMETERS GIVING *ERROR

An image list control may consist of up to two sets of images internally, one consisting of large
images (typically 32 by 32 pixels) and one consisting of small images (typically 16 by 16 pixels).
Which of these (if any) is created internally depends on the image list control's "Large Images (L)"
and "Small Images (S)" STYLE flags. If neither of these flags are specified, a single set of images is
created, with an explicit image size as determined by the image list control's ITEM-W and ITEM-H
attribute values. If both of these are zero, small images are assumed.

Adding Images

Images are added to an image list by creating an image control, based on the required image
(bitmap or icon) file, as a child of the image list control:

PROCESS GUI ACTION ADD WITH
PARAMETERS

HANDLE-VARIABLE = #IMG-1
TYPE = IMAGE
PARENT = #IMGLST-1
BITMAP-FILE-NAME = 'example.bmp'

END-PARAMETERS GIVING *ERROR

Programming Guide720

Working with Image List Controls

Images are appended to the list by default, unless the SUCCESSOR attribute is used to insert them
at a specific position.

Composite Images

Image controls can be categorized into two types: single-image image controls and multi-image
image controls.

Single-image image controls contribute a single image to each set of images stored by the parent
image list control. That is, if the image list contains both large and small images, one of each is
provided by the image control. Single-image image controls may be bitmaps or icons.

Multi-image image controls, as the name suggests, may contribute more than one image (in each
required size) to the parent image list control.Multi-image image controlsmust be based on bitmap
files, rather than icons, and are distinguishable from single-image image controls in that their
"Composite image (C)" STYLE flag is set:

PROCESS GUI ACTION ADD WITH
PARAMETERS

HANDLE-VARIABLE = #IMG-1
TYPE = IMAGE
PARENT = #IMGLST-1
STYLE = 'CsT'
BITMAP-FILE-NAME = 'composite.bmp'

END-PARAMETERS GIVING *ERROR

The number of images in the composite bitmap is automatically calculated from the size of the
bitmap and the width and height of the images in the (smallest) set of images stored by the parent
image list control. Thus, in the case where both large and small images are stored, the bitmap
would typically be 16 pixels high, and (16 * N) pixels wide, where N is the number of images to
be stored in the image control. Here is an example of a composite bitmap containing five images:

Scaling and Transparency

In the example provided in the preceding section, two other style flags were specified in addition
to the "Composite image (C)" style: namely, the "Scaled (s)" and the "Transparent (T)" style flags.
The first of these is absolutely necessary if the parent image list control contains multiple sets of
images in different sizes. For example, if large images are also being used, the flag causes the
composite image to be scaled internally first before being chopped up into its constituent images,
as follows:

721Programming Guide

Working with Image List Controls

Note that if the "Scaled (s)" style flag were not specified, the composite bitmapwould be extended
in the background color, rather than being scaled, before being chopped up, as shown below:

This would result in the following five large images:

Needless to say, this is not normally what you want!

The "Transparent (T)" style flag indicates that the images should be rendered transparently, such
that all pixels in the bitmap's background color are not drawn. The background color can be expli-
citly specified by setting the BACKGROUND-COLOUR-VALUE and/or BACKGROUND-COLOUR-NAME attributes
for the image control to the required value. Otherwise, if no color is specified (as in the previous
example), the color of the first (i.e., top-left) pixel in the bitmap is taken as being the background
color.

Of course, both the "Scaled (s)" and the "Transparent (T)" style flags can also be applied to non-
composite images.

Bitmaps vs. Icons

Apart fromnot being able to sourcemulitple images (as described above), icons differ frombitmaps
in two important ways. Firstly, a single icon (.ICO) file can contain multiple versions of the icons
in different sizes. Thus when Natural requires the large image, and the source is an icon file, the
large icon defined in the icon file is used, if present, in preference to synthesizing it from one of
the other icons in the file by scaling. Similarly, when Natural requires the small image, and the
source is an icon file, the small icon defined in the icon file is used, if present. In contrast, bitmap
files do not contain multiple images, so if both large and small images are required for an image
list, one of the two images (usually the large image)must by synthesized from the other as described
in the previous section.

Secondly, icons typically contain amonochromebitmap (known as the imagemask) that determines
which pixels in the image are transparent (i.e., should not be drawn). Thus, when Natural loads
an image from an icon file, and the image control's BACKGROUND-COLOUR-NAME attribute is set to
DEFAULT (or is not specified), and the image control's "Transparent (T)" style flag is specifiedwithout
the "Scaled (s)" style flag, Natural uses the icon's transparencymask, instead of making the above-
mentioned assumption that all pixels in the same color as the first pixel are to be rendered trans-
parently, as is the case for images loaded from a bitmap file. If an explicit (i.e., non-default) back-

Programming Guide722

Working with Image List Controls

ground color is specified, all pixels in this color are treated as transparent, regardless of whether
an icon or bitmap is being used. The icon's transparency mask is ignored here, as is also the case
if the icon is scaled.

Therefore, if both large and small images are needed, it may be preferable to use single-image
image controls based on icon files containing both large and small representations of the image,
rather than use a multi-image image control based on a single composite bitmap. The use of indi-
vidual icon (.ICO) files has the advantage that the and large representations of the image (assuming
that both are provided in the file) can have different levels of detail. Themain disadvantage is that
it normally takes longer to load the images frommultiple icon files than it does to load them from
a single composite bitmap file.

Using an Image List

Before any images from the image list can be used by a control (such as the tree view or list view
control), the image listmust be associatedwith the control. This association is achieved by assigning
the handle of the image list control to the host control's IMAGE-LIST attribute. For example:

#LV-1.IMAGE-LIST := #IMGLST-1

Having set the image list, the image list control's images are now available for use by the control's
items.

Referencing Images from the Image List

To use a particular image from the parent control's image list for a particular item (e.g. list view
item or tree view item), the image to be used has to be specified in one of two ways:

1. By setting the item's IMAGE attribute to the handle of the image control and (if necessary) the
item's IMAGE-INDEX attribute to the relative offset of the required image (starting from zero)
within the image control. If the image control only contains one image, it is not necessary to
specify an image index. The image specified must belong to the image list control assigned to
the item's container.

2. By setting the item's IMAGE-INDEX attribute to the ordinal of the image within the image list
(1=first image, 2=second image, and so on). The item's IMAGE attributemust be either not specified
or set to the default value of NULL-HANDLE in this case.

In the first case (relative indexing), wrap-around is used on the index. Thus, if an image control
has N images, an image index of 0 refers to the first image in the image control, an image index
of (N - 1) refers to the last image, and an image index of N refers to the first image again, and so
on. Thus, if the image control only contains one image, the relative image index (if specified at all)
has no effect: due to wrap-around, the first (and only) image will always be taken.

723Programming Guide

Working with Image List Controls

In the second case (absolute indexing), no wrap-around is used on the image index, which must
be in the range 1 through to the number of images in the image list (inclusive). If the specified
value is not in this range, no image is displayed for the specified item.

Note that the IMAGE-INDEX attribute can also be applied to an image control. In this case, the attribute
is read-only, and returns the offset (starting from zero) of the image control's first image within
the parent image list control.

One advantage of using relative indexing is that Natural keeps track the references to the specified
image (both in the dialog editor and at run-time) and automatically propagates changes to the
image control or to its position in the image list. In practice, absolute indexing is probably most
useful in situations where an image list control with a single composite (i.e., multi-image) image
control is used, and where the images are not modified at run-time.

Overlay Images

There are situations where it is desirable to be able to offer several variations of an image. For ex-
ample, the displayed image for an item representing a foldermay need to bemodified to indicated
that the folder is active. Rather than providing an image of a folder and an image of an active
folder, it may be more convenient to provide only the first of these images, and to indicate the
active state via a second image containing only the “active” symbol, which is then superimposed
on the first. Such an image is referred to as an overlay image, to distinguish it from the underlying
base image.

Overlay images are contained within the same image list that is used to display the base images,
as determined via the host control's IMAGE-LIST attribute. They are therefore the same size as the
base images, but are always rendered transparently, to allow the underlying image to show
through.

To use an overlay image for an item, a value must be specified for the item's OVERLAY and/or
OVERLAY-INDEX attributes. These attributes are used analogously to the IMAGE and IMAGE-INDEX
attributes (respectively) for base images (see above).

For technical reasons, images intended for use as overlay images must be “pre-registered”. In
Natural, this is done by setting the image list control's "O" (Overlay) STYLE. However, if the overlay
controls are defined statically, this style is automatically set by the dialog editor. The presence or
absence of this style distinguishes base images from overlay images. Consequently, the OVERLAY
attribute (if specified) can only refer to an image control with this style, whereas the IMAGE attribute
(if specified) can only refer to an image control without it. If absolute indexing (see above) is being
used, the IMAGE-INDEX can refer to an overlay image (which is then “misused” as a base image).
However, a corresponding attempt to use the OVERLAY-INDEX attribute to refer to a base image
fails (no overlay image is drawn).

Programming Guide724

Working with Image List Controls

Windows sets a limit on the number of overlay images that may be defined for an image list. This
limit is currently 15. Note that if any composite overlay image controls are used, each sub-image
in the composite bitmap counts separately towards this quota.

As an example, suppose we create an image control based on a composite image containing the
individual overlay images, as follows:

PROCESS GUI ACTION ADD WITH
PARAMETERS

HANDLE-VARIABLE = #IMG-2
TYPE = IMAGE
PARENT = #IMGLST-1
STYLE = 'COs'
BITMAP-FILE-NAME = 'overlays.bmp'

END-PARAMETERS GIVING *ERROR

Then, we could create a list view item (say) using the second overlay image from the composite
bitmap by executing the following code:

PROCESS GUI ACTION ADD WITH
PARAMETERS

TYPE = LISTVIEWITEM
PARENT = #LV-1
STRING = 'Item with overlay'
IMAGE = #IMG-1
IMAGE-INDEX = 3
OVERLAY = #IMG-2
OVERLAY-INDEX = 1

END-PARAMETERS GIVING *ERROR

In the above example, the list view item will use the fourth image from COMPOSITE.BMP as its
base image, and the second image from OVERLAYS.BMP as the overlay image (relative image
indexes are, as alreadymentioned, zero-based). Note that the list view item is created anonymously
(i.e., no explicit HANDLE-VARIABLE attribute value specified).

Modifying Images

Image controls may be modified even if they are currently in use. For example:

725Programming Guide

Working with Image List Controls

#IMG-1.BITMAP-FILE-NAME := 'new.bmp'

Natural keeps track of, and automatically updates and redraws, each item that explicitly (i.e., via
relative indexing) references an image from the modified image control. However, if absolute in-
dexing is used, the corresponding items are not updated, even if they are implicitly referring to
an image within the modified image control.

Deleting Images

Imagesmay be removed from the image list by deleting the complete image control via the DELETE
action. For example:

PROCESS GUI ACTION DELETE WITH #IMG-1 GIVING *ERROR

All items that explicitly (i.e., via relative indexing) reference an image from the deleted image
control are automatically updated and redrawn to show no image.

However, if absolute indexing is being used, no automatic updating occurs. For example, suppose
an image list control contains three single-image image controls and that items exists that refer to
all three images via absolute indexing. If the second image control is deleted, the items that used
to refer to the second image would suddenly reference the third image and the items that used to
refer to the third image would “fall off the end” and not reference anything. Furthermore, the
controls containing the items would not automatically be redrawn to reflect the changes.

It is, of course, also possible to delete all images in the image list in one go, via the DELETE-CHILDREN
action:

PROCESS GUI ACTION DELETE-CHILDREN WITH #IMGLST-1 GIVING *ERROR

This is equivalent to deleting each image in the image list individually.

Note that it is not possible to delete individual imageswithin a composite (i.e., multi-image) image
control.

Deleting the Image List Control

An image list control may be deleted when no longer required, even if it is in use. For example:

Programming Guide726

Working with Image List Controls

PROCESS GUI ACTION DELETE WITH #IMGLST-1 GIVING *ERROR

All controls using the image list control are updated accordingly, and their IMAGE-LIST attribute
is automatically reset to NULL-HANDLE.

727Programming Guide

Working with Image List Controls

728

92 Working with List Box Controls and Selection Box

Controls

List box controls and selection box controls contain a number of items. Both the controls and the
items are dialog elements; the controls are the parents of the items.

There are two ways of creating list box items and selection box items:

■ Use Natural code to create individual and multiple list box items dynamically; or
■ use the dialog editor (to add single or arrays of list box items and selection box items).

In Natural code, this may look like this:

#AMOUNT := 5
ITEM (1) := 'BERLIN'
ITEM (2) := 'PARIS'
ITEM (3) := 'LONDON'
ITEM (4) := 'MILAN'
ITEM (5) := 'MADRID'
PROCESS GUI ACTION ADD-ITEMS WITH #LB-1 #AMOUNT #ITEM (1:5) GIVING #RESPONSE

You first specify the number of items you want to create, name the items, and use the PROCESS
GUI statement action ADD-ITEMS.

If you want to go through all items of a list box control to find out which ones are selected, it is
advisable to use the SELECTED-SUCCESSOR attribute because if a list box control contains a large
number of items (100, for example), this helps improve performance. If you use SELECTED-SUC-
CESSOR, you have one query instead of 100 individual queries if you use the attributes SELECTED
and SUCCESSOR.

Example:

729

/* Displays the STRING attribute of every SELECTED list-box item
MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
REPEAT UNTIL #LBITEM = NULL-HANDLE

.../* STRING display logic

MOVE #LBITEM.SELECTED-SUCCESSOR TO #LBITEM
END-REPEAT

For performance reasons, you should not use the SELECTED-SUCCESSOR attribute to refer to the
same dialog element handle twice, because Natural goes through the list of item handles twice:

/* Displays the STRING attribute of every SELECTED list-box item,
/* but may be slow
MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
REPEAT UNTIL #LBITEM = NULL-HANDLE

IF #LBITEM.SELECTED-SUCCESSOR = NULL-HANDLE /* Searches in the list of items
IGNORE

END-IF
.../* STRING display logic
MOVE #LBITEM.SELECTED-SUCCESSOR TO #LBITEM /* Searches in the list of items

END-REPEAT /* for the second time

To avoid this problem, you use a second variable #OLDITEM besides #LBITEM:

/* Displays the STRING attribute of every SELECTED list-box item
MOVE #LISTBOX.SELECTED-SUCCESSOR TO #LBITEM
REPEAT UNTIL #LBITEM = NULL-HANDLE

#OLDITEM = #LBITEM
#LBITEM = #LBITEM.SELECTED-SUCCESSOR/* Searches in the list of items (once)
IF #LBITEM = NULL-HANDLE

IGNORE
END-IF
.../* Display logic using #OLDITEM.STRING

END-REPEAT

If you retrieve the handle values of the selected items, a value other than NULL-HANDLEwould
normally be returned by selected items. Such a handle value can also be returned by non-selected
items if you assign SELECTED-SUCCESSOR a value immediately before retrieving the SELECTED-
SUCCESSOR value of a non-selected item, as shown in the following example:

Programming Guide730

Working with List Box Controls and Selection Box Controls

...
PTR := #LB-1.SELECTED-SUCCESSOR
PTR := NOT_SELECTEDHANDLE.SELECTED-SUCCESSOR
IF NOT_SELECTEDHANDLE.SELECTED-SUCCESSOR = NULL-HANDLE THEN

#DLG$WINDOW.STATUS-TEXT := 'NULL-HANDLE'
ELSE

COMPRESS 'NEXT SELECTION: ' PTR.STRING TO #DLG$WINDOW.STATUS-TEXT
END-IF
...

If you want to query whether a particular item in a list box control is selected, you get the best
performance by using the SELECTED attribute:

#DLG$WINDOW.STRING:= #LB-1-ITEMS.SELECTED(3)

Protecting Selection Box Controls and Input Field Controls

To prevent an end user from typing in input data in a selection box control or input field control,
you have several possiblities, for example:

■ setting the MODIFIABLE attribute to FALSE for the dialog element, or
■ setting session parameter AD=P, or
■ using a control variable (CV).

If a selection box control is protected, it is still possible to select items; only values from the item
list will be displayed in its input field. If the STRING attribute is set to a value (dynamically or by
initialisation) which is not in the item list, the value will not be visible to the end user.

731Programming Guide

Working with List Box Controls and Selection Box Controls

732

93 Working with List View Controls

■ Introduction .. 734
■ View Modes .. 734
■ Setting Item Images ... 736
■ Item Placement ... 736
■ Item Selection ... 738
■ Item Activation .. 739
■ List View Columns and Sub-items ... 740
■ Sorting .. 743
■ Label Editing ... 745
■ Multiple Context Menus .. 747
■ Drag and Drop .. 748

733

Introduction

A list view control can be used to display data in icon or column-based form. It is a very powerful
control. Nevertheless, if you wish to display your data in tabular form and support direct in-place
editing of any column value, you should consider using the table control instead.

View Modes

List view controls in Natural can display their data in one of four view modes: icon, small icon,
list or report.

In icon view mode, the data is displayed in large icon form:

In small icon view mode, the item labels are displayed alongside the icons. As for the icon view,
the items can optionally be displayed in arbitrary positions:

In list view mode, the items are displayed similarly to the small icon view, but cannot be freely
positioned. Instead, they are displayed in columns:

Programming Guide734

Working with List View Controls

In report view mode, each item occupies one row, and other data relating to the items may be
displayed alongside the item in separate columns. A column header is also usually shown, as in
the example below (although this can optionally be hidden by setting the list view control's "No
header (x)" STYLE flag):

In the report view, the columns can be resized by the user by dragging the column dividers. Al-
ternatively, by double-clicking on the trailing column divider in the column header, the column's
width is adjusted to fit the longest text within the column.

Note that the above example consists of eleven dialog elements: The list view control itself, four
list view items and six list view columns. Both the list view items and the list view columns have
the list view control as their PARENT, and are thus stored in the same SUCCESSOR chain. Although
they can be interspersed, it is a good idea from both an organization and performance point-of-
view to ensure that all list view columns precede all list view items. For example, if you are dy-
namically inserting a new column into a non-empty list view control as the last column, explicitly
set its SUCCESSOR attribute to the handle of the first list view item, rather than not specifying it at
all or setting it to NULL-HANDLE, which would cause the new column to be placed at the end of the
chain, after all list view items.

The first list view column created for a list view control has a special significance, and is referred
to (here) as the primary column. The primary column always displays the list view item labels (i.e.,
their STRING attribute values). The other columns display what is known as sub-item data. For ex-
ample, the phrase “Currency sub-item” refers to the data stored in the "Currency" column (see
above example). To refer to a particular valuewithin the column,wewould have to bemore precise.
For example, the value "1277.18" above could be referred to as the "Currency sub-item" for the

735Programming Guide

Working with List View Controls

"Second item" item. Sub-items are not dialog element types in Natural, and will be discussed in
more detail below.

If no list view columns have been created, no informationwill be displayed in the list view control
when it is in report view mode! However, it should be noted that the only way to switch between
the view modes is programmatically by explicitly changing the list view control's VIEW-MODE at-
tribute value. Therefore, if the applicationwishes to supportmultiple viewmodes, itmust provide
a mechanism (e.g., a context menu) for switching between them. So, in practice, the user should
never see a list view control in report viewmode that has no columns, since the applicationwould
normally not allow switching to this view mode in this case.

Setting Item Images

Images for the list view items may be defined by creating and associating an image list control
with the list view control, then (for each item) selecting the required image from the image list via
its index and/or image handle, as described in the sectionWorking with Image List Controls.

Please note that you should set the image list control's "Large images (L)" and "Small images (S)"
styles according to the view modes that are to be supported. The icon view mode requires the
availability of large images, whereas the other viewmodes require the availability of small images.

Item Placement

In the icon and small icon view modes, the list view items may be (re-)positioned by setting their
RECTANGLE-X and/or RECTANGLE-Y attribute values. If no position is explicitly set on item creation,
the items are laid out on an imaginary grid, with a default grid spacing that can be overridden by
setting the list view control's SPACING-X and SPACING-Y attribute values. The ARRANGE action can
be used at any time to either re-arrange the items to occupy consecutive locations based on this
logical grid, or to snap the items to their nearest aligned logical grid position.

Note that in either of the two icon viewmodes, the list view item positions are interpreted as being
in view coordinates, rather than being relative to the control's client area (as is the case in the other
viewmodes). Unlike the client coordinates, the view coordinates of the items do not change when
the icon view is scrolled. Conversion between view coordinates and client coordinates requires
the use of the list view control's OFFSET-X and OFFSET-Y attributes, which return the origin of the
client area in view coordinates.

Note that two list view control STYLEflags can override an explicit postion specified by the program.
Firstly, if the control's "Auto-arrange (a)" style flag is specified, the items are automatically re-ar-
ranged on the imaginary grid each time an item is added or moved. In this case, an explicitly
specified position merely indirectly determines the item's position in the arranged icon list.
Secondly, if the control's "Snap to grid (r)" style flag is set, any item position explicitly specified

Programming Guide736

Working with List View Controls

by the program will be adjusted to the nearest aligned position on the imaginary grid. Note that
this style is superfluous if the "auto-arrange" style is set.

Since users are often familiar with being able tomodify list view item positions via drag and drop,
it may be expected that the control automatically provides this capability. However, this is not
the case. If the application wishes to support drag and drop, it must explicitly cater for it, as de-
scribed in the next section.

In the list view mode, the items are always displayed in columns (as already mentioned above)
and are not re-positionable. However, the spacing between adjacent columns may be set via the
SPACING attribute.

Note that the list view control does not remember item positions when switching between view
modes. For example, if you switch away from one of the icon view modes and then back to it
again, the icons are always arranged. This behavior can be circumvented by providing explicit
program code for saving and restoring item positions, as shown in the following example:

DEFINE SUBROUTINE SAVE-ITEM-POSITIONS
#ITEM := #CONTROL.FIRST-CHILD
REPEAT WHILE #ITEM <> NULL-HANDLE

IF #ITEM.TYPE = LISTVIEWITEM
#ITEM.CLIENT-KEY := 'RECTANGLE-X'
#ITEM.CLIENT-VALUE := #ITEM.RECTANGLE-X
#ITEM.CLIENT-KEY := 'RECTANGLE-Y'
#ITEM.CLIENT-VALUE := #ITEM.RECTANGLE-Y

END-IF
#ITEM := #ITEM.SUCCESSOR

END-REPEAT
END-SUBROUTINE
*
DEFINE SUBROUTINE RESTORE-ITEM-POSITIONS

#ITEM := #CONTROL.FIRST-CHILD
REPEAT WHILE #ITEM <> NULL-HANDLE

IF #ITEM.TYPE = LISTVIEWITEM
#ITEM.CLIENT-KEY := 'RECTANGLE-X'
IF #ITEM.CLIENT-VALUE <> ' '
#ITEM.RECTANGLE-X := VAL(#ITEM.CLIENT-VALUE)
END-IF
#ITEM.CLIENT-KEY := 'RECTANGLE-Y'
IF #ITEM.CLIENT-VALUE <> ' '

#ITEM.RECTANGLE-Y := VAL(#ITEM.CLIENT-VALUE)
END-IF

END-IF
#ITEM := #ITEM.SUCCESSOR

END-REPEAT
END-SUBROUTINE
*
DEFINE SUBROUTINE SWITCH-VIEW-MODE

IF #VIEW-MODE <> #CONTROL.VIEW-MODE

737Programming Guide

Working with List View Controls

IF #CONTROL.VIEW-MODE = VM-ICON OR
#CONTROL.VIEW-MODE = VM-SMALLICON
PERFORM SAVE-ITEM-POSITIONS

END-IF
#CONTROL.VIEW-MODE := #VIEW-MODE
IF #VIEW-MODE = VM-ICON OR

#VIEW-MODE = VM-SMALLICON
PERFORM RESTORE-ITEM-POSITIONS

END-IF
END-IF

END-SUBROUTINE

where the following local data definitions are assumed:

01 #CONTROL HANDLE OF GUI
01 #ITEM HANDLE OF GUI
01 #VIEW-MODE (I4)

The actual view mode switch can then be made by setting #VIEW-MODE to the desired view mode
(one of the VM-* constants defined in the local data area NGULKEY1), setting #CONTROL to the
handle of the list view control, and then calling the SWITCH-VIEW-MODE subroutine.

Item Selection

Items may be selected by the user either by clicking on them (optionally whilst holding down the
CTRL key to perform an extended selection), or by defining a selection region by clicking within
the list view control, holding down the primarymouse button, and dragging. The latter technique
is known as marquee selection, and is only allowed if the control's "Marquee select (m)" STYLE
flag is set (the default setting). Note that, if the control's "Hot-track select (t)" style flag is set, it is
not necessary to click an item to select it. Instead, it is sufficient to simply let the mouse cursor
hover over it briefly.

Alternatively, items may be selected or deselected programmatically by setting or clearing their
SELECTED attribute.

In either case, extended selection is only available if the control's MULTI-SELECTION attribute is set
to TRUE. Extended selection is the process of selecting new items, or deselecting old ones, without
the existing selection being cleared first, and thus allows multiple (or no) items to be selected. In
the case of single selection list views, it is only possible for the user to implicitly deselect an item
by selecting a new one. Marquee selection is also not available in this case.

The first (or only) selected item, if any, may be determined by querying the list view control's SE-
LECTED-SUCCESSOR attribute, which returns NULL-HANDLE if there is no selection. The next selected
item, if any, may be determined by querying a selected item's SELECTED-SUCCESSOR attribute. Iter-

Programming Guide738

Working with List View Controls

ative application of this technique allows complete enumeration of all selected items, as shown in
the section below on drag and drop.

For each item that is selected or deselected, a CLICK event is raised for the list view control (if not
suppressed), with the handle of the corresponding item being set in the control's ITEM attribute.
Because many items may be selected in quick succession (e.g., via marquee selection), this event
should not perform any lengthy processing. For example, it may be better to simply set a logical
variable to TRUE in the CLICK event handler, indicating that more involved processing is required,
and do the actual processing in the dialog's IDLE event handler in response to this flag being set.
Don't forget to clear the flag after doing the work!

If the list view control's "Check boxes (c)" style flag is set, check boxes are displayed alongside
each item. The item's CHECKED attribute may be used to retrieve or set an item's checked status
programmatically. The first checked item, if any, may be determined by querying the list view
control's CHECKED-SUCCESSOR attribute, and querying this attribute for a checked item returns the
handle of the next checked item, if any, thus allowing complete enumeration of all checked items,
as shown in the following example, which simply counts the number of checked items:

RESET #COUNT
#ITEM := #LV-1.CHECKED-SUCCESSOR
REPEAT WHILE #ITEM <> NULL-HANDLE

ADD 1 TO #COUNT
#ITEM := #ITEM.CHECKED-SUCCESSOR

END-REPEAT

where the following local data definitions are assumed:

01 #LV-1 HANDLE OF LISTVIEW
01 #ITEM HANDLE OF LISTVIEWITEM
01 #COUNT (I4)

Whenever an item is checked or unchecked, a CHECK event is raised for the list view control, if not
suppressed via the SUPPRESS-CHECK-EVENT attribute, with the handle of the corresponding item
being set in the control's ITEM attribute.

Item Activation

When a user double-clicks on an item, an ACTIVATE event is raised (unless suppressed) for the list
view control. The application, if it decides to handle this event, normally performs a default action
on each selected control. The default action is user-defined and can be different for each item. For
example, activating an item representing a text file might cause the file to be opened in an editor,
whereas activating an item representing an audio file might cause the file to be played. Note that
there may be other, non-default, actions applicable to one or more of the selected items, but these

739Programming Guide

Working with List View Controls

are typically accessed via othermechanisms. For example, theymay be listed (typically alongwith
the default action) in a context menu displayed by the application.

If multiple selection is allowed (see above) and the CTRL key is held down whilst double-clicking
an item, the selection state of the item is toggled before the ACTIVATE event is raised.

If either of the control's "Underline hot (u)" or "Underline cold (U)" STYLE flags are set, it is only
necessary to single-click on an item in order to activate it.

The ACTIVATE event can also be triggered via the keyboard. This can be done in either of twoways:

1. By pressing the key or key combination defined for the list view control's ACCELERATOR attribute.
The control need not currently have the focus.

2. By pressing the ENTER key, if the list view control currently has the focus. This method only
works if the dialog neither contains a default pushbutton, nor a pushbuttonwith the "OKButton
(O)" STYLE flag set.

In either case, no ACTIVATE event is raised if no items are currently selected.

List View Columns and Sub-items

Each column in a list view (as displayed when the list view control is in report view mode) can
contain (at most) one item of data per list view item, which is then (if present) displayed for the
item in that column. As already mentioned above, this data is known as sub-item data.

In order to be able to support sorting correctly (see next section), the sub-item data does not need
to be alphanumeric, as it is per default, but can be one of any of the pre-defined types supported
by the column's FORMAT attribute. In addition, an editmask can be applied to the column by setting
its EDIT-MASK attribute. The values seen in the report view column by the user for a column are
the alphanumeric representations of the sub-item for that column, using the associated edit mask
(if any). The conversion between the sub-item data and the displayed data is compatible with the
MOVE EDITED statement if an editmask is supplied. Otherwise, the conversion between the internal
and displayed data, and vice-versa, is compatible with the conversion involved in copying the
data to and from the Natural stack (see the STACK TOP DATA and INPUT statements). For example,
numeric values are displayed using the current decimal character (as defined by the DC parameter)
if necessary, with a leading minus character if negative, date values are displayed in the format
defined by the DTFORM parameter setting, logical values are displayed as an "X" if true and as a
blank if false, and so on.

The first column defined for a list view control (the primary column) has a special significance: It
always displays the item's label. Therefore, any changes to an item's sub-item data for the first
coumn automatically update the item's label, and vice-versa. Otherwise, and for all other columns,
the only means of updating the sub-item data is via the SET-SUBITEM-DATA action. When calling

Programming Guide740

Working with List View Controls

this action, the sub-item data must be supplied in a format compatible with the internal data type,
as specified by the column's FORMAT attribute value (alphanumeric by default).

For example, suppose we add a column to a list view control as shown below:

PROCESS GUI ACTION ADD WITH
PARAMETERS

HANDLE-VARIABLE = #LVCOL-DATE
TYPE = LISTVIEWCOLUMN
STRING = 'Date'
PARENT = #LV-1
RECTANGLE-W = 83
STYLE = 'l'
FORMAT = FT-DATE
EDIT-MASK = 'YYYY/MM/DD'

END-PARAMETERS GIVING *ERROR

The sub-item data for this column for a particular list view item, #LVITEM-1 (say), can then be set
to the current date as follows:

PROCESS GUI ACTION SET-SUBITEM-DATA WITH
#LVITEM-1 #LVCOL-DATE *DATX GIVING *ERROR

Note that we could also have used *TIMX instead of *DATX, because time values in Natural are
automatically convertible to date values. In either case, the value is then displayed as the current
date in YYYY/MM/DD format. For the primary column, the display string is the item label, which
means that the effects of themodificationwill be visible even if the list view control is not currently
in report view mode.

Note also that the data is not supplied in display format. For example, the followingwill not work:

PROCESS GUI ACTION SET-SUBITEM-DATA WITH
#LVITEM-1 #LVCOL-DATE '2004/11/03' GIVING *ERROR /* Does NOT work!

However, if the column happens to be the primary column, then it is alternatively possible to
update the column data indirectly, by setting the item's label. For example:

#LVITEM-1.STRING := '2004/11/03'

Retrieval of the sub-item data may be achieved by calling the GET-SUBITEM-DATA action, which
takes the same parameters as the SET-SUBITEM-DATA action. For example:

741Programming Guide

Working with List View Controls

PROCESS GUI ACTION GET-SUBITEM-DATA WITH
#LVITEM-1 #LVCOL-DATE #DATE GIVING *ERROR

where #DATE is defined as follows:

01 #DATE (D)

One fact to bear in mind, however, is that there may be no sub-item data to be retrieved. For ex-
ample, the sub-item data may not have been created, or may have been deleted (see below). Nat-
ural, however, does not support null values. Therefore, by default, Natural resets the receiving
fields when a null value is returned (see the RESET statement). However, if a default value has
been set for a list view column, this default value is returned instead. Setting a default value for
a column is done by calling SET-SUBITEM-DATA, specifying NULL-HANDLE in place of a list box item
handle. For example, for a numeric column, #LVCOL-NUM, where only positive values are allowed,
we might choose to set the default value to -1, as shown below:

#NUM := -1
PROCESS GUI ACTION SET-SUBITEM-DATA WITH

NULL-HANDLE #LVCOL-NUM #NUM GIVING *ERROR

where #NUM can be a field of any signed numeric format (e.g. I2).

The use of default values allows a value to be chosen by the programmer that does not match any
explicit value that can be used in the program. If necessary, the program should be changed to
prevent the default value being entered as explicit data.

For both the SET-SUBITEM-DATA and GET-SUBITEM-DATA actions, it is possible to set or get (respect-
ively) the sub-itemdata (for a specific item) formultiple columns in a single statement. For example:

PROCESS GUI ACTION SET-SUBITEM-DATA WITH
#LVITEM-1 #LVCOL-NUM #NUM #LVCOL-DATE #DATE GIVING *ERROR

In other words, multiple [column handle, receiving field] operand pairs may be specified.

To delete the subitem data (causing null values to be stored internally, as if no data had been set),
use the DELETE-SUBITEM-DATA action. For example:

Programming Guide742

Working with List View Controls

PROCESS GUI ACTION DELETE-SUBITEM-DATA WITH
#LVITEM-1 #LVCOL-DATE GIVING *ERROR

Again, multiple sub-items may be deleted for a specific item in a single statement, by specifying
multiple column handles:

PROCESS GUI ACTION DELETE-SUBITEM-DATA WITH
#LVITEM-1 #LVCOL-DATE #LVCOL-NUM GIVING *ERROR

When list view items are deleted, their associated sub-itemdata (if any) is deletedwith them.Note
that if you wish to delete all items in a list view control, but leave the list view columns intact, use
the CLEAR action:

PROCESS GUI ACTION CLEAR WITH #LV-1 GIVING *ERROR

where #LV-1 is the list view control handle.

Sorting

Sorting of the subitem data for a list view column may be achieved either by the user (if the list
view control's "No header (x)" and "No sort header (y)" STYLE flags are not set), by clicking on a
column header, or by the program, by calling the SORT-ITEMS action. In the latter case, items may
be sorted even if no columns are available, by passing the handle of the list view control itself
rather than the list view column. See the documentation for the SORT-ITEMS action formore inform-
ation.

The sorting on clicking on a column in the columnheader of a list view control is normally implicitly
performed by Natural. However, before performing the sort, Natural raises a CLICK event (if not
suppressed) for the list view column. On returning from this event, Natural checks whether the
column is already sorted in the required direction, and performs no further action if this is the
case. This means that the application can perform the sort itself instead of Natural, as long as it
obeys the rules for the sort direction (i.e., specifies descending sequence if the column is currently
sorted in ascending sequence, or ascending sequence otherwise). This can be useful if the sort
options (e.g. case-sensitivity) need to be dynamic, or if it is required to perform application-specific
code after the sort. An example of a column CLICK event handler performing an explicit sort follows:

743Programming Guide

Working with List View Controls

#CONTROL := *CONTROL
T1. SETTIME
IF #CONTROL.SORTED AND NOT #CONTROL.DESCENDING

PROCESS GUI ACTION SORT-ITEMS WITH #CONTROL TRUE
GIVING *ERROR

ELSE
PROCESS GUI ACTION SORT-ITEMS WITH #CONTROL

GIVING *ERROR
END-IF
COMPRESS 'Sort took' *TIMD(T1.) 'tenths of a second'

INTO #DLG$WINDOW.STATUS-TEXT

However, in most cases, it will probably be sufficient to let Natural perform the sort implicitly.

For alphanumeric data, the sort column's "Case insensitive (i)" and "word compare (w)" STYLE
flags determine the default way in which the values are compared. If the sort is done explicitly,
the corresponding optional parameters to the SORT-ITEMS action, if specified, override these defaults.
See the documentation for this action for more details on these options.

Missing (“null”) values compare low. That is, they appear at the bottom of the column when the
column is sorted in descending sequence, or at the top of the column when the column is sorted
in ascending sequence. Furthermore, if two column entries are identical, the existing relative pos-
ition of the two items concerned is preserved.

Note that, if the list view control is in one of the icon view modes, sorting the items causes them
to be re-arranged. Therefore, if you are using explicit item positions in either of the icon view
modes, it is probably a good idea to disable any sort commands.

List view controls also possess a SORTED attribute, implying that new items are inserted in their
ascending or descending sort position, depending on the value of the control's DESCENDING attribute,
rather than being inserted at the end of the item list. For this to work as expected, the items must
already be sorted in the required direction. For example, if an item's label (i.e., its STRING attribute)
is modified, the application itself should, if required, ensure that the list is maintained in sorted
sequence. An example of how to do this is provided in the next section.

Note that the SORTED attribute does not influence the position of the items displayed in either of
the icon views. However, if an explicit sort is performed via the SORT-ITEMS action, the items are
re-arranged in the sorted sequence. If you cannot avoid doing a sort, and you are using explicit
item positions in the icon view(s), then youmust explicitly save the icon positions prior to the sort
and restore them afterwards. For example:

Programming Guide744

Working with List View Controls

PERFORM SAVE-ITEM-POSITIONS
PROCESS GUI ACTION SORT-ITEMS WITH #CONTROL GIVING *ERROR
IF #CONTROL.VIEW-MODE = VM-ICON OR

#CONTROL.VIEW-MODE = VM-SMALLICON
PERFORM RESTORE-ITEM-POSITIONS

END-IF

where #CONTROL is the handle of the list view control, and where the subroutines defined above
for saving and restoring the item positions are used. Note that the icons are re-drawn (at their old
positions), causing some flicker. Therefore, if possible, try to avoid performing a sort whilst the
list view control is in one of the icon view modes. See the section below on label editing for an
example of how this may be done.

Label Editing

The process of label editing for list view controls is the same as for tree view controls. Therefore,
for more information on this subject, please refer to the section Label Editing in Tree View and
List View Controls.

Note that even if the SORTED attribute is set, the items are not automatically re-sequenced after a
label editing operation has been completed. If this is required, this can be done as shown in the
example below. Firstly, we define some variables for later use:

01 #SORTOBJ HANDLE OF GUI
01 #SORT (L)
01 #AUTO-ARRANGE (I4)

In addition, it is assumed that the list view control is named #LV-1.

In the list view control's AFTER-EDIT event, we cannot do the re-sequencing asynchronously, as
this would interfere with the (as yet incomplete) editing process. Instead, we simply set the #SORT
flag to indicate that the re-sequencing should occur at a later time, after the editing process has
been completed:

#SORT := TRUE

In order to decide whether to perform a re-sequencing of the items, wewill need to checkwhether
the items are already sorted. We will do this by querying the SORTED and DESCENDING attributes
of the primary column if the list view has columns, or those of the list view control itself otherwise.
The relevant object handle is set in the dialog's AFTER-OPEN event:

745Programming Guide

Working with List View Controls

IF #LV-1.COLUMN-COUNT <> 0
#SORTOBJ := #LV-1.FIRST-CHILD

ELSE
#SORTOBJ := #LV-1

END-IF
*
EXAMINE #LV-1.STYLE FOR 'a' GIVING NUMBER #AUTO-ARRANGE
IF #LV-1.SORTED AND #AUTO-ARRANGE <> 0 AND

(#LV-1.VIEW-MODE = VM-ICON OR
#LV-1.VIEW-MODE = VM-SMALLICON)

#SORT := TRUE
END-IF

In addition, we obtain the status of the list view control's "Auto-arrange (a)" STYLE flag. If this is
set, we can sort the items even if the control is in an iconmode, aswe don't require the icon positions
to be fixed. Furthermore, if the control is sorted, we indicate that we require the items to be initially
re-sequenced. This is due to the fact (mentioned earlier) that the item positions are not updated
on item insertion in the icon modes if the control's SORTED flag is set. The application thus needs
to perform an initial sort itself in this case.

The actual work of re-sequencing the items is done asynchronously in the dialog's IDLE event:

IF #SORT
IF #AUTO-ARRANGE <> 0 OR

(#LV-1.VIEW-MODE <> VM-ICON AND
#LV-1.VIEW-MODE <> VM-SMALLICON)
IF #SORTOBJ.SORTED
PROCESS GUI ACTION SORT-ITEMS WITH

#SORTOBJ #SORTOBJ.DESCENDING GIVING *ERROR
END-IF
RESET #SORT

END-IF
END-IF

Note that the sort is only done for the icon viewmodes for the list view control if it is auto-arranged.
Otherwise, the #SORT flag is not reset, causing the re-sequencing to be deferred until the first IDLE
event after the control is switched to a non-icon view mode.

Programming Guide746

Working with List View Controls

Multiple Context Menus

If you wish to support just a single context menu for a control, you can simply set the control's
CONTEXT-MENU attribute to the handle of the context menu you wish to display, and leave it set to
this value. However, it is often required to be able to display more than one context menu for a
particular control, whereby this approach is too inflexible.

To address the above problem, the CONTEXT-MENU event was introduced (not to be confused with
the attribute of the same name as mentioned above!). This event (if not suppressed) is raised for
the target control immediately before its CONTEXT-MENU attribute is evaluated, allowing the applic-
ation to dynamically set this attribute to the handle of the appropriate context menu first.

As an example, assume thatwe have defined two contextmenus in the dialog editor: one containing
item-related commands, #CTXMENU-ITEMS, and one containing generic commands (e.g., for
switching the view mode for a list view control), #CTXMENU-DEFAULT. In this case, the following
CONTEXT-MENU event could be used:

#CONTROL := *CONTROL
IF #CONTROL.SELECTED-SUCCESSOR <> NULL-HANDLE

#CONTROL.CONTEXT-MENU:= #CTXMENU-ITEMS
ELSE

#CONTROL.CONTEXT-MENU := #CTXMENU-DEFAULT
END-IF

where the following local data definition is assumed:

01 #CONTROL HANDLE OF GUI

In this example, the context menu #CTXMENU-ITEMSwill be displayed if the user right clicks at a
position occupied by an item, or #CTXMENU-DEFAULT otherwise.

Of course, this technique can be refined further to display context menus specific to the type(s) of
the selected item(s).

747Programming Guide

Working with List View Controls

Drag and Drop

Drag and drop may be used for re-positioning items within a list view control, as well as for data
transfer to and fromotherwindows. There is nodifference between the two cases. The re-positioning
scenario is merely a special case where the drop is made in the same list view control in which the
drag was initiated.

The basic technique for providing drag and drop support is described in the section Using the
Clipboard and Drag and Drop. In particular, it should be noted that it is still necessary to place
some data on the drag and drop clipboard even if it is only required to support re-positioning of
the items within the control, in order to inform Natural that drag and drop should be initiated.
Secondly, there is a caveat specific to list view controls, in that the re-positioning of items can
change the origin of the list view control, so that the top near corner of the list view control's display
area may no longer begin at the default origin of (0, 0).

The following example provides some code for demonstrating the use of drag and drop with the
list view control, in order to support the following operations:

1. Re-positioning of list view items.

2. Dragging and dropping text from another application (e.g. WordPad) onto a list view item in
order to change its label.

The first step is to ensure that the drag and drop modes are set correctly for the list view control.
In the List View Control Attributeswindow in the dialog editor, set theDragmode selection box
to "Move" and theDropmode selection box to "Copy+Move". This causes the control's DRAG-MODE
and DROP-MODE attributes to be set to DM-MOVE and DM-COPYMOVE, respectively, in the generated
source code for the dialog.

Next, the required local variables that are going to be used below must be defined:

01 #CONTROL HANDLE OF GUI
01 #DROP-ITEM HANDLE OF GUI
01 #ITEM HANDLE OF GUI
01 #SELECTED (L)
01 #AVAIL (L)
01 #X (I4)
01 #Y (I4)
01 #ORIG-X (I4)
01 #ORIG-Y (I4)

Having done this, we can write the necessary event handlers. The logical place to start is with the
BEGIN-DRAG event:

Programming Guide748

Working with List View Controls

#CONTROL := *CONTROL
*
PROCESS GUI ACTION INQ-CLICKPOSITION WITH

#CONTROL #ORIG-X #ORIG-Y GIVING *ERROR
*
ADD #CONTROL.OFFSET-X TO #ORIG-X
ADD #CONTROL.OFFSET-Y TO #ORIG-Y
*
PROCESS GUI ACTION SET-CLIPBOARD-DATA WITH

'DUMMYPRIVFMT' 0 GIVING *ERROR

This code consists of three parts:

1. Getting the click position in client coordinates.

2. Converting the click position to view coordinates (as mentioned above, the origin of the list
view window is not always "(0, 0)").

3. Putting some dummy data on the drag and drop clipboard, otherwise Natural will not initiate
the drag and drop operation.We choose a private clipboard format because, being only dummy
data, we deliberately don't want other applications to recognize it.

Next, we provide a handler for the DRAG-ENTER event:

PROCESS GUI ACTION INQ-DRAG-DROP WITH
1x #CONTROL GIVING *ERROR

*
IF #CONTROL = *CONTROL

IF #CONTROL.VIEW-MODE = VM-ICON OR
#CONTROL.VIEW-MODE = VM-SMALLICON
#CONTROL.SUPPRESS-DRAG-DROP-EVENT := NOT-SUPPRESSED

ELSE
#CONTROL.SUPPRESS-DRAG-DROP-EVENT := SUPPRESSED

END-IF
ELSE

#CONTROL := *CONTROL
PROCESS GUI ACTION INQ-FORMAT-AVAILABLE WITH CF-TEXT #AVAIL GIVING *ERROR
IF #AVAIL

#CONTROL.SUPPRESS-DRAG-DROP-EVENT := NOT-SUPPRESSED
ELSE

#CONTROL.SUPPRESS-DRAG-DROP-EVENT := SUPPRESSED
END-IF

END-IF

The above code consists of three parts:

1. The INQ-DRAG-DROP action is called to determine the handle of the drag source control.

2. If the drag source is the current control, then drag source and drop target are identical. In other
words, this is the item re-positioning case. Because item re-positioning is only allowed in one

749Programming Guide

Working with List View Controls

of the icon views, we unsuppress the DRAG-DROP event to allow the drop in this case. Otherwise,
we suppress this event in order to prohibit a drop such that the “no drop” drag cursor appears.
Note that we could have also prevented a drag from occuring at all by not putting the data on
the drag and drop clipboard in this case. However, although not demonstrated in this example,
it is often desired to drag one or more items from a list view control to another window, even
if the source control is in list or report view mode, for which the above code provides a better
basis.

3. If the drag source and drop target are different, an attempt is being made to transfer data from
another window. In this case, we check to see if data is available in the required format, CF-
TEXT, and allow the drop if so. Otherwise the drop is prohibited.

To provide drop emphasis during the dragging of external data across the list view control, a
DRAG-OVER event handler is supplied:

PROCESS GUI ACTION INQ-DRAG-DROP WITH
1X #CONTROL 1X #X #Y GIVING *ERROR

*
IF #CONTROL <> *CONTROL

#CONTROL := *CONTROL
IF #CONTROL.SUPPRESS-DRAG-DROP-EVENT = NOT-SUPPRESSED

PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
#CONTROL #X #Y #ITEM GIVING *ERROR

IF #ITEM <> #DROP-ITEM
IF #DROP-ITEM <> NULL-HANDLE

#DROP-ITEM.SELECTED := #SELECTED
END-IF
#DROP-ITEM := #ITEM
IF #DROP-ITEM <> NULL-HANDLE

#SELECTED := #DROP-ITEM.SELECTED
#DROP-ITEM.SELECTED := TRUE

END-IF
END-IF

END-IF
END-IF

The above code performs the following:

1. The INQ-DRAG-DROP action is called to determine the handle of the drag source control and the
current drop position.

2. If the drag source and drag target are identical (item re-positioning), no further action is taken,
as no drop emphasis is required in this case. Otherwise the INQ-ITEM-BY-POSITION action is
used to find the list view item (if any) at the current drop position.

3. The current target item (“drop item”) is tracked in #DROP-ITEM. Every time this changes, the
current selection state of the new drop item is first checkpointed in #SELECTED, and then the
item is selected to provide the drop emphasis by setting its SELECTED attribute to TRUE. In addition
the selection state of the old drop item (if any) is restored to its previously checkpointed value.

Programming Guide750

Working with List View Controls

4. Note that the drop emphasis is not applied if a drop is not possible (i.e., if the SUPPRESS-DRAG-
DROP-EVENT attribute is set to SUPPRESSED).

To perform the actual drop, a DRAG-DROP event handler is supplied:

PROCESS GUI ACTION INQ-DRAG-DROP WITH
1x #CONTROL 1x #X #Y GIVING *ERROR

*
IF #CONTROL = *CONTROL

ADD #CONTROL.OFFSET-X TO #X
ADD #CONTROL.OFFSET-Y TO #Y
SUBTRACT #ORIG-X FROM #X
SUBTRACT #ORIG-Y FROM #Y
#ITEM := #CONTROL.SELECTED-SUCCESSOR
REPEAT WHILE #ITEM <> NULL-HANDLE

ADD #X TO #ITEM.RECTANGLE-X
ADD #Y TO #ITEM.RECTANGLE-Y
#ITEM := #ITEM.SELECTED-SUCCESSOR

END-REPEAT
ELSE

IF #DROP-ITEM <> NULL-HANDLE
PROCESS GUI ACTION GET-CLIPBOARD-DATA WITH CF-TEXT #DROP-ITEM.STRING
GIVING *ERROR

#DROP-ITEM.SELECTED := #SELECTED
RESET #DROP-ITEM

END-IF
END-IF

The above code performs the following:

1. The INQ-DRAG-DROP action is called to determine the handle of the drag source control and the
current drop position.

2. The event handler differentiates between the casewhere the drag source and drop target controls
are identical (item re-positioning) and the case where they are distinct (drag from external
source).

3. In the item re-positioning case, the drop position is converted to view coordinates to obtain the
"(x, y)"-displacement from the original position, which is then applied to each selected item to
perform the move.

4. In the external source case, the text data is retrieved from the clipboard directly into the STRING
attribute of the current drop item (if any) to update its label. It is not necessary to first check
whether text is available on the drag and drop clipboard, as we did that in the DRAG-ENTER
event, prohibiting a drop and associated DRAG-DROP event from taking place at all if this is not
the case. After updating the label, the drop item's previous selection state (prior to the drag) is
restored and #DROP-ITEM reset ready for the next drag operation (if any).

Lastly, in the case that the user cancels the drag operation, or exits the bounds of the list view
control without having performed a drop, a DRAG-LEAVE event handler is supplied:

751Programming Guide

Working with List View Controls

IF #DROP-ITEM <> NULL-HANDLE
#DROP-ITEM.SELECTED := #SELECTED
RESET #DROP-ITEM

END-IF

The above code simply clears the drop emphasis (if any), by restoring the old drop item selection
state. To satisfy the logic provided for the other event handlers, #DROP-ITEM is reset, indicating
the absence of a drop item. This is essentially the same code as performed at the end of the
DRAG-DROP event, since the DRAG-LEAVE event is not called in the case of a drop. Therefore, any
drop emhasis resetting needs to be done in both places.

Programming Guide752

Working with List View Controls

94 Working with Nested Controls

■ Introduction .. 754
■ Which Control Types can be Containers? ... 755
■ Creating a Nested Control ... 755
■ Multiple Selection, Control Sequence and Clipboard Operations .. 756

753

Introduction

It is possible to create controls as children of other controls in addition to so-called “top-level”
controls, which are direct children of the dialog. Such controls are referred to as nested controls.
The parent control is referred to as the container. We will also use the term siblings to refer to a
set of child controls which all have the same parent. Clearly, there can be many different sets of
sibling controls within a control hierarchy.

Creation of a control hierarchy enables the Natural programmer to group together controls such
that they can be manipulated more easily and more efficiently within a Natural program. The
following list describes the characteristics of nested controls:

■ Their position is relative to the client area of the container control instead of relative to the dialog.
■ Their display is clipped to their respective ancestor windows. This means that the areas of the
nested control that are outside the boundary of its container are not visible. The dialog editor
does not allow dragging of nested controls outside of the container.

■ Nested controls are always displayed in front of their container control, regardless of their pos-
ition in the control sequence.

■ Nested controls are moved with their container control. This applies at both edit-time in the
dialog editor (when the container is dragged) and at runtime (when the container's RECTANGLE-
X and/or RECTANGLE-Y attributes are modified).

■ Nested controls are hidden when the container control is hidden, even though the VISIBLE at-
tribute of the nested control remains unchanged.

■ Nested controls are disabled at runtime when the container control is disabled, even though
the ENABLED attribute of the nested control remains unchanged and even though the control
does not become grayed.

■ Nested controls are deleted when the container control is deleted.

Note: Natural does not impose any arbitrary limits on the number of levels that a control
hierarchymay contain. The level number for a particular control is displayed together with
the control's name in the dialog editor status bar combo box.

Programming Guide754

Working with Nested Controls

Which Control Types can be Containers?

Not all control types are capable of acting as a container. It is not possible to create a control as a
child of an input field, for example. There are currently three types of container control supported
by Natural:

■ Group frames that have the (new) "container" style set. This can be changed in the dialog editor
(via its attributes window) after the group frame has been created. If a group frame is converted
to a container, all controls that are spatially containedwithin it aremoved in the control hierarchy
to become descendants of the group frame. If a group frame is converted to a non-container, all
direct children of the group frame are moved up a level in the hierarchy to become siblings of
the group frame.

■ ActiveX controls which are marked as "OLEMISC_SIMPLEFRAME" in the registry. This flag is
fixed by design for a particular ActiveX control class.

■ Control boxes. This control type is always a control container. Indeed, that is its entire purpose
in life. See the sectionWorking with Control Boxes for more information.

Creating a Nested Control

Nested controls are created in the dialog editor in the same way as non-nested controls are. If,
during control insertion, the initial left mouse button click is determined to be over a container
control, the new control is created automatically byNatural as a child of that container. Even before
the mouse button is clicked in insert mode, the dialog editor's status bar is continually updated
with the container-relative mouse co-ordinates as the mouse cursor traverses the dialog.

In addition, nested controls can be indirectly created within the dialog editor when converting
group frames to containers as described above.

At runtime, nested controls can be created dynamically, via the PROCESS GUI ACTION ADD statement
for the nested control, by specifying the PARENT attribute as the handle of the required container
control instead of the handle of the dialog. The nested control's position (RECTANGLE-X and RECT-
ANGLE-Y attributes) should be specified relative to the container's client area. The client area of a
control is the internal area of a control, excluding frame components such as 3-D borders, single-
pixel frames resulting from use of the "Framed" style, and a control's scroll bars.

755Programming Guide

Working with Nested Controls

Multiple Selection, Control Sequence and Clipboard Operations

The dialog editor prohibits selection of multiple controls which do not have the same parent (i.e.,
are not all siblings of each other). This applies regardless of whether multiple controls are selected
via “rubber banding” (marking of a regionwith the left mouse button held down) or via extended
selection (holding down the SHIFT key whilst selecting a control). However, if a selected container
control is deleted, then all its direct and indirect children (descendants) are of course implicitly de-
leted also, even though they are not explicitly selected. For this reason, a clipboard cut operation
always copies the selected control(s) and all descendant controls (if any) to the clipboard. For a
clipboard copy operation, it is not clear whether to copy the container alone, or the container plus
all its descendants. In this case, a message box is displayed, allowing the user to choose between
the two options.

The pasting of controls from the clipboard uses the same control sequence (tab order) insertion
position logic as for a control created from scratch. In both cases, the new control is created at a
position in the control sequence immediately following the selected sibling (if any) plus any of its
successive descendants. If a control other than a sibling is selected, an “effective sibling” is used
instead, based on the position of the (active) selected control in the control sequence. The “active”
selected control is the selected control (if any) which is highlighted using black (rather than gray)
selection handles. If no selection is active, the control is inserted into the control sequence imme-
diately preceding the first sibling control, or immediately after its container (or at the front of the
control sequence for top-level controls) if the container is empty. Note, however, that the control
sequence is maintained independently of the hierarchy. After a control has been created, it is
possible to explicitly move any control to any position in the control sequence via the Control
Sequence command on the Dialogmenu.

The position of the newly-created control in the hierarchy is determined slightly differently in
these two cases. In the case of a control being created from scratch, the container is determined
by searching for the (topmost) container at the position where the left mouse button was pressed.
However, in the case of pasting from the clipboard, we have no "(X, Y)"-position which we can
use. In this case, the container is assumed to be the container of the selected control(s), or the dialog
itself if no controls are selected. This means that if, for example, it is desired to copy and paste a
control from one container to another, a control within the second containermust be selected prior
to the paste, not the container itself. If the second container is empty, this requires temporary cre-
ation of a dummy child control first, which can be deleted after the paste operation is complete.

Deletion of controls also deletes any of their descendant controls.

With the introduction of nested controls, the Select All command has been changed to operate in
the following manner:

■ If no control is currently selected, the command selects all top-level controls.
■ Otherwise, all other controls that are siblings of the currently selected one(s) are additionally
selected.

Programming Guide756

Working with Nested Controls

Thus, in the common case where only one level of hierarchy is in use, the Select All command
continues, as before, to select all dialog controls.

757Programming Guide

Working with Nested Controls

758

95 Working with a Dynamic Information Line

Event-driven applications aremuchmore user-friendlywhen text in the dynamic information line
(DIL) explains the dialog element that currently has the focus. A dialog element has the focus if
it can receive the end user's keyboard input.

You have two options to relate a dialog element to a DIL text:

■ Use the dialog editor (most likely because it is the easiest way); or
■ use Natural code to specify everything dynamically.

When you use the dialog editor, you will have to go through the following steps:

1. Set the attribute HAS-DIL to TRUE for the dialog by marking the Dyn. Info Line entry in the
Dialog Attributeswindow.

2. Set the attribute DIL-TEXT to "diltextstring" for the dialog element. Choose the Source...
button to the right of theDILText: entry in the attributeswindow. ThewindowSpecify attribute
Source appears. Choose one of the attribute sources and enter the text in theValue field. Ensure
that "diltextstring" explains the dialog element's usage in a short phrase.

When you use Natural code, the above two steps may look like this:

...
PERSDATA-DIALOG.HAS-DIL := TRUE /* Set HAS-DIL To TRUE
#PB-1.DIL-TEXT := 'DILTEXTSTRING' /* Assign the text string
...

Note: The STATUS-TEXT and the DIL-TEXT are displayed in the same area if the dialog has
a status line and a text is displayed on the DIL.

759

760

96 Working with Spin Controls

■ Introduction .. 762
■ Up-Down Control ... 762
■ Buddy Control ... 762
■ Date and Time Formats .. 763
■ Inputting Dates and Times ... 764
■ Null Values ... 765
■ Calendar Colors and Font ... 765

761

Introduction

A spin control consists of a pair of vertically-opposed arrow buttons known as an “up-down”
control, optionally with an associated input field control known as a “buddy” control. The spin
control has an associated integer range and current position. The buddy control (if present) displays
the contents relating to the current position. The current position may be changed either by using
the arrow buttons, the up and down cursor keys, or by typing the value directly into the buddy
input field (if available and modifiable).

Up-Down Control

The up-down control allows the user to explicitly scroll through the spin control's integer range.
The up-down control's buttons can also be implicitly selected by using the up arrow and down
arrow cursor keys. Holding down the button or key causes the value to be incremented or decre-
mented repeatedly, cycling round to the opposite end of the range when the corresponding limit
is reached, if the control's "Wrap (w)" style is set. Initially, the incrementation or decrementation
step is 1, but this increases after a few seconds. This acceleration may be disabled or modified via
the SET-ACCELERATION action.

The control's range may be defined by setting its MIN and MAX attributes. The control's current po-
sitionwithin this rangemay be programmatically set or obtained by setting or querying the POSI-
TION attribute value, respectively.

Whenever the current position is changed by the user, a CHANGE event is raised for the control (if
not suppressed). This event is not raise if the control's value is changed programatically. Alternat-
ively, if a buddy input field control is present, the CHANGE event of the buddy control can be used.

Buddy Control

If the control's "Left align (l)" or "Right align (r)" style flag is set, the spin control contains an input
field, known as the buddy control, which on the right or left of the up-down control respectively
(the alignment relates to the up-down control, not to the buddy control).

The buddy control is a child of the spin control, and appears as a standard Natural input field
control. This gives theNatural programmer access to all the features available for standalone input
field controls. For example, the buddy control can be made to accept only digits and/or be made
non-modifiable, for example.

If the spin control's "Set buddy (s)" style is set, the buddy control is automatically updated with
the current position of the up-down control when the current position is changed. Otherwise, the

Programming Guide762

Working with Spin Controls

contents of the buddy control mus be updated manually in response to the spin control's CHANGE
event.

Date and Time Formats

By default, the date and time information is displayed according to the date and time formats
defined for the current regional settings. BecauseWindows provides two alternative date formats,
one long and one short (both of which may be changed by the user), and because the short date
format may not contain century information, one of three STYLE flags determines which of the
standard date formats should be used. These (mutually exclusive) formats are:

■ "Short date (s)", implying that the standard short date format for the current regional settings
should be used.

■ "Century date (c)", implying that the standard short date format for the current regional settings
should be used, but extended to provide century information if this is not already the case. Note
that in many cases, the short date format already includes century information, in which case
this style does not change the appearance of the date.

■ "Long date (d)", implying that the standard long date format for the current regional settings
should be used.

In addition, the "Time (t)" style flag is provided in order to indicate that the control should display
time (instead of date) information.

If these standard formats are not sufficient, they can be overridden by proving a custom format
string using the EDIT-MASK attribute. Note, however, that the format string specifiers do not cor-
respond to those used for edit masks elsewhere within Natural. The following table lists the
available specifiers and their meanings:

DescriptionSpecifier

The one- or two-digit day.d

The two-digit day. Single-digit day values are preceded by a zero.dd

The three-character weekday abbreviation.ddd

The full weekday name.dddd

The one- or two-digit hour in 12-hour format.h

The two-digit hour in 12-hour format. Single-digit values are preceded by a zero.hh

The one- or two-digit hour in 24-hour format.H

The two-digit hour in 24-hour format. Single-digit values are preceded by a zero.HH

The one- or two-digit minute.m

The two-digit minute. Single-digit values are preceded by a zero.mm

The one- or two-digit second.s

763Programming Guide

Working with Spin Controls

DescriptionSpecifier

The two-digit second. Single-digit values are preceded by a zero.ss

The one- or two-digit month number.M

The two-digit month number. Single-digit values are preceded by a zero.MM

The three-character month abbreviation.MMM

The full month name.MMMM

The one-letter AM/PM abbreviation (that is, AM is displayed as "A").t

The two-letter AM/PM abbreviation (that is, AM is displayed as "AM").tt

The last two digits of the year (that is, 2005 would be displayed as "05").yy

The full year (that is, 2005 would be displayed as "2005").yyyy

In addition, any characters in quotes are displayed exactly as specified. To specify the quote
character itself within a quoted string, two consecutive single quote characters should be used.
Spaces and punctuation marks (such as the comma) do not need to be quoted.

For example, in order to display the string "John's birthday is Friday, December 31, 1969", the DTP
control's EDIT-MASK attribute would be set to "'John''s birthday is' dddd, MMMM d, yyyy".

Inputting Dates and Times

The DTP control provides several ways of modifying the specified information:

■ By the user, by entering numerical information (day numbers, etc.) directly.
■ By the user, by incrementing or decrementing the selected field (e.g. day number, month name)
via the + or - keys, respectively.

■ By the user, if the DTP control has either the "Time (t)" or "Up-down (u)" style, by selecting the
required field and incrementing or decrementing the value via the up-down (“spin”) control.

■ By the user, if the DTP control is using a month calendar, by pressing the down arrow to open
the month calendar and navigating to the required date. Unlike the above method, this method
updates all date fields simultaneously.

■ Programmatically, by updating the TIME attribute with the required date or time.

For example, to set the date or time in a DTP control to the current date or time, use the following
assignments:

Programming Guide764

Working with Spin Controls

#DTP-1.TIME := *DATX

or

#DTP-1.TIME := *TIMX

respectively, where #DTP-1 is assumed to be the handle of the DTP control.

Note that the DTP control stores both date and time information, even though it only allows
editing of the date or time component, depending on the control's style.

Null Values

If the "Allow 'no value' (n)" style is specified for the DTP control, the control displays a check box.
If this check box is unchecked, the interpretation is that there is no date or time associated with
the control. The application can test for this state by querying the control's CHECKED attribute. It
can also revert the control to the “no value” state by setting the CHECKED attribute back to UNCHECKED.
Note that it is, however, not possible to explicitly set the CHECKED attribute to CHECKED, as this is
done implicitlywhenever a date or time is applied to the control. Furthermore, the CHECKED attribute
may not be set at all for DTP controls without the "Allow 'no value' (n)" style.

Calendar Colors and Font

The colors and font used by the month calendar (if any) associated with the DTP control may be
changed by use of the SET-AUX-COLOR and SET-AUX-FONT actions, respectively.

765Programming Guide

Working with Spin Controls

766

97 Working with a Status Bar

In a similar way as the dynamic information line, the status barmakes an event-driven application
more user-friendly.

The programmer has two options to relate a dialog element to a status bar:

■ use the dialog editor (most likely because it is the easiest way); and
■ use Natural code to specify everything dynamically.

When you use the dialog editor, you will have to:

■ Set the attribute HAS-STATUS-BAR to TRUE for the dialog by marking the Status Bar entry in the
Dialog Attributeswindow. The HAS-STATUS-BAR attribute determines whether the status bar
may be modified. If HAS-STATUS-BAR is false, but HAS-DIL is true, the status bar appears, but is
only used as dynamic information line.

When you use Natural code, the above step may look like this:

...
PERSDATA-DIALOG.HAS-STATUS-BAR := TRUE /* Set HAS-STATUS-BAR To TRUE
PERSADTA-DIALOG.STATUS-TEXT := 'HELLO' /* Set the text to 'Hello'
...

Note: The STATUS-TEXT and the DIL-TEXT are displayed in the same area if the dialog has
a status line and a text is displayed on the DIL.

767

768

98 Working with Status Bar Controls

■ Introduction .. 770
■ Creating a Status Bar Control ... 770
■ Using Status Bar Controls without Panes .. 770
■ Outputting Text to a Status Bar Control .. 771
■ Sharing a Status Bar in an MDI Application ... 772
■ Pane-specific Context Menus ... 773

769

Introduction

Note: Status bar controls are not to be confusedwith the traditional dialog status bar which
is created by selecting the status bar check box in the Dialog Attributeswindow in the
dialog editor, or by setting the dialog's HAS-STATUS-BAR attribute at run-time. If you are
using status bar controls, you should leave the status bar check box unchecked and not set
the HAS-STATUS-BAR attribute.

Creating a Status Bar Control

Status bar controls are created in the dialog editor in the same way as other standard controls
(such as list boxes or push buttons) are. That is, they are either created statically in the dialog ed-
itor via the Insertmenu or by drag and drop from the Insert tool bar, or dynamically at run-time
by using a PROCESS GUI ACTION ADD statement with the TYPE attribute set to STATUSBARCTRL.

Unlike most other control types, status bar controls cannot be nested within another control and
cannot be created within an MDI child dialog. In an MDI application, the status bar control(s)
must belong to the MDI frame dialog.

A status bar control may have zero or more panes associated with it. Panes may be defined in the
dialog editor from within the status bar control's attribute window, or at run-time by performing
a PROCESS GUI ACTION ADD statement with the TYPE attribute set to STATUSBARPANE.

Using Status Bar Controls without Panes

A status bar controlwithout panes offers restricted functionality, becausemost attributes providing
access to the enhanced functionality of status bar controls are only supported for status bar panes.
If you wish to do more with a status bar control than simply display a line of text, but don't need
to split up the status bar control intomultiple sections, you should create a single pane that occupies
the full width of the status bar control.

Programming Guide770

Working with Status Bar Controls

Stretchy vs. non-stretchy panes

If panes are defined for a status bar control, it should be decidedwhether each pane should stretch
(or contract) when the containing dialog is resized, orwhether it shouldmaintain a constantwidth.
The former are referred to here as “stretchy” panes, and the latter as “non-stretchy” panes.

There is no explicit flag in the Status Bar Control Attributeswindow to mark a pane as stretchy
or non-stretchy. Instead, any pane defined with a width (RECTANGLE-W attribute) of 0 is implicitly
assumed to be a stretchy pane, whereas any panes with a non-zero width definition are implicitly
assumed to be fixed-width panes of the specified width (in pixels). Because the RECTANGLE-W at-
tribute defaults to 0, all panes are initially stetchy when defined in the dialog editor.

The width of a visible stretchy pane is determined by taking the total width available for all panes
in the status bar control, subtracting the widths of all visible fixed-width panes, then dividing the
result by the number of visible stretchy panes.

Note: The total availablewidth for all panes normally excludes the sizing gripper, implying
that the last pane stops short of the gripper, if present. However, if the status bar control
has exactly one pane, and that pane is a stretchy pane, the full width of the dialog (including
any sizing gripper) is used.

Outputting Text to a Status Bar Control

Text can be output to the status bar control in one of three ways:

1. For status bar controls with panes, by setting the STRING attribute of the pane whose text is to
be set.

2. By setting the STRING attribute of the status bar control itself, which is equivalent to setting the
STRING attribute of the first stretchy pane (if any) for status bar controls with panes.

3. By setting the STATUS-TEXT attribute of the dialog. This is equivalent to setting the STRING at-
tribute of the status bar control (if any) identified by the dialog's STATUS-HANDLE attribute.

Note that the last method is often themost convenient for setting themessage text, because it does
not require a knowledge of the status bar control or pane handles.

Example:

771Programming Guide

Working with Status Bar Controls

DEFINE DATA LOCAL
01 #DLG$WINDOW HANDLE OF WINDOW
01 #STAT-1 HANDLE OF STATUSBARCTRL
01 #PANE-1 HANDLE OF STATUSBARPANE
END-DEFINE
...
#DLG$WINDOW.STATUS-HANDLE := #STAT-1
...
#PANE-1.STRING := 'Method 1'
...
#STAT-1.STRING := 'Method 2'
...
#DLG$WINDOW.STATUS-TEXT := 'Method 3'

Note: The dialog editor automatically generates code to set the STATUS-HANDLE attribute to
the first status bar control (if any). Therefore, the STATUS-HANDLE attribute only needs to be
set explicitly if you are dynamically creating status bar controls, or if you have definedmore
than one status bar control in a dialog, and wish to switch between them.

Sharing a Status Bar in an MDI Application

Because status bar controls cannot be created for MDI child dialogs, it is convenient to not have
to define multiple status bar controls in the MDI frame dialog. An alternative method is to define
just a single status bar, and share it between each child dialog. This can be achieved as follows:

1. Define all possible panes you wish to use in your application within a single status bar control
in the MDI frame dialog.

2. Mark all panes as "shared".

3. Export the handles of all panes to corresponding shadow variables in a GDA, so that the MDI
child dialogs can access them directly.

4. In the COMMAND-STATUS event handler, set the VISIBLE attribute of all panes you wish to display
for that dialog to TRUE. All other panes will be automatically made invisible.

Note: In the COMMAND-STATUS event, you must also set the ENABLED state of any commands
(signals, or menu or tool bar items which do not reference another object via their SAME-AS
attribute) associated with the dialog, otherwise they will be automatically disabled. The
commands associatedwith the dialog are all non-shared commands for theMDI frame and
all shared commands for the active MDI child (or MDI frame, if no MDI child dialog is
active).

Programming Guide772

Working with Status Bar Controls

Pane-specific Context Menus

Context menus are defined for the status bar control and not per-pane. However, if you wish to
ensure that the context menu for a status bar control only appears when the user right clicks a
particular pane, you can associate a context menu with the status bar control, but suppress it if
the user clicks outside that pane.

Example:

DEFINE DATA LOCAL
01 #CTXMENU-1 HANDLE OF CONTEXTMENU
01 #STAT-1 HANDLE OF STATUSBARCTRL
01 #PANE-1 HANDLE OF STATUSBARPANE
01 #PANE-2 HANDLE OF STATUSBARPANE
01 #PANE-3 HANDLE OF STATUSBARPANE
01 #PANE HANDLE OF STATUSBARPANE
01 #X (I4)
01 #Y (I4)
END-DEFINE
...
#STAT-1.CONTEXT-MENU := #CTXMENU-1
...
DECIDE ON FIRST *CONTROL

...
VALUE #CTXMENU-1

DECIDE ON FIRST *EVENT
...

VALUE 'BEFORE-OPEN'
/* Get click position relative to status bar control
PROCESS GUI ACTION INQ-CLICKPOSITION WITH
#STAT-1 #X #Y GIVING *ERROR

/* Get pane (if any) at specified position
PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
#STAT-1 #X #Y #PANE

/* Only show context menu if user clicked in second pane
IF #PANE = #PANE-2

#CTXMENU-1.ENABLED := TRUE
ELSE

#CTXMENU-1.ENABLED := FALSE
END-IF

...
END-DECIDE

...
END-DECIDE
...
END

773Programming Guide

Working with Status Bar Controls

Note: If you wish to display a different context menu for different status bar panes, the
menu items must be created dynamically in the context menu's BEFORE-OPEN event.

Programming Guide774

Working with Status Bar Controls

99 Working with Tab Controls

■ Creating a Tab Control .. 776
■ Assigning Controls to Tabs .. 776
■ Use of Control Boxes as Tab Control Pages .. 777
■ Switching Between Controls Belonging To Different Tabs ... 778
■ Mixing Tab-dependent and Tab-independent Controls ... 779
■ Keyboard Navigation .. 779
■ Tab Switching Events ... 780

775

Creating a Tab Control

Tab controls are created in the dialog editor in the same way as other standard controls (such as
list boxes or push buttons) are. That is, they are either created statically in the dialog editor via
the Insertmenu or by drag and drop from the Insert tool bar, or dynamically at run-time by using
a PROCESS GUI ACTION ADD statement with the TYPE attribute set to TABCTRL.

Alternatively, dialogs containing tab controls may be generated with the Dialog Wizard. In this
case, many of the techniques described in this section are applied automatically by the wizard,
and either do not need to be explicitly implemented, or simply need to be extended or “filled-out”,
whilst retaining the generated structure. This can significantly reduce the programming effort re-
quired.

A tab control may have zero or more tabs associated with it. Tabs may be defined in the dialog
editor from within the tab control's attribute window, or at run-time by performing a PROCESS
GUI ACTION ADD statement with the TYPE attribute set to TABCTRLTAB.

Assigning Controls to Tabs

The tab control is a container. However, the individual tabs are not containers, in the Natural im-
plementation of this control. When controls are created within the tab control in the dialog editor,
the control's PARENT attribute is automatically set to the handle of the tab control, and not to the
handle of the currently active tab (if any). In order to associate a child control with a particular
tab, the child control's OWNER attribute is set to the handle of the tab with which the control should
be associated. The control is then automatically hidden by Natural when the tab is deactivated,
and automatically re-shown when it is re-activated.

Note, however, that the dialog editor only automatically sets the child control's OWNER attribute if
the tab control's "UI active (U)" STYLE flag is set, which is the default setting. Otherwise the child
control's OWNER attribute is left unset (i.e., NULL-HANDLE). In the latter case, the child control is not
automatically shown and hiddenwhen switching between tabs. Note that the "UI active (U)" STYLE
has no effect at run-time.

Programming Guide776

Working with Tab Controls

Use of Control Boxes as Tab Control Pages

As stated above, all child controls within a tab control have a tab control as their parent, regardless
of the tab towhich they belong.Whilst this is sufficient, it may be preferable to separate the controls
on different tabs into separate sub-hierarchies.

The most convenient way of achieving this is to create a child control box for each tab to represent
the tab “pages”. All other child controls are then created as child controls of the respective control
box. Assuming that the tab control's "UI active (U)" STYLE flag is set, the control boxes will be
automatically hidden and shown during tab switching, and thus t heir respective child controls
with them (child controls are automatically hidden if any ancestor window is hidden). Otherwise,
the program must do the page switching explicitly, as described in the next section.

The control's organization is shown in the following diagram:

As shown in the diagram, each child control box should be transparent, that the tab control's
background texture (if any) shows through, and have the "size to parent (z)" STYLE, so that the
control boxes automatically exactly fill the interior area of the tab control, both immediately and
whenever the size of the tab control is changed. In addition, each control box should be “exclusive”
if the tab control is not UI active, such that only one child control box is visible at any time.

777Programming Guide

Working with Tab Controls

Switching Between Controls Belonging To Different Tabs

Note: This section only relates to tab controls that are not UI active. Otherwise, the control
switching is done automatically by Natural.

In the dialog editor, this is performed automatically by the dialog editor when a control belonging
to an exclusive control box (or the control box itself) is selected, which is not currently being dis-
played. The dialog editor makes the currently visible exclusive control box (if any) invisible (thus
also hiding any controls placedwithin it) andmakes the control box containing the selected control
visible (thus also showing any controls placed within it). This process is independent of how the
selection is made (for example, explicitly, from the selection box in the status bar, or implicitly,
by simply tabbing through the controls).

Note: If the status bar is not shown, set the Status Bar under the Dialog Editor tab of the
Options dialog opened via the Tools > Options command.

At run-time, the control boxesmust, of course, be shown or hidden in response to the user selecting
the corresponding tab. This can be achieved by querying the active tab in the tab control's CHANGE
event and setting the VISIBLE attribute of the corresponding control box to TRUE. One way of
making the tab/control box associations is to store the handle of the control box in the CLIENT-
HANDLE attribute of the corresponding tab in the AFTER-OPEN event of the dialog.

For example:

/* Map control boxes to tabs:
#TAB-1.CLIENT-HANDLE := #CTLBOX-1
#TAB-2.CLIENT-HANDLE := #CTLBOX-2
..
#TAB-N.CLIENT-HANDLE := #CTLBOX-N

Then, assuming #CONTROL is defined as HANDLE OF GUI, the CHANGE event of the tab control
(#TABCTRL-1) could look like this:

/* Get active tab
#CONTROL := #TABCTRL-1.SELECTED-SUCCESSOR
/* Switch to control box belonging to active tab:
#CONTROL := #CONTROL.CLIENT-HANDLE
IF #CONTROL <> NULL-HANDLE

#CONTROL.VISIBLE := TRUE
END-IF

Programming Guide778

Working with Tab Controls

Mixing Tab-dependent and Tab-independent Controls

In some situations, it may be desirable to display controls that remain visible, irrespective of which
tab is currently selected.

There are two ways of achieving this:

1. If control boxes are being used, the control boxes can be made smaller in order to cover only
part of the tab control's interior area, leaving the remaining space available for controls that
should be permanently displayed. The "size to parent (z)" STYLEmust be switched off for the
control boxes.

2. If control boxes are not being used and the tab control is UI active, permanently displayed
controls may be created by ensuring that the "UI active (U)" STYLE for the tab control is tempor-
arily switched off whilst creating the child control(s) that are to be permanently displayed.

If the tab control is not UI active, a two-layer control box hierarchy can be used, where the child
control boxes described above are created as child controls of a transparent top-level control box,
which in turn is created as a child of the tab control. The top-level control box (which does not
have the "size to parent" flag set), can then be positioned and sized appropriately to define the
replaceable region.

Note: This is very similar to the technique used for wizard dialogs. See the sectionWorking
with Control Boxes for more information

Keyboard Navigation

There are three methods of navigating between the tabs of a tab control via the keyboard, any
combination of which can be applied simultaneously:

1. If the tab control is assigned the "browsable (z)" STYLE flag, the tab control is included in the
tab sequence (i.e., can be navigated to via the TAB key). When the tab control receives the focus,
navigation between the tabs is possible via the arrow keys. There is no “wrap-around” between
the first and last tabs in this case.

2. The tab captions (STRING attribute)may contain an ampersand (&), indicating that the following
character is a mnemonic character. The tab is selected when the mnemonic character is pressed
together with the ALT key. This allows for “direct” keyboard navigation to the desired tab.

3. If the dialog has the "Property Sheet (p)" STYLE set, the keyboard shortcuts CTRL+TAB and
CTRL+SHIFT+TABmay be used to navigate to the next and previous tab (respectively), with wrap-
around.

779Programming Guide

Working with Tab Controls

Note that the focus does not have to be on the tab control or a dialog element within it in order
for the last technique to work. Starting from the focus control, Natural examines each container
(ancestor), until a container (if any) is found that contains one ormore tab controls. If this container
contains exactly one tab control, the keyboard shortcuts are then applied to this tab control. If it
contains two or more tab controls, these shortcuts have no effect. If the dialog does not contain a
tab control, the shortcuts perform their usual function, as if the "Property Sheet (p)" STYLE had not
been set.

Note that this default usage of the CTRL+TAB and CTRL+SHIFT+TAB key combinationsmay be overridden
by redefining them via the ACCELERATOR attribute.

Tab Switching Events

Whenever a tab switch is performed (either by the user or programmatically), the following se-
quence of events occurs:

1. The currently selected tab receives a LEAVE event, if not suppressed. This event is typically used
for data validation and/or committing the data on the tab page.

2. The MODIFIABLE attribute of the tab control is then examined. If it is set to FALSE, the tab switch
is not performed. The currently selected tab remains selected and no further events are raised.
This can be useful if data validation performed during the LEAVE event found an error, which
should be corrected by the user before continuing.

3. All direct child controls (if any) that have currently selected tab as their OWNER are automatically
hidden.

4. The new tab is selected.

5. All direct child controls (if any) that have the newly-selected tab as their OWNER are automatically
shown, if their VISIBLE attribute is set to TRUE.

6. The newly-selected tab receives an ENTER event. If not suppressed. This event is typically used
for initializing controls on the new tab page.

7. The tab control receives a CHANGE event. This is convenient for tracking tab switches and respond-
ing to them without having to modify the event handlers for each tab.

Note that no initial ENTER event is raised for the selected tab when the control is created, and that
the tab control does not receive an initial CHANGE event either. Furthermore, when the dialog con-
taining the tab control is closed, the currently-selected tab does not receive a LEAVE event.

Programming Guide780

Working with Tab Controls

100 Working with Tree View Controls

■ Introduction .. 782
■ Setting Item Images ... 782
■ Item Selection ... 783
■ Item Activation .. 783
■ Item Data ... 784
■ Sorting .. 784
■ Label Editing ... 785
■ Multiple Context Menus .. 786
■ Dynamic Item Creation ... 786
■ Drag and Drop .. 788

781

Introduction

A tree view control is used to display data in hierarchical form. Each node in the hierarchy is
represented internally as a tree view item. The following shows a simple tree view (with optional
check boxes) displaying a 3-level hierarchy containing seven tree view items:

The tree view control shown above is specified with the "+/- buttons (b)", "Lines (l)", "Lines at root
(r)" and "Check boxes (c)" STYLE flags.

The height of each item and the indentation between levels can be set via the ITEM-H and SPACING
attributes, respectively. If either of these are zero, the default setting is used.

Setting Item Images

Images for the tree view items may be defined by creating and associating an image list control
with the tree view control, then (for each item) selecting the required image from the image list
via its index and/or image handle, as described in the sectionWorking with Image List Controls.

Please note that it is not necessary to set the image list control's "Large images (L)" style, unless
you are additionally using the same image list for a list view control, because the tree view control
only uses small images.

Programming Guide782

Working with Tree View Controls

Item Selection

Unlike the list view control, the tree view control only supports one selected item. The current
selection (if any) may be retrieved by querying the tree view control's (read-only) SELECTED-SUC-
CESSOR attribute.

In addition to being selected by the user, items may be selected or deselected programmatically
by setting or clearing their SELECTED attribute.

When an item is selected, a CLICK event is raised for the list view control (if not suppressed), with
the handle of the corresponding item being set in the control's ITEM attribute.

Item Activation

When a user double-clicks on an item, an ACTIVATE event is raised (unless suppressed) for the tree
view control. The application, if it decides to handle this event, normally performs a user-defined
default action on the selected item, the handle to which may be obtained via either the ITEM or
SELECTED-SUCCESSOR attributes of the tree view control. Note that theremay be other, non-default,
actions applicable to the selected item, but these are typically accessed via other mechanisms. For
example, they may be listed (typically along with the default action) in a context menu displayed
by the application.

If the "Dbl. click expand (d)" STYLE flag is set, double clicking a tree view item that has child items
expands the item in addition to activating it.

The ACTIVATE event can also be triggered via the keyboard. This can be done in either of twoways:

1. By pressing the key or key combination defined for the tree view control's ACCELERATOR attribute.
The control need not currently have the focus.

2. By pressing the ENTER key, if the tree view control currently has the focus. This method only
works if the dialog neither contains a default pushbutton, nor a pushbuttonwith the "OKButton
(O)" STYLE flag set.

In either case, no ACTIVATE event is raised if no item is currently selected.

783Programming Guide

Working with Tree View Controls

Item Data

In order to be able to support sorting correctly (see next section), a tree view item's data does not
need to be alphanumeric, as it is per default, but can be one of any of the pre-defined types sup-
ported by the column's FORMAT attribute. In addition, an edit mask can be applied to the item by
setting its EDIT-MASK attribute. The item's label, as seen by the user for the item, is the alphanumeric
representation of the item's internal data, using the associated edit mask (if any). The conversion
between the item's internal data and the displayed data is compatible with the MOVE EDITED
statement if an editmask is supplied. Otherwise, the conversion between the internal and displayed
data, and vice-versa, is compatible with the conversion involved in copying the data to and from
the Natural stack (see the STACK TOP DATA and INPUT statements). For example, numeric values
are displayed using the current decimal character (as defined by the DC parameter) if necessary,
with a leading minus character if negative, date values are displayed in the format defined by the
DTFORM parameter setting, logical values are displayed as an "X" if true and as a blank if false, and
so on.

An example of use of a non-alpha tree view item is shown below:

PROCESS GUI ACTION ADD WITH
PARAMETERS

HANDLE-VARIABLE = #TVITEM-DATE
TYPE = TREEVIEWITEM
PARENT = #TV-1
STRING = '+123.456'
FORMAT = FT-DECIMAL
EDIT-MASK = '+ZZZ,ZZ9.999'

END-PARAMETERS GIVING *ERROR

In this case, the specified item label (STRING attribute value) must of course be a valid number of
a form compatible with the specified edit mask (+ZZZ,ZZ9.999). Internally, the label is converted
to the data type and length corresponding to the specified format, FT-DECIMAL (= P10.5).

Note that it is not possible to access the underlying data for a tree view item directly. The item's
data can only be set or retrieved via the item's label.

Sorting

Tree view items can either be inserted in sorted sequence or explicitly sorted after insertion, by
calling the SORT-ITEMS action. Items are inserted in ascending alphabetical sequence if either the
tree view control or the tree view item being inserted have their SORTED attribute set to TRUE. In
the latter case, the items are optionally sorted in ascending or descending sequence according to
their internal data (see last section). See the documentation for the SORT-ITEMS action for more
information. Note that it is the responsibility of the programmer to ensure that the underlying

Programming Guide784

Working with Tree View Controls

item formats of the items concerned (as defined by the FORMAT attribute) are of comparable types.
For example, it is possible to mix integers and floating point values, but not integers and dates.

Label Editing

The process of label editing for tree view controls is the same as for list view controls. Therefore,
for more information on this subject, please refer to the section Label Editing in Tree View and
List View Controls.

Note that even if the SORTED attribute is set, the items are not automatically re-sequenced after a
label editing operation has been completed. If this is required, this can be done as shown in the
example below. Firstly, we define some variables for later use:

01 #CONTROL HANDLE OF GUI 01 #ITEM HANDLE OF TREEVIEWITEM
01 #SORTITEM HANDLE OF TREEVIEWITEM

In addition, it is assumed that the tree view control is named #TV-1.

In the tree view control's AFTER-EDIT event, we cannot do the re-sequencing asynchronously, as
this would interfere with the (as yet incomplete) editing process. Instead, we simply set the
#SORTITEM variable to indicate that the re-sequencing should occur at a later time, after the editing
process has been completed. This only needs to be done if the tree view items are sorted:

#CONTROL := *CONTROL #ITEM := #CONTROL.ITEM IF #CONTROL.SORTED OR #ITEM.SORTED
#SORTITEM := #ITEM ELSE #SORTITEM := NULL-HANDLE END-IF

Note that this examples assumes the use of the default (ascending alphabetical) sorting provided
by the tree view control iteself.

The actual work of re-sequencing the items is done asynchronously in the dialog's IDLE event:

IF #SORTITEM <> NULL-HANDLE PROCESS GUI ACTION SORT-ITEMS WITH #SORTITEM.PARENT
GIVING *ERROR RESET #SORTITEM END-IF

785Programming Guide

Working with Tree View Controls

Multiple Context Menus

If you wish to support just a single context menu for the control, you can simply set the control's
CONTEXT-MENU attribute to the handle of the context menu you wish to display, and leave it set to
this value. However, it is often required to be able to display more than one context menu for list
view controls, whereby this approach is too inflexible.

To address the above problem, the CONTEXT-MENU event was introduced (not to be confused with
the attribute of the same name as mentioned above!). This event (if not suppressed) is raised for
the target control immediately before its CONTEXT-MENU attribute is evaluated, allowing the applic-
ation to dynamically set this attribute to the handle of the appropriate context menu first.

As an example, assume thatwe have defined two contextmenus in the dialog editor: one containing
item-related commands, #CTXMENU-ITEMS, and one containing generic commands (e.g., for
switching the view mode), #CTXMENU-DEFAULT. In this case, the following CONTEXT-MENU event
could be used:

#CONTROL := *CONTROL IF #CONTROL.SELECTED-SUCCESSOR
<> NULL-HANDLE #CONTROL.CONTEXT-MENU := #CTXMENU-ITEMS ELSE #CONTROL.CONTEXT-MENU
:= #CTXMENU-DEFAULT END-IF

where the following local data definition is assumed:

01 #CONTROL HANDLE OF GUI

In this example, the context menu #CTXMENU-ITEMSwill be displayed if the user right clicks at a
position occupied by an item, or #CTXMENU-DEFAULT otherwise.

Of course, this technique can be refined further to display context menus specific to the type(s) of
the selected item(s).

Dynamic Item Creation

When a tree view item is expanded or collapsed, an EXPAND event or COLLAPSE event (respectively)
is raised for the control, if the event is not suppressed. Amongst other things, these events allow
tree-view items to be dynamically created and deleted on demand.

For example, the following code demonstrates the dynamic creation of three items in response to
the EXPAND event. It assumes that a dummyplaceholder itemwith an empty STRING attribute value
is already in place at the position where the items should be inserted. The placeholder can either
have been statically defined in the dialog editor, or dynamically-defined during the initial tree

Programming Guide786

Working with Tree View Controls

view item creation. The purpose of the placeholder is to ensure that a "+" button (if button display
enabled via the "+/- buttons (b)" STYLE) appears next to the parent node.

The following EXPAND event code assumes that the variable #TGT-ITEM contains the handle of the
tree view item under which the dynamic tree view items are to be created:

#CONTROL := *CONTROL
#ITEM := #CONTROL.ITEM
IF #ITEM = #TGT-ITEM

#TVITEM-DYN := #ITEM.FIRST-CHILD
IF #TVITEM-DYN <> NULL-HANDLE AND

#TVITEM-DYN.STRING = ' '
PROCESS GUI ACTION DELETE WITH #TVITEM-DYN GIVING *ERROR
FOR #I 1 3
COMPRESS 'Dynamic Item' #I INTO #A
PROCESS GUI ACTION ADD WITH PARAMETERS

HANDLE-VARIABLE = #TVITEM-DYN
TYPE = TREEVIEWITEM
PARENT = #ITEM
STRING = #A

END-PARAMETERS GIVING *ERROR
END-FOR

END-IF
END-IF

where the following local data definitions are assumed:

01 #CONTROL HANDLE OF GUI
01 #ITEM HANDLE OF TREEVIEWITEM
01 #TVITEM-DYN HANDLE OF TREEVIEWITEM
01 #TGT-ITEM HANDLE OF TREEVIEWITEM
01 #I (I4)
01 #A (A) DYNAMIC

The above code first looks to see whether the item being expanded is the target item. If so, it
queries the STRING attribute of the first child, to find out whether a placeholder is present. If this
is the case, the placeholder is deleted, and three dynamic tree view items are created. The STRING
attribute value for the inserted items is specified on creation, rather than modified afterwards, to
ensure that the code also works correctly for SORTED tree views.

To save resources, the dynamically-created items could optionally be deleted again in the COLLAPSE
event handler, being replaced by a placeholder item:

787Programming Guide

Working with Tree View Controls

#CONTROL := *CONTROL
#ITEM := #CONTROL.ITEM
IF #ITEM = #TGT-ITEM

PROCESS GUI ACTION DELETE-CHILDREN WITH #ITEM GIVING *ERROR
PROCESS GUI ACTION ADD WITH PARAMETERS /* placeholder

TYPE = TREEVIEWITEM
PARENT = #ITEM

END-PARAMETERS GIVING *ERROR
END-IF

Drag and Drop

The basic technique for providing drag and drop support is described in the section Using the
Clipboard and Drag and Drop.

Note that it is the responsibility of the programmer to (if required) highlight the item (if any) under
the mouse cursor by setting its SELECTED attribute, and to restore the original selection (if any) af-
terwards.

The following example provides some code for demonstrating a tree view control acting as a drop
target, in order to support dragging and dropping text from another application (e.g. WordPad)
onto a tree view item in order to change its label.

The first step is to ensure that the drop mode is set correctly for the tree view control. In the Tree
View Control Attributeswindow in the dialog editor, set the Drop mode selection box to
Copy+Move. This causes the control's DROP-MODE attribute to be set to DM-COPYMOVE in the generated
source code for the dialog.

Next, the required local variables that are going to be used below must be defined:

01 #CONTROL HANDLE OF GUI
01 #DROP-ITEM HANDLE OF GUI
01 #ITEM HANDLE OF GUI
01 #SELECTED HANDLE OF GUI
01 #AVAIL (L)
01 #X (I4)
01 #Y (I4)

Having done this, we can write the necessary event handlers. The logical place to start is with the
DRAG-ENTER event:

Programming Guide788

Working with Tree View Controls

#CONTROL := *CONTROL
#CONTROL.CLIENT-HANDLE := #CONTROL.SELECTED-SUCCESSOR
PROCESS GUI ACTION INQ-FORMAT-AVAILABLE WITH CF-TEXT #AVAIL GIVING *ERROR
IF #AVAIL

#CONTROL.SUPPRESS-DRAG-DROP-EVENT := NOT-SUPPRESSED
ELSE

#CONTROL.SUPPRESS-DRAG-DROP-EVENT := SUPPRESSED
END-IF

The above code first saves the handle of the currently selected item in the control's CLIENT-HANDLE
attribute for the purposes of restoring the selection to this item later. The event handler then checks
whether text data is available on the drag-drop clipboard. If it is, the DRAG-DROP event is unsup-
pressed in order to allow a drop. Otherwise, we suppress this event in order to prohibit a drop
such that the “no drop” drag cursor appears.

To provide drop emphasis during the dragging of external data across the tree view control, a
DRAG-OVER event handler is supplied:

#CONTROL := *CONTROL
IF #CONTROL.SUPPRESS-DRAG-DROP-EVENT = NOT-SUPPRESSED

PROCESS GUI ACTION INQ-DRAG-DROP WITH
3X #X #Y GIVING *ERROR

PROCESS GUI ACTION INQ-ITEM-BY-POSITION WITH
#CONTROL #X #Y #ITEM GIVING *ERROR

IF #ITEM <> #DROP-ITEM
#DROP-ITEM := #ITEM
IF #DROP-ITEM <> NULL-HANDLE
#DROP-ITEM.SELECTED := TRUE

END-IF
END-IF

END-IF

The above code performs the following:

1. If a drop was disallowed in the DRAG-ENTER event, the event is ignored, as no drag emphasis is
required in this case.

2. Otherwise, the INQ-DRAG-DROP action is called to determine the current drop position.

3. The INQ-ITEM-BY-POSITION action is used to find the tree view item (if any) at the current drop
position. This item is tracked in #DROP-ITEM.

4. The tree view item (if any) under the cursor is selected to provide the drop emphasis by setting
its SELECTED attribute to TRUE.

To perform the actual drop, a DRAG-DROP event handler is supplied:

789Programming Guide

Working with Tree View Controls

IF #DROP-ITEM <> NULL-HANDLE
PROCESS GUI ACTION GET-CLIPBOARD-DATA WITH CF-TEXT #DROP-ITEM.STRING

GIVING *ERROR
END-IF
#CONTROL := CONTROL /* "parameter" for subroutine below
PERFORM RESET-SELECTION

If there is a tree view item representing the drop target, the above code retrieves the text from the
drag-drop clipboard directly into the item's caption. Afterwards, the original selection state of the
tree view control is restored. The RESET-SELECTION subroutine used for this purpose can bewritten
as follows:

#ITEM := #CONTROL.CLIENT-HANDLE
IF #ITEM <> NULL-HANDLE

/* Restore original selection:
#ITEM.SELECTED := TRUE

ELSE
/* Nothing was originally selected,
/* so clear any existing selection:
#ITEM := #CONTROL.SELECTED-SUCCESSOR
#ITEM.SELECTED := FALSE

END-IF
RESET #DROP-ITEM

To satisfy the logic provided for the other event handlers, #DROP-ITEM is also reset, indicating the
absence of a drop item.

Lastly, in the case that the user cancels the drag operation, or exits the bounds of the tree view
control without having performed a drop, a DRAG-LEAVE event handler is supplied:

#CONTROL := CONTROL /* "parameter" for subroutine below
PERFORM RESET-SELECTION

The above code simply invokes the inline subroutine listed above in order to clear the drop em-
phasis (if any), and to restore the original selection state.

Programming Guide790

Working with Tree View Controls

101 Workingwith Dynamic Information Line and Status Bar

When you are working with both a dynamic information line (DIL) and a status bar, the combin-
ation of the HAS-DIL and HAS-STATUS-BAR attributes determines whether and when DIL-TEXT and
STATUS-TEXT values will be displayed:

STATUS-TEXTDIL-TEXTHAS-STATUS-BARHAS-DIL

displayeddisplayedTRUETRUE

--FALSETRUE

displayed-TRUEFALSE

--FALSEFALSE

If HAS-DIL and HAS-STATUS-BAR are TRUE, the DIL-TEXTwill overlap the STATUS-TEXT value and
vice versa, depending on which was modified last.

791

792

102 Adding a Maximize/Minimize/System Button

To add a Maximize/Minimize/System button to your dialog

■ Open the Dialog Attributeswindow. Check the System Button orMaximizable orMinim-
izable entry.

When the System Button entry is checked, the dialog's standard control menu is available. This
includes the control menu box (to close the dialog), the title bar, and the Maximize and Minimize
buttons.

793

794

103 Defining Color

You can define colors for dialogs and dialog elements. These can be foreground colors and back-
ground colors. To do this, you use the following attributes:

■ BACKGROUND-COLOUR-NAME

■ BACKGROUND-COLOUR-VALUE

■ FOREGROUND-COLOUR-NAME

■ FOREGROUND-COLOUR-VALUE

You can assign only standard colors to the attributes ending with NAME. The attributes ending on
VALUE, however, can be assigned customized colors following the RGB model.

You can set colors:

■ in an attributes window, or
■ in event-handler code.

You can directly assign a value to the attributes ending with NAME. If you want to assign a value
to an attribute ending with VALUE, you must set the NAME attribute to the value CUSTOM. If you do
not set the NAME attribute to the value CUSTOM, the VALUE attribute is ignored.

Examples:

#DIA.BACKGROUND-COLOUR-NAME:= MAGENTA /* Assign a value to a NAME
/* attribute

#DIA.BACKGROUND-COLOUR-NAME:= CUSTOM /* Set NAME to CUSTOM
#DIA.BACKGROUND-COLOUR-VALUE:= H'FF0000' /* Then assign Red, Green, and

/* Blue values to the VALUE
/* attribute (hexadecimal)

795

Note: You can not use all customized colors in all parts of the user interface. Colors in text,
for example, must always be monochrome.

When setting a color in an attributes window, you have three possibilities:

■ Use the attribute ending with NAME and leave the value at DEFAULT. You can also do this in code.
Your color will then be determined by your color settings in the windowing system.

■ Use the attribute endingwith NAME by pulling down the list box and choose one of the predefined
colors.

■ Define your own color by using the attribute ending with VALUE.

To define a color

1 Choose the Custom push-button control right of the Background color entry. A dialog box
appears.

2 Select one of the predefined colors or choose theDefine CustomColors push-button control.
To set the red, green, and blue values, use the cursor to select the desired color or enter a
value from 1 to 253 in the red, green, and blue value display fields.

3 Choose the Add to Custom Color push button control. To save the newly defined color,
choose theOK button in the dialog box. The newly defined color is now selected by default.

4 To set it, close the attributes window.

Programming Guide796

Defining Color

104 Adding Text in a Certain Font

To choose a specific font for the text assigned to a dialog element (for example, the caption on a push
button control)

1 Use the dialog element's attributes window.

2 Choose the ... push button control to the right of the Font entry. A dialog box opens.

3 From the list of available fonts, select a font type, for example Times New Roman.

4 From the list of styles available for the font type, select a font style, for example italics.

5 From the list of sizes available for the font type and style, select a font size, for example 10.
A sample of your selected font will be displayed.

6 To set it: Close the attributes window.

Note: When adding centered or right-aligned text in a dialog element, the following min-
imum heights of the dialog element apply (RECTANGLE-H attribute): 4-point font - height of
8; 8-point - 22; 12-point - 24.

Additionally, the dialog editor allows selecting a font for the whole dialog in the dialog attributes
window. This font is defined in the FONT-STRING attribute and is valid for the dialog and each of
its children. A major advantage of selecting a font for the whole dialog is that if the chosen font is
too large or too small for the dialog layout, you change the FONT-STRING attribute once instead of
going through all children of the dialog.

Initially, the FONT-STRING attribute must be set as a parameter while the dialog is being created
with PROCESS GUI action ADD. If a dialog element inside the dialog contains text with no particular
font assigned to it, this text will be displayed in the font specified by FONT-STRING.

797

798

105 Adding Online Help

From an application written with the dialog editor, you can invoke help for a specified help topic
ID. Please bear in mind that you will have to create parts of the help associated with these help
topic IDs outside the Natural development environment. You will also have to compile the help
with the platform-specific help compiler.

To keep an overview of all the different help sections in an application, Natural provides youwith
the help organizer. With this organizer,

■ you assign a help ID (HELP-ID attribute value) to a specific dialog element;
■ you write the help text for the associated help topic; this text is converted to a .rtf file to be pro-
cessed by the help compiler;

■ you optionally define the help topic's keywords;
■ you optionally assign a help compiler macro to the help topic;
■ and optionally you add a comment for your internal documentation purposes.

To create a help topic

1 Invoke the help organizer's main dialog.

2 Select a particular dialog element.

3 Generate a new help topic ID.

4 Return to the help organizer main dialog.

5 Assign the generated help topic ID.

6 Enter the external definitions for the help topic ID, such as the help topic text and the topic
name.

7 Return to the help organizer main dialog.

799

8 Go to the topic list and see whether this new help topic fits your general organization of the
help file to be created.

9 Return to the help organizer main dialog.

10 Save everything.

A dialog or dialog element can also be assigned a HELP-ID number independently of the help or-
ganizer.

To do so

■ Open the corresponding attributes window. Enter a numeric value in theHelp ID entry.

Youmust use the help topic's .h file tomap the numerical ID that you enter here to the correspond-
ing help topic ID (created by a markup in the .hlp file).

Natural expects the help file to be located in the resource (RES) subdirectory of the current library
or one of the STEPLIBs, or in the directory referred to by the environment variable NATGUI_BMP.
By default, Natural searches for a help file with the same name as the current library, but you can
explicitely set the name of the help file via the HELP-FILENAME attribute. If no file extension is
specified, Natural searches for a compiled HTML help file with the extension ".chm" first, then (if
not found) for a WinHelp help file with the extension ".hlp". Thus, if no file extension is specified,
it is possible to upgrade from using WinHelp to using HTML help without changing the Natural
program. Note, however, that the Help Organizer only supports WinHelp. If you wish to create
HTML help content, you must use an external help authoring tool to do so.

Whenever an end user presses F1 in an active dialog, Natural first queries for a file with the value
of the HELP-FILENAME attribute plus the extension ".hnn" where nn is the Natural language code.
If it does not find such a file, it queries for a filewith the value of HELP-FILENAME plus the extension
".hlp"

Whenever the dialog element has the focus and the end user presses F1, Natural jumps to this help
ID.

Note: When adding online help to an application, it is recommended to assign a HELP-ID
number to each dialog and to write help texts for the dialogs. If the end user selects a dialog
element towhich no HELP-IDwas assigned and presses F1 to request help, help on the current
dialog will come up. If no HELP-IDwas assigned to a dialog element, Natural will check
whether the dialog element's parent - the dialog - has a HELP-ID. If not, Natural will check
whether the dialog's parent - the dialog one level higher - has a HELP-ID, and so on, until
the top-level dialog is reached.

To build a help file

1 Go to your command promt.

Programming Guide800

Adding Online Help

2 Change to the directory referred to by the environment variable $NATGUI_BMP.

3 Issue the command HCRTF -X helpfilename.

Note: This assures that the directory containing HCRTF.EXE is specified in the PATH
environment variable.

To test a help file

1 Invoke a dialog in your application.

2 Press F1.

The help topic for the dialog should appear.

Alternatively, the help file can be conveniently built and tested interactively by opening the .hpj
file in the Help Compiler Workshop (HCW.EXE).

To display help in a popup window

1 Check the Popup Help option in the dialog attributes window.

2 Run the dialog.

3 Press F1 with the focus on a control which has a help ID associated with it.

The help topic associated with the focus control should appear in a popup window.

801Programming Guide

Adding Online Help

802

106 Defining Mnemonic and Accelerator Keys

■ Introduction .. 804
■ Defining a Mnemonic Key .. 804
■ Defining an Accelerator Key ... 805
■ Displaying Accelerator Keys in Menus ... 805

803

Introduction

There are two ways of providing keyboard commands:

■ A mnemonic key is determined by an underlined character in a visible dialog element, for ex-
ample a menu item. The end user can select the menu item by pressing “ALT+mnemonic key”,
for example ALT+A.

■ An accelerator key is defined in the ACCELERATOR attribute. By pressing this key, the end user
causes a double-click or click event for the dialog element regardless of whether the dialog ele-
ment is visible or not, as long as the dialog element is enabled.

Defining a Mnemonic Key

You define a mnemonic key in the dialog element's STRING attribute by specifying "&" before the
desired character. At runtime, the character will be underlined. Example: the STRING attribute
value "E&xplanation" will be displayed as follows at runtime:

Explanation

If you define a mnemonic key with a text constant control or a group frame control, and the end
user presses the mnemonic key at runtime, the next dialog element in the control sequence will
get the focus. For example, if the next dialog element after a text constant control is an input-field
control, the text constant control's mnemonic key sets the focus to the input field control.
Whenever you disable such an input field control at runtime, you should also disable the corres-
ponding text constant control.

You can define mnemonic keys in the STRING attribute of the following types of dialog elements:
group frame control, menu item, push button control, radio button control, text constant control,
toggle button control, tool bar item.

You can still display an "&" in your runtime STRING by specifying "&&". Example: "A&&B" will
be displayed as "A&B".

Note: In recentWindows versions (e.g.Windows 2000),mnemonic characters are, by default,
not underlined until the ALT key is pressed. However, this new behavior can be disabled
by the user, such that mnemonic characters are always underlined. For example, this can
be achieved on the English version of Windows 2000 by unchecking theHide Keyboard
navigation indicators until I use theAlt key option under Start/Control Panel/Display/Ef-
fects.

Programming Guide804

Defining Mnemonic and Accelerator Keys

Defining an Accelerator Key

You define an accelerator key by setting the ACCELERATOR attribute to a key or a key combination
for the dialog element, for example to F6 or CTRL+1. If the end user presses the accelerator key, the
double-click event occurs for the dialog element, or if no double-click event is available, the click
event occurs. The accelerator key does not work if the corresponding event is suppressed, or if
the dialog element is disabled.

Standard system accelerators such as ALT+ESC, CTRL+ESC, ALT+TAB and CTRL+ALT+DEL can be defined
as accelerators, but do not cause the dialog element's click or double-click event to be triggered.
Instead, they cause the associated system functionality to be invoked. The same applies to standard
MDI accelerators (such as CTRL+F4 and CTRL+F6) if usedwithinMDI applications and to any acceler-
ators belonging to in-place activated servers (e.g. ActiveX controls which currently have the focus).

Note that user-defined accelerator keys overwrite identical user-defined shortcut keys associated
with desktop items.

If the same accelerator key is associated with more than one dialog element, the dialog element
whose click or double-click event is triggered is not defined.

A dialog element which references another via its SAME-AS attribute inherits the accelerator of the
referenced object. For example, if a menu item references a signal, and the signal's accelerator is
CTRL+ALT+X, then querying the menu item's ACCELERATOR attribute will also return CTRL+ALT+X.
However, the accelerator, if pressed,will only trigger a click event for the referenced dialog element
(i.e., the signal in this example).

Accelerators of the form ALT+X, where "X" is one of the alphabetic characters, should be avoided,
because they are reserved for use as keyboard mnemonics.

Displaying Accelerator Keys in Menus

In order to show accelerators for menu items, the menu text needs to first be appended with a tab
(h'09') character and then appendedwith the text for the accelerator. This cannot be done statically
in the dialog editor's menu editor, because there is no way to enter a tab character into the string
definition. However, the accelerators may be appended dynamically using a generic piece of code
which iterates round all menu items for a dialog. This is illustrated by the following external
subroutine, which can conveniently be called from within a dialog's AFTER-OPEN event.

805Programming Guide

Defining Mnemonic and Accelerator Keys

DEFINE DATA
PARAMETER

1 #DLG$WINDOW HANDLE OF WINDOW
LOCAL

1 #CONTROL HANDLE OF GUI
1 #COMMAND HANDLE OF GUI

LOCAL USING NGULKEY1
END-DEFINE
*
DEFINE SUBROUTINE APPEND-ACCELERATORS
#CONTROL := #DLG$WINDOW.FIRST-CHILD
REPEAT UNTIL #CONTROL = NULL-HANDLE

IF #CONTROL.TYPE = SUBMENU OR #CONTROL.TYPE = CONTEXTMENU
#COMMAND := #CONTROL.FIRST-CHILD
REPEAT UNTIL #COMMAND = NULL-HANDLE
IF #COMMAND.ACCELERATOR <> ' '
COMPRESS #COMMAND.STRING H'09' #COMMAND.ACCELERATOR INTO

#COMMAND.STRING LEAVING NO SPACE
END-IF
#COMMAND := #COMMAND.SUCCESSOR

END-REPEAT
END-IF

#CONTROL := #CONTROL.SUCCESSOR
END-REPEAT
END-SUBROUTINE
END

This dynamic technique has the advantage that the accelerator does not, in effect, have to be defined
twice (i.e., for the ACCELERATOR and STRING attributes of the menu item).

Note that if the target language is not English, the ACCELERATOR attribute value will probably have
to be translated before being appended to the menu item string.

Programming Guide806

Defining Mnemonic and Accelerator Keys

107 Dynamic Data Exchange - DDE

■ Concepts ... 808
■ Developing a DDE Server Application .. 809
■ Developing a DDE Client Application ... 810
■ Return Codes ... 811

807

Concepts

DDE is a protocol defined by Microsoft Corp. to enable different applications to exchange data.
This means that, for example, an application written in Natural may exchange data with a
spreadsheet, because they are both able to process the DDEprotocol. An application that processes
the DDE protocol communicates with another DDE application via standardized messages. One
of the applications is defined as the client, the other as the server. Client and server are holding a
DDE conversation.

Note: For an overview of DDE concepts and terminology, see your Microsoft Windows
documentation.

Data in a DDE conversation is identified by a three-level hierarchy:

■ service,
■ topic,
■ item.

A DDE conversation is established whenever a client requests a service from a DDE server. A DDE
server offers one or more services to all active applications.

For each service, a DDE server may offer any number of topics. The DDE client then requests a
conversation on a topic of a service.

In a conversation on a topic of a service, the DDE client and the DDE server uniquely identify data
to be exchanged by an item name.

A DDE server may support a number of services, which in turnmay consist of a number of topics,
which themselves may contain a number of items.

With Natural, you can develop both DDE client applications as well as DDE server applications.
Youmay, for example, write aNatural DDE client application that requests data from a spreadsheet
acting as a DDE server, or you may write a Natural DDE server application that supplies a word
processor (DDE client) with data.

To develop DDE client and DDE server applications, the following functionality is provided:

■ A number of NGU-prefixed subprograms in library SYSTEM; these send messages and data as
defined in the parameter data area NGULDDE1

■ a parameter data area (NGULDDE1) which describes the parameters used by the subprograms
in a DDE conversation (the DDE-VIEW);

■ a DDE-Client event and a DDE-Server event which handle DDE messages.

Programming Guide808

Dynamic Data Exchange - DDE

Youdevelop aDDE server application by reacting to theDDE-Server event and by using theNGU-
SERVER-prefixed subprograms from library SYSTEM to register services and topics and to send
messages and data to the DDE client application.

You develop a DDE client application by reacting to the DDE-Client event and by using the NGU-
CLIENT-prefixed subprograms from library SYSTEM to initiate conversations and send requests
and other DDE commands to DDE server applications.

You always have to include the parameter data areaNGULDDE1and the local data areaNGULFCT1
in your client or server dialog. (You need NGULFCT1 in order to use the NGU-prefixed subpro-
grams in library SYSTEM).

Developing a DDE Server Application

The following topics are covered below:

■ Registering/Unregistering Services and Topics
■ Getting Data From The Client
■ Sending Data To The Client
■ Terminating DDE Server Operation

Registering/Unregistering Services and Topics

Before a DDE server application can be addressed by a DDE client application, it must register its
service names and all supported topics for the services. You use subprogram NGU-SERVER-RE-
GISTER to do this for each service/topic the DDE server supports. Registering will usually be
handled in the “after open” event of the base dialog.

When registering a service/topic for the first time, youwill need to supplyNaturalwith the dialog-
ID of the dialog that will function as the server and that will therefore receive all DDE messages
from clients. This is done by setting the DDE-VIEW.CONV-ID to the respective dialog-ID and also
by setting DDE-VIEW.MESSAGE to the string "DLGID".

Note that at a later time you are able to add more topics to a service or even entirely new services.
You can also make a topic unavailable by using subprogram NGU-SERVER-UNREGISTER.

809Programming Guide

Dynamic Data Exchange - DDE

Getting Data From The Client

After successful registration, it is possible that the DDE server application receives DDEmessages
from aDDE client applicationwhich is establishing a conversation on a registered topic of a service.

Suchmessages for aDDE server are received in theDDE-Server event of the dialog.At the beginning
of the event-handler section, it is necessary to fill the DDE-VIEW with the client's message data.
This is done by using subprogram NGU-SERVER-GET-DATA. After reading the data, it will be
necessary to act based on the client message received. The possible messages and their meaning
are explained in the description of subprogram NGU-SERVER-GET-DATA.

Sending Data To The Client

In many cases, the client message ultimately requires the server to send data to the client. This is
achieved by using the subprogram NGU-SERVER-DATA.

Terminating DDE Server Operation

WheneverDDE server operation is supposed to terminate, you use the subprogramNGU-SERVER-
STOP. It unregisters all services and terminates all active conversations. You terminate the server
application with the CLOSE DIALOG statement.

Developing a DDE Client Application

The following topics are covered below:

■ Connecting With The DDE Server Application
■ Using The Services of a DDE Server Application
■ Receiving Data From The DDE Server Application
■ Disconnecting From The DDE Server Application
■ Terminating DDE Client Operation

Connecting With The DDE Server Application

In order to establish a conversation with a DDE server application, a DDE client application must
call the subprogram NGU-CLIENT-CONNECT with the service and topic name of the server it
wants to connect. In order to receive the appropriate DDE events from a server, it is necessary to
set the DDE-VIEW.CONV-ID to the client's dialog-ID and also to set DDE-VIEW.MESSAGE to the string
"DLGID". The call will return a unique conversation ID in DDE-VIEW.CONV-ID. This value must be
set appropriately in all further communication with the server.

Programming Guide810

Dynamic Data Exchange - DDE

Using The Services of a DDE Server Application

The client has several options to use the services of a server once a conversation has been estab-
lished. It can

■ request data on a specific item (using NGU-CLIENT-REQUEST),
■ send data to the server (using NGU-CLIENT-POKE),
■ ask the server to execute a command (using NGU-CLIENT-EXECUTE), or
■ establish a warm or hot link to the server (using NGU-CLIENT-ADVISE-HOT, NGU-CLIENT-
ADVISE-WARM and NGU-CLIENT-ADVISE-TERM).

Receiving Data From The DDE Server Application

The DDE client will receive data or other messages from the DDE server via the client dialog's
DDE-Client event. Whenever a server has sent a message, this event occurs. Themessage contents
must first be retrieved using NGU-CLIENT-GET-DATA. This will fill the DDE-VIEW structure
appropriately. The clientmust then determinewhichmessage (DDE-VIEW.MESSAGE) has arrived
and react appropriately. The possible messages are listed in the description of subprogramNGU-
CLIENT-GET-DATA.

Disconnecting From The DDE Server Application

Whenever the client determines that the conversation is no longer needed, a call toNGU-CLIENT-
DISCONNECT must be issued to inform the server that the conversation is to be terminated.

Terminating DDE Client Operation

Whenever the client application terminates or wants to stop using DDE, it needs to call NGU-
CLIENT-STOP. This informs Natural to close all active conversations of the client and shut down
DDE operation for the application.

Return Codes

Possible return codes are described in this section.

Note: Each error-code description is not necessarily comprehensive. In these cases, the de-
scription is marked with an asterisk (*).

811Programming Guide

Dynamic Data Exchange - DDE

MeaningCode

You have specified an incorrect command or command parameter. Ensure that your DDE data
area is of the correct type and that the command is correct.

-1

The function was processed correctly.0

This value is returned when an application has attempted to initialize with the DDEML library
more than once. Check the logic of your program.Also ensure that theDDEMLwas exited correctly
during the last run of the program.

1

This value may be returned from the server-initialize function if you have run the program before
and not exited the DDEML correctly. It is also returned by a call-back function, whenever the
requested service failed.

2

An error occurred in the underlying layer. *

The conversation ID referenced does not represent an active conversation. Check if you have
specified a correct service name.

3

The application could not initialize with the DDE library as the maximum number of instances
are connected.

4

The DDEML communication has not been initialized. You must initialize with the DDEML before
any DDE activity can take place.

5

Memory allocation problems encountered. This error might occur if the queue of messages for
either part in the conversation becomes too long. *

6

A service, topic or item name was longer than 255 characters. Check if your fields are correctly
specified for DDE-VIEW and make sure that you are not attempting to place a string longer than
255 characters in any one of the above variables.

7

An error occurred in the DDE library. Contact Software AG Support. *8

Parameters passed to this function were illegal. This can be returned by any function call. Check
your parameters.

9

“Server Type Link” is supported but no call-back function for UNLINK is passed to the function
PIDsRegisterTopic. *

10

An attempt was made to remove a topic for which at least one conversation is still active. This
includes trying to unregister a topic for which a conversation still exists.

11

The service/topic referenced has not been registered with the function PIDsRegisterTopic.12

No links were active for the DDE-VIEW.SERVICE when the NGU-Server-Data subprogram was
used. Check your service name and use the DDE-SPY in the SDK Tool Kit to see what services are
available.

13

The requested type of link is invalid.14

The transaction ID is corrupted. Check the value of your transaction ID in your DDE view.15

The client application requested a conversation and prior to that, no functionwas specified to send
the data for the links.

16

An asynchronous transaction was requested, but the client application did not specify a function
to send details of the completed transaction. Such a function must be specified when the
conversation is initialized.

17

Programming Guide812

Dynamic Data Exchange - DDE

MeaningCode

A synchronous transaction timeout expired. The amount of time taken for your transaction to
completewas longer than the TIMEOUTvalue in yourDDE-VIEWstructure. Increase the TIMEOUT
value or set it to "-1" for indefinite waiting.

18

For internal use only.19 - 24

813Programming Guide

Dynamic Data Exchange - DDE

814

108 Object Linking and Embedding - OLE

■ What is OLE in the Natural Context? ... 816
■ OLE Documents Support .. 816
■ Embedding and Linking .. 816
■ Visual Editing - In-place Activation ... 817
■ ActiveX Controls Support .. 818
■ OLE Container Control .. 818
■ Attributes, Events and PROCESS GUI Statement Actions .. 821

815

What is OLE in the Natural Context?

Natural supports the following OLE technologies:

■ OLE Documents
■ OLE Visual Editing (In-place Activation)
■ ActiveX Controls

If you are new to OLE, it is highly recommended that you first get a basic overview by referring
to one of the various sources available. One such source, for example, is the Microsoft Win32
software development kit documentation.

OLE Documents Support

OLE documents is a technology that integrates differentWindows applications seamlessly so that
the end user can concentrate on the data rather than on handling the different applications. With
OLE you can, for example, embed aWord for Windows document in a Natural dialog. Whenever
the enduser enters the text container to edit the document, the entireWord functionality is available.
Thus, the end user does not have to invoke Word.

OLE Documents Support is provided by the Natural dialog element OLE container control.

TheOLEdocuments technology defines container and server applications. A container application
is an application that is able to use objects created by a server application. These objects are used
by linking or embedding them. In this context, Natural is the container application because the
dialog editor provides an OLE container control. A typical server application is Microsoft Word;
the Word documents would then be the objects used by Natural.

Embedding and Linking

■ Linking means that the content of a document is accessed via a link to an external file. This file
is stored in the server's format (for example, a file in .rtf format would be stored in a file system
outside Natural; the server residing in this external file system would be Microsoft Word).

■ Embedding means that the content of a document is maintained in the container application
and is stored in the container's internal format. Embedded documents are created
■ either by building them from scratch in the container application;
■ or by loading an external document.

Programming Guide816

Object Linking and Embedding - OLE

Embedded objects are edited by visual editing (“in-place activation”), whereas linked objectsmust
be opened in an extra server window for editing.

Natural provides the dialog elementOLE container control for embedding and linking documents.
Furthermore, Natural provides actions to save and load embedded documents in internal Natural
format. By default, these embedded objects in internal format are stored and retrieved in the
%NATGUI_BMP% directory with a default extension of .neo (Natural Embedded Object).

To display an embedded object with the OLE container control when the dialog starts

1 Invoke the container control's attribute window.

2 Set the Type entry to "Existing OLE Object".

3 Select a file specification in the Name field.

To display an embedded object dynamically at runtime

■ Use the PROCESS GUI statement action OLE-READ-FROM-FILE.

To display a linked object with the OLE container control when the dialog starts

1 Invoke the container control's attribute window.

2 Set the Type entry to "OLE Server".

3 In the Select OLE Server or Document dialog that comes up, select Create From File and
select a file specification.

To display a linked object dynamically at runtime

■ Assign the file specification of the external document to the attribute SERVER-OBJECT.

Visual Editing - In-place Activation

In-place activation means that the end user is able to activate a server application in the container
application's window. Such a server application is related to an object embedded in a Natural
dialog's OLE container control. The server application is activated by double-clicking on the OLE
container control. The Natural dialog's toolbar and menu-bar control are then merged with the
server application's menu and toolbar. The dialog now contains toolbar items and menu items
that enable you to edit the object with the help of the server's functionality.

817Programming Guide

Object Linking and Embedding - OLE

ActiveX Controls Support

ActiveX controls support enables the Natural programmer to use the many third-party ActiveX
controls inside a Natural dialog. Natural enables you to access the ActiveX controls properties
and methods direct and to program the ActiveX controls events.

ActiveX controls support is provided by the Natural dialog element “ActiveX control”. For more
information, seeWorking with ActiveX Controls.

OLE Container Control

The following topics are covered below:

■ Creating an OLE Container Control
■ Creating an OLE Container Control in the Dialog Editor
■ Creating an OLE Container Dynamically At Runtime
■ Clearing or Deleting an OLE Container At Runtime
■ OLE Container Controls And The Dialog's Menu Bar
■ Other OLE Container Control Functionality

Creating an OLE Container Control

You can create an OLE container control either statically in the dialog editor or dynamically at
runtime.

Creating an OLE Container Control in the Dialog Editor

The OLE container control enables you to integrate server applications. You can integrate server
applications in the following three ways, as indicated by theObject Information group frame,
Type entry of the OLE container control's attributes window.

■ Type: New OLE object. You create an OLE container control that acts as a placeholder for the
insertable object. At runtime, your end user can create the embedded object by starting the
server application. The embedded object can then be saved as Natural embedded object (.neo
file).

■ Type: Existing OLE object. Your end user changes an existing embedded object in the OLE
container control. The embedded object is saved as Natural embedded object (.neo file).

■ Type: OLE server. You create a native OLE object in your application or you create a link to an
external object.

Programming Guide818

Object Linking and Embedding - OLE

To create an OLE container control in the dialog editor

1 In the dialog editor main menu, choose Insert, thenOLE Container.

2 Draw a rectangle by holding down the rightmouse button, dragging themouse vertically/ho-
rizontally and releasing the mouse button.

An empty OLE container is created.

To display a document in the OLE container when starting the dialog

1 Double-click the OLE container control to invoke the attribute window.

2 In the Type selection box, chooseOLE server for linking an external document. Or choose
Existing OLE object for reading in an embedded object.

3 Choose the ... button to select the external or embedded object file.

Creating an OLE Container Dynamically At Runtime

Before you enter the examples in an event-handler section, declare a handle variable for the OLE
container control in the local data area of the dialog:

01 #OCT-1 HANDLE OF OLECONTAINER

Example for creating an OLE container control at runtime and linking an external document:

PROCESS GUI ACTION ADD WITH
PARAMETERS

HANDLE-VARIABLE = #OCT-1
TYPE = OLECONTAINER
SERVER-OBJECT = 'PICTURE.BMP'
RECTANGLE-X = 56
RECTANGLE-Y = 32
RECTANGLE-W = 336
RECTANGLE-H = 160
PARENT = #DLG$WINDOW
SUPPRESS-CLICK-EVENT = SUPPRESSED
SUPPRESS-DBL-CLICK-EVENT = SUPPRESSED
SUPPRESS-CLOSE-EVENT = SUPPRESSED
SUPPRESS-ACTIVATE-EVENT = SUPPRESSED
SUPPRESS-CHANGE-EVENT = SUPPRESSED

END-PARAMETERS GIVING *ERROR

Example for creating an OLE container control at runtime and embedding a Natural embedded
object:

819Programming Guide

Object Linking and Embedding - OLE

PROCESS GUI ACTION ADD WITH
PARAMETERS

HANDLE-VARIABLE = #OCT-1
TYPE = OLECONTAINER
EMBEDDED-OBJECT = 'SLIDE.NEO'
RECTANGLE-X = 56
RECTANGLE-Y = 32
RECTANGLE-W = 336
RECTANGLE-H = 160
PARENT = #DLG$WINDOW
SUPPRESS-CLICK-EVENT = SUPPRESSED
SUPPRESS-DBL-CLICK-EVENT = SUPPRESSED
SUPPRESS-CLOSE-EVENT = SUPPRESSED
SUPPRESS-ACTIVATE-EVENT = SUPPRESSED
SUPPRESS-CHANGE-EVENT = SUPPRESSED
END-PARAMETERS GIVING *ERROR

Clearing or Deleting an OLE Container At Runtime

This section contains examples for clearing and deleting an OLE container at runtime.

Before you enter the examples in an event-handler section, declare a handle variable for the OLE
container control in the local data area of the dialog:

01 #OCT-1 HANDLE OF OLECONTAINER

Example for clearing (removing the document of) the OLE container control:

PROCESS GUI ACTION CLEAR WITH #OCT-1

Example for deleting the OLE container control:

PROCESS GUI ACTION DELETE WITH #OCT-1

OLE Container Controls And The Dialog's Menu Bar

The menu item attribute MENU-ITEM-OLE can have four different values which detemine if and
where the menu item in question is displayed during in-place activation of a server.

The menu item attribute MENU-ITEM-TYPE also has the value MT-OBJECTVERBS. This enables you to
have the OLE container control display the available server actions (command verbs) in this menu
item.

Programming Guide820

Object Linking and Embedding - OLE

Other OLE Container Control Functionality

While a document is displayed in an OLE container control, the end user has the possibility to
activate the default command verb of the server by double-clicking inside the OLE container
control's rectangle. This is equivalent to executing the PROCESS GUI statement action OLE-ACTIVATE.
Furthermore, the end user can select a server command verb by displaying a popup menu. You
display this popupmenu by holding down the right mouse button inside the OLE container. Then
you select the desired command verb and release the mouse button.

If the MODIFIABLE attribute of an OLE container control is set to FALSE, a double-click on the con-
tainer does not start the default command verb of the server and holding down the right mouse
button does not show the popupmenuwith the available server commandverbs (see alsoExecuting
Standardized Procedures).

During visual editing (in-place activation), the server uses the Natural dialog for the editing of
the document. The server does its work as a task on its own and the Natural processing continues.
Thus, it is possible to execute event code and, for example, to limit the visual editing to a certain
time by specifying PROCESS GUI ACTION OLE-DEACTIVATE, WITH #OCT-1 in a timer's event section
(see also Executing Standardized Procedures).

Attributes, Events and PROCESS GUI Statement Actions

The following sections list all the attributes, events and PROCESS GUI statement actions that apply
specifically to the OLE container control.

Attributes

The OLE-specific attributes provided with the OLE container control are:

■ EMBEDDED-OBJECT

■ ICONIZED

■ OBJECT-SIZE

■ SERVER-OBJECT

■ SERVER-PROGID

■ SUPPRESS-ACTIVATE-EVENT

■ SUPPRESS-CLOSE-EVENT

■ ZOOM-FACTOR

821Programming Guide

Object Linking and Embedding - OLE

Event

This OLE-specific event occurs when a server application is activated:

■ Activate event

PROCESS GUI Statement Actions

The OLE-specific PROCESS GUI statement actions provided with the OLE container control are:

■ OLE-ACTIVATE

■ OLE-DEACTIVATE

■ OLE-GET-DATA

■ OLE-INSERT-OBJECT

■ OLE-READ-FROM-FILE

■ OLE-SAVE-TO-FILE

■ OLE-SET-DATA

Programming Guide822

Object Linking and Embedding - OLE

XI Results Interface

823

824

109 Results Interface

■ Purpose of the Results Interface ... 826
■ Results Window Control Bar Access .. 826
■ Tab Handling .. 827
■ Image Handling ... 827
■ Context Menu Handling .. 828
■ Command Handling ... 828
■ Column Handling ... 829
■ Row Handling ... 829
■ Data Handling ... 830
■ Selection Handling ... 830

825

Purpose of the Results Interface

The Results Interface enables programmers to display data within the results window of Natural
Studio. See also Results Window in the Using Natural Studio documentation.

Note: The results of the menu commands Find Objects and Cat All are not affected by the
Results Interface.

The design and the usage of a tab in the results window can be determined via application pro-
gramming interfaces (API). In general, a detailed view with columns and lines is used.

A context menu can be created for each entry, so that after the user-defined tab is shown it can be
used for further processing.

This processing has to be defined within two programs:

1. In an update command handler before a context menu is shown.

2. In a command handler if an item is selected.

The application programming interfaces for the Results Interface are USR5001N - USR5017N and can
be found in the library SYSEXT.

An example of the various functions is available in USR5001Pwith the update command handler
in USR5001A and the command handler in USR5001B.

Notes:

1. Modifications of the pre-defined tabs (for example, the tabs with the labels Find Objects and
Cat All) are not possible with this interface.

2. The results window and the Results Interface can be accessed only from Natural Studio.

Results Window Control Bar Access

The following application programming interface can be used to access the results window control
bar.

Programming Guide826

Results Interface

FunctionalityInterface

Turns results window on/off. Checks visibility of the results window.USR5001N

Tab Handling

The application programming interfaces listed below can be used to define the general layout of
a tab.

A tab can contain all or one of the following:

■ Check box
■ Full row selection
■ Single row selection
■ Images

A tab can be defined with the following attributes:

■ Layout of the view (large/small icons, list or details view).
■ Several usages (check boxes, images, grid lines, full or single row selection, view change).
■ Layout of the tab label (text, bitmap or icon).

FunctionalityInterface

Add, replace, delete and maintain layout of a tab.USR5004N

Set and get active tab. Set tab active and set the focus on this tabUSR5005N

Image Handling

The following application programming interface can be used to specify bitmaps (*.bmp) and icons
(*.ico) for a previously defined tab.

FunctionalityInterface

Add and delete bitmaps and icons for a specified tab.USR5002N

827Programming Guide

Results Interface

Context Menu Handling

The following application programming interfaces can be used to specify user-defined context
menus.

FunctionalityInterface

Add, remove and delete context menus of a tab.USR5003N

Set and get checked/enabled state of context menu items.USR5007N

The hierachy of the context menu must be defined manually.

The following array components can be defined:

DescriptionValueArray Component

1 to 4Type 1 - Context menu handling.
2 - Separator line.
3 - Begin of submenu.
4 - End of submenu.

Free selectable number to identify a certain item in a context menu
(used within the command handler).

1 to 255Command ID

Text for the context menu items of type 1 and 3. A text for the status
bar can be separated with H'0'A.

alphanumeric textLabel

Handle of a previously defined image (bitmap or icon). The image
will be placed before the text of the context menu item.

Handle of imageImage

Command Handling

A program can be assigned as an update command handler or as a command handler.

User-defined data can be saved/restored in the internal work area of the command handlers.

For example: handles of tabs.

The following application programming interfaces are available:

Programming Guide828

Results Interface

FunctionalityInterface

Define update command handler and command handler.USR5006N

Set and get data for the command handler work area.USR5016N

Column Handling

The following application programming interfaces can be used to define the general layout of a
column.

A column can contain all or one of the following:

■ Title
■ Width
■ Data position
■ Column sort

In addition, the default width and specified width of the column can be set up individually.

FunctionalityInterface

Add, insert and delete columns of a tab.USR5008N

Count number of columns.USR5009N

Set and get default column width and width for specified columns.USR5010N

Row Handling

The following application programming interfaces can be used to define the rows with images
and context menus.

FunctionalityInterface

Count number of rows.USR5009N

Add, insert and delete rows of a tab.USR5011N

A row can be scrolled into the visible area of the result window.USR5015N

829Programming Guide

Results Interface

Data Handling

The following application programming interfaces can be used to write user-defined data into
defined columns/rows.

If check boxes have been defined for a tab, they can be activated/deactivated for every row.

FunctionalityInterface

Set and get data into a tab.USR5012N

Set and get checked state of a row.USR5013N

Selection Handling

The following application programming interfaces can be used to select rows individually.

FunctionalityInterface

USR5014N ■ Set, reset and get selected rows.
■ Count amount of selected rows.
■ Set and reset row selection.

Set and get row of focus.USR5015N

Copy selected rows to the Clipboard.USR5017N

Programming Guide830

Results Interface

XII Designing Character-Based User Interfaces for Your

Application

The user interface of an application, that is, the way an application presents itself to the user, is a
key consideration when writing an application.

This part provides information on the various possibilities Natural offers for designing character-
based user interfaces that are uniform in presentation and provide powerful mechanisms for user
guidance and interaction.

Note: For information on the design of graphical user interfaces (GUI), refer to Introduction
to Event-Driven Programming.

When designing user interfaces, standards and standardization are key factors.

Using Natural, you can offer the end user common functionality across various hardware and
operating systems.

This includes the general screen layout (information, data andmessage areas), function-key assign-
ment and the layout of windows.

This part covers the following topics:

Screen Design

Dialog Design

831

832

110 Screen Design

■ Control of the Message Line - Terminal Command %M .. 834
■ Assigning Colors to Fields - Terminal Command %= ... 834
■ Infoline - Terminal Command %X .. 835
■ Windows .. 836
■ Standard/Dynamic Layout Maps ... 842
■ Multilingual User Interfaces .. 842
■ Skill-Sensitive User Interfaces .. 847

833

Control of the Message Line - Terminal Command %M

Various options of the terminal command %M are available for defining how andwhere theNatural
message line is to be displayed.

Below is information on:

■ Positioning the Message Line
■ Message Line Color

Positioning the Message Line

%MB
The message line is displayed at the bottom of the screen.

%MT
The message line is displayed at the top of the screen.

Other options for the positioning of the message line are described in%M - Control of Message Line
in the Terminal Commands documentation.

Message Line Color

%M=color-code
The message line is displayed in the specified color (for an explanation of color codes, see the
session parameter CD as described in the Parameter Reference).

Assigning Colors to Fields - Terminal Command %=

You can use the terminal command %= to assign colors to field attributes for programs that were
originally not written for color support. The command causes all fields/text defined with the spe-
cified attributes to be displayed in the specified color.

If predefined color assignments are not suitable for your terminal type, you can use this command
to override the original assignments with new ones.

You can also use the %= terminal command within Natural editors, for example to define color
assignments dynamically during map creation.

Programming Guide834

Screen Design

DescriptionCodes

Clear color translate table.blank

Newly defined colors are to override colors assigned by the program.F

Color attributes assigned by program are not to be modified.N

Output field.O

Modifiable field (output and input).M

Text constant.T

BlinkingB

ItalicC

DefaultD

IntensifiedI

UnderlinedU

Reverse videoV

BackgroundBG

BlueBL

GreenGR

NeutralNE

PinkPI

RedRE

TurquoiseTU

YellowYE

Example:

%=TI=RE,OB=YE

This example assigns the color red to all intensified text fields and yellow to all blinking output
fields.

Infoline - Terminal Command %X

The terminal command %X controls the display of the Natural infoline.

835Programming Guide

Screen Design

For further information, see the description of the terminal command %X in the Terminal Commands
documentation.

Windows

Below is information on:

■ What is a Window?
■ DEFINE WINDOW Statement
■ INPUT WINDOW Statement

What is a Window?

Awindow is that segment of a logical page, built by a program, which is displayed on the terminal
screen.

A logical page is the output area for Natural; in other words the logical page contains the current
report/map produced by the Natural program for display. This logical page may be larger than
the physical screen.

There is always awindowpresent, although youmay not be aware of its existence. Unless specified
differently (by a DEFINE WINDOW statement), the size of the window is identical to the physical size
of your terminal screen.

You can manipulate a window in two ways:

■ You can control the size and position of the window on the physical screen.
■ You can control the position of the window on the logical page.

Positioning on the Physical Screen

The figure below illustrates the positioning of a window on the physical screen. Note that the
same section of the logical page is displayed in both cases, only the position of the window on the
screen has changed.

Programming Guide836

Screen Design

Positioning on the Logical Page

The figure below illustrates the positioning of a window on the logical page.

When you change the position of thewindowon the logical page, the size andposition of thewindow
on the physical screenwill remain unchanged. In other words, the window is not moved over the
page, but the page is moved “underneath” the window.

837Programming Guide

Screen Design

DEFINE WINDOW Statement

You use the DEFINE WINDOW statement to specify the size, position and attributes of a window on
the physical screen.

A DEFINE WINDOW statement does not activate a window; this is donewith a SET WINDOW statement
or with the WINDOW clause of an INPUT statement.

Various options are available with the DEFINE WINDOW statement. These are described below in
the context of the following example.

The following program defines a window on the physical screen.

** Example 'WINDX01': DEFINE WINDOW
**
DEFINE DATA LOCAL
1 COMMAND (A10)
END-DEFINE
*
DEFINE WINDOW TEST

SIZE 5*25
BASE 5/40
TITLE 'Sample Window'
CONTROL WINDOW
FRAMED POSITION SYMBOL BOTTOM LEFT

Programming Guide838

Screen Design

*
INPUT WINDOW='TEST' WITH TEXT 'message line'

COMMAND (AD=I'_') /
'dataline 1' /
'dataline 2' /
'dataline 3' 'long data line'

*
IF COMMAND = 'TEST2'

FETCH 'WINDX02'
ELSE

IF COMMAND = '.'
STOP

ELSE
REINPUT 'invalid command'

END-IF
END-IF
END

Thewindow-name identifies thewindow. The namemay be up to 32 characters long. For awindow
name, the same naming conventions apply as for user-defined variables. Here the name is TEST.

The window size is set with the SIZE option. Here the window is 5 lines high and 25 columns
(positions) wide.

The position of the window is set by the BASE option. Here the top left-hand corner of the window
is positioned on line 5, column 40.

With the TITLE option, you can define a title that is to be displayed in thewindow frame (of course,
only if you have defined a frame for the window).

With the CONTROL clause, you determine whether the PF-key lines, the message line and the stat-
istics line are displayed in the window or on the full physical screen. Here CONTROL WINDOW causes
the message line to be displayed inside the window. CONTROL SCREENwould cause the lines to be
displayed on the full physical screen outside the window. If you omit the CONTROL clause, CONTROL
WINDOW applies by default.

With the FRAMED option, you define that the window is to be framed. This frame is then cursor-
sensitive. Where applicable, you can page forward, backward, left or right within the window by
simply placing the cursor over the appropriate symbol (<, -, +, or >; see POSITION clause) and then
pressing Enter. In other words, you are moving the logical page underneath the window on the
physical screen. If no symbols are displayed, you can page backward and forward within the
window by placing the cursor in the top frame line (for backward positioning) or bottom frame
line (for forward positioning) and then pressing Enter.

With the POSITION clause of the FRAMED option, you define that information on the position of the
window on the logical page is to be displayed in the frame of the window. This applies only if the
logical page is larger than thewindow; if it is not, the POSITION clausewill be ignored. The position
information indicates in which directions the logical page extends above, below, to the left and to
the right of the current window.

839Programming Guide

Screen Design

If the POSITION clause is omitted, POSITION SYMBOL TOP RIGHT applies by default.

POSITION SYMBOL causes the position information to be displayed in form of symbols: “More: < -
+ >”. The information is displayed in the top and/or bottom frame line.

TOP/BOTTOM determines whether the position information is displayed in the top or bottom frame
line.

LEFT/RIGHT determines whether the position information is displayed in the left or right part of
the frame line.

INPUT WINDOW Statement

The INPUT WINDOW statement activates the window defined in the DEFINE WINDOW statement. In
the example, the window TEST is activated. Note that if you wish to output data in a window (for
example, with a WRITE statement), you use the SET WINDOW statement.

When the above program is run, thewindow is displayedwith one input field COMMAND. The session
parameter AD is used to define that the value of the field is displayed intensified and an underscore
is used as filler character.

Output of ProgramWINDX01:

Multiple Windows

You can, of course, open multiple windows. However, only one Natural window is active at any
one time, that is, themost recentwindow.Any previouswindowsmay still be visible on the screen,
but are no longer active and are ignored by Natural. You may enter input only in the most recent
window. If there is not enough space to enter input, the window size must be adjusted first.

When TEST2 is entered in the COMMAND field, the program WINDX02 is executed.

Programming Guide840

Screen Design

** Example 'WINDX02': DEFINE WINDOW
**
DEFINE DATA LOCAL
1 COMMAND (A10)
END-DEFINE
*
DEFINE WINDOW TEST2

SIZE 5*30
BASE 15/40
TITLE 'Another Window'
CONTROL SCREEN
FRAMED POSITION SYMBOL BOTTOM LEFT

*
INPUT WINDOW='TEST2' WITH TEXT 'message line'

COMMAND (AD=I'_') /
'dataline 1' /
'dataline 2' /
'dataline 3' 'long data line'

*
IF COMMAND = 'TEST'

FETCH 'WINDX01'
ELSE

IF COMMAND = '.'
STOP

ELSE
REINPUT 'invalid command'

END-IF
END-IF
END

A second window is opened. The other window is still visible, but it is inactive.

841Programming Guide

Screen Design

Note that for the new window the message line is now displayed at the bottom of the output
window and not in the window. This was defined by the CONTROL SCREEN clause in the WINDX02
program.

For further details on the statements DEFINE WINDOW, INPUT WINDOW and SET WINDOW, see the cor-
responding descriptions in the Statements documentation.

Standard/Dynamic Layout Maps

Standard Layout Maps

A standard layout can be defined in the map editor. This layout guarantees a uniform appearance
for all maps that reference it throughout the application.

When a map that references a standard layout is initialized, the standard layout becomes a fixed
part of the map. This means that if this standard layout is modified, all affected maps must be re-
cataloged before the changes take effect.

Dynamic Layout Maps

In contrast to a standard layout, a dynamic layout does not become a fixed part of a map that refer-
ences it, rather it is executed at runtime.

This means that if you define the layout map as “dynamic” on the Define Map Settings For MAP
screen in the map editor, any modifications to the layout map are also carried out on all maps that
reference it. The maps need not be re-cataloged.

For further details on layout maps, seeMap Editor in the Editors documentation.

Multilingual User Interfaces

Using Natural, you can create multilingual applications for international use.

Maps, helproutines, error messages, programs, functions, subprograms and copycodes can be
defined in up to 60 different languages (including languages with double-byte character sets).

Below is information on:

■ Language Codes
■ Defining the Language of a Natural Object
■ Defining the User Language
■ Referencing Multilingual Objects

Programming Guide842

Screen Design

■ Programs
■ Error Messages
■ Edit Masks for Date and Time Fields

Language Codes

In Natural, each language has a language code (from 1 to 60). The table below is an extract from the
full table of language codes. For a complete overview, refer to the description of the system variable
*LANGUAGE in the System Variables documentation.

Map Code in Object NamesLanguageLanguage Code

1English1

2German2

3French3

4Spanish4

5Italian5

6Dutch6

7Turkish7

8Danish8

9Norwegian9

AAlbanian10

BPortuguese11

The language code (left column) is the code that is contained in the system variable *LANGUAGE.
This code is used by Natural internally. It is the code you use to define the user language (see
Defining the User Language below). The code you use to identify the language of a Natural object
is the map code in the right-hand column of the table.

Example:

The language code for Portuguese is “11”. The code you usewhen cataloging a PortugueseNatural
object is “B”.

For the full table of language codes, see the system variable *LANGUAGE as described in the System
Variables documentation.

843Programming Guide

Screen Design

Defining the Language of a Natural Object

To define the language of a Natural object (map, helproutine, program, function, subprogram or
copycode), you add the corresponding map code to the object name. Apart from the map code,
the name of the object must be identical for all languages.

In the example below, amap has been created in English and in German. To identify the languages
of the maps, the map code that corresponds to the respective language has been included in the
map name.

Example of Map Names for a Multilingual Application

DEMO1 = English map (map code 1)

DEMO2 = German map (map code 2)

Defining Languages with Alphabetical Map Codes

Map codes are in the range 1-9, A-Z or a-y. The alphabetical map codes require special handling.

Normally, it is not possible to catalog an object with a lower-case letter in the name - all characters
are automatically converted into capitals.

This is however necessary, if for example you wish to define an object for Kanji (Japanese) which
has the language code 59 and the map code x.

To catalog such an object, you first set the correct language code (here 59) using the terminal
command %L=nn, where nn is the language code.

You then catalog the object using the ampersand (&) character instead of the actual map code in
the object name. So to have a Japanese version of the map DEMO, you stow themap under the name
DEMO&.

If you now look at the list of Natural objects, you will see that the map is correctly listed as DEMOx.

Objects with language codes 1-9 and upper case A-Z can be cataloged directly without the use of
the ampersand (&) notation.

In the example list below, you can see the three maps DEMO1, DEMO2 and DEMOx. To delete the map
DEMOx, you use the same method as when creating it, that is, you set the correct language with the
terminal command %L=59 and then confirm the deletionwith the ampersand (&) notation (DEMO&).

Programming Guide844

Screen Design

Defining the User Language

You define the language to be used per user - as defined in the system variable *LANGUAGE - with
the profile parameter ULANG (which is described in the Parameter Reference) or with the terminal
command %L=nn (where nn is the language code).

Referencing Multilingual Objects

To reference multilingual objects in a program, you use the ampersand (&) character in the name
of the object.

The program below uses the maps DEMO1 and DEMO2. The ampersand (&) character at the end of
the map name stands for the map code and indicates that the map with the current language as
defined in the *LANGUAGE system variable is to be used.

DEFINE DATA LOCAL
1 PERSONNEL VIEW OF EMPLOYEES

2 NAME (A20)
2 PERSONNEL-ID (A8)

1 CAR VIEW OF VEHICLES
2 REG-NUM (A15)

1 #CODE (N1)
END-DEFINE
*
INPUT USING MAP 'DEMO&' /* <--- INVOKE MAP WITH CURRENT LANGUAGE CODE
...

When this program is run, the English map (DEMO1) is displayed. This is because the current value
of *LANGUAGE is 1 = English.

845Programming Guide

Screen Design

MAP DEMO1

SAMPLE MAP

Please select a function!

1.) Employee information

2.) Vehicle information

Enter code here: _

In the example below, the language code has been switched to 2 = German with the terminal
command %L=2.

When the program is now run, the German map (DEMO2) is displayed.

BEISPIEL-MAP

Bitte wählen Sie eine Funktion!

1.) Mitarbeiterdaten

2.) Fahrzeugdaten

Code hier eingeben: _

Programming Guide846

Screen Design

Programs

For some applications it may be useful to define multilingual programs. For example, a standard
invoicing program, might use different subprograms to handle various tax aspects, depending on
the country where the invoice is to be written.

Multilingual programs are defined with the same technique as described above for maps.

Error Messages

Using theNatural utility SYSERR, you can translateNatural errormessages into up to 60 languages,
and also define your own error messages.

Which message language a user sees, depends on the *LANGUAGE system variable.

For further information on error messages, see SYSERR Utility in the Utilities documentation.

Edit Masks for Date and Time Fields

The language used for date and time fields defined with edit masks also depends on the system
variable *LANGUAGE.

For details on edit masks, see the session parameter EM as described in the Parameter Reference.

Skill-Sensitive User Interfaces

Users with varying levels of skill may wish to have different maps (of varying detail) while using
the same application.

If your application is not for international use by users speaking different languages, you can use
the techniques for multilingual maps to define maps of varying detail.

For example, you could define language code 1 as corresponding to the skill of the beginner, and
language code 2 as corresponding to the skill of the advanced user. This simple but effective
technique is illustrated below.

The followingmap (PERS1) includes instructions for the end user on how to select a function from
the menu. The information is very detailed. The name of the map contains the map code 1:

847Programming Guide

Screen Design

MAP PERS1

SAMPLE MAP

Please select a function

1.) Employee information _

2.) Vehicle information _

Enter code: _

To select a function, do one of the following:

- place the cursor on the input field next to desired function and press Enter
- mark the input field next to desired function with an X and press Enter
- enter the desired function code (1 or 2) in the 'Enter code' field and press

Enter

The samemap, but without the detailed instructions is saved under the same name, but with map
code 2.

MAP PERS2

SAMPLE MAP

Please select a function

1.) Employee information _

2.) Vehicle information _

Enter code: _

In the example above, the map with the detailed instructions is output, if the ULANG profile para-
meter has the value 1, the map without the instructions if the value is 2. See also the description
of the profile parameter ULANG (in the Parameter Reference).

Programming Guide848

Screen Design

111 Dialog Design

■ Field-Sensitive Processing .. 850
■ Simplifying Programming .. 852
■ Line-Sensitive Processing ... 853
■ Column-Sensitive Processing ... 854
■ Processing Based on Function Keys .. 854
■ Processing Based on Function-Key Names ... 855
■ Processing Data Outside an Active Window .. 856
■ Copying Data from a Screen .. 859
■ Statements REINPUT/REINPUT FULL .. 862
■ Object-Oriented Processing - The Natural Command Processor .. 863

849

This chapter tells you howyou can design character-based user interfaces thatmake user interaction
with the application simple and flexible.

Note: For information on the design of graphical user interfaces (GUI), refer to Introduction
to Event-Driven Programming.

Field-Sensitive Processing

*CURS-FIELD and POS(field-name)

Using the system variable *CURS-FIELD together with the system function POS(field-name), you
can define processing based on the fieldwhere the cursor is positioned at the time the user presses
Enter.

*CURS-FIELD contains the internal identification of the fieldwhere the cursor is currently positioned;
it cannot be used by itself, but only in conjunction with POS(field-name).

You can use *CURS-FIELD and POS(field-name), for example, to enable a user to select a function
simply by placing the cursor on a specific field and pressing Enter.

The example below illustrates such an application:

DEFINE DATA LOCAL
1 #EMP (A1)
1 #CAR (A1)
1 #CODE (N1)
END-DEFINE
*
INPUT USING MAP 'CURS'
*
DECIDE FOR FIRST CONDITION

WHEN *CURS-FIELD = POS(#EMP) OR #EMP = 'X' OR #CODE = 1
FETCH 'LISTEMP'

WHEN *CURS-FIELD = POS(#CAR) OR #CAR = 'X' OR #CODE = 2
FETCH 'LISTCAR'

WHEN NONE
REINPUT 'PLEASE MAKE A VALID SELECTION'

END-DECIDE
END

And the result:

Programming Guide850

Dialog Design

SAMPLE MAP

Please select a function

1.) Employee information _
2.) Vehicle information _ <== Cursor positioned

on field

Enter code: _

To select a function, do one of the following:

- place the cursor on the input field next to desired function and press Enter
- mark the input field next to desired function with an X and press Enter
- enter the desired function code (1 or 2) in the 'Enter code' field and press

Enter

If the user places the cursor on the input field (#EMP) next to Employee information, and presses
Enter, the program LISTEMP displays a list of employee names:

Page 1 2001-01-22 09:39:32

NAME

ABELLAN
ACHIESON
ADAM
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
AECKERLE
AFANASSIEV
AFANASSIEV
AHL
AKROYD

Notes:

1. In Natural for Ajax applications, *CURS-FIELD identifies the operand that represents the value
of the control that has the input focus. You may use *CURS-FIELD in conjunction with the POS
function to check for the control that has the input focus and perform processing depending
on that condition.

851Programming Guide

Dialog Design

2. The values of *CURS-FIELD and POS(field-name) serve for internal identification of the fields
only. They cannot be used for arithmetical operations.

Simplifying Programming

System Function POS

The Natural system function POS(field-name) contains the internal identification of the field
whose name is specified with the system function.

POS(field-name)may be used to identify a specific field, regardless of its position in a map. This
means that the sequence and number of fields in a map may be changed, but POS(field-name)
will still uniquely identify the same field. With this, for example, you need only a single REINPUT
statement to make the field to be MARKed dependent on the program logic.

Note: The value POS(field-name) serves for internal identification of the fields only. It
cannot be used for arithmetical operations.

Example:

...
DECIDE ON FIRST VALUE OF ...

VALUE ...
COMPUTE #FIELDX = POS(FIELD1)

VALUE ...
COMPUTE #FIELDX = POS(FIELD2)

...
END-DECIDE
...
REINPUT ... MARK #FIELDX
...

Full details on *CURS-FIELD and POS(field-name) are described in the System Variables and System
Functions documention.

Programming Guide852

Dialog Design

Line-Sensitive Processing

System Variable *CURS-LINE

Using the system variable *CURS-LINE, you can make processing dependent on the line where the
cursor is positioned at the time the user presses Enter.

Using this variable, you can make user-friendly menus. With the appropriate programming, the
usermerely has to place the cursor on the line of the desiredmenu option and press Enter to execute
the option.

The cursor position is definedwithin the current activewindow, regardless of its physical placement
on the screen.

Note: The message line, function-key lines and statistics line/infoline are not counted as
data lines on the screen.

The example below demonstrates line-sensitive processing using the *CURS-LINE system variable.
When the user presses Enter on the map, the program checks if the cursor is positioned on line 8
of the screen which contains the option Employee information. If this is the case, the program
that lists the names of employees LISTEMP is executed.

DEFINE DATA LOCAL
1 #EMP (A1)
1 #CAR (A1)
1 #CODE (N1)
END-DEFINE
*
INPUT USING MAP 'CURS'
*
DECIDE FOR FIRST CONDITION

WHEN *CURS-LINE = 8
FETCH 'LISTEMP'

WHEN NONE
REINPUT 'PLACE CURSOR ON LINE OF OPTION YOU WISH TO SELECT'

END-DECIDE
END

Output:

853Programming Guide

Dialog Design

Company Information

Please select a function

[] 1.) Employee information

2.) Vehicle information

Place the cursor on the line of the option you wish to select and press
Enter

The user places the cursor indicated by square brackets [] on the line of the desired option and
presses Enter and the corresponding program is executed.

Column-Sensitive Processing

System Variable *CURS-COL

The system variable *CURS-COL can be used in a similar way to *CURS-LINE described above. With
*CURS-COL you can make processing dependent on the column where the cursor is positioned on
the screen.

Processing Based on Function Keys

System Variable *PF-KEY

Frequently you may wish to make processing dependent on the function key a user presses.

This is achieved with the statement SET KEY, the system variable *PF-KEY and a modification of
the default map settings (Standard Keys = Y).

The SET KEY statement assigns functions to function keys during program execution. The system
variable *PF-KEY contains the identification of the last function key the user pressed.

The example below illustrates the use of SET KEY in combination with *PF-KEY.

Programming Guide854

Dialog Design

...
SET KEY PF1
*
INPUT USING MAP 'DEMO&'
IF *PF-KEY = 'PF1'

WRITE 'Help is currently not active'
END-IF
...

The SET KEY statement activates PF1 as a function key.

The IF statement defines what action is to be taken when the user presses PF1. The system variable
*PF-KEY is checked for its current content; if it contains PF1, the corresponding action is taken.

Further details regarding the statement SET KEY and the system variable *PF-KEY are described
in the Statements and the System Variables documentation respectively.

Processing Based on Function-Key Names

System Variable *PF-NAME

When defining processing based on function keys, further comfort can be added by using the
system variable *PF-NAME. With this variable you can make processing dependent on the name of
a function, not on a specific key.

The variable *PF-NAME contains the name of the last function key the user pressed (that is, the
name as assigned to the key with the NAMED clause of the SET KEY statement).

For example, if you wish to allow users to invoke help by pressing either PF3 or PF12, you assign
the same name (in the example below: INFO) to both keys. When the user presses either one of the
keys, the processing defined in the IF statement is performed.

...
SET KEY PF3 NAMED 'INFO'

PF12 NAMED 'INFO'
INPUT USING MAP 'DEMO&'
IF *PF-NAME = 'INFO'

WRITE 'Help is currently not active'
END-IF
...

The function names defined with NAMED appear in the function-key lines:

855Programming Guide

Dialog Design

Processing Data Outside an Active Window

Below is information on:

■ System Variable *COM
■ Example Usage of *COM
■ Positioning the Cursor to *COM - the %T* Terminal Command

System Variable *COM

As stated in the section Screen Design -Windows, only onewindow is active at any one time. This
normally means that input is only possible within that particular window.

Using the *COM system variable, which can be regarded as a communication area, it is possible to
enter data outside the current window.

The prerequisite is that a map contains *COM as a modifiable field. This field is then available for
the user to enter data when a window is currently on the screen. Further processing can then be
made dependent on the content of *COM.

This allows you to implement user interfaces as already used, for example, by Con-nect, Software
AG's office system,where a user can always enter data in the command line, evenwhen awindow
with its own input fields is active.

Note that *COM is only cleared when the Natural session is ended.

Example Usage of *COM

In the example below, the program ADD performs a simple addition using the input data from a
map. In this map, *COM has been defined as a modifiable field (at the bottom of the map) with the
length specified in the AL field of the Extended Field Editing. The result of the calculation is dis-
played in a window. Although this window offers no possibility for input, the user can still use
the *COM field in the map outside the window.

Program ADD:

DEFINE DATA LOCAL
1 #VALUE1 (N4)
1 #VALUE2 (N4)
1 #SUM3 (N8)
END-DEFINE
*
DEFINE WINDOW EMP

SIZE 8*17
BASE 10/2

Programming Guide856

Dialog Design

TITLE 'Total of Add'
CONTROL SCREEN
FRAMED POSITION SYMBOL BOT LEFT

*
INPUT USING MAP 'WINDOW'
*
COMPUTE #SUM3 = #VALUE1 + #VALUE2
*
SET WINDOW 'EMP'
INPUT (AD=O) / 'Value 1 +' /

'Value 2 =' //
' ' #SUM3

*
IF *COM = 'M'

FETCH 'MULTIPLY' #VALUE1 #VALUE2
END-IF
END

Output of Program ADD:

Map to Demonstrate Windows with *COM

CALCULATOR

Enter values you wish to calculate

Value 1: 12__
Value 2: 12__

+-Total of Add-+
! !
! Value 1 + !
! Value 2 = !
! !
! 24 !
! !
+--------------+

Next line is input field (*COM) for input outside the window:

In this example, by entering the value M, the user initiates amultiplication function; the two values
from the input map are multiplied and the result is displayed in a second window:

857Programming Guide

Dialog Design

Map to Demonstrate Windows with *COM

CALCULATOR

Enter values you wish to calculate

Value 1: 12__
Value 2: 12__

+-Total of Add-+ +--------------+
! ! ! !
! Value 1 + ! ! Value 1 x !
! Value 2 = ! ! Value 2 = !
! ! ! !
! 24 ! ! 144 !
! ! ! !
+--------------+ +--------------+

Next line is input field (*COM) for input outside the window:
M

Positioning the Cursor to *COM - the %T* Terminal Command

Normally, when a window is active and the window contains no input fields (AD=M or AD=A), the
cursor is placed in the top left corner of the window.

With the terminal command %T*, you can position the cursor to a *COM system variable outside
the window when the active window contains no input fields.

By using %T* again, you can switch back to standard cursor placement.

Example:

...
INPUT USING MAP 'WINDOW'
*
COMPUTE #SUM3 = #VALUE1 + #VALUE2
*
SET CONTROL 'T*'
SET WINDOW 'EMP'
INPUT (AD=O) / 'Value 1 +' /

'Value 2 =' //
' ' #SUM3

...

Programming Guide858

Dialog Design

Copying Data from a Screen

Below is information on:

■ Terminal Commands %CS and %CC
■ Selecting a Line from Report Output for Further Processing

Terminal Commands %CS and %CC

With these terminal commands, you can copy parts of a screen into the Natural stack (%CS) or into
the system variable *COM (%CC). The protected data from a specific screen line are copied field by
field.

The full options of these terminal commands are described in the Terminal Commands documenta-
tion.

Once copied to the stack or *COM, the data are available for further processing. Using these com-
mands, you can make user-friendly interfaces as in the example below.

Selecting a Line from Report Output for Further Processing

In the following example, the program COM1 lists all employee names from Abellan to Alestia.

Program COM1:

DEFINE DATA LOCAL
1 EMP VIEW OF EMPLOYEES

2 NAME(A20)
2 MIDDLE-NAME (A20)
2 PERSONNEL-ID (A8)

END-DEFINE
*
READ EMP BY NAME STARTING FROM 'ABELLAN' THRU 'ALESTIA'

DISPLAY NAME
END-READ
FETCH 'COM2'
END

Output of Program COM1:

859Programming Guide

Dialog Design

Page 1 2006-08-12 09:41:21

NAME

ABELLAN
ACHIESON
ADAM
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
AECKERLE
AFANASSIEV
AFANASSIEV
AHL
AKROYD
ALEMAN
ALESTIA
MORE

Control is now passed to the program COM2.

Program COM2:

DEFINE DATA LOCAL
1 EMP VIEW OF EMPLOYEES

2 NAME(A20)
2 MIDDLE-NAME (A20)
2 PERSONNEL-ID (A8)

1 SELECTNAME (A20)
END-DEFINE
*
SET KEY PF5 = '%CCC'
*
INPUT NO ERASE 'SELECT FIELD WITH CURSOR AND PRESS PF5'
*
MOVE *COM TO SELECTNAME
FIND EMP WITH NAME = SELECTNAME

DISPLAY NAME PERSONNEL-ID
END-FIND
END

In this program, the terminal command %CCC is assigned to PF5. The terminal command copies all
protected data from the line where the cursor is positioned to the system variable *COM. This in-

Programming Guide860

Dialog Design

formation is then available for further processing. This further processing is defined in the program
lines shown in boldface.

The user can now position the cursor on the name that interests him; when he/she now presses
PF5, further employee information is supplied.

SELECT FIELD WITH CURSOR AND PRESS PF5 2006-08-12 09:44:25

NAME

ABELLAN
ACHIESON
ADAM <== Cursor positioned on name for which more information is required
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
ADKINSON
AECKERLE
AFANASSIEV
AFANASSIEV
AHL
AKROYD
ALEMAN
ALESTIA

In this case, the personnel ID of the selected employee is displayed:

Page 1 2006-08-12 09:44:52

NAME PERSONNEL
ID

-------------------- ---------

ADAM 50005800

861Programming Guide

Dialog Design

Statements REINPUT/REINPUT FULL

If you wish to return to and re-execute an INPUT statement, you use the REINPUT statement. It is
generally used to display amessage indicating that the data input as a result of the previous INPUT
statement were invalid.

If you specify the FULL option in a REINPUT statement, the corresponding INPUT statement will be
re-executed fully:

■ With an ordinary REINPUT statement (without FULL option), the contents of variables that were
changed between the INPUT and REINPUT statement will not be displayed; that is, all variables
on the screenwill show the contents they hadwhen the INPUT statementwas originally executed.

■ With a REINPUT FULL statement, all changes that have been made after the initial execution of
the INPUT statement will be applied to the INPUT statement when it is re-executed; that is, all
variables on the screen contain the values they had when the REINPUT statement was executed.

■ If youwish to position the cursor to a specified field, you can use the MARK option, and to position
to a particular position within a specified field, you use the MARK POSITION option.

The example below illustrates the use of REINPUT FULLwith MARK POSITION.

DEFINE DATA LOCAL
1 #A (A10)
1 #B (N4)
1 #C (N4)
END-DEFINE
*
INPUT (AD=M) #A #B #C
IF #A = ' '

COMPUTE #B = #B + #C
RESET #C
REINPUT FULL 'Enter a value' MARK POSITION 5 IN *#A

END-IF
END

The user enters 3 in field #B and 3 in field #C and presses Enter.

#A #B 3 #C 3

The program requires field #A to be non-blank. The REINPUT FULL statement with MARK POSITION
5 IN *#A returns the input screen; the now modified variable #B contains the value 6 (after the
COMPUTE calculation has been performed). The cursor is positioned to the 5th position in field #A
ready for new input.

Programming Guide862

Dialog Design

Enter name of field
#A _ #B 6 #C 0

Enter a value

This is the screen that would be returned by the same statement, without the FULL option. Note
that the variables #B and #C have been reset to their status at the time of execution of the INPUT
statement (each field contains the value 3).

#A _ #B 3 #C 3

Object-Oriented Processing - The Natural Command Processor

The Natural Command Processor is used to define and control navigation within an application.
It consists of two parts: The development part and the run-time part.

■ The development part is the utility SYSNCP. With this utility, you define commands and the
actions to be performed in response to the execution of these commands. From your definitions,
SYSNCPgenerates decision tableswhichdeterminewhat happenswhen auser enters a command.

■ The run-time part is the statement PROCESS COMMAND. This statement is used to invoke the
Command Processor within a Natural program. In the statement you specify the name of the
SYSNCP table to be used to handle the data input by a user at that point.

For further information regarding the Natural Command Processor, see SYSNCP Utility in the
Utilities documentation and the statement PROCESS COMMAND as described in the Statements docu-
mentation.

863Programming Guide

Dialog Design

864

XIII Natural Native Interface

This part covers the following topics:

Introduction

Interface Library and Location

Interface Versioning

Interface Access

Interface Instances and Natural Sessions

Interface Functions

Parameter Description Structure

Natural Data Types

Flags

Return Codes

Natural Exception Structure

Interface Usage

Threading Issues

865

866

112 Introduction

The Natural Native Interface enables an application to execute Natural code in its own process
context through function calls according to the C calling convention. The interface consists of a
DLL that contains a set of interface functions. These functions include initialization and uninitial-
ization of a Natural session, logging on to a specific Natural library and execution of individual
Natural modules. The calling application loads the interface library dynamically with operating
system calls and then locates and calls the interface functions.

An example C program nnisample.c that shows the usage of the interface is contained in%NAT-
DIR%\%NATVERS%\samples\sysexnni.

The Natural modules called by the C program nnisample.c are contained in the Natural library
SYSEXNNI.

867

868

113 Interface Library and Location

The interface consists of aDLL that exports a set of functions. The individual functions are described
in Interface Functions. The interface DLL is called natni.dll and is contained in the Natural bin
directory.

When executing a program that uses the Natural Native Interface, the Natural bin directory must
be defined in the environment variable PATH, so that the calling program can locate the interface
library and all dependent libraries.

869

870

114 Interface Versioning

The Natural Native Interface might change in future versions of Natural. Natural versions that
provide a modified interface will support previous interface versions in parallel, until a point in
time that is determined by Software AG and is announced in time. To access an instance of a spe-
cific version of the interface, the application calls the function nni_get_interface. The application
passes the required interface version number to the function and receives a structurewith function
pointers in return. The application may also request the most recent interface version, without
specifying the interface version explicitly.

871

872

115 Interface Access

In order to access the interface, an application loads the interface library using a platformdependent
system call.

Then the application locates the address of the function nni_get_interface, again using a platform
dependent system call. Once the application has located the central function nni_get_interface,
it requests an instance of the interface by calling the function nni_get_interface and specifying
the desired interface version. The resulting structure contains the interface function pointers.

After having finished using the interface functions, the application unloads the interface library
using a platform dependent system call.

The sample program nnisample.c demonstrates the interface. Also the platform dependent mech-
anismof loading the interface library and the access to the function nni_get_interface is illustrated
by this sample program.

873

874

116 Interface Instances and Natural Sessions

The function nni_get_interface returns a pointer to an instance of the Natural Native Interface.
One interface instance can host one Natural session at a time. An application initializes a Natural
session by calling the function nni_initialize on a given interface instance. It uninitializes the
Natural session by calling nni_uninitialize on that interface instance. After that it can initialize
a new Natural session on the same interface instance.

It is implementation dependent if multiple interface instances and thus multiple Natural sessions
can bemaintained per process or per thread. In the current implementation ofNatural onWindows,
UNIX and OpenVMS, one process can host one Natural session at a time. Consequently, every
call to nni_get_interface in one process yields the same interface instance. However, this unique
interface instance can be used alternating by several concurrently running threads. The thread
synchronization is implicitly performed by the interface functions themselves. Optionally it can
be performed by the application explicitly. The interface provides the required synchronization
functions nni_enter, nni_try_enter and nni_leave.

875

876

117 Interface Functions

■ nni_get_interface ... 879
■ nni_free_interface .. 880
■ nni_initialize .. 880
■ nni_is_initialized .. 882
■ nni_uninitialize .. 882
■ nni_enter ... 883
■ nni_try_enter .. 883
■ nni_leave ... 884
■ nni_logon ... 885
■ nni_logoff ... 885
■ nni_callnat .. 886
■ nni_create_object .. 887
■ nni_send_method .. 888
■ nni_get_property ... 890
■ nni_set_property .. 891
■ nni_delete_object .. 893
■ nni_create_parm ... 894
■ nni_create_module_parm .. 895
■ nni_create_method_parm .. 896
■ nni_create_prop_parm .. 897
■ nni_parm_count .. 898
■ nni_init_parm_s ... 898
■ nni_init_parm_sa ... 899
■ nni_init_parm_d ... 901
■ nni_init_parm_da ... 901
■ nni_get_parm_info ... 903
■ nni_get_parm .. 903
■ nni_get_parm_array ... 905
■ nni_get_parm_array_length ... 906
■ nni_put_parm .. 907
■ nni_put_parm_array ... 908
■ nni_resize_parm_array ... 909

877

■ nni_delete_parm .. 910
■ nni_from_string ... 911
■ nni_to_string ... 912

Programming Guide878

Interface Functions

nni_get_interface

Syntax

int nni_get_interface(int iVersion, void** ppnni_func);

The function returns an instance of the Natural Native Interface.

An application calls this function after having retrieved and loaded the interface library with
platformdepending system calls. The function returns a pointer to a structure that contains function
pointers to the individual interface functions. The functions returned in the structure may differ
between interface versions.

Instead of a specific interface version, the caller can also specify the constant NNI_VERSION_CURR,
which always refers to the most recent interface version. The interface version number belonging
to a given Natural version is defined in the header file natni.h that is delivered with that version.
In Natural Version n.n, the interface version number is defined as NNI_VERSION_nn.
NNI_VERSION_CURR is also defined as NNI_VERSION_nn. If the Natural version against which the
function is called does not support the requested interface version, the error code NNI_RC
VERSION_ERROR is returned. Otherwise the return code is NNI_RC_OK.

The pointer returned by the function represents one instance of the interface. In order to use this
interface instance, the application holds on to that pointer and passes it to subsequent interface
calls.

Usually the application will subsequently initialize a Natural session by calling nni_initialize
on the given instance. After the application has finished using that Natural session, it calls
nni_uninitialize on that instance. After that it can initialize a different Natural session on the
same interface instance. After the application has finished using the interface instance entirely, it
calls nni_free_interface on that instance.

Parameters

MeaningParameter

Interface version number. (NNI_VERSION_nn or NNI_VERSION_CURR).iVersion

Points to an NNI interface instance on return.ppnni_func

Return Codes

The meaning of the return codes is explained in the section Return Codes.

879Programming Guide

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_PARM_ERROR

NNI_RC_VERSION_ERROR

nni_free_interface

Syntax

int nni_free_interface(void* pnni_func);

An application calls this function after it has finished using the interface instance and has unini-
tialized the Natural session it hosts. The function frees the resources occupied by that interface
instance.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

nni_initialize

Syntax

int nni_initialize(void* pnni_func, const char* szCmdLine, void*, void*);

The function initializes a Natural session with a given command line. The syntax and semantics
of the command line is the same as when Natural is started interactively. If a Natural session has
already been initialized on the given interface instance, that session is implicitly uninitialized before
the new session is initialized.

The command line must be specified in the way that the Natural initialization can be completed
without user interaction. Thismeans especially that if a program is passed on the stack or a startup

Programming Guide880

Interface Functions

program is specified, that programmust not perform an INPUT statement that is not satisfied from
the stack. Otherwise the subsequent behavior of the Natural session is undetermined.

The Natural session is initialized as batch session and in server mode. This means that the usage
of certain statements and commands in the executedNaturalmodules is restricted. These restrictions
and error conditions are the same as documented in the section Using Statements and Commands
in a NaturalX Server Environment of the Operations documentation.

When initalizing aNatural session underNatural Security, the command linemust contain a LOGON
command to a freely chosen default library under which the sessionwill be started, and an appro-
priate user ID and password.

Example:

int iRes =
pnni_func->nni_initialize(pnni_func, "STACK=(LOGON,MYLIB,MYUSER,MYPASS)", 0, 0);

If the application later calls nni_logon to a different librarywith a different user ID and afterwards
calls nni_logoff, theNatural sessionwill be reset to the library and user ID thatwas passed during
nni_initialize.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Natural command line. May be a null pointer.szCmdLine

For future use. Must be a null pointer.void*

For future use. Must be a null pointer.void*

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_PARM_ERROR

Natural startup error. The real Natural startup error number as
documented in Natural Startup Errors (which is part of the Operations
documentation) can be determined by the following calculation:

startup-error-nr = - (rc - NNI_RC_SERR_OFFSET)

rc, where rc <
NNI_RC_SERR_OFFSET

Warnings that occur during session initialization are ignored.

Natural error number.> 0

881Programming Guide

Interface Functions

nni_is_initialized

Syntax

int nni_is_initialized(void* pnni_func, int* piIsInit);

The function checks if the interface instance contains an initialized Natural session.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Returns 0, if no Natural session is initialized, a non-zero value otherwise.piIsInit

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_PARM_ERROR

nni_uninitialize

Syntax

int nni_uninitialize(void* pnni_func);

The function uninitializes the Natural session hosted by the given interface instance.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Return Codes

The meaning of the return codes is explained in the section Return Codes.

Programming Guide882

Interface Functions

RemarkReturn Code

NNI_RC_OK

nni_enter

Syntax

int nni_enter(void* pnni_func);

The function lets the current thread wait for exclusive access to the interface instance and the
Natural session it hosts. A thread calls this function if it wants to issue a series of interface calls
thatmay not be interrupted by other threads. The thread releases the eclusive access to the interface
instance by calling nni_leave.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

nni_try_enter

Syntax

int nni_try_enter(void* pnni_func);

The function behaves like nni_enter except that it does not block the thread and instead always
returns immediately. If a different thread already has exclusive access to the interface instance,
the function returns NNI_RC_LOCKED.

883Programming Guide

Interface Functions

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_LOCKED

nni_leave

Syntax

int nni_leave(void* pnni_func);

The function releases exclusive access to the interface instance and allows other threads to access
that instance and the Natural session it hosts.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

Programming Guide884

Interface Functions

nni_logon

Syntax

int nni_logon(void* pnni_func, const char* szLibrary, const char* szUser, const ↩
char* szPassword);

The function performs a LOGON to the specified Natural library.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Name of the Natural library.szLibrary

Name of the Natural user. May be a null pointer, if the Natural session is not running under
Natural Security or if AUTO=ONwas used during initialization.

szUser

Password of that user. May be a null pointer, if the Natural session is not running under
Natural Security or if AUTO=ONwas used during initialization..

szPassword

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

Natural error number.> 0

nni_logoff

Syntax

int nni_logoff(void* pnni_func);

The function performs a LOGOFF from the current Natural library. This corresponds to a LOGON to
the previously active library and user ID.

885Programming Guide

Interface Functions

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

Natural error number.> 0

nni_callnat

Syntax

int nni_callnat(void* pnni_func, const char* szName, int iParm, struct ↩
parameter_description* rgDesc, struct natural_exception* pExcep);

The function calls a Natural subprogram.

The function receives its parameters as an array of parameter_description structures. The caller
creates these structures using NNI functions in the following way:

■ Use one the functions create_parm or create_module_parm to create an appropriate parameter
set for the subprogram.

■ If you have used create_parm, use the functions init_parm_* to initialize each parameter to
the appropriate Natural data format. If you have used create_module_parm, the parameters are
already initialized to the appropriate Natural data format.

■ Assign a value to each parameter, using one the functions nni_put_parm or nni_put_parm_array.
■ Call nni_get_parm on each parameter in the set. This fills the parameter_description structures.
■ Pass the array of parameter_description structures to the function nni_callnat.
■ After the call has been executed, extract the modified parameter values from the parameter set
using the function nni_get_parm or nni_get_parm_array.

Programming Guide886

Interface Functions

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Name of the Natural subprogram.szName

Number of parameters. Indicates the number of occurrences of the array rgDesc.iParm

An array of parm_description structures containing the parameters for the subprogram. If
the subprogram does not expect parameters, the caller passes a null pointer.

rgDesc

Pointer to a natural_exception structure. If a Natural error occurs during execution of the
subprogram,this structure is filled with Natural error information. The caller may specify a
null pointer. In this case no extended error information is returned.

pExcep

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_NO_MEMORY

Natural error number.> 0

nni_create_object

Syntax

int nni_create_object(void* pnni_func, const char* szName, int iParm, struct ↩
parameter_description* rgDesc, struct natural_exception* pExcep); ↩

Creates a Natural object (an instance of a Natural class).

The function receives its parameters as a one-element array of parameter_description structures.
The caller creates the structures using NNI functions in the following way:

■ Use the function nni_create_parm to create parameter set with one element.
■ Use the function nni_init_parm_s to initialize the parameter with the type HANDLE OF OBJECT.
■ Call nni_get_parm_info on this parameter. This fills the parameter_description structure.
■ Pass the parameter_description structure to the function nni_create_object.
■ After the call has been executed, extract the modified parameter value from the parameter set
using one the function nni_get_parm.

887Programming Guide

Interface Functions

The parameters passed in rgDesc have the following meaning:

■ The first (and only) parameter must be initialized with the data type HANDLE OF OBJECT and
contains on return the Natural object handle of the newly created object.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Name of the class.szName

Number of parameters. Indicates the number of occurrences of the array rgDesc.iParm

An array of parm_description structures containing the parameters for the object creation.
The caller always passes one parameter, which will contain the object handle on return.

rgDesc

Pointer to a natural_exception structure. If a Natural error occurs during object creation,
this structure is filled with Natural error information. The caller may specify a null pointer.
In this case no extended exception information is returned.

pExcep

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_NO_MEMORY

Natural error number.> 0

nni_send_method

Syntax

int nni_send_method(void* pnni_func, const char* szName, int iParm, struct ↩
parameter_description* rgDesc, struct natural_exception* pExcep);

Sends a method call to a Natural object (an instance of a Natural class).

The function receives its parameters as an array of parameter_description structures. The caller
creates these structures using NNI functions in the following way:

■ Use the function nni_create_parm or nni_create_method_parm to create amatching parameter
set.

Programming Guide888

Interface Functions

■ If you have used create_parm, use the functions init_parm_* to initialize each parameter to
the appropriateNatural data format. If you have used nni_create_method_parm, the parameters
are already initialized to the appropriate Natural data format.

■ Assign a value to each parameter using one the functions nni_put_parm or nni_put_parm_array.
■ Call nni_get_parm_info on each parameter in the set. This fills the parameter_description
structures.

■ Pass the array of parameter_description structures to the function nni_send_method.
■ After the call has been executed, extract the modified parameter values from the parameter set
using one of the nni_get_parm functions.

The parameters passed in rgDesc have the following meaning:

■ The first parameter contains the object handle.
■ The second parameter must be initialized to the data type of the method return value. If the
method does not have a return value, the second parameter remains not initialized. On return
from the method call, this parameter contains the return value of the method.

■ The remaining parameters are the method parameters.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Name of the method.szName

Number of parameters. Indicates the number of occurrences of the array rgDesc. This is always
2 + the number of method parameters.

iParm

An array of parm_description structures containing the parameters for the method. If the
method does not expect parameters, the caller still passes two parameters, the first for the
object handle and the second for the return value.

rgDesc

Pointer to a natural_exception structure. If a Natural error occurs during execution of the
method, this structure is filled with Natural error information. The caller may specify a null
pointer. In this case no extended exception information is returned.

pExcep

Return Codes

The meaning of the return codes is explained in the section Return Codes.

889Programming Guide

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_NO_MEMORY

Natural error number.> 0

nni_get_property

Syntax

int nni_get_property(void* pnni_func, const char* szName, int iParm, struct ↩
parameter_description* rgDesc, struct natural_exception* pExcep); ↩

Retrieves a property value of a Natural object (an instance of a Natural class).

The function receives its parameters as an array of parameter_description structures. The caller
creates these structures using NNI functions in the following way:

■ Use the function nni_create_parm or nni_create_method_parm to create amatching parameter
set.

■ If you have used create_parm, use the functions init_parm_* to initialize each parameter to
the appropriate Natural data format. If you have used create_method_parm, the parameters are
already initialized to the appropriate Natural data format.

■ Assign a value to each parameter using one the functions nni_put_parm or nni_put_parm_array.
■ Call nni_get_parm_info on each parameter in the set. This fills the parameter_description
structures.

■ Pass the array of parameter_description structures to the function nni_send_method.
■ After the call has been executed, extract the modified parameter values from the parameter set
using one of the nni_get_parm functions.

The parameters passed in rgDesc have the following meaning:

■ The first parameter contains the object handle.
■ The second parameter is initialized to the data type of the property. On return from the property
access, this parameter contains the property value.

Programming Guide890

Interface Functions

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Name of the property.szName

Number of parameters. Indicates the number of occurrences of the array rgDesc. This is always
2.

iParm

An array of parm_description structures containing the parameters for the property access.
The caller always passes two parameters, the first for the object handle and the second for the
returned property value.

rgDesc

Pointer to a natural_exception structure. If a Natural error occurs during property access,
this structure is filled with Natural error information. The caller may specify a null pointer.
In this case no extended exception information is returned.

pExcep

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_NO_MEMORY

Natural error number.> 0

nni_set_property

Syntax

int nni_set_property(void* pnni_func, const char* szName, int iParm, struct ↩
parameter_description* rgDesc, struct natural_exception* pExcep);

Assigns a property value to a Natural object (an instance of a Natural class).

The function receives its parameters as an array of parameter_description structures. The caller
creates these structures using NNI functions in the following way:

■ Use the function nni_create_parm or nni_create_prop_parm to create a matching parameter
set.

■ If you have used create_parm, use the functions init_parm_* to initialize each parameter to
the appropriate Natural data format. If you have used create_prop_parm, the parameters are

891Programming Guide

Interface Functions

already initialized to the appropriate Natural data format. Assign a value to each parameter
using one of the nni_put_parm functions.

■ Assign a value to each parameter using one the functions nni_put_parm or nni_put_parm_array.
■ Call nni_get_parm_info on each parameter in the set. This fills the parameter_description
structures.

■ Pass the array of parameter_description structures to the function nni_set_property.

The parameters passed in rgDesc have the following meaning:

■ The first parameter contains the object handle.
■ The second parameter contains the property value.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Name of the property.szName

Number of parameters. Indicates the number of occurrences of the array rgDesc. This is always
2.

iParm

An array of parm_description structures containing the parameters for the property access.
The caller always passes two parameters, the first for the object handle and the second for the
property value.

rgDesc

Pointer to a natural_exception structure. If a Natural error occurs during property access,
this structure is filled with Natural error information. The caller may specify a null pointer.
In this case no extended exception information is returned.

pExcep

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_NO_MEMORY

Natural error number.> 0

Programming Guide892

Interface Functions

nni_delete_object

Syntax

int nni_delete_object(void* pnni_func, int iParm, struct parameter_description* ↩
rgDesc, struct natural_exception* pExcep);

Deletes a Natural object (an instance of a Natural class) created with nni_create_object.

The function receives its parameters as a one-element array of parameter_description structures.
The caller creates the structures using NNI functions in the following way:

■ Use the function nni_create_parm to create parameter set with one element.
■ Use the function nni_init_parm_s to initialize the parameter with the type HANDLE OF OBJECT.
■ Assign a value to the parameter using one the functions nni_put_parm.
■ Call nni_get_parm_info on this parameter. This fills the parameter_description structure.
■ Pass the parameter_description structure to the function nni_delete_object.

The parameters passed in rgDesc have the following meaning:

■ The first (and only) parameter must be initialized with the data type HANDLE OF OBJECT and
contains the Natural object handle of the object to be deleted.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Name of the class.szName

Number of parameters. Indicates the number of occurrences of the array rgDesc. This is always
1.

iParm

An array of parm_description structures containing the parameters for the object creation.
The caller always passes one parameter, which contains the object handle.

rgDesc

Pointer to a natural_exception structure. If a Natural error occurs during object creation,
this structure is filled with Natural error information. The caller may specify a null pointer.
In this case no extended exception information is returned.

pExcep

Return Codes

The meaning of the return codes is explained in the section Return Codes.

893Programming Guide

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_NO_MEMORY

Natural error number.> 0

nni_create_parm

Syntax

int nni_create_parm(void* pnni_func, int iParm, void** pparmhandle);

Creates a set of parameters that can be passed to a Natural module.

The parameters contained in the set are not yet initialized to specific Natural data types. Before
using the parameter set in a call to nni_callnat, nni_create_object, nni_send_method,
nni_set_property or nni_get_property:

■ Initialize each parameter to the required Natural data type using one of the functions
nni_init_parm_s, nni_init_parm_sa, nni_init_parm_d or nni_init_parm_da.

■ Assign a value to each parameter using one of the functions nni_put_parm or
nni_put_parm_array.

■ Turn each parameter into a parm_description structure using the function nni_get_parm_info.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Requested number of parameters. The maxinum number of parameters is 32767.iParm

Points a to a pointer to a parameter set on return.pparmhandle

Return Codes

The meaning of the return codes is explained in the section Return Codes.

Programming Guide894

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

Natural error number.> 0

nni_create_module_parm

Syntax

int nni_create_module_parm(void* pnni_func, char chType, const char* szName, void** ↩
pparmhandle); ↩

Creates a set of parameters that can be used in a call to nni_callnat. The function enables an ap-
plication to dynamically explore the signature of a callable Natural module.

The parameters contained in the returned set are already initialized toNatural data types according
to the parameter data area of the specified module. Before using the parameter set in a call to
nni_callnat:

■ Assign a value to each parameter using one of the functions nni_put_parm or
nni_put_parm_array.

■ Turn each parameter into a parm_description structure using the function nni_get_parm_info.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Type of the Natural module. Always N (for subprogram).chType

Name of the Natural module.szName

Points a to a pointer to a parameter set on return.pparmhandle

Return Codes

The meaning of the return codes is explained in the section Return Codes.

895Programming Guide

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

Natural error number.> 0

nni_create_method_parm

Syntax

int nni_create_method_parm(void* pnni_func, const char* szClass, const char* ↩
szMethod, void** pparmhandle); ↩

Creates a set of parameters that can be used in a call to nni_send_method. The function enables
an application to dynamically explore the signature of a method of a Natural class.

The returned parameter set contains not only themethod parameters, but also the other parameters
required by nni_send_method. This means: If the method has n parameters, the parameter set
contains n + 2 parameters.

■ The first parameter in the set is initialized to the data type HANDLE OF OBJECT.
■ The second parameter in the set is initialized to the data type of the method return value. If the
method does not have a return value, the second parameter is not initialized.

■ The remaining parameters in the set are initialized to the data types of the method parameters.

Before using the parameter set in a call to nni_send_method:

■ Assign a value to each parameter using one of the functions nni_put_parm or
nni_put_parm_array.

■ Turn each parameter into a parm_description structure using the function nni_get_parm_info.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Name of the Natural class.szClass

Name of the Natural method.szMethod

Points a to a pointer to a parameter set on return.pparmhandle

Return Codes

The meaning of the return codes is explained in the section Return Codes.

Programming Guide896

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

Natural error number.> 0

nni_create_prop_parm

Syntax

int nni_create_prop_parm(void* pnni_func, const char* szClass, const char* ↩
szProp,void** pparmhandle); ↩

Creates a set of parameters that can be used in a call to nni_get_property or nni_set_property.
The returned parameter set contains all parameters required by nni_get_property or
nni_set_property. The function enables an application to determine the data type of a property
of a Natural class.

■ The first parameter in the set is initialized to the data type HANDLE OF OBJECT.
■ The second parameter in the set is initialized to the data type of the property.

Before using the parameter set in a call to nni_get_property or nni_set_property:

■ Assign a value to each parameter using one of the functions nni_put_parm or
nni_put_parm_array.

■ Turn each parameter into a parm_description structure using the function nni_get_parm_info.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Name of the Natural class.szClass

Name of the Natural property.szProp

Points a to a pointer to a parameter set on return.pparmhandle

Return Codes

The meaning of the return codes is explained in the section Return Codes.

897Programming Guide

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

Natural error number.> 0

nni_parm_count

Syntax

int nni_parm_count(void* pnni_func, void* parmhandle, int* piParm)

The function retrieves the number of parameters in a parameter set.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Pointer to a parameter set.parmhandle

Returns the number of parameters in the parameter set.piParm

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

nni_init_parm_s

Syntax

int nni_init_parm_s(void* pnni_func, int iParm, void* parmhandle, char chFormat, ↩
int iLength, int iPrecision, int iFlags); ↩

Initializes a parameter in a parameter set to a static data type.

Programming Guide898

Interface Functions

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Natural data type of the parameter.chFormat

Natural length of the parameter.iLength

Number of decimal places (NNI_TYPE_NUM and NNI_TYPE_PACK only).iPrecision

Parameter flags. The following flags can be used:iFlags

NNI_FLG_PROTECTED

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

NNI_RC_NO_MEMORY

NNI_RC_BAD_FORMAT

NNI_RC_BAD_LENGTH

nni_init_parm_sa

Syntax

int nni_init_parm_sa (void* pnni_func, int iParm, void* parmhandle, char chFormat, ↩
int iLength, int iPrecision, int iDim, int* rgiOcc, int iFlags); ↩

Initializes a parameter in a parameter set to an array of a static data type.

899Programming Guide

Interface Functions

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Natural data type of the parameter.chFormat

Natural length of the parameter.iLength

Number of decimal places (NNI_TYPE_NUM and NNI_TYPE_PACK only).iPrecision

Array dimension of the parameter.iDim

Three dimensional array of int values, indicating the occurrence count for each dimension.
The occurrence count for unused dimensions must be specified as 0.

rgiOcc

Parameter flags. The following flags can be used:iFlags

NNI_FLG_PROTECTED
NNI_FLG_LBVAR_0
NNI_FLG_UBVAR_0
NNI_FLG_LBVAR_1
NNI_FLG_UBVAR_1
NNI_FLG_LBVAR_2
NNI_FLG_UBVAR_2
If one of the NNI_FLG_*VAR* flags is set, the array is an x-array. In each dimension only the
lower bound or the upper bound (not both) can be variable. Therefore for instance the flag
IF4_FLG_LBVAR_0may not be combined with IF4_FLG_UBVAR_0.

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

NNI_RC_NO_MEMORY

NNI_RC_BAD_FORMAT

NNI_RC_BAD_LENGTH

NNI_RC_BAD_DIM

NNI_RC_BAD_BOUNDS

Programming Guide900

Interface Functions

nni_init_parm_d

Syntax

int nni_init_parm_d(void* pnni_func, int iParm, void* parmhandle, char chFormat, ↩
int iFlags); ↩

Initializes a parameter in a parameter set to a dynamic data type.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Natural data type of the parameter (NNI_TYPE_ALPHA or NNI_TYPE_BIN).chFormat

Parameter flags. The following flags can be used:iFlags

NNI_FLG_PROTECTED

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

NNI_RC_NO_MEMORY

NNI_RC_BAD_FORMAT

nni_init_parm_da

Syntax

int nni_init_parm_da (void* pnni_func, int iParm, void* parmhandle, char chFormat, ↩
int iDim, int* rgiOcc, int iFlags); ↩

Initializes a parameter in a parameter set to an array of a dynamic data type.

901Programming Guide

Interface Functions

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Natural data type of the parameter (NNI_TYPE_ALPHA or NNI_TYPE_BIN).chFormat

Array dimension of the parameter.iDim

Three dimensional array of int values, indicating the occurrence count for each dimension.
The occurrence count for unused dimensions must be specified as 0.

rgiOcc

Parameter flags. The following flags can be used:iFlags

NNI_FLG_PROTECTED
NNI_FLG_LBVAR_0
NNI_FLG_UBVAR_0
NNI_FLG_LBVAR_1
NNI_FLG_UBVAR_1
NNI_FLG_LBVAR_2
NNI_FLG_UBVAR_2
If one of the NNI_FLG_*VAR* flags is set, the array is an x-array. In each dimension only the
lower bound or the upper bound (not both) can be variable. Therefore for instance the flag
IF4_FLG_LBVAR_0may not be combined with IF4_FLG_UBVAR_0.

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

NNI_RC_NO_MEMORY

NNI_RC_BAD_FORMAT

NNI_RC_BAD_DIM

NNI_RC_BAD_BOUNDS

Programming Guide902

Interface Functions

nni_get_parm_info

Syntax

int nni_get_parm_info (void* pnni_func, int iParm, void* parmhandle, struct ↩
parameter_description* pDesc); ↩

Returns detailed information about a specific parameter in a parameter set.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Parameter description structure.pDesc

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

nni_get_parm

Syntax

int nni_get_parm(void* pnni_func, int iParm, void* parmhandle, int iBufferLength, ↩
void* pBuffer); ↩

Returns the value of a specific parameter in a parameter set. The value is returned in the buffer at
the address specified in pBuffer, with the size specified in iBufferLength. On successful return,
the buffer contains the data inNatural internal format. SeeNatural Data Types on how to interpret
the contents of the buffer.

903Programming Guide

Interface Functions

If the length of the parameter according to the Natural data type is greater than iBufferLength,
Natural truncates the data to the given length and returns the code NNI_RC_DATA_TRUNC. The caller
can use the function nni_get_parm_info to request the length of the parameter value in advance.

If the length of the parameter according to the Natural data type is smaller than iBufferLength,
Natural fills the buffer according to the length of the parameter and returns the length of the copied
data in the return code.

If the parameter is an array, the function returns the whole array in the buffer. This makes sense
only for fixed size arrays of fixed size elements, because in other cases the caller cannot interpret
the contents of the buffer. In order to retrieve an individual occurrence of an arbitrary array use
the function nni_get_parm_array.

If nomemory of the size specified in iBufferLength is allocated at the adress specified in pBuffer,
the results of the operation are unpredictable. Natural only checks that pBuffer is not null.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Length of the buffer specified in pBuffer.iBufferLength

Buffer in which the value is returned.pBuffer

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

NNI_RC_DATA_TRUNC

Successful operation, but only n bytes were returned in the buffer.= n, where n > 0

Programming Guide904

Interface Functions

nni_get_parm_array

Syntax

int nni_get_parm_array(void* pnni_func, int parmnum, void* parmhandle, int ↩
iBufferLength, void* pBuffer, int* rgiInd);

Returns the value of a specific occurrence of a specific array parameter in a parameter set. The
only difference to nni_get_parm is that array indices can be specified. The indices for unused di-
mensions must be specified as 0.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Length of the buffer specified in pBuffer.iBufferLength

Buffer in which the value is returned.pBuffer

Three dimensional array of int values, indicating a specific array occurrence. The indices
start with 0.

rgiInd

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

NNI_RC_DATA_TRUNC

NNI_RC_NOT_ARRAY

NNI_RC_BAD_INDEX_0

NNI_RC_BAD_INDEX_1

NNI_RC_BAD_INDEX_2

Successful operation, but only n bytes were returned.= n, where n > 0

905Programming Guide

Interface Functions

nni_get_parm_array_length

Syntax

int nni_get_parm_array_length(void* pnni_func, int iParm, void* parmhandle, int* ↩
piLength, int* rgiInd);

Returns the length of a specific occurrence of a specific array parameter in a parameter set.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Pointer to an int in which the length of the value is returned.piLength

Three dimensional array of int values, indicating a specific array occurrence. The indices start
with 0.

rgiInd

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_ILL_PNUM

NNI_RC_DATA_TRUNC

NNI_RC_NOT_ARRAY

NNI_RC_BAD_INDEX_0

NNI_RC_BAD_INDEX_1

NNI_RC_BAD_INDEX_2

Programming Guide906

Interface Functions

nni_put_parm

Syntax

int nni_put_parm(void* pnni_func, int iParm, void* parmhandle, int iBufferLength, ↩
const void* pBuffer); ↩

Assigns a value to a specific parameter in a parameter set. The value is passed to the function in
the buffer at the address specified in pBuffer, with the size specified in iBufferLength. See Nat-
ural Data Types on how to prepare the contents of the buffer.

If the length of the parameter according to the Natural data type is smaller than the given buffer
length, the data will be truncated to the length of the parameter. The rest of the buffer will be ig-
nored. If the length of the parameter according to the Natural data type is greater than the given
buffer length, the data will copied only to the given buffer length, the rest of the parameter value
stays unchanged. See Natural Data Types on the internal length of Natural data types.

If the parameter is a dynamic variable, it is automatically resized according to the given buffer
length.

If the parameter is an array, the function expects the whole array in the buffer. This makes sense
only for fixed size arrays of fixed size elements, because in other cases the caller cannot provide
the correct contents of the buffer. In order to assign a value to an individual occurrence of an ar-
bitrary array use the function nni_put_parm_array.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Length of the buffer specified in pBuffer.iBufferLength

Buffer in which the value is passed.pBuffer

Return Codes

The meaning of the return codes is explained in the section Return Codes.

907Programming Guide

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

NNI_RC_WRT_PROT

NNI_RC_DATA_TRUNC

NNI_RC_NO_MEMORY

Successful operation, but only n bytes of the buffer were used.= n, where n > 0

nni_put_parm_array

Syntax

int nni_put_parm_array(void* pnni_func, int iParm, void* parmhandle, int ↩
iBufferLength, const void* pBuffer, int* rgiInd);

Assigns a value to a specific occurrence of a specific array parameter in a parameter set. The only
difference to nni_get_parm is that array indices can be specified. The indices for unused dimensions
must be specified as 0.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Length of the buffer specified in pBuffer.iBufferLength

Buffer in which the value is passed.pBuffer

Three dimensional array of int values, indicating a specific array occurrence. The indices
start with 0.

rgiInd

Return Codes

The meaning of the return codes is explained in the section Return Codes.

Programming Guide908

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

NNI_RC_WRT_PROT

NNI_RC_DATA_TRUNC

NNI_RC_NO_MEMORY

NNI_RC_NOT_ARRAY

NNI_RC_BAD_INDEX_0

NNI_RC_BAD_INDEX_1

NNI_RC_BAD_INDEX_2

Successful operation, but only n bytes of the buffer were used.= n, where n > 0

nni_resize_parm_array

Syntax

int nni_resize_parm_array(void* pnni_func, int iParm, void* parmhandle, int* rgiOcc); ↩

Changes the occurrence count of a specific x-array parameter in a parameter set. For an n-dimen-
sional array an occurrence count must be specified for all n dimensions. If the dimension of the
array is less than 3, the value 0 must be specified for the not used dimensions.

The function tries to resize the occurrence count of each dimension either by changing the lower
bound or the upper bound, whatever is appropriate for the given x-array.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Index of the parameter. The first parameter in the set has the index 0.iParm

Pointer to a parameter set.parmhandle

Three dimensional array of int values, indicating the new occurrence count of the array.rgiOcc

Return Codes

The meaning of the return codes is explained in the section Return Codes.

909Programming Guide

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

NNI_RC_ILL_PNUM

NNI_RC_WRT_PROT

NNI_RC_DATA_TRUNC

NNI_RC_NO_MEMORY

NNI_RC_NOT_ARRAY

NNI_RC_NOT_RESIZABLE

Natural error number.> 0

nni_delete_parm

Syntax

int nni_delete_parm(void* pnni_func, void* parmhandle);

Deletes the specified parameter set.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Pointer to a parameter set.parmhandle

Return Codes

The meaning of the return codes is explained in the section Return Codes.

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

Programming Guide910

Interface Functions

nni_from_string

Syntax

int nni_from_string(void* pnni_func, const char* szString, char chFormat, int ↩
iLength, int iPrecision, int iBufferLength, void* pBuffer); ↩

Converts the string representation of a Natural P, N, D or T value into the internal representation
of the value, as it is used in the functions nni_get_parm, nni_get_parm_array, nni_put_parm and
nni_put_parm_array.

The string representations of these Natural data types look like this:

String representationFormat

For example, -3.141592, where the decimal character defined in the DC parameter is used.P, N

Date format as defined in the DTFORM parameter, (e. g. “2004-07-06”, if DTFORM=I).D

Date format as defined in the DTFORM parameter, combined with a Time value in the form hh:ii:ss:t
(e. g. 2004-07-06 11:30:42:7, if DTFORM=I) or Time value in the formhh:ii:ss:t (e. g. 11:30:42:7).

T

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

String representation of the value.szString

Natural data type of the value.chFormat

Natural length of the value. The total number of significant digits in the case of
NNI_TYPE_NUM and NNI_TYPE_PACK, 0 otherwise.

iLength

Number of decimal places in the case ofNNI_TYPE_NUM andNNI_TYPE_PACK, 0 otherwise.iPrecision

Length of the buffer provided in pBuffer.iBufferLength

Buffer that contains the internal representation of the value on return. The buffer must
be large enough to hold the internal Natural representation of the value. The required
sizes are documented in Format and Length of User-Defined Variables.

pBuffer

Return Codes

The meaning of the return codes is explained in the section Return Codes.

911Programming Guide

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

Natural error number> 0

nni_to_string

Syntax

int nni_to_string(void* pnni_func, int iBufferLength, const void* pBuffer, char ↩
chFormat, int iLength, int iPrecision, int iStringLength, char* szString);

Converts the internal representation of a Natural P, N, D or T value, as it is used in the functions
nni_get_parm, nni_get_parm_array, nni_put_parm and nni_put_parm_array, into a the string
representation.

The string representations of these Natural data types look as described with the function
nni_from_string.

Parameters

MeaningParameter

Pointer to an NNI interface instance.pnni_func

Length of the buffer provided in pBuffer.iBufferLength

Buffer that contains the internal representation of the value. The required sizes are
documented in Format and Length of User-Defined Variables.

pBuffer

Natural data type of the value.chFormat

Natural length of the value. The total number of significant digits in the case of
NNI_TYPE_NUM and NNI_TYPE_PACK, 0 otherwise.

iLength

Number of decimal places in the case ofNNI_TYPE_NUM andNNI_TYPE_PACK, 0 otherwise.iPrecision

Length of the string buffer provided in szString including the terminating zero.iStringLength

String buffer that contains the string representation of the value on return. The string
buffermust be large enough to hold the external representation including the terminating
zero.

szString

Return Codes

The meaning of the return codes is explained in the section Return Codes.

Programming Guide912

Interface Functions

RemarkReturn Code

NNI_RC_OK

NNI_RC_NOT_INIT

NNI_RC_PARM_ERROR

Natural error number> 0

913Programming Guide

Interface Functions

914

118 Parameter Description Structure

The interface provides information about the parameters of a Natural subprogram or method in
a structure named parameter_description. The structure is defined in the header file natuser.h.
This file is contained in the directory%NATDIR%\%NATVERS%\samples\sysexnni.

An array of parameter_description structures is passed to the interface with each call to
nni_callnat and similar functions. A parameter_description structure is created from a para-
meter in a parameter set using the function nni_get_parm_info.

The relevant elements of the structure contain the following information. All elements not listed
in this table are for internal use only.

ContentElement NameFormat

Address of the parameter value. Must not be reallocated or freed. The address
element is a null pointer for arrays of dynamic variables and for x-arrays. In these

addressvoid*

cases, the array data cannot be accessed as a whole, but can only be accessed
elementwise through the parameter access function nni_get_parm.

Natural data type of the parameter. Refer to Natural Data Types for further
information.

formatint

Natural length of the parameter value. In the case of the data types
NNI_TYPE_ALPHA and NNI_TYPE_UNICODE, the number of characters. In the case

lengthint

of the data types NNI_TYPE_PACK and NNI_TYPE_NUM, the number of digits before
the decimal character. In the case of an array, the length of a single occurrence. In
the case of an array of dynamic variables, the length is indicatedwith 0. The length
of an individual occurrence must then be determined with the function
nni_get_parm_array_length.

In the case of the data types NNI_TYPE_PACK and NNI_TYPE_NUM the number of
digits after the decimal character, 0 otherwise.

precisionint

Length of the parameter value in bytes. In the case of an array the byte length of
a single occurrence. In the case of an array of dynamic variables the byte length is

byte_lengthint

indicated with 0. The length of an individual occurrence must then be determined
with the function nni_get_parm_array_length.

915

ContentElement NameFormat

Number of dimensions. 0 in the case of a scalar. The maximum number of
dimensions is 3.

dimensionsint

Total length of the parameter value in bytes. In the case of an array the byte length
of the whole array. In the case of an array of dynamic variables the total length is

length_allint

indicated with 0. The length of an individual occurrence must then be determined
with the function nni_get_parm_array_length.

Parameter flags, see Flags.flagsint

Number of occurrences in each dimension. Only the first three occurrences are
used.

occurrences[10]int

Array indexfactors for each dimension. Only the first three occurrences are used.indexfactors[10]int

In the case of arrays with fixed bounds of variables with fixed length, the array contents can be
accessed directly using the structure element address. In these cases the following applies:

■ The address of the element (i,j,k) of a three dimensional array is computed as follows:

elementaddress = address + i * indexfactors[0] + j * indexfactors[1] + k * indexfactors[2]
■ The address of the element (i,j) of a two dimensional array is computed as follows:

elementaddress = address + i * indexfactors[0] + j * indexfactors[1]
■ The address of the element (i) of a one dimensional array is computed as follows:

elementaddress = address + i * indexfactors[0]

Programming Guide916

Parameter Description Structure

119 Natural Data Types

Someof the parameter access functions (like nni_get_parm, nni_put_parm) use a buffer that contains
a parameter value in the correct representation. The length of the buffer depends on the Natural
data type. The data format of the buffer is defined according to the following table:

Buffer FormatNatural Data Type

char[]A

byte[]B

shortC

floatF4

doubleF8

signed charI1

shortI2

intI4

NNI_L_TRUE or NNI_L_FALSE, see natni.hL

byte[8]HANDLE OF OBJECT

The buffer content should be created from a string representationwith the function
nni_from_string. It can be transformed to a string representationwith the function
nni_to_string.

P, N, D, T

An array of UTF-16 characters. On Windows and on those UNIX and OpenVMS
platforms where a wchar corresponds to a UTF-16 character, this is a wchar[].

U

Some of the parameter access functions (like nni_get_parm, and nni_put_parm) require a Natural
data type to be specified. In these cases the following constants should be used. The constants are
defined in the header file natni.h. This file is contained in the directory%NAT-
DIR%\%NATVERS%\samples\sysexnni.

917

ConstantNatural Data Type

NNI_TYPE_ALPHAA

NNI_TYPE_BINB

NNI_TYPE_CVC

NNI_TYPE_DATED

NNI_TYPE_FLOATF

NNI_TYPE_INTI

NNI_TYPE_LOGL

NNI_TYPE_NUMN

NNI_TYPE_OBJECTHANDLE OF OBJECT

NNI_TYPE_PACKP

NNI_TYPE_TIMET

NNI_TYPE_UNICODEU

Programming Guide918

Natural Data Types

120 Flags

The structure parameter_description has an element flags that contains information about the
status of the parameter. Also the functions nni_init_parm* allow specifying some of these flags
whe initializing a parameter. The individual flags can be combinedwith a logical OR in the element
flags. The following flags are defined in the header file natni.h. This file is contained in the directory
%NATDIR%\%NATVERS%\samples\sysexnni.

MeaningReturn Code

Parameter is write protected.NNI_FLG_PROTECTED

Parameter is dynamic (variable length or x-array).NNI_FLG_DYNAMIC (*)

Array is not contiguous.NNI_FLG_NOT_CONTIG (*)

Parameter is an AIV or INDEPENDENT variable.NNI_FLG_AIV (*)

Parameter has variable length.NNI_FLG_DYNVAR (*)

Parameter is an x-array.NNI_FLG_XARRAY (*)

Lower bound of dimension 0 is variable.NNI_FLG_LBVAR_0

Upper bound of dimension 0 is variable.NNI_FLG_UBVAR_0

Lower bound of dimension 1 is variable.NNI_FLG_LBVAR_1

Upper bound of dimension 1 is variable.NNI_FLG_UBVAR_1

Lower bound of dimension 2 is variable.NNI_FLG_LBVAR_2

Upper bound of dimension 2 is variable.NNI_FLG_UBVAR_2

Only the flags marked with (*) can be explicitly set in the functions nni_init_parm*. The other
flags are automatically set by the interface according to the type of the parameter.

If one of the NNI_FLG_*VAR* flags is set, the array is an x-array. In each dimension of an x-array
only the lower bound or the upper bound, not both, can be variable. Therefore for instance the
flag NNI_FLG_LBVAR_0may not be combined with NNI_FLG_UBVAR_0.

919

If NNI_FLG_DYNAMIC is on, also NNI_FLG_DYNVAR, NNI_FLG_XARRAY or both are on. If both are on,
the parameter is an x-array with elements of variable length.

Programming Guide920

Flags

121 Return Codes

The interface functions return the following return codes. The constants are defined in the header
file natni.h. This file is contained in the directory%NATDIR%\%NATVERS%\samples\sysexnni.

MeaningReturn Code

Successful execution.NNI_RC_OK

Invalid parameter number.NNI_RC_ILL_PNUM

Internal error.NNI_RC_INT_ERROR

Data has been truncated during parameter value access.NNI_RC_DATA_TRUNC

Parameter is not an array.NNI_RC_NOT_ARRAY

Parameter is write protected.NNI_RC_WRT_PROT

Memory allocation failed.NNI_RC_NO_MEMORY

Invalid Natural data type.NNI_RC_BAD_FORMAT

Invalid length or precision.NNI_RC_BAD_LENGTH

Invalid dimension count.NNI_RC_BAD_DIM

Invalid x-array bound definition.NNI_RC_BAD_BOUNDS

Array cannot be resized in the requested way.NNI_RC_NOT_RESIZABLE

Index for array dimension 0 out of range.NNI_RC_BAD_INDEX_0

Index for array dimension 1 out of range.NNI_RC_BAD_INDEX_1

Index for array dimension 2 out of range.NNI_RC_BAD_INDEX_2

Requested interface version not supported.NNI_RC_VERSION_ERROR

No Natural session initialized in this interface instance.NNI_RC_NOT_INIT

Function not implemented in this interface version.NNI_RC_NOT_IMPL

Mandatory parameter not specified.NNI_RC_PARM_ERROR

Interface instance is locked by another thread.NNI_RC_LOCKED

Natural startup error occurred. The Natural startup error number
as documented in Natural Startup Errors (which is part of the

rc, where rc < NNI_RC_SERR_OFFSET

921

MeaningReturn Code

Operationsdocumentation) can be determined from the return code
by the following calculation:

startup-error-nr = - (rc - NNI_RC_SERR_OFFSET)

Natural error number.> 0

Programming Guide922

Return Codes

122 Natural Exception Structure

The interface functions that execute Natural code (such as nni_callnat) return a structure named
natural_exception that contains further information about a Natural error that might have oc-
curred. The structure is defined in the header file natni.h. This file is contained in the directory
%NATDIR%\%NATVERS%\samples\sysexnni.

The elements of the structure contain the following information.

ContentElement NameFormat

Natural message number.natMessageNumberint

Natural message text with all replacements.natMessageText[NNI_LEN_TEXT+1]char

Natural library name.natLibrary[NNI_LEN_LIBRARY+1]char

Natural member name.natMember[NNI_LEN_MEMBER+1]char

Natural function, subroutine or class name.natName[NNI_LEN_NAME+1];char

Natural method or property name.natMethod[NNI_LEN_NAME+1];char

Natural code line where the error occurred.int natLine;int

923

924

123 Interface Usage

The interface is typically used in the following way (example: Call a Natural subprogram):

1. Determine the location of the Natural binaries.

2. Load the Natural Native Interface library.

3. Call nni_get_interface to retrieve an interface instance.

4. Call nni_initialize to initialize a Natural session.

5. Call nni_logon to logon to a specific Natural library.

6. Call nni_create_parm or a related function to create a set of parameters.

7. For each parameter
■ Call one of the nni_init_parm functions to initialize the parameter to the correct type.
■ Call one of the nni_put_parm functions to assign a value to the parameter.
■ Call nni_get_parm_info to create the parameter_description structure.

8. Call nni_callnat to call the subprogram.

9. For each modifiable parameter.
■ Call one of the nni_get_parm functions to retrieve the parameter value.

10. Call nni_delete_parm to to free the parameter structures.

11. Call nni_uninitialize to uninitialize the Natural session.

12. Call nni_logoff to return to the previous library.

13. Call nni_free_interface to free the interface instance.

An example C program nnisample.c that shows the usage of the interface is contained in%NAT-
DIR%\%NATVERS%\samples\sysexnni.

925

926

124 Threading Issues

ANatural process onWindows,UNIX andOpenVMSalways contains only one thread that executes
Natural code. Thus in an interactively started Natural session, it can never occur that several
threads try to execute Natural code in parallel. The situation is different when a client program
that runs several threads in parallel uses the Natural Native Interface.

The Natural Native Interface can be used by multithreaded applications. The interface functions
are thread safe. As long as a given thread T is executing one of the interface functions, other threads
of the same process that call one of the interface functions are blocked until T has left the interface
function. Effectively the parallel executing threads of the process are serialized as far as the usage
of the interface functions is concerned. It is not necessary to serialize interface access among the
threads of different processes, because each different process that uses the NNI runs its own
Natural session.

The calling application can also control the multithreaded access to the NNI explicitly. This can
make sense if a threadwants to execute a series of NNI calls without being interrupted by another
thread. To achieve this, the thread calls nni_enter, which lets the threadwait until all other threads
have left the NNI. Then the thread does its work and calls NNI functions at will. After having
finished its work, the thread calls nni_leave to allow other threads to access the NNI.

A multithreaded application that uses the NNI must follow these rules:

■ The functions nni_initialize and nni_uninitializemust be called at least once per process.
■ The function nni_uninitializemust be called on the same thread as the corresponding call to
nni_initialize.

■ The function nni_uninitializemust not be called before the last thread that uses the NNI has
terminated.

927

928

XIV NaturalX

This part describes how to develop and distribute object-based applications.

The following topics are covered:

Introduction to NaturalX

Developing NaturalX Applications

Distributing NaturalX Applications

ActiveX Component SoftwareAG.NaturalX.Utilities

Interface INaturalXUtilities

Interface IRunningObjects

ActiveX Component SoftwareAG.NaturalX.Enumerator

Interface IEnumerator

929

930

125 Introduction to NaturalX

■ Why NaturalX? .. 932
■ Programming Techniques .. 933

931

This chapter contains a short introduction to component-based programming involving the use
of the NaturalX interface and a dedicated set of Natural statements.

Why NaturalX?

Software applications that are based on component architecture offer many advantages over tra-
ditional designs. These include the following:

■ Faster development. Programmers can build applications faster by assembling software from
prebuilt components.

■ Reduced development costs. Having a common set of interfaces for programs means less work
integrating the components into complete solutions.

■ Improvedflexibility. It is easier to customize software for different departmentswithin a company
by just changing some of the components that constitute the application.

■ Reduced maintenance costs. In the case of an upgrade, it is often sufficient to change some of
the components instead of having to modify the entire application.

■ Easier distribution. Components encapsulate data structures and functionality in distributable
units.

Using NaturalX you can create component-based applications.

You can use NaturalX in conjunction with DCOM. This enables you to:

■ allow your components to be accessed by other components,
■ execute these components on local and/or remote servers,
■ access components written in a variety of programming languages across process and machine
boundaries from within Natural programs,

■ provide your existing Natural applications with (quasi) standardized interfaces.

The following scenario illustrates how a company could exploit these advantages. A company
introduces a new sales management system that is based on an application design using compon-
ents. There are numerous data entry components in the application, one for each sales point. But
all of these sales points use a common tax calculation component that runs on a server. If the tax
legislation is changed, then only the tax component has to be updated instead of changing the
data entry components at each site. In addition, the life of the programmers ismade easier because
they do not have to worry about network programming and the integration of components that
are written in different languages.

Programming Guide932

Introduction to NaturalX

Programming Techniques

This section covers the following topics:

■ Object-Based Programming
■ Defining Classes
■ Defining Interfaces
■ Interface Inheritance

Object-Based Programming

NaturalX follows an object-based programming approach. Characteristic for this approach is the
encapsulation of data structures with the corresponding functionality into classes. Encapsulation
is a good basis for easy distribution. Because there are (quasi) standards for the interoperation of
software components on the basis of object models, an object-based approach is also a good basis
for making software components interoperable across program, machine and programming lan-
guage boundaries.

Defining Classes

In an object-based application, each function is considered to be a service that is provided by an
object. Each object belongs to a class. Clients use the services either to perform a business task or
to build even more complex services and to provide these to other clients. Hence the basic step in
creating an application with NaturalX is to define the classes that form the application. In many
cases, the classes simply correspond to the real things that the application in question deals with,
for example, bank accounts, aircraft, shipments etc. There is a wide range of good literature about
object-oriented design, and a number of well-proven methods can be used to identify the classes
in a given business.

The process of defining a class can be broadly broken down into the following steps:

■ Create a Natural module of type class.
■ Specify the name of the class using the DEFINE CLASS statement. This name will be used by the
clients to create objects of that class.

■ Use the OBJECT clause of the DEFINE DATA statement to define how an object of the class will
look internally. Create a local data area that describes the layout of the object with the data area
editor, and assign this data area in the OBJECT clause.

These steps are described in more detail in the section Developing Object-Based Natural Applic-
ations.

933Programming Guide

Introduction to NaturalX

Defining Interfaces

In order to be useful to clients, a class must provide services, which it does through interfaces. An
interface is a collection of methods and properties. A method is a function that an object of the
class can perform when requested by a client. A property is an attribute of an object that a client
can retrieve or change. A client accesses the services by creating an object of the class and using
the methods and properties of its interfaces.

The process of defining an interface can be broadly broken down into the following steps:

■ Use the INTERFACE clause to specify an interface name.
■ Define the properties of the interface with PROPERTY definitions.
■ Define the methods of the interface with METHOD definitions.

These steps are described in more detail in the section Developing Object-Based Natural Applic-
ations.

Simple classes only have one interface, but a class may have more than one interface. This possib-
ility can be used to group methods and properties into one interface that belong to the same
functional aspect of the class and to define different interfaces to handle other functional aspects.
For example, an Employee class could have an interface Administration that contains all of the
methods and properties of the administrative aspects of an employee. This interface could contain
the properties Salary and Department and themethod TransferToDepartment. Another interface
Qualifications could contain the qualification aspects of an employee.

Interface Inheritance

Defining several interfaces for a class is the first step towards using interface inheritance, which
is a more advanced method of designing classes and interfaces. This makes it possible to reuse
the same interface definition in different classes. Assume that there is a class Manager, which is to
be treated in the same way as the class Employeewith respect to qualification, but which is to be
handled differently as far as administration is concerned. This can be achieved by having the
Qualification interface in both classes. This has the advantage that a client that uses the
Qualification interface on a given object does not have to check explicitly whether the object
represents an Employee or a Manager. It can simply use the same methods and properties without
having to know of what class the object is. The properties or methods can even be implemented
in a differentway in both classes provided they are presented through the same interface definition.

The process of using interface inheritance can be broadly broken down into the following steps:

■ Use the INTERFACE statements to define one ormore interfaces in a copycode instead of defining
them directly in the class.

■ The METHOD and PROPERTY definitions in the INTERFACE statement do not need to contain the IS
clause. At this point, you just define the external appearance of the interface without assigning
implementations to the methods and properties.

Programming Guide934

Introduction to NaturalX

■ Use the INTERFACE clause to include the copycode with its interface definition in each class that
will implement the interface.

■ Use the METHOD and PROPERTY statements to assign implementations to themethods andproperties
of the interface in each class that will implement the interface.

935Programming Guide

Introduction to NaturalX

936

126 Developing NaturalX Applications

■ Development Environments ... 938
■ Defining Classes ... 938
■ Using Classes and Objects .. 943

937

This chapter describes how to develop an application by defining and using classes.

Development Environments

■ Developing Classes on Windows Platforms
OnWindows platforms, Natural provides the Class Builder as the tool to develop Natural
classes. The Class Builder shows a Natural class in a structured hierarchical order and allows
the user to manage the class and its components efficiently. If you use the Class Builder, no
knowledge or only a basic knowledge of the syntax elements described below is required.

■ Developing Classes Using SPoD
In aNatural Single Point ofDevelopment (SPoD) environment that includes aMainframe,UNIX
and/or OpenVMS remote development server, you can use the Class Builder available with the
Natural Studio front-end to develop classes on Mainframe, UNIX and/or OpenVMS platforms.
In this case, no knowledge or only a basic knowledge of the syntax elements described below
is required.

■ Developing Classes on Mainframe, UNIX or OpenVMS Platforms
If you do not use SPoD, you develop classes on these platforms using the Natural program ed-
itor. In this case, you should know the syntax of class definition described below.

Defining Classes

When you define a class, youmust create aNatural classmodule, withinwhich you create a DEFINE
CLASS statement. Using the DEFINE CLASS statement, you assign the class an externally usable
name and define its interfaces, methods and properties. You can also assign an object data area
to the class, which describes the layout of an instance of the class. The DEFINE CLASS statement is
also used to supply a global unique identifier to those classes that are to be registered as COM
classes.

This section covers the following topics:

■ Creating a Natural Class Module
■ Specifying a Class
■ Defining an Interface
■ Assigning an Object Data Variable to a Property
■ Assigning a Subprogram to a Method

Programming Guide938

Developing NaturalX Applications

■ Implementing Methods

Creating a Natural Class Module

To create a Natural class module

■ Use the CREATE OBJECT statement to create a Natural object of type Class.

Specifying a Class

The DEFINE CLASS statement defines the name of the class, the interfaces the class supports and
the structure of its objects. For classes that are to be registered as COM classes, it specifies also the
globally unique ID of the class and its activation policy.

To specify a class

■ Use the DEFINE CLASS statement as described in the Statements documentation.

Defining an Interface

Each interface of a class is specified with an INTERFACE statement inside the class definition. An
INTERFACE statement specifies the name of the interface and a number of properties andmethods.
For classes that are to be registered as COM classes, it specifies also the globally inique ID of the
interface.

A class can have one or several interfaces. For each interface, one INTERFACE statement is coded
in the class definition. Each INTERFACE statement contains one or several PROPERTY and METHOD
clauses. Usually the properties and methods contained in one interface are related from either a
technical or a business point of view.

The PROPERTY clause defines the name of a property and assigns a variable from the object data
area to the property. This variable is used to store the value of the property.

The METHOD clause defines the name of a method and assigns a subprogram to the method. This
subprogram is used to implement the method.

To define an interface

■ Use the INTERFACE statement as described in the Statements documentation.

939Programming Guide

Developing NaturalX Applications

Assigning an Object Data Variable to a Property

The PROPERTY statement is used only when several classes are to implement the same interface in
different ways. In this case, the classes share the same interface definition and include it from a
Natural copycode. The PROPERTY statement is then used to assign a variable from the object data
area to a property, outside the interface definition. Like the PROPERTY clause of the INTERFACE
statement, the PROPERTY statement defines the name of a property and assigns a variable from the
object data area to the property. This variable is used to store the value of the property.

To assign an object data variable to a property

■ Use the PROPERTY statement as described in the Statements documentation.

Assigning a Subprogram to a Method

The METHOD statement is used only when several classes are to implement the same interface in
different ways. In this case, the classes share the same interface definition and include it from a
Natural copycode. The METHOD statement is then used to assign a subprogram to themethod, outside
the interface definition. Like the METHOD clause of the INTERFACE statement, the METHOD statement
defines the name of a method and assigns a subprogram to the method. This subprogram is used
to implement the method.

To assign a subprogram to a method

■ Use the METHOD statement as described in the Statements documentation.

Implementing Methods

A method is implemented as a Natural subprogram in the following general form:

DEFINE DATA statement
*
* Implementation code of the method
*
END

For information on the DEFINE DATA statement see the Statements documentation.

All clauses of the DEFINE DATA statement are optional.

It is recommended that you use data areas instead of inline data definitions to ensure data consist-
ency.

If a PARAMETER clause is specified, the method can have parameters and/or a return value.

Programming Guide940

Developing NaturalX Applications

Parameters that are marked BY VALUE in the parameter data area are input parameters of the
method.

Parameters that are not marked BY VALUE are passed “by reference” and are input/output para-
meters. This is the default.

The first parameter that ismarked BY VALUE RESULT is returned as the return value for themethod.
If more than one parameter is marked in this way, the others will be treated as input/output
parameters.

Parameters that are marked OPTIONAL need not be specified when the method is called. They can
be left unspecified by using the nX notation in the SEND METHOD statement.

To make sure that the method subprogram accepts exactly the same parameters as specified in
the corresponding METHOD statement in the class definition, use a parameter data area instead of
inline data definitions. Use the same parameter data area as in the corresponding METHOD statement.

To give the method subprogram access to the object data structure, the OBJECT clause can be spe-
cified. To make sure that the method subprogram can access the object data correctly, use a local
data area instead of inline data definitions. Use the same local data area as specified in the OBJECT
clause of the DEFINE CLASS statement.

The GLOBAL, LOCAL and INDEPENDENT clauses can be used as in any other Natural program.

While technically possible, it is usually not meaningful to use a CONTEXT clause in a method sub-
program.

The following example retrieves data about a given person from a table. The search key is passed
as a BY VALUE parameter. The resulting data is returned through “by reference” parameters (“by
reference” is the default definition). The return value of the method is defined by the specification
BY VALUE RESULT.

941Programming Guide

Developing NaturalX Applications

Programming Guide942

Developing NaturalX Applications

Using Classes and Objects

Objects created in a local Natural session can be accessed by other modules in the same Natural
session.

Objects created in other processes or on remote machines can be accessed via DCOM.

In both cases the rules for accessing and using classes and their objects are the same.

The statement CREATE OBJECT is used to create an object (also known as an instance) of a given
class.

To reference objects in Natural programs, object handles have to be defined in the DEFINE DATA
statement. Methods of an object are invoked with the statement SEND METHOD. Objects can have
properties, which can be accessed using the normal assignment syntax.

Note: In order to use a NaturalX class via DCOM, the class must first be registered.

These steps are described below:

■ Defining Object Handles
■ Creating an Instance of a Class
■ Invoking a Particular Method of an Object
■ Accessing Properties
■ Sample Application

Defining Object Handles

To reference objects in Natural programs, object handles have to be defined as follows in the
DEFINE DATA statement:

DEFINE DATA

level-handle-name [(array-definition)] HANDLE OF OBJECT

...

END-DEFINE

Example:

943Programming Guide

Developing NaturalX Applications

DEFINE DATA LOCAL
1 #MYOBJ1 HANDLE OF OBJECT
1 #MYOBJ2 (1:5) HANDLE OF OBJECT
END-DEFINE

Creating an Instance of a Class

To create an instance of a class

■ Use the CREATE OBJECT statement as described in the Statements documentation.

Invoking a Particular Method of an Object

To invoke a particular method of an object

■ Use the SEND METHOD statement as described in the Statements documentation.

Accessing Properties

Properties can be accessed using the ASSIGN (or COMPUTE) statement as follows:

ASSIGN operand1.property-name = operand2

ASSIGN operand2 = operand1.property-name

Object Handle - operand1

operand1must be defined as an object handle and identifies the object whose property is to be
accessed. The object must already exist.

operand2

As operand2, you specify an operandwhose formatmust be data transfer-compatible to the format
of the property. Please refer to the data transfer compatibility rules for further information.

If the object is to be accessed via DCOM, you must also take into account the rules for data type
conversionwhich are outlined in the sectionUsing Type Information in theOperationsdocumentation.

property-name

The name of a property of the object.

If the property name conforms to Natural identifier syntax, it can be specified as follows

Programming Guide944

Developing NaturalX Applications

create object #o1 of class "Employee"
#age := #o1.Age

If the property name does not conform to Natural identifier syntax, it must be enclosed in angle
brackets:

create object #o1 of class "Employee"
#salary := #o1.<<%Salary>>

The property name can also be qualified with an interface name. This is necessary if the object has
more than one interface containing a property with the same name. In this case, the qualified
property name must be enclosed in angle brackets:

create object #o1 of class "Employee"
#age := #o1.<<PersonalData.Age>>

Example:

define data
local
1 #i (i2)
1 #o handle of object
1 #p (5) handle of object
1 #q (5) handle of object
1 #salary (p7.2)
1 #history (p7.2/1:10)
end-define
* ...
* Code omitted for brevity.
* ...
* Set/Read the Salary property of the object #o.
#o.Salary := #salary
#salary := #o.Salary
* Set/Read the Salary property of
* the second object of the array #p.
#p.Salary(2) := #salary
#salary := #p.Salary(2)
*
* Set/Read the SalaryHistory property of the object #o.
#o.SalaryHistory := #history(1:10)
#history(1:10) := #o.SalaryHistory
* Set/Read the SalaryHistory property of
* the second object of the array #p.
#p.SalaryHistory(2) := #history(1:10)
#history(1:10) := #p.SalaryHistory(2)
*

945Programming Guide

Developing NaturalX Applications

* Set the Salary property of each object in #p to the same value.
#p.Salary(*) := #salary
* Set the SalaryHistory property of each object in #p
* to the same value.
#p.SalaryHistory(*) := #history(1:10)
*
* Set the Salary property of each object in #p to the value
* of the Salary property of the corresponding object in #q.
#p.Salary(*) := #q.Salary(*)
* Set the SalaryHistory property of each object in #p to the value
* of the SalaryHistory property of the corresponding object in #q.
#p.SalaryHistory(*) := #q.SalaryHistory(*)
*
end

In order to use arrays of object handles and properties that have arrays as values correctly, it is
important to know the following:

A property of an occurrence of an array of object handles is addressed with the following index
notation:

#p.Salary(2) := #salary

A property that has an array as value is always accessed as a whole. Therefore no index notation
is necessary with the property name:

#o.SalaryHistory := #history(1:10)

A property of an occurrence of an array of object handles which has an array as value is therefore
addressed as follows:

#p.SalaryHistory(2) := #history(1:10)

Sample Application

An example application is provided in the libraries SYSEXCOM and SYSEXCOC. See the A-
README members in these libraries for information about how to run the example.

Programming Guide946

Developing NaturalX Applications

127 Distributing NaturalX Applications

■ General ... 948
■ Globally Unique Identifiers - GUIDs ... 950

947

An application consisting of NaturalX classes can be distributed across several processes and
machines using DCOM.

See also Using Statements and Commands in a NaturalX Server Environment in the Operations docu-
mentation.

General

Using NaturalX, you can make Natural classes and their services available to local and remote
clients, thus creating distributed applications. Local clients are processes that run on the same
machine as a given NaturalX server, and remote clients are processes that run on a different ma-
chine.

In order to distribute applications, a widely used distributed object technology is used - the Mi-
crosoft Distributed Component Object Model (DCOM). When you register a Natural class to
DCOM, its interfaces are presented to clients in a quasi-standardized fashion as dynamic COM
interfaces, which are also known as dispatch interfaces. These interfaces can be easily addressed
by many programming languages including Visual Basic, Java, C++ and, of course, Natural.

There are several points that must be taken into consideration when organizing the distribution
of a NaturalX application. Each of these points is discussed in more detail in this section and in
the Operations documentation.

■ Determine whether each class should be internal, external or local (see the section Internal, Ex-
ternal and Local Classes).

■ Globally unique IDs (GUIDs) must be assigned to the internal and external classes and their
interfaces in order to be able to address them uniquely in the network (see the sectionGlobally
Unique Idenitfiers (GUIDs)).

■ You can define the activation policy for each class in order to control the conditions underwhich
DCOM activates it (see section Activation Policies in the Operations documentation).

■ In order to organize classes to applications, you can define NaturalX servers and assign the
classes to them (see the section NaturalX Servers in the Operations documentation).

■ Classes must be registered to make them known to DCOM (see section Registration in theOper-
ations documentation).

■ You can configure an application in order to further control its behavior (see the sectionsConfig-
uration Overview and DCOM Configuration on Windows in the Operations documentation).

Programming Guide948

Distributing NaturalX Applications

Internal, External and Local Classes

It is important to distinguish between classes for internal use, classes for external use and those
for local use only.

Internal Classes

Objects (instances) of internal classes can only be created in the client process.

Internal classes have the following features:

■ Access to client session-dependent resources such as files and system variables.
■ Can run within the client transaction.
■ Can be debugged using the Natural debugger (local debugging).

External Classes

Objects (instances) of external classes can be created in a different process or on a differentmachine.
If the client process is simultaneously a server for the class, they can also be created in the client
process.

External classes have the following features:

■ No access to client session-dependent resources such as stacks, files and system variables.
■ Do not run within the client transaction.
■ Can be used by remote nodes.
■ Can be used by various clients using a variety of languages such as Natural, Java, Visual Basic,
C/C++, etc.

■ Can be debugged with the Natural debugger (remote debugging).

Local Classes

Local classes are classes, which are executed in local execution mode. Natural executes a class
locally (within the Natural session) if it is either not registered or if DCOM is not available.

Local classes have the following features:

■ Can be used even if DCOM is not available.
■ Need not be registered with DCOM.
■ Cannot be used from outside the client process.

949Programming Guide

Distributing NaturalX Applications

Globally Unique Identifiers - GUIDs

DCOM uses global unique identifiers (GUIDs) - 128-bit integers that are virtually guaranteed to
be unique throughout the world - to identify every interface and every class. This helps to ensure
that server components can be located and to prevent clients connecting to an object accidentally.

If a class is to be registered to DCOM, every interface defined in a Natural class and the class itself
must be associated with such a globally unique ID.

Once a globally unique ID has been assigned to an interface or a class, the ID must never be
changed.

Using the Class Builder

Natural provides the Class Builder as the tool to develop Natural classes. The Class Builder auto-
matically assigns a GUID to every class and interface.

Programming Guide950

Distributing NaturalX Applications

128 ActiveX Component SoftwareAG.NaturalX.Utilities

■ Purpose ... 952
■ Interfaces ... 954

951

Purpose

The ActiveX component SoftwareAG.NaturalX.Utilities provides a number of methods that
are useful in the context of NaturalX and Natural Studio plug-ins.

As an example, the general usage of the component in a Natural application is in the following
way.

define data
local
1 #util handle of object
1 #studio handle of object
end-define
*
* First create an instance of the class SoftwareAG.NaturalX.Utilities.
create object #util of 'SoftwareAG.NaturalX.Utilities.4'
if #util eq null-handle

escape routine
end-if
*
* Now call the individual methods of the component, for instance
* to get access to the Natural Studio Automation Interface.
*
send 'GetThisNaturalStudio' to #util return #studio
if #studio eq null-handle

escape routine
end-if
*
end

This examplewill run successfully only if it is executed in aNatural Studio session. If it is executed
in a Natural runtime session or under the Natural debugger, the call to GetThisNaturalStudio
will return NULL-HANDLE. This is because only a Natural Studio session has an INatAutoStudio
interface. If the program is running under the Natural debugger, it is effectively executed in a
Natural runtime session outside Natural Studio; therefore, the call to GetThisNaturalStudiowill
also return NULL-HANDLE.

Tomake this example run also under theNatural debugger,modify it as follows, in order to retrieve
the INatAutoStudio interface of the Natural Studio session:

Programming Guide952

ActiveX Component SoftwareAG.NaturalX.Utilities

define data
local
1 #util handle of object
1 #studio handle of object
1 #rot handle of object
1 #ro (a) dynamic
end-define
*
* First create an instance of the class SoftwareAG.NaturalX.Utilities.
create object #util of 'SoftwareAG.NaturalX.Utilities.4'
if #util eq null-handle

escape routine
end-if
*
* Now call the individual methods of the component, for instance
* to get access to the Natural Studio Automation Interface.
*
send 'GetThisNaturalStudio' to #util return #studio
if #studio eq null-handle
* We might be in a debugging session.
* Try to locate the Natural Studio session
* from which the debugger has been started.
* Retrieve the running objects table.

send 'GetRunningObjects' to #util return #rot
if #rot eq null-handle

escape routine
end-if

* Iterate across the running objects table.
repeat

send 'Next' to #rot return #ro
if #ro eq ' '
escape bottom

end-if
* If we hit a running Natural Studio session, we access it.

if substring(#ro,1,13) eq 'NaturalStudio'
send 'BindToObject' to #util
with #ro (ad=o) return #studio
escape bottom

end-if
end-repeat

end-if
*
end

953Programming Guide

ActiveX Component SoftwareAG.NaturalX.Utilities

Interfaces

The individual interfaces, their methods and their usage are described in detail in separate docu-
ments.

The component provides the following interfaces:

■ Interface INaturalXUtilities

■ Interface IRunningObjects

Programming Guide954

ActiveX Component SoftwareAG.NaturalX.Utilities

129 Interface INaturalXUtilities

■ Purpose ... 956
■ Methods .. 956

955

Purpose

This is themain interface of the component SoftwareAG.NaturalX.Utilities. It is returnedwhen
a new instance of the component is created.

Example:

define data
local
1 #util handle of object
end-define
*
* Create an instance of the class SoftwareAG.NaturalX.Utilities.
create object #util of 'SoftwareAG.NaturalX.Utilities.4'
if #util eq null-handle

escape routine
end-if
*
end

After successful execution of the CREATE OBJECT statement, the variable #util contains an interface
of the type INaturalXUtilities.

Methods

The following methods are available:

■ GetThisNaturalStudio
■ GetRunningObjects
■ BindToObject

GetThisNaturalStudio

Retrieves the root interface INatAutoStudio of the current Natural Studio session. After having
retrieved this interface, the client has access to Natural Studio functionality as it is provided by
the Natural Studio Automation interface.

Programming Guide956

Interface INaturalXUtilities

Parameters

RemarkVariant TypeNatural TypeName

VT_DISPATCH (INatAutoStudio)HANDLE OF OBJECTReturn value

Return Value
The root interface INatAutoStudio of the current Natural Studio session. NULL-HANDLE, if the
method is called in a Natural session that is not a Natural Studio session.

GetRunningObjects

Returns an interface IRunningObjects that is used to iterate across the names of the objects con-
tained in the running objects table (ROT).

Parameters

RemarkVariant TypeNatural TypeName

VT_DISPATCH (IRunningObjects)HANDLE OF OBJECTReturn value

Return Value
An interface IRunningObjects that is used to iterate across the names of the objects contained
in the running objects table (ROT).

BindToObject

Returns an interface to an object that is identified by a specific kind of name, a so-called “moniker”
(Windows terminology). See Interface IRunningObjects for the necessary information about
monikers.

Parameters

RemarkVariant TypeNatural TypeName

VT_DISPATCHHANDLE OF OBJECTReturn value

By valueVT_BSTRAName

Return Value
An interface to the object identified by the name specified in Name.

Name
Used to identify a specific object by name. The name must be from one of the following cat-
egories:
■ A file moniker, for instance c:\MyDoc.doc.
■ AnURLmoniker, for instance http://www.myorg.org/MyDoc.docor ftp://ftp.myorg.org/MyDoc.doc.

957Programming Guide

Interface INaturalXUtilities

■ A name of an object contained in the ROT. The names of the objects in the ROT can be re-
trieved using the interface IRunningObjects.

If a file or URL moniker is specified, the corresponding object is loaded into the application
that is registered for the corresponding file extension and an interface pointer (object handle)
to the object is returned. If the object is already loaded into the application, an interface
pointer (object handle) to the already running instance is returned.

Example:

define data
local
1 #util handle of object
1 #obj handle of object
1 #content handle of object
1 #word handle of object
1 #doc (a) dynamic
1 #text (a) dynamic
end-define
*
* Create an instance of the utilities class.
create object #util of 'SoftwareAG.NaturalX.Utilities.4'
if #util eq null-handle

escape routine
end-if
*
* Load a document into Microsoft Word.
* The option (ad=o) is essential, because the
* method expects a by value parameter.
#doc := 'c:\word.doc'
send 'BindToObject' to #util with #doc (ad=o) return #obj
if #obj eq null-handle

escape routine
end-if
*
* Access the content of the document.
#content := #obj.Content
#text := #content.Text
write 'Content:' #text (al=60)
*
* Close Microsoft Word.
#word := #obj.Application
send 'Quit' to #word
*
end

Programming Guide958

Interface INaturalXUtilities

130 Interface IRunningObjects

■ Purpose ... 960
■ Methods .. 962

959

Purpose

This interface is an iterator across the names of the objects that are contained in the running objects
table (ROT). The ROT is a system table that is provided and maintained by Windows. It allows
applications to make the objects or documents on which the user is currently working available
to other applications.

Each object contained in this table is identified by a so-called “moniker”. Amoniker is a name that
follows a specific syntax. For instance, there are file monikers that identify a file in the file system.
A file moniker in its readable form is nothing else than a file name with full path name, like
c:\MyDoc.doc. As another example, there are URLmonikers that identify a resource in the internet
and the protocol to be used to access it. AURLmoniker in its readable form is just a commonURL,
like http://www.myorg.org/MyDoc.doc.

An application that wants to access an object in the ROT specifies the moniker that identifies the
object and receives an interface pointer (an object handle) to the object.

Applications often enter the object or document on which the user is currently working in the
ROT.

Example

If you open the document c:\MyDoc.doc in Microsoft Word, Microsoft Word will enter the name
of this document (that is: c:\MyDoc.doc) and an interface pointer to this document into the ROT.

When a Natural Studio session is started, Natural Studio enters the Automation root interface
INatAutoStudio of this session into the ROT. The interface is identified by a name built as follows:

NaturalStudio/<version>/<userid>/>processid>

Example

NaturalStudio/n.n/SCULLY/42

where n.n is the product version.

By specifying this name, other applications can retrieve the Automation root interface in the ROT
and use it to access the Natural Studio session.

The interface IRunningObjects allows iterating across the names of all objects currently contained
in the ROT. The found names can then be used in themethod INaturalXUtilities::BindToObject
to retrieve an interface pointer (object handle) to the corresponding object.

Programming Guide960

Interface IRunningObjects

Example

In the following sample program, the characters n.n stand for theNatural product version. Please,
replace these characters by the current Natural product version if you want to run the sample
program.

define data
local
1 #util handle of object
1 #studio handle of object
1 #objects handle of object
1 #progs handle of object
1 #prog handle of object
1 #rot handle of object
1 #ro (a) dynamic
end-define
*
* Create an instance of the Utilities class.
create object #util of 'SoftwareAG.NaturalX.Utilities.4'
if #util eq null-handle

escape routine
end-if
*
* Retrieve the running objects table.
send 'GetRunningObjects' to #util return #rot
if #rot eq null-handle

escape routine
end-if
*
* Iterate across the running objects table.
repeat

send 'Next' to #rot return #ro
if #ro eq ' '

escape bottom
end-if

* If we hit a running Natural Studio session,...
if substring(#ro,1,17) eq 'NaturalStudio/n.n'

* ...we access it,...
send 'BindToObject' to #util
with #ro (ad=o) return #studio

* ...open a Program Editor in that session...
#objects := #studio.objects
#progs := #objects.programs
send 'Add' to #progs
with 1009 return #prog

* ...and display the identifier of this session in the editor.
compress 'This is' #ro to #ro
#prog.source := #ro

end-if
end-repeat

961Programming Guide

Interface IRunningObjects

*
end

Methods

The following methods are available:

■ Next
■ Reset

Next

Returns the name of the next object in the ROT. The name can then be used in the method
INaturalXUtilities::BindToObject to retrieve an interface pointer (object handle) to the corres-
ponding object.

Parameters

RemarkVariant TypeNatural TypeName

VT_BSTRAReturn value

Return Value
The name of the next object in the ROT.

Reset

Resets the iterator to its initial state. After having called Reset, a subsequent call to Next returns
the name of the first object in the ROT.

Programming Guide962

Interface IRunningObjects

131 ActiveXComponent SoftwareAG.NaturalX.Enumerator

■ Purpose ... 964
■ Interface .. 965

963

Purpose

The ActiveX component SoftwareAG.NaturalX.Enumerator provides a general enumerator class
that can be used to iterate across collections of Automation objects.

As an example, the general usage of the component in a Natural application is in the following
way. A full working example is the program UTIL04 in the library SYSEXPG.

define data
local
1 #enum handle of object
1 #files handle of object
1 #file handle of object
end-define
*
* First create an instance of the class SoftwareAG.NaturalX.Enumerator.
create object #enum of 'SoftwareAG.NaturalX.Enumerator.4'
if #enum eq null-handle

escape routine
end-if
*
* Have a collection of Automation objects
* in the variable #files.
* Code omitted.
* ...
*
* Attach the collection to the enumerator.
send 'Attach' to #enum with #files (ad=o)
*
* Now iterate across the collection.
send 'Next' to #enum return #file
repeat while #file ne null-handle
* Process the item.
* Code omitted.
* ...
* Get the next item.

send 'Next' to #enum return #file
end-repeat
*
end

Programming Guide964

ActiveX Component SoftwareAG.NaturalX.Enumerator

Interface

The interface of this component, its methods and their usage are described in detail in a separate
document.

The component provides the following interface:

■ Interface IEnumerator

965Programming Guide

ActiveX Component SoftwareAG.NaturalX.Enumerator

966

132 Interface IEnumerator

■ Purpose ... 968
■ Methods .. 968

967

Purpose

This is the main interface of the component SoftwareAG.NaturalX.Enumerator. It is returned
when a new instance of the component is created.

define data
local
1 #enum handle of object
end-define
*
* Create an instance of the class SoftwareAG.NaturalX.Enumerator.
create object #enum of 'SoftwareAG.NaturalX.Enumerator.4'
if #enum eq null-handle

escape routine
end-if
*
end

After successful execution of the CREATE OBJECT statement, the variable #enum contains an interface
of the type IEnumerator.

Methods

The following methods are available:

■ Attach
■ Reset
■ Next

Attach

Attaches a collection to the enumerator. A previously attached collection is then automatically
detached. After having attached a collection, the enumerator can be used to enumerate the items
contained in that collection.

Programming Guide968

Interface IEnumerator

Parameters

RemarkVariant TypeNatural TypeName

By valueVT_DISPATCHHANDLE OF OBJECTCollection

Collection
A collection of Automation objects.

Reset

Resets the enumerator to its initial state. A subsequent call to the method Next returns the first
item in the collection.

Next

Returns the next item in the collection. If there is no next item, NULL-HANDLE is returned. To start
the enumeration over, the method Reset can be called.

Parameters

RemarkVariant TypeNatural TypeName

VT_DISPATCHHANDLE OF OBJECTReturn value

Return value
An interface to the next item in the collection.

969Programming Guide

Interface IEnumerator

970

XV
■ 133 Natural Reserved Keywords ... 973
■ 134 Referenced Example Programs .. 991

971

972

133 Natural Reserved Keywords

■ Alphabetical List of Natural Reserved Keywords .. 974
■ Performing a Check for Natural Reserved Keywords ... 989

973

This chapter contains a list of all keywords that are reserved in theNatural programming language.

Important: To avoid any naming conflicts, you are strongly recommended not to useNatural
reserved keywords as names for variables.

Alphabetical List of Natural Reserved Keywords

The following list is an overview of Natural reserved keywords and is for general information
only. In case of doubt, use the keyword check function of the compiler.

[A | B | C | D | E | F | G | H | I | J | K | L |M | N | O | P | Q | R | S | T | U | V |W | X | Y
| Z]

- A -

ABS
ABSOLUTE
ACCEPT
ACTION
ACTIVATION
AD
ADD
AFTER
AL
ALARM
ALL
ALPHA
ALPHABETICALLY
AND
ANY
APPL
APPLICATION
ARRAY
AS
ASC
ASCENDING
ASSIGN
ASSIGNING
ASYNC
AT
ATN
ATT
ATTRIBUTES
AUTH

Programming Guide974

Natural Reserved Keywords

AUTHORIZATION
AUTO
AVER
AVG

- B -

BACKOUT
BACKWARD
BASE
BEFORE
BETWEEN
BLOCK
BOT
BOTTOM
BREAK
BROWSE
BUT
BX
BY

- C -

CABINET
CALL
CALLDBPROC
CALLING
CALLNAT
CAP
CAPTIONED
CASE
CC
CD
CDID
CF
CHAR
CHARLENGTH
CHARPOSITION
CHILD
CIPH
CIPHER
CLASS
CLOSE
CLR
COALESCE
CODEPAGE

975Programming Guide

Natural Reserved Keywords

COMMAND
COMMIT
COMPOSE
COMPRESS
COMPUTE
CONCAT
CONDITION
CONST
CONSTANT
CONTEXT
CONTROL
CONVERSATION
COPIES
COPY
COS
COUNT
COUPLED
CS
CURRENT
CURSOR
CV

- D -

DATA
DATAAREA
DATE
DAY
DAYS
DC
DECIDE
DECIMAL
DEFINE
DEFINITION
DELETE
DELIMITED
DELIMITER
DELIMITERS
DESC
DESCENDING
DIALOG
DIALOG-ID
DIGITS
DIRECTION
DISABLED

Programming Guide976

Natural Reserved Keywords

DISP
DISPLAY
DISTINCT
DIVIDE
DL
DLOGOFF
DLOGON
DNATIVE
DNRET
DO
DOCUMENT
DOEND
DOWNLOAD
DU
DY
DYNAMIC

- E -

EDITED
EJ
EJECT
ELSE
EM
ENCODED
END
END-ALL
END-BEFORE
END-BREAK
END-BROWSE
END-CLASS
END-DECIDE
END-DEFINE
END-ENDDATA
END-ENDFILE
END-ENDPAGE
END-ERROR
END-FILE
END-FIND
END-FOR
END-FUNCTION
END-HISTOGRAM
ENDHOC
END-IF
END-INTERFACE

977Programming Guide

Natural Reserved Keywords

END-LOOP
END-METHOD
END-NOREC
END-PARAMETERS
END-PARSE
END-PROCESS
END-PROPERTY
END-PROTOTYPE
END-READ
END-REPEAT
END-RESULT
END-SELECT
END-SORT
END-START
END-SUBROUTINE
END-TOPPAGE
END-WORK
ENDING
ENTER
ENTIRE
ENTR
EQ
EQUAL
ERASE
ERROR
ERRORS
ES
ESCAPE
EVEN
EVENT
EVERY
EXAMINE
EXCEPT
EXISTS
EXIT
EXP
EXPAND
EXPORT
EXTERNAL
EXTRACTING

- F -

FALSE
FC

Programming Guide978

Natural Reserved Keywords

FETCH
FIELD
FIELDS
FILE
FILL
FILLER
FINAL
FIND
FIRST
FL
FLOAT
FOR
FORM
FORMAT
FORMATTED
FORMATTING
FORMS
FORWARD
FOUND
FRAC
FRAMED
FROM
FS
FULL
FUNCTION
FUNCTIONS

- G -

GC
GE
GEN
GENERATED
GET
GFID
GIVE
GIVING
GLOBAL
GLOBALS
GREATER
GT
GUI

- H -

HANDLE

979Programming Guide

Natural Reserved Keywords

HAVING
HC
HD
HE
HEADER
HEX
HISTOGRAM
HOLD
HORIZ
HORIZONTALLY
HOUR
HOURS
HW

- I -

IA
IC
ID
IDENTICAL
IF
IGNORE
IM
IMMEDIATE
IMPORT
IN
INC
INCCONT
INCDIC
INCDIR
INCLUDE
INCLUDED
INCLUDING
INCMAC
INDEPENDENT
INDEX
INDEXED
INDICATOR
INIT
INITIAL
INNER
INPUT
INSENSITIVE
INSERT
INT

Programming Guide980

Natural Reserved Keywords

INTEGER
INTERCEPTED
INTERFACE
INTERFACE4
INTERMEDIATE
INTERSECT
INTO
INVERTED
INVESTIGATE
IP
IS
ISN

- J -

JOIN
JUST
JUSTIFIED

- K -

KD
KEEP
KEY
KEYS

- L -

LANGUAGE
LAST
LC
LE
LEAVE
LEAVING
LEFT
LENGTH
LESS
LEVEL
LIB
LIBPW
LIBRARY
LIBRARY-PASSWORD
LIKE
LIMIT
LINDICATOR
LINES

981Programming Guide

Natural Reserved Keywords

LISTED
LOCAL
LOCKS
LOG
LOG-LS
LOG-PS
LOGICAL
LOOP
LOWER
LS
LT

- M -

MACROAREA
MAP
MARK
MASK
MAX
MC
MCG
MESSAGES
METHOD
MGID
MICROSECOND
MIN
MINUTE
MODAL
MODIFIED
MODULE
MONTH
MORE
MOVE
MOVING
MP
MS
MT
MULTI-FETCH
MULTIPLY

- N -

NAME
NAMED
NAMESPACE
NATIVE

Programming Guide982

Natural Reserved Keywords

NAVER
NC
NCOUNT
NE
NEWPAGE
NL
NMIN
NO
NODE
NOHDR
NONE
NORMALIZE
NORMALIZED
NOT
NOTIT
NOTITLE
NULL
NULL-HANDLE
NUMBER
NUMERIC

- O -

OBJECT
OBTAIN
OCCURRENCES
OF
OFF
OFFSET
OLD
ON
ONCE
ONLY
OPEN
OPTIMIZE
OPTIONAL
OPTIONS
OR
ORDER
OUTER
OUTPUT

- P -

PACKAGESET
PAGE

983Programming Guide

Natural Reserved Keywords

PARAMETER
PARAMETERS
PARENT
PARSE
PASS
PASSW
PASSWORD
PATH
PATTERN
PA1
PA2
PA3
PC
PD
PEN
PERFORM
PFn (n = 1 to 9)
PFnn(nn = 10 to 99)
PGDN
PGUP
PGM
PHYSICAL
PM
POLICY
POS
POSITION
PREFIX
PRINT
PRINTER
PROCESS
PROCESSING
PROFILE
PROGRAM
PROPERTY
PROTOTYPE
PRTY
PS
PT
PW

- Q -

QUARTER
QUERYNO

Programming Guide984

Natural Reserved Keywords

- R -

RD
READ
READONLY
REC
RECORD
RECORDS
RECURSIVELY
REDEFINE
REDUCE
REFERENCED
REFERENCING
REINPUT
REJECT
REL
RELATION
RELATIONSHIP
RELEASE
REMAINDER
REPEAT
REPLACE
REPORT
REPORTER
REPOSITION
REQUEST
REQUIRED
RESET
RESETTING
RESIZE
RESPONSE
RESTORE
RESULT
RET
RETAIN
RETAINED
RETRY
RETURN
RETURNS
REVERSED
RG
RIGHT
ROLLBACK
ROUNDED
ROUTINE

985Programming Guide

Natural Reserved Keywords

ROW
ROWS
RR
RS
RULEVAR
RUN

- S -

SA
SAME
SCAN
SCREEN
SCROLL
SECOND
SELECT
SELECTION
SEND
SENSITIVE
SEPARATE
SEQUENCE
SERVER
SET
SETS
SETTIME
SF
SG
SGN
SHORT
SHOW
SIN
SINGLE
SIZE
SKIP
SL
SM
SOME
SORT
SORTED
SORTKEY
SOUND
SPACE
SPECIFIED
SQL
SQLID

Programming Guide986

Natural Reserved Keywords

SQRT
STACK
START
STARTING
STATEMENT
STATIC
STATUS
STEP
STOP
STORE
SUBPROGRAM
SUBPROGRAMS
SUBROUTINE
SUBSTR
SUBSTRING
SUBTRACT
SUM
SUPPRESS
SUPPRESSED
SUSPEND
SYMBOL
SYNC
SYSTEM

- T -

TAN
TC
TERMINATE
TEXT
TEXTAREA
TEXTVARIABLE
THAN
THEM
THEN
THRU
TIME
TIMESTAMP
TIMEZONE
TITLE
TO
TOP
TOTAL
TP
TR

987Programming Guide

Natural Reserved Keywords

TRAILER
TRANSACTION
TRANSFER
TRANSLATE
TREQ
TRUE
TS
TYPE
TYPES

- U -

UC
UNDERLINED
UNION
UNIQUE
UNKNOWN
UNTIL
UPDATE
UPLOAD
UPPER
UR
USED
USER
USING

- V -

VAL
VALUE
VALUES
VARGRAPHIC
VARIABLE
VARIABLES
VERT
VERTICALLY
VIA
VIEW

- W -

WH
WHEN
WHERE
WHILE
WINDOW

Programming Guide988

Natural Reserved Keywords

WITH
WORK
WRITE
WITH_CTE

- X -

XML

- Y -

YEAR

- Z -

ZD
ZP

Performing a Check for Natural Reserved Keywords

There is a subset ofNatural keywordswhich,whenused as names for variables,would be ambigu-
ous. These are in particular keywordswhich identifyNatural statements (ADD, FIND, etc.) or system
functions (ABS, SUM, etc.). If you use such a keyword as the name of a variable, you cannot use this
variable in the context of optional operands (with CALLNAT, WRITE, etc.).

Example:

DEFINE DATA LOCAL
1 ADD (A10)
END-DEFINE
CALLNAT 'MYSUB' ADD 4 /* ADD is regarded as ADD statement
END

To check variable names in a programming object against such Natural reserved keywords, you
can use theNatural profile parameter KCHECK or the KCHECK option of the COMPOPT system command.

The following table contains a list of Natural reserved keywords that are checked by KC or KCHECK.

989Programming Guide

Natural Reserved Keywords

T - WR - SG - PE - FA - D

TANREADGETEJECTA-AVER
TERMINATEREDEFINEHISTOGRAMELSEABS
TOPREDUCEIFENDACCEPT
TOTALREINPUTIGNOREEND-ALLADD
TRANSFERREJECTIMPORTEND-BEFOREALL
TRUERELEASEINCCONTEND-BREAKA-MAX
UNTILREPEATINCDICEND-BROWSEA-MIN
UPDATEREQUESTINCDIREND-DECIDEA-NAVER
UPLOADRESETINCLUDEEND-ENDDATAA-NCOUNT
VALRESIZEINCMACEND-DECIDEA-NMIN
VALUERESTOREINPUTEND-ENDDATAANY
VALUESRETINSERTEND-ENDFILEASSIGN
WASTERETRYINTEND-ENDPAGEA-SUM
WHENRETURNINVESTIGATEEND-ERRORAT
WHILEROLLBACKLIMITEND-FILEATN
WITH_CTERULEVARLOGEND-FINDAVER
WRITERUNLOOPEND-FORBACKOUT

SELECTMAPEND-HISTOGRAMBEFORE
SENDMAXENDHOCBREAK
SEPARATEMINEND-IFBROWSE
SETMOVEEND-LOOPCALL
SETTIMEMULTIPLYEND-NORECCALLDBPROC
SGNNAVEREND-PARSECALLNAT
SHOWNCOUNTEND-PROCESSCLOSE
SINNEWPAGEEND-READCOMMIT
SKIPNMINEND-REPEATCOMPOSE
SORTNONEEND-RESULTCOMPRESS
SORTKEYNULL-HANDLEEND-SELECTCOMPUTE
SQRTOBTAINEND-SORTCOPY
STACKOLDEND-STARTCOS
STARTONEND-SUBROUTINECOUNT
STOPOPENEND-TOPPAGECREATE
STOREOPTIONSEND-WORKDECIDE
SUBSTRPARSEENTIREDEFINE
SUBSTRINGPASSWESCAPEDELETE
SUBTRACTPERFORMEXAMINEDISPLAY
SUMPOSEXPDIVIDE
SUSPENDPRINTEXPANDDLOGOFF

PROCESSEXPORTDLOGON
FALSEDNATIVE
FETCHDO
FINDDOEND
FORDOWNLOAD
FORMAT
FRAC

By default, no keyword check is performed.

Programming Guide990

Natural Reserved Keywords

134 Referenced Example Programs

■ READ Statement ... 992
■ FIND Statement .. 993
■ Nested READ and FIND Statements ... 997
■ ACCEPT and REJECT Statements ... 999
■ AT START OF DATA and AT END OF DATA Statements .. 1001
■ DISPLAY and WRITE Statements ... 1004
■ DISPLAY Statement ... 1008
■ Column Headers .. 1009
■ Field-Output-Relevant Parameters .. 1011
■ Edit Masks .. 1017
■ DISPLAY VERT with WRITE Statement .. 1020
■ AT BREAK Statement ... 1021
■ COMPUTE, MOVE and COMPRESS Statements ... 1022
■ System Variables ... 1025
■ System Functions .. 1028

991

This chapter contains some additional example programs that are referenced in the Programming
Guide.

READ Statement

The following example is referenced in the section Statements for Database Access.

READX03 - READ statement (with LOGICAL clause)

** Example 'READX03': READ (with LOGICAL clause)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 PERSONNEL-ID
2 JOB-TITLE

END-DEFINE
*
LIMIT 8
READ EMPLOY-VIEW LOGICAL BY PERSONNEL-ID

DISPLAY NOTITLE *ISN NAME
'PERS-NO' PERSONNEL-ID
'POSITION' JOB-TITLE

END-READ
END

Output of Program READX03:

ISN NAME PERS-NO POSITION
----------- -------------------- -------- -------------------------

204 SCHINDLER 11100102 PROGRAMMIERER
205 SCHIRM 11100105 SYSTEMPROGRAMMIERER
206 SCHMITT 11100106 OPERATOR
207 SCHMIDT 11100107 SEKRETAERIN
208 SCHNEIDER 11100108 SACHBEARBEITER
209 SCHNEIDER 11100109 SEKRETAERIN
210 BUNGERT 11100110 SYSTEMPROGRAMMIERER
211 THIELE 11100111 SEKRETAERIN

Programming Guide992

Referenced Example Programs

FIND Statement

The following examples are referenced in the section Statements for Database Access.

FINDX07 - FIND statement (with several clauses)

** Example 'FINDX07': FIND (with several clauses)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 SALARY (1)
2 CURR-CODE (1)

END-DEFINE
*
FIND EMPLOY-VIEW WITH PHONETIC-NAME = 'JONES' OR = 'BECKR'

AND CITY = 'BOSTON' THRU 'NEW YORK'
BUT NOT 'CHAPEL HILL'
SORTED BY NAME
WHERE SALARY (1) < 28000

DISPLAY NOTITLE NAME FIRST-NAME CITY SALARY (1)
END-FIND
END

Output of Program FINDX07:

NAME FIRST-NAME CITY ANNUAL
SALARY

-------------------- -------------------- -------------------- ----------

BAKER PAULINE DERBY 4450
JONES MARTHA KALAMAZOO 21000
JONES KEVIN DERBY 7000

FINDX08 - FIND statement (with LIMIT)

** Example 'FINDX08': FIND (with LIMIT)
** Demonstrates FIND statement with LIMIT option to
** terminate program with an error message if the
** number of records selected exceeds a specified
** limit (no output).
**
DEFINE DATA LOCAL

993Programming Guide

Referenced Example Programs

1 EMPLOY-VIEW VIEW OF EMPLOYEES
2 NAME
2 JOB-TITLE

END-DEFINE
*
FIND EMPLOY-VIEW WITH LIMIT (5) JOB-TITLE = 'SALES PERSON'

DISPLAY NAME JOB-TITLE
END-FIND
END

Runtime Error Caused by Program FINDX08:

NAT1005 More records found than specified in search limit.

FINDX09 - FIND statement (using *NUMBER, *COUNTER, *ISN)

** Example 'FINDX09': FIND (using *NUMBER, *COUNTER, *ISN)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 DEPT
2 NAME

END-DEFINE
*
FIND EMPLOY-VIEW WITH CITY = 'BOSTON'

WHERE DEPT = 'TECH00' THRU 'TECH10'
DISPLAY NOTITLE

'COUNTER' *COUNTER NAME DEPT 'ISN' *ISN
AT START OF DATA

WRITE '(TOTAL NUMBER IN BOSTON:' *NUMBER ')' /
END-START

END-FIND
END

Output of Program FINDX09:

COUNTER NAME DEPARTMENT ISN
CODE

----------- -------------------- ---------- -----------

(TOTAL NUMBER IN BOSTON: 7)

1 STANWOOD TECH10 782
2 PERREAULT TECH10 842

Programming Guide994

Referenced Example Programs

FINDX10 - FIND statement (combined with READ)

** Example 'FINDX10': FIND (combined with READ)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME

1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 15
*
EMP. READ EMPLOY-VIEW BY NAME STARTING FROM 'JONES'

VEH. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (EMP.)
IF NO RECORDS FOUND
MOVE '*** NO CAR ***' TO MAKE

END-NOREC
DISPLAY NOTITLE

NAME (EMP.) (IS=ON)
FIRST-NAME (EMP.) (IS=ON)
MAKE (VEH.)

END-FIND
END-READ
END

Output of Program FINDX10:

NAME FIRST-NAME MAKE
-------------------- -------------------- --------------------

JONES VIRGINIA CHRYSLER
MARSHA CHRYSLER

CHRYSLER
ROBERT GENERAL MOTORS
LILLY FORD

MG
EDWARD GENERAL MOTORS
MARTHA GENERAL MOTORS
LAUREL GENERAL MOTORS
KEVIN DATSUN
GREGORY FORD

JOPER MANFRED *** NO CAR ***
JOUSSELIN DANIEL RENAULT
JUBE GABRIEL *** NO CAR ***
JUNG ERNST *** NO CAR ***

995Programming Guide

Referenced Example Programs

JUNKIN JEREMY *** NO CAR ***
KAISER REINER *** NO CAR ***

FINDX11 - FIND NUMBER statement (with *NUMBER)

** Example 'FINDX11': FIND NUMBER (with *NUMBER)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 FIRST-NAME
2 NAME
2 CITY
2 JOB-TITLE
2 SALARY (1)

*
1 #PERCENT (N.2)
1 REDEFINE #PERCENT

2 #WHOLE-NBR (N2)
1 #ALL-BOST (N3.2)
1 #SECR-ONLY (N3.2)
1 #BOST-NBR (N3)
1 #SECR-NBR (N3)
END-DEFINE
*
F1. FIND NUMBER EMPLOY-VIEW WITH CITY = 'BOSTON'
F2. FIND NUMBER EMPLOY-VIEW WITH CITY = 'BOSTON'

AND JOB-TITLE = 'SECRETARY'
*
MOVE *NUMBER(F1.) TO #ALL-BOST #BOST-NBR
MOVE *NUMBER(F2.) TO #SECR-ONLY #SECR-NBR
DIVIDE #ALL-BOST INTO #SECR-ONLY GIVING #PERCENT
*
WRITE TITLE LEFT JUSTIFIED UNDERLINED

'There are' #BOST-NBR 'employees in the Boston offices.' /
#SECR-NBR '(=' #WHOLE-NBR (EM=99%')') 'are secretaries.'

*
SKIP 1
FIND EMPLOY-VIEW WITH CITY = 'BOSTON'

AND JOB-TITLE = 'SECRETARY'
DISPLAY NAME FIRST-NAME JOB-TITLE SALARY (1)

END-FIND
END

Output of Program FINDX11:

Programming Guide996

Referenced Example Programs

There are 7 employees in the Boston offices.
3 (= 42%) are secretaries.

NAME FIRST-NAME CURRENT ANNUAL
POSITION SALARY

-------------------- -------------------- ------------------------- ----------

SHAW LESLIE SECRETARY 18000
CREMER WALT SECRETARY 20000
COHEN JOHN SECRETARY 16000

Nested READ and FIND Statements

The following examples are referenced in the section Database Processing Loops.

READX04 - READ statement (in combination with FIND and the system variables *NUMBER
and *COUNTER)

** Example 'READX04': READ (in combination with FIND and the system
** variables *NUMBER and *COUNTER)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME

1 VEHIC-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 10
RD. READ EMPLOY-VIEW BY NAME STARTING FROM 'JONES'

FD. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)
IF NO RECORDS FOUND
ENTER

END-NOREC
/*
DISPLAY NOTITLE

*COUNTER (RD.)(NL=8) NAME (AL=15) FIRST-NAME (AL=10)
*NUMBER (FD.)(NL=8) *COUNTER (FD.)(NL=8) MAKE

END-FIND
END-READ
END

Output of Program READX04:

997Programming Guide

Referenced Example Programs

CNT NAME FIRST-NAME NMBR CNT MAKE
--------- --------------- ---------- --------- --------- --------------------

1 JONES VIRGINIA 1 1 CHRYSLER
2 JONES MARSHA 2 1 CHRYSLER
2 JONES MARSHA 2 2 CHRYSLER
3 JONES ROBERT 1 1 GENERAL MOTORS
4 JONES LILLY 2 1 FORD
4 JONES LILLY 2 2 MG
5 JONES EDWARD 1 1 GENERAL MOTORS
6 JONES MARTHA 1 1 GENERAL MOTORS
7 JONES LAUREL 1 1 GENERAL MOTORS
8 JONES KEVIN 1 1 DATSUN
9 JONES GREGORY 1 1 FORD
10 JOPER MANFRED 0 0

LIMITX01 - LIMIT statement (for READ, FIND loop processing)

** Example 'LIMITX01': LIMIT (for READ, FIND loop processing)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME

1 VEH-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 4
*
READ EMPLOY-VIEW BY NAME STARTING FROM 'A'

FIND VEH-VIEW WITH PERSONNEL-ID = EMPLOY-VIEW.PERSONNEL-ID
IF NO RECORDS FOUND
MOVE 'NO CAR' TO MAKE

END-NOREC
DISPLAY PERSONNEL-ID NAME FIRST-NAME MAKE

END-FIND
END-READ
END

Output of Program LIMITX01:

Programming Guide998

Referenced Example Programs

Page 1 04-12-13 14:01:57

PERSONNEL-ID NAME FIRST-NAME MAKE
------------ -------------------- -------------------- --------------------

ABELLAN KEPA NO CAR
30000231 ACHIESON ROBERT FORD

ADAM SIMONE NO CAR
20008800 ADKINSON JEFF GENERAL MOTORS

ACCEPT and REJECT Statements

The following examples are referenced in the section Selecting Records Using ACCEPT/REJECT.

ACCEPX04 - ACCEPT IF ... LESS THAN ... statement

** Example 'ACCEPX04': ACCEPT IF ... LES THAN ...
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 SALARY (1)

END-DEFINE
*
LIMIT 20
READ EMPLOY-VIEW BY PERSONNEL-ID = '20017000'

ACCEPT IF SALARY (1) LESS THAN 38000
DISPLAY NOTITLE PERSONNEL-ID NAME JOB-TITLE SALARY (1)

END-READ
END

Output of Program ACCEPX04:

PERSONNEL NAME CURRENT ANNUAL
ID POSITION SALARY

--------- -------------------- ------------------------- ----------

20017000 CREMER ANALYST 34000
20017100 MARKUSH TRAINEE 22000
20017400 NEEDHAM PROGRAMMER 32500
20017500 JACKSON PROGRAMMER 33000
20017600 PIETSCH SECRETARY 22000
20017700 PAUL SECRETARY 23000

999Programming Guide

Referenced Example Programs

20018000 FARRIS PROGRAMMER 30500
20018100 EVANS PROGRAMMER 31000
20018200 HERZOG PROGRAMMER 31500
20018300 LORIE SALES PERSON 28000
20018400 HALL SALES PERSON 30000
20018500 JACKSON MANAGER 36000
20018800 SMITH SECRETARY 24000
20018900 LOWRY SECRETARY 25000

ACCEPX05 - ACCEPT IF ... AND ... statement

** Example 'ACCEPX05': ACCEPT IF ... AND ...
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 JOB-TITLE
2 SALARY (1:2)

END-DEFINE
*
LIMIT 6
READ EMPLOY-VIEW PHYSICAL WHERE SALARY(2) > 0

ACCEPT IF SALARY(1) > 10000
AND SALARY(1) < 50000

DISPLAY (AL=15) 'SALARY I' SALARY (1) 'SALARY II' SALARY (2)
NAME JOB-TITLE CITY

END-READ
END

Output of Program ACCEPX05:

Page 1 04-12-13 14:05:28

SALARY I SALARY II NAME CURRENT CITY
POSITION

---------- ---------- --------------- --------------- ---------------

48000 46000 SPENGLER SACHBEARBEITER DARMSTADT
45000 40000 SPECK SACHBEARBEITER DARMSTADT
48000 46000 SCHINDLER PROGRAMMIERER HEPPENHEIM
36000 32000 SCHMIDT SEKRETAERIN HEPPENHEIM

Programming Guide1000

Referenced Example Programs

ACCEPX06 - REJECT IF ... OR ... statement

** Example 'ACCEPX06': REJECT IF ... OR ...
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 SALARY (1)
2 JOB-TITLE
2 CITY
2 NAME

END-DEFINE
*
LIMIT 20
READ EMPLOY-VIEW LOGICAL BY PERSONNEL-ID = '20017000'

REJECT IF SALARY (1) < 20000
OR SALARY (1) > 26000

DISPLAY NOTITLE SALARY (1) NAME JOB-TITLE CITY
END-READ
END

Output of Program ACCEPX06:

ANNUAL NAME CURRENT CITY
SALARY POSITION

---------- -------------------- ------------------------- --------------------

22000 MARKUSH TRAINEE LOS ANGELES
22000 PIETSCH SECRETARY VISTA
23000 PAUL SECRETARY NORFOLK
24000 SMITH SECRETARY SILVER SPRING
25000 LOWRY SECRETARY LEXINGTON

AT START OF DATA and AT END OF DATA Statements

The following examples are referenced in the section AT START/END OF DATA Statements.

1001Programming Guide

Referenced Example Programs

ATENDX01 - AT END OF DATA statement

** Example 'ATENDX01': AT END OF DATA
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 JOB-TITLE

END-DEFINE
*
READ (6) EMPLOY-VIEW BY PERSONNEL-ID FROM '20017000'

DISPLAY NOTITLE NAME JOB-TITLE
AT END OF DATA

WRITE / 'LAST PERSON SELECTED:' OLD(NAME)
END-ENDDATA

END-READ
END

Output of Program ATENDX01:

NAME CURRENT
POSITION

-------------------- -------------------------

CREMER ANALYST
MARKUSH TRAINEE
GEE MANAGER
KUNEY DBA
NEEDHAM PROGRAMMER
JACKSON PROGRAMMER

LAST PERSON SELECTED: JACKSON

ATSTAX02 - AT START OF DATA statement

** Example 'ATSTAX02': AT START OF DATA
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 SALARY (1)
2 CURR-CODE (1)
2 BONUS (1,1)

END-DEFINE
*

Programming Guide1002

Referenced Example Programs

LIMIT 3
FIND EMPLOY-VIEW WITH CITY = 'MADRID'

DISPLAY NAME FIRST-NAME SALARY(1) BONUS(1,1) CURR-CODE (1)
/*
AT START OF DATA

WRITE NOTITLE *DAT4E /
END-START

END-FIND
END

Output of Program ATSTAX02:

NAME FIRST-NAME ANNUAL BONUS CURRENCY
SALARY CODE

-------------------- -------------------- ---------- ---------- --------

13/12/2004

DE JUAN JAVIER 1988000 0 PTA
DE LA MADRID ANSELMO 3120000 0 PTA
PINERO PAULA 1756000 0 PTA

WRITEX09 - WRITE statement (in combination with AT END OF DATA)

** Example 'WRITEX09': WRITE (in combination with AT END OF DATA)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 BIRTH
2 JOB-TITLE
2 DEPT

END-DEFINE
*
READ (3) EMPLOY-VIEW BY CITY

DISPLAY NOTITLE NAME BIRTH (EM=YYYY-MM-DD) JOB-TITLE
WRITE 38T 'DEPT CODE:' DEPT
/*
AT END OF DATA

WRITE / 'LAST PERSON SELECTED:' OLD(NAME)
END-ENDDATA
SKIP 1

END-READ
END

Output of ProgramWRITEX09:

1003Programming Guide

Referenced Example Programs

NAME DATE CURRENT
OF POSITION

BIRTH
-------------------- ---------- -------------------------

SENKO 1971-09-11 PROGRAMMER
DEPT CODE: TECH10

GODEFROY 1949-01-09 COMPTABLE
DEPT CODE: COMP02

CANALE 1942-01-01 CONSULTANT
DEPT CODE: TECH03

LAST PERSON SELECTED: CANALE

DISPLAY and WRITE Statements

The following examples are referenced in the section Statements DISPLAY and WRITE.

DISPLX13 - DISPLAY statement (compare with WRITEX08 using WRITE)

** Example 'DISPLX13': DISPLAY (compare with WRITEX08 using WRITE)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 SALARY (2)
2 BONUS (1,1)
2 CITY

END-DEFINE
*
LIMIT 2
READ EMPLOY-VIEW WITH CITY = 'CHAPEL HILL' WHERE BONUS(1,1) NE 0

/*
DISPLAY 'PERS/ID' PERSONNEL-ID NAME / FIRST-NAME

'**' '=' SALARY(1:2) 'BONUS' BONUS(1,1) CITY (AL=15)
/*
SKIP 1

END-READ
END

Output of Program DISPLX13:

Programming Guide1004

Referenced Example Programs

Page 1 04-12-13 14:11:28

PERS NAME ANNUAL BONUS CITY
ID FIRST-NAME SALARY

-------- -------------------- ------------- ---------- ---------------

20027000 CUMMINGS ** 41000 1500 CHAPEL HILL
PUALA 38900

20000200 WOOLSEY ** 26000 3000 CHAPEL HILL
LOUISE 24700

WRITEX08 - WRITE statement (compare with DISPLX13 using DISPLAY)

** Example 'WRITEX08': WRITE (compare with DISPLX13 using DISPLAY)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 SALARY (2)
2 BONUS (1,1)
2 CITY

END-DEFINE
*
LIMIT 2
READ EMPLOY-VIEW WITH CITY = 'CHAPEL HILL' WHERE BONUS(1,1) NE 0

/*
WRITE 'PERS/ID' PERSONNEL-ID NAME / FIRST-NAME

'**' '=' SALARY(1:2) 'BONUS' BONUS(1,1) CITY (AL=15)
/*
SKIP 1

END-READ
END

Output of ProgramWRITEX08:

Page 1 04-12-13 14:12:43

PERS/ID 20027000 CUMMINGS
PUALA ** ANNUAL SALARY: 41000 38900 BONUS 1500
CHAPEL HILL

PERS/ID 20000200 WOOLSEY
LOUISE ** ANNUAL SALARY: 26000 24700 BONUS 3000
CHAPEL HILL

1005Programming Guide

Referenced Example Programs

DISPLX14 - DISPLAY statement (with AL, SF and nX)

** Example 'DISPLX14': DISPLAY (with AL, SF and nX)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 FIRST-NAME
2 NAME
2 ADDRESS-LINE (1)
2 TELEPHONE

3 AREA-CODE
3 PHONE

2 CITY
END-DEFINE
*
READ (3) EMPLOY-VIEW BY NAME STARTING FROM 'W'

DISPLAY (AL=15 SF=5) NAME CITY / ADDRESS-LINE(1) 2X TELEPHONE
SKIP 1

END-READ
END

Output of Program DISPLX14:

Page 1 04-12-13 14:14:00

NAME CITY TELEPHONE
ADDRESS

AREA TELEPHONE
CODE

--------------- --------------- --------------- ---------------

WABER HEIDELBERG 06221 456452
ERBACHERSTR. 78

WADSWORTH DERBY 0332 515365
56 PINECROFT CO

WAGENBACH FRANKFURT 069 983218
BECKERSTR. 4

Programming Guide1006

Referenced Example Programs

WRITEX09 - WRITE statement (in combination with AT END OF DATA)

** Example 'WRITEX09': WRITE (in combination with AT END OF DATA)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 BIRTH
2 JOB-TITLE
2 DEPT

END-DEFINE
*
READ (3) EMPLOY-VIEW BY CITY

DISPLAY NOTITLE NAME BIRTH (EM=YYYY-MM-DD) JOB-TITLE
WRITE 38T 'DEPT CODE:' DEPT
/*
AT END OF DATA

WRITE / 'LAST PERSON SELECTED:' OLD(NAME)
END-ENDDATA
SKIP 1

END-READ
END

Output of ProgramWRITEX09:

NAME DATE CURRENT
OF POSITION

BIRTH
-------------------- ---------- -------------------------

SENKO 1971-09-11 PROGRAMMER
DEPT CODE: TECH10

GODEFROY 1949-01-09 COMPTABLE
DEPT CODE: COMP02

CANALE 1942-01-01 CONSULTANT
DEPT CODE: TECH03

LAST PERSON SELECTED: CANALE

1007Programming Guide

Referenced Example Programs

DISPLAY Statement

The following example is referenced in the section Page Titles, Page Breaks, Blank Lines.

DISPLX21 DISPLAY statement (with slash '/' and compare with WRITE)

** Example 'DISPLX21': DISPLAY (usage of slash '/' in DISPLAY and WRITE)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 NAME
2 FIRST-NAME
2 ADDRESS-LINE (1)

END-DEFINE
*
WRITE TITLE LEFT JUSTIFIED UNDERLINED

*TIME
5X 'PEOPLE LIVING IN SALT LAKE CITY'
21X 'PAGE:' *PAGE-NUMBER /
15X 'AS OF' *DAT4E //

*
WRITE TRAILER UNDERLINED 'REGISTER OF' / 'SALT LAKE CITY'
*
READ (2) EMPLOY-VIEW WITH CITY = 'SALT LAKE CITY'

DISPLAY NAME /
FIRST-NAME
'HOME/CITY' CITY
'STREET/OR BOX NO.' ADDRESS-LINE (1)

SKIP 1
END-READ
END

Output of Program DISPLX21:

14:15:50.1 PEOPLE LIVING IN SALT LAKE CITY PAGE: 1
AS OF 13/12/2004

NAME HOME STREET

FIRST-NAME CITY OR BOX NO.
-------------------- -------------------- --------------------

ANDERSON SALT LAKE CITY 3701 S. GEORGE MASON
JENNY

Programming Guide1008

Referenced Example Programs

SAMUELSON SALT LAKE CITY 7610 W. 86TH STREET
MARTIN

REGISTER OF
SALT LAKE CITY

Column Headers

The following example is referenced in the section Column Headers.

DISPLX15 - DISPLAY statement (with FC, UC)

** Example 'DISPLX15': DISPLAY (with FC, UC)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 FIRST-NAME
2 NAME
2 ADDRESS-LINE (1)
2 CITY
2 TELEPHONE

3 AREA-CODE
3 PHONE

END-DEFINE
*
FORMAT AL=12 GC== UC=%
*
READ (3) EMPLOY-VIEW BY NAME STARTING FROM 'R'

DISPLAY NOTITLE (FC=*)
NAME FIRST-NAME CITY (FC=- UC=-) /
ADDRESS-LINE(1) TELEPHONE

SKIP 1
END-READ
END

Output of Program DISPLX15:

****NAME**** *FIRST-NAME* ----CITY---- ========TELEPHONE========
ADDRESS*

****AREA**** *TELEPHONE**
****CODE****

%%%%%%%%%%%% %%%%%%%%%%%% ------------ %%%%%%%%%%%% %%%%%%%%%%%%

RACKMANN MARIAN FRANKFURT 069 375849
FINKENSTR. 1

1009Programming Guide

Referenced Example Programs

RAMAMOORTHY TY SEPULVEDA 209 175-1885
12018 BROOKS

RAMAMOORTHY TIMMIE SEATTLE 206 151-4673
921-178TH PL

DISPLX16 - DISPLAY statement (with '/', 'text', 'text/text')

** Example 'DISPLX16': DISPLAY (with '/', 'text', 'text/text')
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 FIRST-NAME
2 NAME
2 ADDRESS-LINE (1)
2 CITY
2 TELEPHONE

3 AREA-CODE
3 PHONE

END-DEFINE
*
READ (5) EMPLOY-VIEW BY NAME STARTING FROM 'E'

DISPLAY NOTITLE
'/' NAME (AL=12) /* suppressed header
'FIRST/NAME' FIRST-NAME (AL=10) /* two-line user-defined header
'ADDRESS' CITY / /* user-defined header
' ' ADDRESS-LINE(1) /* 'blank' header

TELEPHONE (HC=L) /* default header
SKIP 1

END-READ
END

Output of Program DISPLX16:

FIRST ADDRESS TELEPHONE
NAME

AREA TELEPHONE
CODE

---------- -------------------- ------ ---------------

EAVES TREVOR DERBY 0332 657623
17 HARTON ROAD

ECKERT KARL OBERRAMSTADT 06154 99722
FORSTWEG 22

ECKHARDT RICHARD DARMSTADT
BRESLAUERPL. 4

Programming Guide1010

Referenced Example Programs

EDMUNDSON LES TULSA 918 945-4916
2415 ALSOP CT.

EGGERT HERMANN STUTTGART 0711 981237
RABENGASSE 8

Field-Output-Relevant Parameters

The following examples are referenced in the sectionParameters to Influence theOutput of Fields.

They are provided to demonstrate the use of the parameters LC, IC, TC, AL, NL, IS, ZP and ES, and
the SUSPEND IDENTICAL SUPPRESS statement:

DISPLX17 - DISPLAY statement (with NL, AL, IC, LC, TC)

** Example 'DISPLX17': DISPLAY (with NL, AL, IC, LC, TC)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 FIRST-NAME
2 NAME
2 SALARY (1)
2 BONUS (1,1)

END-DEFINE
*
READ (3) EMPLOY-VIEW BY NAME STARTING FROM 'JONES'

DISPLAY NOTITLE (IS=ON NL=15)
NAME

'-' '=' FIRST-NAME (AL=12)
'ANNUAL SALARY' SALARY(1) (LC=USD TC=.00) /
'+ BONUSES' BONUS(1,1) (IC='+ ' TC=.00)

SKIP 1
END-READ
END

Output of Program DISPLX17:

NAME FIRST-NAME ANNUAL SALARY
+ BONUSES

-------------------- -------------- ----------------------

JONES - VIRGINIA USD 46000.00
+ 9000.00

- MARSHA USD 50000.00

1011Programming Guide

Referenced Example Programs

+ 0.00

- ROBERT USD 31000.00
+ 0.00

DISPLX18 - DISPLAY statement (using default settings for SF, AL, UC, LC, IC, TC and compare
with DISPLX19)

** Example 'DISPLX18': DISPLAY (using default settings for SF, AL, UC,
** LC, IC, TC and compare with DISPLX19)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 SALARY (1)
2 BONUS (1,1)

END-DEFINE
*
FIND (6) EMPLOY-VIEW WITH CITY = 'CHAPEL HILL'

DISPLAY NAME FIRST-NAME SALARY(1) BONUS(1,1)
END-FIND
END

Output of Program DISPLX18:

Page 1 04-12-13 14:20:48

NAME FIRST-NAME ANNUAL BONUS
SALARY

-------------------- -------------------- ---------- ----------

KESSLER CLARE 41000 0
ADKINSON DAVID 24000 0
GEE TOMMIE 39500 0
HERZOG JOHN 31500 0
QUILLION TIMOTHY 30500 0
CUMMINGS PUALA 41000 1500

Programming Guide1012

Referenced Example Programs

DISPLX19 - DISPLAY statement (with SF, AL, LC, IC, TC and compare with DISPLX18)

** Example 'DISPLX19': DISPLAY (with SF, AL, LC, IC, TC and compare
** with DISPLX19)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 FIRST-NAME
2 CITY
2 SALARY (1)
2 BONUS (1,1)

END-DEFINE
*
FORMAT SF=3 AL=15 UC==
*
FIND (6) EMPLOY-VIEW WITH CITY = 'CHAPEL HILL'

DISPLAY (NL=10)
NAME
FIRST-NAME (LC='- ' UC=-)
SALARY (1) (LC=USD)
BONUS (1,1) (IC='*** ' TC=' ***')

END-FIND
END

Output of Program DISPLX19:

Page 1 04-12-13 14:21:57

NAME FIRST-NAME ANNUAL BONUS
SALARY

=============== ----------------- ============== ===================

KESSLER - CLARE USD 41000 *** 0 ***
ADKINSON - DAVID USD 24000 *** 0 ***
GEE - TOMMIE USD 39500 *** 0 ***
HERZOG - JOHN USD 31500 *** 0 ***
QUILLION - TIMOTHY USD 30500 *** 0 ***
CUMMINGS - PUALA USD 41000 *** 1500 ***

1013Programming Guide

Referenced Example Programs

SUSPEX01 - SUSPEND IDENTICALSUPPRESS statement (in conjunctionwith parameters IS,
ES, ZP in DISPLAY)

** Example 'SUSPEX01': SUSPEND IDENTICAL SUPPRESS (in conjunction with
** parameters IS, ES, ZP in DISPLAY)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 CITY

1 VEH-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 15
RD. READ EMPLOY-VIEW BY NAME STARTING FROM 'JONES'

SUSPEND IDENTICAL SUPPRESS
FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)

IF NO RECORDS FOUND
MOVE '******' TO MAKE

END-NOREC
DISPLAY NOTITLE (ES=OFF IS=ON ZP=ON AL=15)

NAME (RD.)
FIRST-NAME (RD.)
MAKE (FD.) (IS=OFF)

END-FIND
END-READ
END

Output of Program SUSPEX01:

NAME FIRST-NAME MAKE
--------------- --------------- ---------------

JONES VIRGINIA CHRYSLER
JONES MARSHA CHRYSLER

CHRYSLER
JONES ROBERT GENERAL MOTORS
JONES LILLY FORD

MG
JONES EDWARD GENERAL MOTORS
JONES MARTHA GENERAL MOTORS
JONES LAUREL GENERAL MOTORS
JONES KEVIN DATSUN
JONES GREGORY FORD
JOPER MANFRED ******

Programming Guide1014

Referenced Example Programs

JOUSSELIN DANIEL RENAULT
JUBE GABRIEL ******
JUNG ERNST ******
JUNKIN JEREMY ******
KAISER REINER ******

SUSPEX02 - SUSPEND IDENTICALSUPPRESS statement (in conjunctionwith parameters IS,
ES, ZP in DISPLAY) Identical to SUSPEX01, but with IS=OFF.

** Example 'SUSPEX02': SUSPEND IDENTICAL SUPPRESS (in conjunction with
** parameters IS, ES, ZP in DISPLAY)
** Identical to SUSPEX01, but with IS=OFF.
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 CITY

1 VEH-VIEW VIEW OF VEHICLES
2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 15
RD. READ EMPLOY-VIEW BY NAME STARTING FROM 'JONES'

SUSPEND IDENTICAL SUPPRESS
FD. FIND VEH-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)

IF NO RECORDS FOUND
MOVE '******' TO MAKE

END-NOREC
DISPLAY NOTITLE (ES=OFF IS=OFF ZP=ON AL=15)

NAME (RD.)
FIRST-NAME (RD.)
MAKE (FD.) (IS=OFF)

END-FIND
END-READ
END

Output of Program SUSPEX02:

NAME FIRST-NAME MAKE
--------------- --------------- ---------------

JONES VIRGINIA CHRYSLER
JONES MARSHA CHRYSLER
JONES MARSHA CHRYSLER
JONES ROBERT GENERAL MOTORS
JONES LILLY FORD

1015Programming Guide

Referenced Example Programs

JONES LILLY MG
JONES EDWARD GENERAL MOTORS
JONES MARTHA GENERAL MOTORS
JONES LAUREL GENERAL MOTORS
JONES KEVIN DATSUN
JONES GREGORY FORD
JOPER MANFRED ******
JOUSSELIN DANIEL RENAULT
JUBE GABRIEL ******
JUNG ERNST ******
JUNKIN JEREMY ******
KAISER REINER ******

COMPRX03 - COMPRESS statement

** Example 'COMPRX03': COMPRESS (using parameters LC and TC)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 SALARY (1)
2 CURR-CODE (1)
2 LEAVE-DUE
2 NAME
2 FIRST-NAME
2 JOB-TITLE

*
1 #SALARY (N9)
1 #FULL-SALARY (A25)
1 #VACATION (A11)
END-DEFINE
*
READ (3) EMPLOY-VIEW WITH CITY = 'BOSTON'

MOVE SALARY(1) TO #SALARY
COMPRESS 'SALARY :' CURR-CODE(1) #SALARY INTO #FULL-SALARY
COMPRESS 'VACATION:' LEAVE-DUE INTO #VACATION
/*
DISPLAY NOTITLE NAME FIRST-NAME

'JOB DESCRIPTION' JOB-TITLE (LC='JOB : ') /
'/' #FULL-SALARY /
'/' #VACATION (TC='DAYS')

SKIP 1
END-READ
END

Output of Program COMPRX03:

Programming Guide1016

Referenced Example Programs

NAME FIRST-NAME JOB DESCRIPTION
-------------------- -------------------- -----------------------------------

SHAW LESLIE JOB : SECRETARY
SALARY : USD 18000
VACATION: 2DAYS

STANWOOD VERNON JOB : PROGRAMMER
SALARY : USD 31000
VACATION: 1DAYS

CREMER WALT JOB : SECRETARY
SALARY : USD 20000
VACATION: 3DAYS

Edit Masks

The following examples are referenced in the section Edit Masks - EM Parameter.

EDITMX03 - Edit mask (different EM for alpha-numeric fields)

** Example 'EDITMX03': Edit mask (different EM for alpha-numeric fields)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 CITY
2 SALARY(1)

END-DEFINE
*
LIMIT 3
READ EMPLOY-VIEW BY PERSONNEL-ID FROM '20018000'

WHERE SALARY(1) = 28000 THRU 30000
DISPLAY 'N A M E' NAME (EM=X^^X^^X^^X^^X^^X^^X^^X^^X^^X^^X) /

'NAME HEX' NAME (EM=H^H^H^H^H^H^H^H^H^H^H)
FIRST-NAME (EM=' - 'X(15)*)
CITY (EM=X..X(10))

SKIP 1
END-READ
END

Output of Program EDITMX03:

1017Programming Guide

Referenced Example Programs

Page 1 04-12-13 14:26:57

N A M E FIRST-NAME CITY
NAME HEX

-------------------------------- ------------------ -------------

L O R I E - JEAN-PAUL * C..LEVELAND
D3 D6 D9 C9 C5 40 40 40 40 40 40

H A L L - ARTHUR * A..NN ARBER
C8 C1 D3 D3 40 40 40 40 40 40 40

V A S W A N I - TOMMIE * M..ONTERREY
E5 C1 E2 E6 C1 D5 C9 40 40 40 40

EDITMX04 - Edit mask (different EM for numeric fields)

** Example 'EDITMX04': Edit mask (different EM for numeric fields)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 FIRST-NAME
2 NAME
2 SALARY (1)
2 BONUS (1,1)
2 LEAVE-DUE

END-DEFINE
*
LIMIT 2
READ EMPLOY-VIEW BY PERSONNEL-ID = '20018000'

WHERE SALARY(1) = 28000 THRU 30000
DISPLAY (SF=4)

'N A M E' NAME
'SALARY' SALARY(1) (EM=*USD^ZZZ,999)
'BONUS (ZZ)' BONUS(1,1) (EM=S*ZZZ,999) /
'BONUS (Z9)' BONUS(1,1) (EM=SZ99,999+) /
'->' '=' BONUS(1,1) (EM=-999,999)
'VAC/DUE' LEAVE-DUE (EM=+999)

SKIP 1
END-READ
END

Output of Program EDITMX04:

Programming Guide1018

Referenced Example Programs

Page 1 04-12-13 14:27:43

N A M E SALARY BONUS (ZZ) VAC
BONUS (Z9) DUE

BONUS
-------------------- ----------- ----------- ---

LORIE USD *28,000 +**4,000 +13
+ 04,000+
-> 004,000

HALL USD *30,000 +**5,000 +14
+ 05,000+
-> 005,000

EDITMX05 - Edit mask (EM for date and time system variables)

** Example 'EDITMX05': Edit mask (EM for date and time system variables)
**
WRITE NOTITLE //

'DATE INTERNAL :' *DATX (DF=L) /
' :' *DATX (EM=N(9)' 'ZW.'WEEK 'YYYY) /
' :' *DATX (EM=ZZJ'.DAY 'YYYY) /
' ROMAN :' *DATX (EM=R) /
' AMERICAN :' *DATX (EM=MM/DD/YYYY) 12X 'OR ' *DAT4U /
' JULIAN :' *DATX (EM=YYYYJJJ) 15X 'OR ' *DAT4J /
' GREGORIAN:' *DATX (EM=ZD.''L(10)''YYYY) 5X 'OR ' *DATG ///
'TIME INTERNAL :' *TIMX 14X 'OR ' *TIME /
' :' *TIMX (EM=HH.II.SS.T) /
' :' *TIMX (EM=HH.II.SS' 'AP) /
' :' *TIMX (EM=HH)

END

Output of Program EDITMX05:

DATE INTERNAL : 2004-12-13
: Monday 51.WEEK 2004
: 348.DAY 2004

ROMAN : MMIV
AMERICAN : 12/13/2004 OR 12/13/2004
JULIAN : 2004348 OR 2004348
GREGORIAN: 13.December2004 OR 13December 2004

TIME INTERNAL : 14:28:49 OR 14:28:49.1
: 14.28.49.1

1019Programming Guide

Referenced Example Programs

: 02.28.49 PM
: 14

DISPLAY VERT with WRITE Statement

WRITEX10 - WRITE statement (with nT, T*field and P*field)

** Example 'WRITEX10': WRITE (with nT, T*field and P*field)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 JOB-TITLE
2 NAME
2 SALARY (1)
2 BONUS (1,1)

END-DEFINE
*
READ (3) EMPLOY-VIEW WITH JOB-TITLE FROM 'SALES PERSON'

DISPLAY NOTITLE NAME 30T JOB-TITLE
VERT AS 'SALARY/BONUS' SALARY(1) BONUS(1,1)

AT BREAK OF JOB-TITLE
WRITE 20T 'AVERAGE' T*JOB-TITLE OLD(JOB-TITLE) (AL=15)

'(SAL)' P*SALARY AVER(SALARY(1)) /
46T '(BON)' P*BONUS AVER(BONUS(1,1)) /

END-BREAK
SKIP 1

END-READ
END

Output of ProgramWRITEX10:

NAME CURRENT SALARY
POSITION BONUS

-------------------- ------------------------- ----------

SAMUELSON SALES PERSON 32000
6000

PAPAYANOPOULOS SALES PERSON 34000
7000

HELL SALES PERSON 38000
9000

AVERAGE SALES PERSON (SAL) 34666
(BON) 7333

Programming Guide1020

Referenced Example Programs

AT BREAK Statement

The following example is referenced in the section Control Breaks.

ATBREX06 -ATBREAKOFstatement (comparingNMIN,NAVER,NCOUNTwithMIN,AVER,
COUNT)

** Example 'ATBREX06': AT BREAK OF (comparing NMIN, NAVER, NCOUNT with
** MIN, AVER, COUNT)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 SALARY (1:2)

END-DEFINE
*
WRITE TITLE '-- SALARY STATISTICS BY CITY --' /
*
READ (2) EMPLOY-VIEW WITH CITY = 'NEW YORK'

DISPLAY CITY 'SALARY (1)' SALARY(1) 15X 'SALARY (2)' SALARY(2)
AT BREAK OF CITY

WRITE /
14T 'S A L A R Y (1)' 39T 'S A L A R Y (2)' /
13T '- MIN:' MIN(SALARY(1)) 38T '- MIN:' MIN(SALARY(2)) /
13T '- AVER:' AVER(SALARY(1)) 38T '- AVER:' AVER(SALARY(2)) /
16T COUNT(SALARY(1)) 'RECORDS' 41T COUNT(SALARY(2)) 'RECORDS' //
13T '- NMIN:' NMIN(SALARY(1)) 38T '- NMIN:' NMIN(SALARY(2)) /
13T '- NAVER:' NAVER(SALARY(1)) 38T '- NAVER:' NAVER(SALARY(2)) /
16T NCOUNT(SALARY(1)) 'RECORDS' 41T NCOUNT(SALARY(2)) 'RECORDS'

END-BREAK
END-READ
END

Output of Program ATBREX06:

-- SALARY STATISTICS BY CITY --

CITY SALARY (1) SALARY (2)
-------------------- ---------- ----------

NEW YORK 17000 16100
NEW YORK 38000 34900

S A L A R Y (1) S A L A R Y (2)
- MIN: 17000 - MIN: 16100
- AVER: 27500 - AVER: 25500

2 RECORDS 2 RECORDS

1021Programming Guide

Referenced Example Programs

- NMIN: 17000 - NMIN: 16100
- NAVER: 27500 - NAVER: 25500

2 RECORDS 2 RECORDS

COMPUTE, MOVE and COMPRESS Statements

The following examples are referenced in the section Data Computation.

WRITEX11 - WRITE statement (with nX, n/n and COMPRESS)

** Example 'WRITEX11': WRITE (with nX, n/n and COMPRESS)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 SALARY (1)
2 FIRST-NAME
2 NAME
2 CITY
2 ZIP
2 CURR-CODE (1)
2 JOB-TITLE
2 LEAVE-DUE
2 ADDRESS-LINE (1)

*
1 #SALARY (A8)
1 #FULL-NAME (A25)
1 #FULL-CITY (A25)
1 #FULL-SALARY (A25)
1 #VACATION (A16)
END-DEFINE
*
READ (3) EMPLOY-VIEW LOGICAL BY PERSONNEL-ID = '2001800'

MOVE SALARY(1) TO #SALARY
COMPRESS FIRST-NAME NAME INTO #FULL-NAME
COMPRESS ZIP CITY INTO #FULL-CITY
COMPRESS 'SALARY :' CURR-CODE(1) #SALARY INTO #FULL-SALARY
COMPRESS 'VACATION:' LEAVE-DUE 'DAYS' INTO #VACATION
/*
DISPLAY NOTITLE 'NAME AND ADDRESS' NAME

5X 'PERS-NO.' PERSONNEL-ID
3X 'JOB TITLE' JOB-TITLE (LC='JOB : ')

WRITE 1/5 #FULL-NAME 1/37 #FULL-SALARY
2/5 ADDRESS-LINE(1) 2/37 #VACATION
3/5 #FULL-CITY

SKIP 1

Programming Guide1022

Referenced Example Programs

END-READ
END

Output of ProgramWRITEX11:

NAME AND ADDRESS PERS-NO. JOB TITLE
-------------------- -------- -----------------------------------

FARRIS 20018000 JOB : PROGRAMMER
JACKIE FARRIS SALARY : USD 30500
918 ELM STREET VACATION: 10 DAY
32306 TALLAHASSEE

EVANS 20018100 JOB : PROGRAMMER
JO EVANS SALARY : USD 31000
1058 REDSTONE LANE VACATION: 11 DAY
68508 LINCOLN

HERZOG 20018200 JOB : PROGRAMMER
JOHN HERZOG SALARY : USD 31500
255 ZANG STREET #253 VACATION: 12 DAY
27514 CHAPEL HILL

IFX03 - IF statement

** Example 'IFX03': IF
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 NAME
2 CITY
2 BONUS (1,1)
2 SALARY (1)

*
1 #INCOME (N9)
1 #TEXT (A26)
END-DEFINE
*
WRITE TITLE '-- DISTRIBUTION OF CATALOGS I AND II --' /
*
READ (3) EMPLOY-VIEW BY CITY = 'SAN FRANSISCO'

COMPUTE #INCOME = BONUS(1,1) + SALARY(1)
/*
IF #INCOME > 40000

MOVE 'CATALOGS I AND II' TO #TEXT
ELSE

MOVE 'CATALOG I' TO #TEXT
END-IF
/*

1023Programming Guide

Referenced Example Programs

DISPLAY NAME 5X 'SALARY' SALARY(1) / BONUS(1,1)
WRITE T*SALARY '-'(10) /

16X 'INCOME:' T*SALARY #INCOME 3X #TEXT /
16X '='(19)

SKIP 1
END-READ
END

Output of Program IFX03:

-- DISTRIBUTION OF CATALOGS I AND II --

NAME SALARY
BONUS

-------------------- ----------

COLVILLE JR 56000
0

INCOME: 56000 CATALOGS I AND II
===================

RICHMOND 9150
0

INCOME: 9150 CATALOG I
===================

MONKTON 13500
600

INCOME: 14100 CATALOG I
===================

COMPRX03 - COMPRESS statement (using parameters LC and TC)

** Example 'COMPRX03': COMPRESS (using parameters LC and TC)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 SALARY (1)
2 CURR-CODE (1)
2 LEAVE-DUE
2 NAME
2 FIRST-NAME
2 JOB-TITLE

*
1 #SALARY (N9)

Programming Guide1024

Referenced Example Programs

1 #FULL-SALARY (A25)
1 #VACATION (A11)
END-DEFINE
*
READ (3) EMPLOY-VIEW WITH CITY = 'BOSTON'

MOVE SALARY(1) TO #SALARY
COMPRESS 'SALARY :' CURR-CODE(1) #SALARY INTO #FULL-SALARY
COMPRESS 'VACATION:' LEAVE-DUE INTO #VACATION
/*
DISPLAY NOTITLE NAME FIRST-NAME

'JOB DESCRIPTION' JOB-TITLE (LC='JOB : ') /
'/' #FULL-SALARY /
'/' #VACATION (TC='DAYS')

SKIP 1
END-READ
END

Output of Program COMPRX03:

NAME FIRST-NAME JOB DESCRIPTION
-------------------- -------------------- -----------------------------------

SHAW LESLIE JOB : SECRETARY
SALARY : USD 18000
VACATION: 2DAYS

STANWOOD VERNON JOB : PROGRAMMER
SALARY : USD 31000
VACATION: 1DAYS

CREMER WALT JOB : SECRETARY
SALARY : USD 20000
VACATION: 3DAYS

System Variables

The following examples are referenced in the section System Variables and System Functions.

1025Programming Guide

Referenced Example Programs

EDITMX05 - Edit mask (EM for date and time system variables)

** Example 'EDITMX05': Edit mask (EM for date and time system variables)
**
WRITE NOTITLE //

'DATE INTERNAL :' *DATX (DF=L) /
' :' *DATX (EM=N(9)' 'ZW.'WEEK 'YYYY) /
' :' *DATX (EM=ZZJ'.DAY 'YYYY) /
' ROMAN :' *DATX (EM=R) /
' AMERICAN :' *DATX (EM=MM/DD/YYYY) 12X 'OR ' *DAT4U /
' JULIAN :' *DATX (EM=YYYYJJJ) 15X 'OR ' *DAT4J /
' GREGORIAN:' *DATX (EM=ZD.''L(10)''YYYY) 5X 'OR ' *DATG ///
'TIME INTERNAL :' *TIMX 14X 'OR ' *TIME /
' :' *TIMX (EM=HH.II.SS.T) /
' :' *TIMX (EM=HH.II.SS' 'AP) /
' :' *TIMX (EM=HH)

END

Output of Program EDITMX05:

DATE INTERNAL : 2004-12-13
: Monday 51.WEEK 2004
: 348.DAY 2004

ROMAN : MMIV
AMERICAN : 12/13/2004 OR 12/13/2004
JULIAN : 2004348 OR 2004348
GREGORIAN: 13.December2004 OR 13December 2004

TIME INTERNAL : 14:36:58 OR 14:36:58.8
: 14.36.58.8
: 02.36.58 PM
: 14

READX04 - READ statement (in combination with FIND and the system variables *NUMBER
and *COUNTER)

** Example 'READX04': READ (in combination with FIND and the system
** variables *NUMBER and *COUNTER)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 FIRST-NAME

1 VEHIC-VIEW VIEW OF VEHICLES

Programming Guide1026

Referenced Example Programs

2 PERSONNEL-ID
2 MAKE

END-DEFINE
*
LIMIT 10
RD. READ EMPLOY-VIEW BY NAME STARTING FROM 'JONES'

FD. FIND VEHIC-VIEW WITH PERSONNEL-ID = PERSONNEL-ID (RD.)
IF NO RECORDS FOUND
ENTER

END-NOREC
/*
DISPLAY NOTITLE

*COUNTER (RD.)(NL=8) NAME (AL=15) FIRST-NAME (AL=10)
*NUMBER (FD.)(NL=8) *COUNTER (FD.)(NL=8) MAKE

END-FIND
END-READ
END

Output of Program READX04:

CNT NAME FIRST-NAME NMBR CNT MAKE
--------- --------------- ---------- --------- --------- --------------------

1 JONES VIRGINIA 1 1 CHRYSLER
2 JONES MARSHA 2 1 CHRYSLER
2 JONES MARSHA 2 2 CHRYSLER
3 JONES ROBERT 1 1 GENERAL MOTORS
4 JONES LILLY 2 1 FORD
4 JONES LILLY 2 2 MG
5 JONES EDWARD 1 1 GENERAL MOTORS
6 JONES MARTHA 1 1 GENERAL MOTORS
7 JONES LAUREL 1 1 GENERAL MOTORS
8 JONES KEVIN 1 1 DATSUN
9 JONES GREGORY 1 1 FORD

10 JOPER MANFRED 0 0

WTITLX01 - WRITE TITLE statement (with *PAGE-NUMBER)

** Example 'WTITLX01': WRITE TITLE (with *PAGE-NUMBER)
**
DEFINE DATA LOCAL
1 VEHIC-VIEW VIEW OF VEHICLES

2 MAKE
2 YEAR
2 MAINT-COST (1)

END-DEFINE
*
LIMIT 5
*

1027Programming Guide

Referenced Example Programs

READ VEHIC-VIEW
END-ALL
SORT BY YEAR USING MAKE MAINT-COST (1)

DISPLAY NOTITLE YEAR MAKE MAINT-COST (1)
AT BREAK OF YEAR

MOVE 1 TO *PAGE-NUMBER
NEWPAGE

END-BREAK
/*
WRITE TITLE LEFT JUSTIFIED

'YEAR:' YEAR 15X 'PAGE' *PAGE-NUMBER
END-SORT
END

Output of ProgramWTITLX01:

YEAR: 1980 PAGE 1
YEAR MAKE MAINT-COST
----- -------------------- ----------

1980 RENAULT 20000
1980 RENAULT 20000
1980 PEUGEOT 20000

System Functions

The following examples are referenced in the section System Variables and System Functions.

ATBREX06 -ATBREAKOFstatement (comparingNMIN,NAVER,NCOUNTwithMIN,AVER,
COUNT)

** Example 'ATBREX06': AT BREAK OF (comparing NMIN, NAVER, NCOUNT with
** MIN, AVER, COUNT)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 CITY
2 SALARY (1:2)

END-DEFINE
*
WRITE TITLE '-- SALARY STATISTICS BY CITY --' /
*
READ (2) EMPLOY-VIEW WITH CITY = 'NEW YORK'

DISPLAY CITY 'SALARY (1)' SALARY(1) 15X 'SALARY (2)' SALARY(2)
AT BREAK OF CITY

WRITE /

Programming Guide1028

Referenced Example Programs

14T 'S A L A R Y (1)' 39T 'S A L A R Y (2)' /
13T '- MIN:' MIN(SALARY(1)) 38T '- MIN:' MIN(SALARY(2)) /
13T '- AVER:' AVER(SALARY(1)) 38T '- AVER:' AVER(SALARY(2)) /
16T COUNT(SALARY(1)) 'RECORDS' 41T COUNT(SALARY(2)) 'RECORDS' //
13T '- NMIN:' NMIN(SALARY(1)) 38T '- NMIN:' NMIN(SALARY(2)) /
13T '- NAVER:' NAVER(SALARY(1)) 38T '- NAVER:' NAVER(SALARY(2)) /
16T NCOUNT(SALARY(1)) 'RECORDS' 41T NCOUNT(SALARY(2)) 'RECORDS'

END-BREAK
END-READ
END

Output of Program ATBREX06:

-- SALARY STATISTICS BY CITY --

CITY SALARY (1) SALARY (2)
-------------------- ---------- ----------

NEW YORK 17000 16100
NEW YORK 38000 34900

S A L A R Y (1) S A L A R Y (2)
- MIN: 17000 - MIN: 16100
- AVER: 27500 - AVER: 25500

2 RECORDS 2 RECORDS

- NMIN: 17000 - NMIN: 16100
- NAVER: 27500 - NAVER: 25500

2 RECORDS 2 RECORDS

ATENPX01 - AT ENDOF PAGE statement (with system function available via GIVE SYSTEM
FUNCTIONS in DISPLAY)

** Example 'ATENPX01': AT END OF PAGE (with system function available
** via GIVE SYSTEM FUNCTIONS in DISPLAY)
**
DEFINE DATA LOCAL
1 EMPLOY-VIEW VIEW OF EMPLOYEES

2 PERSONNEL-ID
2 NAME
2 JOB-TITLE
2 SALARY (1)

END-DEFINE
*
READ (10) EMPLOY-VIEW BY PERSONNEL-ID = '20017000'

DISPLAY NOTITLE GIVE SYSTEM FUNCTIONS
NAME JOB-TITLE 'SALARY' SALARY(1)

/*
AT END OF PAGE

1029Programming Guide

Referenced Example Programs

WRITE / 24T 'AVERAGE SALARY: ...' AVER(SALARY(1))
END-ENDPAGE

END-READ
END

Output of Program ATENPX01:

NAME CURRENT SALARY
POSITION

-------------------- ------------------------- ----------

CREMER ANALYST 34000
MARKUSH TRAINEE 22000
GEE MANAGER 39500
KUNEY DBA 40200
NEEDHAM PROGRAMMER 32500
JACKSON PROGRAMMER 33000
PIETSCH SECRETARY 22000
PAUL SECRETARY 23000
HERZOG MANAGER 48500
DEKKER DBA 48000

AVERAGE SALARY: ... 34270

Programming Guide1030

Referenced Example Programs

	Programming Guide
	Table of Contents
	Preface
	I Natural Programming Modes
	1 Natural Programming Modes
	Purpose of Programming Modes
	Reporting Mode
	Structured Mode

	Setting/Changing the Programming Mode
	Functional Differences
	Syntax Related to Closing Loops and Functional Blocks
	Closing a Processing Loop in Reporting Mode
	Closing a Processing Loop in Structured Mode
	Location of Data Elements in a Program
	Database Reference

	II Object Types
	2 Using Natural Programming Objects
	Types of Programming Objects
	Creating and Maintaining Programming Objects

	3 Data Areas
	Use of Data Areas
	Local Data Area
	Global Data Area
	Creating and Referencing a GDA
	Creating and Deleting GDA Instances
	Data Blocks
	Example of Data Block Usage
	Defining Data Blocks
	Block Hierarchies

	Parameter Data Area
	Parameters Defined within DEFINE DATA PARAMETER Statement
	Parameters Defined in Parameter Data Area

	4 Programs, Functions, Subprograms and Subroutines
	A Modular Application Structure
	Multiple Levels of Invoked Objects
	Program
	Program Invoked with FETCH RETURN
	Program Invoked with FETCH

	Function
	Subroutine
	Inline Subroutine
	Data Available to an Inline Subroutine
	External Subroutine
	Data Available to an External Subroutine

	Subprogram
	Data Available to a Subprogram

	Processing Flow when Invoking a Routine

	5 Processing a Rich GUI Page - Adapter
	6 Maps
	Benefits of Using Maps
	Types of Maps
	Creating Maps
	Starting/Stopping Map Processing

	7 Helproutines
	Invoking Help
	Specifying Helproutines
	Programming Considerations for Helproutines
	Passing Parameters to Helproutines
	Equal Sign Option
	Array Indices
	Help as a Window

	8 Multiple Use of Source Code - Copycode
	Use of Copycode
	Processing of Copycode

	9 Documenting Natural Objects - Text
	Use of Text Objects
	Writing Text

	10 Creating Event Driven Applications - Dialog
	11 Creating Component Based Applications - Class
	12 Using Non-Natural Files - Resource
	Use of Resources
	Shared Resources
	Example of Using a Shared Resource

	Private Resources
	Example of Private Resources

	API for Processing Resources

	III Defining Fields
	13 Use and Structure of DEFINE DATA Statement
	Field Definitions in DEFINE DATA Statement
	Defining Fields within a DEFINE DATA Statement
	Defining Fields in a Separate Data Area
	Structuring a DEFINE DATA Statement Using Level Numbers
	Structuring and Grouping Your Definitions
	Level Numbers in View Definitions
	Level Numbers in Field Groups
	Example of Level Numbers in Group:

	Level Numbers in Redefinitions

	14 User-Defined Variables
	Definition of Variables
	Referencing of Database Fields Using (r) Notation
	Default Referencing of Database Fields
	Referencing with Statement Labels
	Referencing with Source-Code Line Numbers

	Renumbering of Source-Code Line Number References
	Format and Length of User-Defined Variables
	Special Formats
	Format C - Attribute Control
	Formats D - Date, and T - Time
	Format L - Logical
	Format: Handle

	Index Notation
	Using a Slash before an Array Occurrence

	Referencing a Database Array
	Referencing Multiple-Value Fields and Periodic-Group Fields
	Referencing Arrays Defined with Constants
	Referencing Arrays Defined with Variables
	Referencing Multiple-Defined Arrays

	Referencing the Internal Count for a Database Array (C* Notation)
	C* for Multiple-Value Fields Within Periodic Groups

	Qualifying Data Structures
	Examples of User-Defined Variables

	15 Function Call
	Calling User-Defined Functions
	Symbolic Function Call
	Variable Function Call

	Function Result
	Evaluation Sequence
	Restrictions
	Syntax Description
	call-name
	prototype-cast
	intermediate-result-definition
	Parameter(s)
	array-index-expression

	Example

	16 Introduction to Dynamic Variables and Fields
	Purpose of Dynamic Variables
	Definition of Dynamic Variables
	Value Space Currently Used for a Dynamic Variable
	Size Limitation Check
	Allocating/Freeing Memory Space for a Dynamic Variable
	EXPAND
	REDUCE
	RESIZE

	17 Using Dynamic and Large Variables
	General Remarks
	Assignments with Dynamic Variables
	Initialization of Dynamic Variables
	String Manipulation with Dynamic Alphanumeric Variables
	Logical Condition Criterion (LCC) with Dynamic Variables
	Comparison Compatibility

	AT/IF-BREAK of Dynamic Control Fields
	Parameter Transfer with Dynamic Variables
	CALL 3GL Program

	Work File Access with Large and Dynamic Variables
	PORTABLE and UNFORMATTED
	ASCII, ASCII-COMPRESSED and SAG
	Special Conditions for TRANSFER and ENTIRE CONNECTION

	DDM Generation and Editing for Varying Length Columns
	Accessing Large Database Objects
	Parameter with LINDICATOR Clause in SQL Statements

	Performance Aspects with Dynamic Variables
	Outputting Dynamic Variables
	Dynamic X-Arrays

	18 User-Defined Constants
	Numeric Constants
	Numeric Constants
	Validation of Numeric Constants

	Alphanumeric Constants
	Alphanumeric Constants
	Apostrophes Within Alphanumeric Constants
	Concatenation of Alphanumeric Constants

	Unicode Constants
	Unicode Text Constants
	Apostrophes Within Unicode Text Constants
	Unicode Hexadecimal Constants
	Concatenation of Unicode Constants

	Date and Time Constants
	Date Constant
	Time Constant
	Extended Time Constant

	Hexadecimal Constants
	Hexadecimal Constants
	Concatenation of Hexadecimal Constants

	Logical Constants
	Floating Point Constants
	Attribute Constants
	Handle Constants
	Defining Named Constants

	19 Initial Values (and the RESET Statement)
	Default Initial Value of a User-Defined Variable/Array
	Assigning an Initial Value to a User-Defined Variable/Array
	Assigning a Modifiable Initial Value
	Assigning a Constant Initial Value
	Assigning a Natural System Variable as Initial Value
	Assigning Characters as Initial Value for Alphanumeric Variables

	Resetting a User-Defined Variable to its Initial Value
	Reset to Default Initial Value
	Reset to Initial Value Defined in DEFINE DATA

	20 Redefining Fields
	Using the REDEFINE Option of DEFINE DATA
	Example Program Illustrating the Use of a Redefinition

	21 Arrays
	Defining Arrays
	Initial Values for Arrays
	Assigning Initial Values to One-Dimensional Arrays
	Assigning Initial Values to Two-Dimensional Arrays
	Preliminary Information
	Assigning the Same Value
	Assigning Different Values

	A Three-Dimensional Array
	Arrays as Part of a Larger Data Structure
	Database Arrays
	Using Arithmetic Expressions in Index Notation
	Arithmetic Support for Arrays
	Examples of Array Arithmetics

	22 X-Arrays
	Definition
	Storage Management of X-Arrays
	Storage Management of X-Group Arrays
	Referencing an X-Array
	Parameter Transfer with X-Arrays
	Example with Call By Value
	Call By Reference/Call By Value Result

	Parameter Transfer with X-Group Arrays
	X-Array of Dynamic Variables
	Lower and Upper Bound of an Array

	IV User-Defined Functions
	23 User-Defined Functions
	Introduction to User-Defined Functions
	Restrictions
	Function Call versus Subprogram Call
	What is similar?
	What is different?
	Example of a Function Call
	Example of a Subprogram Call

	Function Definition (DEFINE FUNCTION)
	Symbolic and Variable Function Call
	Function Result and Parameters
	Explicit Prototype Definition (DEFINE PROTOTYPE)
	Implicit (Automatic) Prototype Definition
	Prototype Cast (PT Clause)
	Intermediate Result Definition (IR Clause)
	Combinations of Possible Prototype Definitions
	Evaluation Sequence of Functions in Statements
	Using a Function as a Statement

	V Accessing Data in a Database
	24 Natural and Database Access
	Database Management Systems Supported by Natural
	Adabas
	Tamino
	SQL Databases

	Profile Parameters Influencing Database Access
	Access through Data Definition Modules
	Natural's Data Manipulation Language
	Natural's Special SQL Statements

	25 Accessing Data in an Adabas Database
	Adabas Database Management Interfaces ADA and ADA2
	Data Definition Modules - DDMs
	Use of Data Definition Modules
	Maintaining DDMs
	Listing/Displaying DDMs

	Database Arrays
	Multiple-Value Fields
	Periodic Groups
	Referencing Multiple-Value Fields and Periodic Groups
	Multiple-Value Fields within Periodic Groups
	Referencing Multiple-Value Fields within Periodic Groups
	Referencing the Internal Count of a Database Array

	Defining a Database View
	Statements for Database Access
	READ Statement
	Use of READ Statement
	Basic Syntax of READ Statement
	Example of READ Statement
	Limiting the Number of Records to be Read
	STARTING/ENDING Clauses
	WHERE Clause
	Further Example of READ Statement

	FIND Statement
	Use of FIND Statement
	Basic Syntax of FIND Statement
	Limiting the Number of Records to be Processed
	WHERE Clause
	Example of FIND Statement with WHERE Clause
	IF NO RECORDS FOUND Condition
	Further Examples of FIND Statement

	HISTOGRAM Statement
	Use of HISTOGRAM Statement
	Syntax of HISTOGRAM Statement
	Limiting the Number of Values to be Read
	STARTING/ENDING Clauses
	WHERE Clause
	Example of HISTOGRAM Statement

	Multi-Fetch Clause
	Purpose of Multi-Fetch Feature
	Statements Supported
	Considerations for Multi-Fetch Usage

	Database Processing Loops
	Creation of Database Processing Loops
	Hierarchies of Processing Loops
	Example of Processing Loop Hierarchy

	Example of Nested FIND Loops Accessing the Same File
	Further Examples of Nested READ and FIND Statements

	Database Update - Transaction Processing
	Logical Transaction
	Record Hold Logic
	Backing Out a Transaction
	Restarting a Transaction
	Example of Using Transaction Data to Restart a Transaction

	Selecting Records Using ACCEPT/REJECT
	Statements Usable with ACCEPT and REJECT
	Example of ACCEPT Statement
	Logical Condition Criteria in ACCEPT/REJECT Statements
	Example of ACCEPT Statement with AND Operator
	Example of REJECT Statement with OR Operator
	Further Examples of ACCEPT and REJECT Statements

	AT START/END OF DATA Statements
	AT START OF DATA Statement
	AT END OF DATA Statement
	Example of AT START OF DATA and AT END OF DATA Statements
	Further Examples of AT START OF DATA and AT END OF DATA

	Unicode Data
	Data Definition Module
	Access Configuration
	Restrictions

	26 Accessing Data in an SQL Database
	Generating Natural DDMs
	Setting Natural Profile Parameters
	ETEOP Parameter

	Natural DML Statements
	BACKOUT TRANSACTION
	DELETE
	END TRANSACTION
	FIND
	HISTOGRAM
	READ
	STORE
	UPDATE
	UPDATE with FIND/READ
	UPDATE with SELECT

	Natural SQL Statements
	DELETE
	INSERT
	PROCESS SQL
	Parameters
	SET SQLOPTION option=value
	SQLDISCONNECT
	SQLCONNECT option=value
	USERID and PASSWORD
	OS_USERID and OS_PASSWORD
	DBMS_PARAMETER

	SELECT
	UPDATE

	Flexible SQL
	RDBMS-Specific Requirements and Restrictions
	Case-Sensitive Database Systems
	SYBASE and Microsoft SQL Server
	How Natural Statements are Converted to Database Calls
	Natural Restrictions with SYBASE and Microsoft SQL Server

	Data-Type Conversion
	Date/Time Conversion
	Conversion Tables

	Obtaining Diagnostic Information about Database Errors
	SQL Authorization

	27 Accessing Data in a Tamino Database
	Prerequisite
	DDM and View Definitions with Natural for Tamino
	Introducing Tamino XML Schema Language
	DDMs from Tamino
	Arrays in DDMs from Tamino
	Example of a DDM
	Definition of Views

	Natural Statements for Tamino Database Access
	Natural for Tamino Retrieval Statements
	Natural for Tamino Database Modification Statements
	Natural for Tamino Logical Transaction Handling
	Natural for Tamino Error Handling
	Example of Natural for Tamino Interacting with a SQL Database

	Natural for Tamino Restrictions

	VI Controlling Data Output
	28 Report Specification - (rep) Notation
	Use of Report Specifications
	Statements Concerned
	Examples of Report Specification

	29 Layout of an Output Page
	Statements Influencing a Report Layout
	General Layout Example

	30 Statements DISPLAY and WRITE
	DISPLAY Statement
	WRITE Statement
	Example of DISPLAY Statement
	Example of WRITE Statement
	Column Spacing - SF Parameter and nX Notation
	Tab Setting - nT Notation
	Line Advance - Slash Notation
	Further Examples of DISPLAY and WRITE Statements

	31 Index Notation for Multiple-Value Fields and Periodic Groups
	Use of Index Notation
	Example of Index Notation in DISPLAY Statement
	Example of Index Notation in WRITE Statement

	32 Page Titles, Page Breaks, Blank Lines
	Default Page Title
	Suppress Page Title - NOTITLE Option
	Define Your Own Page Title - WRITE TITLE Statement
	Specifying Text for Your Title
	Specifying Empty Lines after the Title
	Title Justification and/or Underlining
	Title with Page Number

	Logical Page and Physical Page
	Page Size - PS Parameter
	Page Advance
	Page Advance Controlled by EJ Parameter
	Page Advance Controlled by EJECT or NEWPAGE Statements
	Page Advance without Title/Header on Next Page
	Page Advance with End/Top-of-Page Processing

	Eject/New Page when less than n Lines Left

	New Page with Title
	Page Trailer - WRITE TRAILER Statement
	Specifying a Page Trailer
	Considering Logical Page Size
	Page Trailer Justification and/or Underlining

	Generating Blank Lines - SKIP Statement
	AT TOP OF PAGE Statement
	AT END OF PAGE Statement
	Further Example

	33 Column Headers
	Default Column Headers
	Suppress Default Column Headers - NOHDR Option
	Define Your Own Column Headers
	Combining NOTITLE and NOHDR
	Centering of Column Headers - HC Parameter
	Width of Column Headers - HW Parameter
	Filler Characters for Headers - Parameters FC and GC
	Underlining Character for Titles and Headers - UC Parameter
	Suppressing Column Headers - Slash Notation
	Further Examples of Column Headers

	34 Parameters to Influence the Output of Fields
	Overview of Field-Output-Relevant Parameters
	Leading Characters - LC Parameter
	Unicode Leading Characters - LCU Parameter
	Insertion Characters - IC Parameter
	Unicode Insertion Characters - ICU Parameter
	Trailing Characters - TC Parameter
	Unicode Trailing Characters - TCU Parameter
	Output Length - AL and NL Parameters
	Display Length for Output - DL Parameter
	Sign Position - SG Parameter
	Example Program without Parameters
	Example Program with Parameters AL, NL, LC, IC and TC

	Identical Suppress - IS Parameter
	Example Program without IS Parameter
	Example Program with IS Parameter

	Zero Printing - ZP Parameter
	Empty Line Suppression - ES Parameter
	Example Program without Parameters ZP and ES
	Example Program with Parameters ZP and ES

	Further Examples of Field-Output-Relevant Parameters

	35 Code Page Edit Masks - EM Parameter
	Use of EM Parameter
	Edit Masks for Numeric Fields
	Edit Masks for Alphanumeric Fields
	Length of Fields
	Edit Masks for Date and Time Fields
	Customizing Separator Character Displays
	Decimal Separator
	Dynamic Thousands Separator
	Examples

	Examples of Edit Masks
	Example Program without EM Parameters
	Example Program with EM Parameters

	Further Examples of Edit Masks

	36 Unicode Edit Masks - EMU Parameter
	37 Vertical Displays
	Creating Vertical Displays
	Combining DISPLAY and WRITE
	Tab Notation - T*field
	Positioning Notation x/y
	DISPLAY VERT Statement
	DISPLAY VERT without AS Clause
	DISPLAY with VERT AS CAPTIONED and HORIZ Clause
	DISPLAY with VERT AS 'text' Clause
	DISPLAY with VERT AS 'text' CAPTIONED Clause
	Tab Notation P*field

	Further Example of DISPLAY VERT with WRITE Statement

	VII Further Programming Aspects
	38 End of Statement, Program or Application
	End of Statement
	End of Program
	End of Application
	Ending the Execution of an Application by a STOP Statement
	Ending the Execution of an Application by a TERMINATE Statement
	Interrupting a Running Natural Application

	39 Processing of Application Errors
	Natural's Default Error Processing
	Application Specific Error Processing
	Using an ON ERROR Statement Block
	Using an Error Transaction Program
	Error Processing Related Features

	40 Conditional Processing - IF Statement
	Structure of IF Statement
	Nested IF Statements

	41 Loop Processing
	Use of Processing Loops
	Limiting Database Loops
	Possible Ways of Limiting Database Loops
	LT Session Parameter
	LIMIT Statement
	Limit Notation
	Priority of Limit Settings

	Limiting Non-Database Loops - REPEAT Statement
	Example of REPEAT Statement
	Terminating a Processing Loop - ESCAPE Statement
	Loops Within Loops
	Example of Nested FIND Statements
	Referencing Statements within a Program
	Example of Referencing with Line Numbers
	Example with Statement Reference Labels

	42 Control Breaks
	Use of Control Breaks
	AT BREAK Statement
	Control Break Based on a Database Field
	Control Break Based on a User-Defined Variable
	Multiple Control Break Levels

	Automatic Break Processing
	Example of System Functions with AT BREAK Statement
	Further Example of AT BREAK Statement
	BEFORE BREAK PROCESSING Statement
	Example of BEFORE BREAK PROCESSING Statement
	User-Initiated Break Processing - PERFORM BREAK PROCESSING Statement
	Example of PERFORM BREAK PROCESSING Statement

	43 Data Computation
	COMPUTE Statement
	Statements MOVE and COMPUTE
	Statements ADD, SUBTRACT, MULTIPLY and DIVIDE
	Example of MOVE, SUBTRACT and COMPUTE Statements
	COMPRESS Statement
	Example of COMPRESS and MOVE Statements
	Example of COMPRESS Statement
	Mathematical Functions
	Further Examples of COMPUTE, MOVE and COMPRESS Statements

	44 System Variables and System Functions
	System Variables
	Purpose
	Characteristics of System Variables
	System Variables Grouped by Function

	System Functions
	Example of System Variables and System Functions
	Further Examples of System Variables
	Further Examples of System Functions

	45 Stack
	Use of Natural Stack
	Stack Processing
	Placing Data on the Stack
	STACK Parameter
	STACK Statement
	FETCH and RUN Statements

	Clearing the Stack

	46 Processing of Date Information
	Edit Masks for Date Fields and Date System Variables
	Default Edit Mask for Date - DTFORM Parameter
	Date Format for Alphanumeric Representation - DF Parameter
	Examples of DF Parameter with WRITE Statements
	Example of DF Parameter with MOVE Statement
	Example of DF Parameter with STACK Statement
	Example of DF Parameter with INPUT Statement

	Date Format for Output - DFOUT Parameter
	Date Format for Stack - DFSTACK Parameter
	Year Sliding Window - YSLW Parameter
	Combinations of DFSTACK and YSLW
	Year Fixed Window
	Date Format for Default Page Title - DFTITLE Parameter

	47 Text Notation
	Defining a Text to Be Used with a Statement - the 'text' Notation
	Using Apostrophes as Part of a Text String
	Using Quotation Marks as Part of a Text String

	Defining a Character to Be Displayed n Times before a Field Value - the 'c'(n) Notation

	48 User Comments
	Using an Entire Source Code Line for Comments
	Using the Latter Part of a Source Code Line for Comments

	49 Logical Condition Criteria
	Introduction
	Relational Expression
	Extended Relational Expression
	Evaluation of a Logical Variable
	Fields Used within Logical Condition Criteria
	Logical Operators in Complex Logical Expressions
	BREAK Option - Compare Current Value with Value of Previous Loop Pass
	IS Option - Check whether Content of Alphanumeric or Unicode Field can be Converted
	MASK Option - Check Selected Positions of a Field for Specific Content
	Constant Mask
	Variable Mask
	Characters in a Mask
	Mask Length
	Checking Dates
	Checking Against the Content of Constants or Variables
	Range Checks
	Checking Packed or Unpacked Numeric Data

	MASK Option Compared with IS Option
	MODIFIED Option - Check whether Field Content has been Modified
	SCAN Option - Scan for a Value within a Field
	SPECIFIED Option - Check whether a Value is Passed for an Optional Parameter

	50 Rules for Arithmetic Assignment
	Field Initialization
	Data Transfer
	Data Conversion

	Field Truncation and Field Rounding
	Result Format and Length in Arithmetic Operations
	Arithmetic Operations with Floating-Point Numbers
	General Considerations
	Precision of Floating-Point Numbers
	Conversion to Floating-Point Representation
	Platform Dependency

	Arithmetic Operations with Date and Time
	Performance Considerations for Mixed Format Expressions
	Precision of Results of Arithmetic Operations
	Digits after Decimal Point for Division Results
	Precision of Results for Arithmetic Expressions

	Error Conditions in Arithmetic Operations
	Processing of Arrays
	Definitions of Array Dimensions
	Assignment Operations with Arrays
	Comparison Operations with Arrays
	Arithmetic Operations with Arrays

	51 Invoking Natural Subprograms from 3GL Programs
	Passing Parameters from the 3GL Program to the Subprogram
	Example of Invoking a Natural Subprogram from a 3GL Program

	52 Issuing Operating System Commands from within a Natural Program
	Syntax
	Parameters
	Parameter Options
	Return Codes
	Examples

	53 Statements for Internet and XML Access
	Statements Available
	REQUEST DOCUMENT
	PARSE XML

	Further References
	Sample Programs
	Training Courses
	Useful Links

	VIII Portable Natural Generated Programs
	54 Portable Natural Generated Programs
	Compatibility
	Endian Mode Considerations
	ENDIAN Parameter
	Transferring Natural Generated Programs
	Portable FILEDIR.SAG and Error Message Files

	IX Introduction to Event-Driven Programming
	55 What is an Event-Driven Application?
	Introduction
	Program-Driven Applications
	Event Driven Applications
	What is Happening Here?
	Writing Event-Driven Code
	Components of an Event Driven Application
	Dialogs
	Dialog Elements
	Attributes
	Event Handlers
	Data Areas - Global, Local, Parameter
	Inline Subroutines

	56 GUI Development Environments
	57 GUI Design Tips
	Introduction
	Do Your Research
	Screen Design
	Conversational Screens
	Data-Entry Screens

	Menu Design
	Color Usage
	Consistency Check

	58 Tasks Involved in Creating an Application
	59 Tutorial
	Creating a Dialog
	Assigning Attributes to the Dialog
	Creating Dialog Elements Inside the Dialog
	Assigning Attributes to the Dialog Elements
	Creating the Application's Local Data Area
	Attaching Event Handler Code to the Dialog Element
	Checking, Stowing and Running the Application

	60 Basic Terminology
	Attribute
	Base Dialog
	Control
	Dialog
	Dialog Box
	Dialog Editor
	Dialog Element
	Event
	Event Handler
	Handle
	Item
	MDI - Multiple Document Interface
	MDI Child Window
	MDI Frame Window
	Modal Window
	SDI - Single Document Interface
	Popup
	Window

	X Event-Driven Programming Techniques
	61 Introduction
	62 How To Open and Close Dialogs
	Opening a Dialog
	Operands
	Passing Parameters to the Dialog
	Permanence in Creating, Passing and Checking Data
	Processing Steps When Opening a Dialog
	Closing Dialogs
	Initializing Attribute Values

	63 How To Edit a Dialog's Enhanced Source Code
	What Is The Enhanced Source Code Format?
	Avoiding Incompatibilities Between Dialog Editor And Program Editor
	How To Use The Enhanced Source Code Format

	64 How Dialogs, Controls and Items Are Related Hierarchically
	65 How To Define Dialog Elements
	Introduction
	HANDLE OF GUI
	NULL-HANDLE

	66 How To Manipulate Dialog Elements
	Introduction
	Querying, Setting and Modifying Attribute Values
	Querying and Modifying Unicode Attribute Values
	Restrictions
	Numeric/Alphanumeric Assignment

	67 How To Create and Delete Dialog Elements Dynamically
	Introduction
	Global Attribute List
	Creating Dialog Elements Statically and Dynamically
	How to Handle Events of Dynamically Created Dialog Elements

	68 How To Enable and Disable Dialog Elements
	69 Defining and Using Context Menus
	Introduction
	Construction
	Association
	Invocation
	Manual Invocation
	Sharing of Context Menus

	70 Using the Clipboard and Drag and Drop
	Introduction
	Clipboard Specifics
	Drag and Drop Specifics
	Drag and Drop Insertion Marks
	Drag-Drop Checklist
	Example - Use of X-Arrays for Transferring Data

	71 System Variables
	72 Generated Variables
	#DLG$PARENT
	#DLG$WINDOW

	73 Using the TERMINATE or STOP Statements within Dialog-based Applications
	Introduction
	Solution
	Example

	74 Message Files and Variables as Sources of Attribute Values
	75 Triggering User-Defined Events
	Introduction
	Passing Parameters to the Dialog

	76 Suppressing Events
	77 Menu Structures, Toolbars and the MDI
	Creating a Menu Structure
	Parent-Child Hierarchy in Menu Structures
	Creating a Toolbar
	Sharing Menu Structures, Toolbars and DILs (MDI Application)

	78 Executing Standardized Procedures
	Introduction
	PROCESS GUI Statement

	79 Linking Dialog Elements to Natural Variables
	80 Validating Input in a Dialog Element
	81 Storing and Retrieving Client Data for a Dialog Element
	Introduction
	Integer Data
	Handle Data
	Keyed Alphanumeric Client Data
	Keyed Client Data in Native Format
	Key Enumeration

	82 Creating Dialog Elements on a Canvas Control
	83 Label Editing in Tree View and List View Controls
	Introduction
	Label Editing
	Changing an Item's Label Programmatically

	84 Working with ActiveX Controls
	Terminology
	How To Define an ActiveX Control
	How To Create an ActiveX Control
	Accessing Simple Properties
	Colors
	Pictures
	Fonts
	Variants
	Arrays
	Using the PROCESS GUI Statement
	Performing Methods
	Getting Property Values
	Putting Property Values
	Optional Parameters
	Error Handling
	Using Events With Parameters
	Suppressing Events At Runtime

	85 Working with Arrays of Dialog Elements
	86 Working with Control Boxes
	Introduction
	Purpose of Exclusive Control Boxes
	Examples of Use of Exclusive Control Boxes
	Creation of the Wizard Pages
	Switching between the wizard pages at edit-time
	Creating the divider line
	Implementing the Back and Next push buttons
	Clearing all controls on a wizard page
	Example 2 - a tabbed dialog

	87 Working with Date and Time Picker (DTP) Controls
	Introduction
	Date and Time Formats
	Inputting Dates and Times
	Null Values
	Calendar Colors and Font

	88 Working with Dialog Bar Controls
	Introduction
	Creating a Dialog Bar Control
	Types of Dialog Bar Control
	UI Transparency
	Client-Size Event
	Close Button
	Sample Code

	89 Working with Error Events
	90 Working with a Group of Radio Button Controls
	91 Working with Image List Controls
	Introduction
	Creating the Image List Control
	Adding Images
	Composite Images
	Scaling and Transparency
	Bitmaps vs. Icons
	Using an Image List
	Referencing Images from the Image List
	Overlay Images
	Modifying Images
	Deleting Images
	Deleting the Image List Control

	92 Working with List Box Controls and Selection Box Controls
	93 Working with List View Controls
	Introduction
	View Modes
	Setting Item Images
	Item Placement
	Item Selection
	Item Activation
	List View Columns and Sub-items
	Sorting
	Label Editing
	Multiple Context Menus
	Drag and Drop

	94 Working with Nested Controls
	Introduction
	Which Control Types can be Containers?
	Creating a Nested Control
	Multiple Selection, Control Sequence and Clipboard Operations

	95 Working with a Dynamic Information Line
	96 Working with Spin Controls
	Introduction
	Up-Down Control
	Buddy Control
	Date and Time Formats
	Inputting Dates and Times
	Null Values
	Calendar Colors and Font

	97 Working with a Status Bar
	98 Working with Status Bar Controls
	Introduction
	Creating a Status Bar Control
	Using Status Bar Controls without Panes
	Stretchy vs. non-stretchy panes

	Outputting Text to a Status Bar Control
	Sharing a Status Bar in an MDI Application
	Pane-specific Context Menus

	99 Working with Tab Controls
	Creating a Tab Control
	Assigning Controls to Tabs
	Use of Control Boxes as Tab Control Pages
	Switching Between Controls Belonging To Different Tabs
	Mixing Tab-dependent and Tab-independent Controls
	Keyboard Navigation
	Tab Switching Events

	100 Working with Tree View Controls
	Introduction
	Setting Item Images
	Item Selection
	Item Activation
	Item Data
	Sorting
	Label Editing
	Multiple Context Menus
	Dynamic Item Creation
	Drag and Drop

	101 Working with Dynamic Information Line and Status Bar
	102 Adding a Maximize/Minimize/System Button
	103 Defining Color
	104 Adding Text in a Certain Font
	105 Adding Online Help
	106 Defining Mnemonic and Accelerator Keys
	Introduction
	Defining a Mnemonic Key
	Defining an Accelerator Key
	Displaying Accelerator Keys in Menus

	107 Dynamic Data Exchange - DDE
	Concepts
	Developing a DDE Server Application
	Registering/Unregistering Services and Topics
	Getting Data From The Client
	Sending Data To The Client
	Terminating DDE Server Operation

	Developing a DDE Client Application
	Connecting With The DDE Server Application
	Using The Services of a DDE Server Application
	Receiving Data From The DDE Server Application
	Disconnecting From The DDE Server Application
	Terminating DDE Client Operation

	Return Codes

	108 Object Linking and Embedding - OLE
	What is OLE in the Natural Context?
	OLE Documents Support
	Embedding and Linking
	Visual Editing - In-place Activation
	ActiveX Controls Support
	OLE Container Control
	Creating an OLE Container Control
	Creating an OLE Container Control in the Dialog Editor
	Creating an OLE Container Dynamically At Runtime
	Clearing or Deleting an OLE Container At Runtime
	OLE Container Controls And The Dialog's Menu Bar
	Other OLE Container Control Functionality

	Attributes, Events and PROCESS GUI Statement Actions
	Attributes
	Event
	PROCESS GUI Statement Actions

	XI Results Interface
	109 Results Interface
	Purpose of the Results Interface
	Results Window Control Bar Access
	Tab Handling
	Image Handling
	Context Menu Handling
	Command Handling
	Column Handling
	Row Handling
	Data Handling
	Selection Handling

	XII Designing Character-Based User Interfaces for Your Application
	110 Screen Design
	Control of the Message Line - Terminal Command %M
	Positioning the Message Line
	Message Line Color

	Assigning Colors to Fields - Terminal Command %=
	Infoline - Terminal Command %X
	Windows
	What is a Window?
	DEFINE WINDOW Statement
	INPUT WINDOW Statement
	Multiple Windows

	Standard/Dynamic Layout Maps
	Standard Layout Maps
	Dynamic Layout Maps

	Multilingual User Interfaces
	Language Codes
	Defining the Language of a Natural Object
	Defining the User Language
	Referencing Multilingual Objects
	Programs
	Error Messages
	Edit Masks for Date and Time Fields

	Skill-Sensitive User Interfaces

	111 Dialog Design
	Field-Sensitive Processing
	*CURS-FIELD and POS(field-name)

	Simplifying Programming
	System Function POS

	Line-Sensitive Processing
	System Variable *CURS-LINE

	Column-Sensitive Processing
	System Variable *CURS-COL

	Processing Based on Function Keys
	System Variable *PF-KEY

	Processing Based on Function-Key Names
	System Variable *PF-NAME

	Processing Data Outside an Active Window
	System Variable *COM
	Example Usage of *COM
	Positioning the Cursor to *COM - the %T* Terminal Command

	Copying Data from a Screen
	Terminal Commands %CS and %CC
	Selecting a Line from Report Output for Further Processing

	Statements REINPUT/REINPUT FULL
	Object-Oriented Processing - The Natural Command Processor

	XIII Natural Native Interface
	112 Introduction
	113 Interface Library and Location
	114 Interface Versioning
	115 Interface Access
	116 Interface Instances and Natural Sessions
	117 Interface Functions
	nni_get_interface
	nni_free_interface
	nni_initialize
	nni_is_initialized
	nni_uninitialize
	nni_enter
	nni_try_enter
	nni_leave
	nni_logon
	nni_logoff
	nni_callnat
	nni_create_object
	nni_send_method
	nni_get_property
	nni_set_property
	nni_delete_object
	nni_create_parm
	nni_create_module_parm
	nni_create_method_parm
	nni_create_prop_parm
	nni_parm_count
	nni_init_parm_s
	nni_init_parm_sa
	nni_init_parm_d
	nni_init_parm_da
	nni_get_parm_info
	nni_get_parm
	nni_get_parm_array
	nni_get_parm_array_length
	nni_put_parm
	nni_put_parm_array
	nni_resize_parm_array
	nni_delete_parm
	nni_from_string
	nni_to_string

	118 Parameter Description Structure
	119 Natural Data Types
	120 Flags
	121 Return Codes
	122 Natural Exception Structure
	123 Interface Usage
	124 Threading Issues

	XIV NaturalX
	125 Introduction to NaturalX
	Why NaturalX?
	Programming Techniques
	Object-Based Programming
	Defining Classes
	Defining Interfaces
	Interface Inheritance

	126 Developing NaturalX Applications
	Development Environments
	Defining Classes
	Creating a Natural Class Module
	Specifying a Class
	Defining an Interface
	Assigning an Object Data Variable to a Property
	Assigning a Subprogram to a Method
	Implementing Methods

	Using Classes and Objects
	Defining Object Handles
	Creating an Instance of a Class
	Invoking a Particular Method of an Object
	Accessing Properties
	Sample Application

	127 Distributing NaturalX Applications
	General
	Internal, External and Local Classes

	Globally Unique Identifiers - GUIDs
	Using the Class Builder

	128 ActiveX Component SoftwareAG.NaturalX.Utilities
	Purpose
	Interfaces

	129 Interface INaturalXUtilities
	Purpose
	Methods
	GetThisNaturalStudio
	Parameters

	GetRunningObjects
	Parameters

	BindToObject
	Parameters

	130 Interface IRunningObjects
	Purpose
	Methods
	Next
	Parameters

	Reset

	131 ActiveX Component SoftwareAG.NaturalX.Enumerator
	Purpose
	Interface

	132 Interface IEnumerator
	Purpose
	Methods
	Attach
	Parameters

	Reset
	Next
	Parameters

	XV
	133 Natural Reserved Keywords
	Alphabetical List of Natural Reserved Keywords
	Performing a Check for Natural Reserved Keywords

	134 Referenced Example Programs
	READ Statement
	FIND Statement
	Nested READ and FIND Statements
	ACCEPT and REJECT Statements
	AT START OF DATA and AT END OF DATA Statements
	DISPLAY and WRITE Statements
	DISPLAY Statement
	Column Headers
	Field-Output-Relevant Parameters
	Edit Masks
	DISPLAY VERT with WRITE Statement
	AT BREAK Statement
	COMPUTE, MOVE and COMPRESS Statements
	System Variables
	System Functions

