
Natural

Debugger

Version 6.3.13 for UNIX

October 2012

This document applies to Natural Version 6.3.13 for UNIX.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1992-2012 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: NATUX-NNATDEBUG-6313-20121005

Table of Contents

Preface .. v
1 General Information .. 1

Remote Debugging .. 2
2 Using the Debugger .. 7

Preparing Natural Objects ... 8
Starting the Debugger .. 8
Leaving the Debugger .. 9
Operating the Debugger .. 10
Debugger Source Window ... 12
Watchvariables Control Bar ... 19
Variables Control Bar ... 19
Watchpoints and Breakpoints Control Bar .. 20

iii

iv

Preface

This documentation explains how todebugNatural applications. It is organizedunder the following
headings:

Information on remote debugging and how to set up your environment for remote
debugging.

General Information

How to start and use the debugger.Using the Debugger

v

vi

1 General Information

■ Remote Debugging ... 2

1

Remote Debugging

With one of the next versions, remote debugging will no longer supported. Instead, you will have
to use the debugger which is integrated in Natural Studio.

Remote debugging is donewhen youdebug a nativeNatural forUNIX application fromaWindows
computer.

To enable remote debugging, you have to proceed as follows:

■ Install the debug front-end on a Windows computer. This also installs the remote debugging
service natdbgsvwhichmust be active for remote debugging. See Installing theRemoteDebugger.

■ Define the parameters RDNODE, RDPORT and RDACTIVE in the environment which contains the
application that is to be debugged. See Setting Up Your Environment for Remote Debugging for
further information.

■ Invoke the debugger by entering the system command DEBUG object-name in the environment
which contains the application that is to be debugged.

■ Installing the Remote Debugger
■ Setting Up Your Environment for Remote Debugging
■ Scenarios for Remote Debugging

Important: For running the remote debugger, theMicrosoftWindows Personal Firewallmust
be deactivated. See Configuring the Microsoft Windows Personal Firewall to Run Natural in the
Operations documentation for Natural for Windows.

Installing the Remote Debugger

If you have Natural for Windows installed, you must use the remote debugger delivered with
Natural for Windows. If the remote debugger has not yet been installed, use theModify option
of the Natural installation package to add the remote debugger to your Natural for Windows in-
stallation. SeeMaintaining Your Natural or Natural Runtime Environment in the Installation docu-
mentation for Natural for Windows.

You only need to install the remote debugger stand-alone, if you do not haveNatural forWindows
installed. If you want to you debug a Natural application which is stored on a UNIX platform,
copy $NATDIR/$NATVERS/dbrmt/I386/nrd.exe from theUNIX installationmedium to yourWindows
computer (for example, to a temporary directory) and unzip it. Run setup.exe to start the installation
of the remote debugger.

Debugger2

General Information

Setting Up Your Environment for Remote Debugging

The following topics are covered below:

■ Windows Side without Terminal Services
■ Windows Side with Terminal Services
■ Natural Side

Windows Side without Terminal Services

Either install the remote debugger (the corresponding files can be found on the UNIX installation
medium) or install Natural for Windows (the remote debugger can optionally be installed with a
Natural for Windows custom installation; see the Installation documentation for Natural for Win-
dows). This also installs the Natural remote debugging service natdbgsv.

To uninstall the remote debugging service, enter natdbgsv -u in the command line. To view the
current service's port name and version, enter natdbgsv -s. To re-install the service on a different
port, uninstall it first and then enter natdbgsv -i portnumber, where portnumber is the value of
the RDPORT profile parameter. If the port number is already used, a dialog appears where you can
enter a new port number.

Note: Before you install the remote debugging service on a port other than 2600 (default
value), you have to change the value of the RDPORT profile parameter to match the port
number of the client computer where the Natural application is being debugged.

Windows Side with Terminal Services

Install the remote debugger (the correspondingfiles can be found on theUNIX installationmedium)
or install Natural for Windows (the remote debugger can optionally be installed with a Natural
for Windows custom installation; see the Installation documentation for Natural for Windows).
This also creates the debugger shortcut in the Startmenu (in the same programs folder in which
you can find the shortcuts for Natural) which represents the listener process natdbgsv. To use re-
mote debugging, natdbgsvmust be started. The first time the listener process is launched in a
specific user session, a free port number is displayed which must be entered in the corresponding
field of the RDPORT profile parameter.

Any subsequent activation of natdbgsv causes the listener to be startedwith the same port number.
If this number is already used by a different application, then the user must provide natdbgsv's
port dialog with a new port number and RDPORTmust be adjusted accordingly.

3Debugger

General Information

Natural Side

Start Natural with the following profile parameter settings:

■ RDACTIVE set to "ON".
■ RDNODE set to the node name of the Windows server.
■ RDPORT set to "2600" or another port number: the number of either port with which you have
installed the remote debugging service (seeWindows Side without Terminal Services), or with
which port the listener process was started (seeWindows Side with Terminal Services).

Scenarios for Remote Debugging

There are different scenarios of how you can use remote debugging: A single Natural client runs
under the control of one remote debugging session or a distributedNatural application runs under
the control of several remote debugging sessions. Such a distributed applicationmay include both
Natural RPC and DCOM servers or even components not written in Natural, such as Visual Basic
clients.

The following topics are covered below:

■ Scenario 1: Debugging a Single Natural Application
■ Scenario 2: Debugging a Distributed Natural Application
■ Scenario 3: Debugging the Natural Part of a Heterogeneous Application

Scenario 1: Debugging a Single Natural Application

The diagram below illustrates debugging in a single Natural application.

Debugger4

General Information

Scenario 2: Debugging a Distributed Natural Application

To debug each component of the following distributed Natural application, you enter DEBUG
objectname in the command line ofNatural debug client 1. The first time theNatural DebugClient
calls a subprogram on a Natural RPC server, a new debug session is opened for the RPC server.
Then, the RPC server's processing is debugged. The debug session is closed as soon as the RPC
server is terminated.

The same applies to a Natural DCOM server.

5Debugger

General Information

Scenario 3: Debugging the Natural Part of a Heterogeneous Application

As in the previous scenario, the first time a method on the DCOM server is called, a new debug
session is opened for the DCOM server, the DCOM server's processing is debugged, and the de-
bugger session is closed as soon as the DCOM server is terminated:

Debugger6

General Information

2 Using the Debugger

■ Preparing Natural Objects ... 8
■ Starting the Debugger .. 8
■ Leaving the Debugger .. 9
■ Operating the Debugger ... 10
■ Debugger Source Window .. 12
■ Watchvariables Control Bar ... 19
■ Variables Control Bar ... 19
■ Watchpoints and Breakpoints Control Bar ... 20

7

Preparing Natural Objects

To exploit the full functional scope of the Natural debugger, you must specify the following Nat-
ural profile parameter either dynamically or in your Natural parameter file:

SYMGEN set to "ON"

When an object is cataloged or stowed and SYMGEN is set to "ON", a symbol table is generated as
part of the generated program. Since this table contains the information relevant to the variables
active for this object, variables cannot be accessed without SYMGEN being specified, although it is
still possible to debug the object.

Starting the Debugger

The debugger can be applied to stowed or cataloged Natural programs and dialogs only.

To start the debugger

■ Enter the following Natural command:

DEBUG objectname

where objectname is the name of the Natural object you wish to debug.

The title bar shows one of the following:

■ [break]
When "[break]" is shown in the title bar, the debugger has control.

■ [waiting]
When "[waiting]" is shown in the title bar, the Natural application currently being debugged
has control.

When the remote debugger becomes active on the Windows operating system, the following in-
formation is shown in the title bar: "Debugging remoteNatural client (\\nodename::username::pro-
cess-id)", where nodename is the name of the computer where Natural is running, username is
the name of the Natural user and process-id is the Natural process ID.

The debugger window contains a child window with a source listing of the specified object that
is to be debugged.

In conjunction with this object source following information are displayed using control bars:

Debugger8

Using the Debugger

FunctionControl Bar

This control bar consists of two tab areas. Onemaintains breakpointswhereas
the other one maintains watchpoints.

Breakpoints andWatchpoints

This control bar displays the active variables and their actual content. These
variables are displayed under the following categories: Locals, Globals,
Systems, AIVs and Contexts.

Variables

This control bar displays the user-selected variables of any category available
in the variables control bar.

Watchvariables

The individual control bars are described in more detail in the remainder of this section.

Leaving the Debugger

You can leave the debugger fromanypointwithin an application by choosing eitherExit (see below)
or the corresponding toolbar button.

The debugger is also terminated if the application ends without an error; the trace cursor is then
placed on the source code line last executed.

In the case of an error, the corresponding source is displayed in the source window and the trace
cursor is placed on the line which caused the error. A message window appears with the appro-
priate error message and a choice to either continue or end the debugging session. Continuing the
debugging session may be useful if, for example:

■ your application contains any error processing (including error transactions);
■ you want to display any variables before you end your debugging session.

When you leave the debugger, your breakpoint, watchpoint and watchvariable settings are auto-
matically saved together with the window and toolbar settings. All these settings will be restored
the next time you invoke the debugger again.

Note: When, in the case of remote development, you leave the debugger on a remote system,
the program execution will continue, but the debugging control of the program execution
will stop.

9Debugger

Using the Debugger

Exit Command

Exit terminates the debugging session and returns control to Natural. The Exit command is
available on the first menu in the main window of each of the five debugger main facilities.

Operating the Debugger

Before going into detail about the debugger's sourcewindow and othermain facilities, this section
provides you with general information on the debugger.

■ Windows and Menus
■ Toolbar Buttons
■ Shortcut Keys
■ Watchpoints and Breakpoints
■ Restarting the Debugging Session

Windows and Menus

The debugger provides various windows, control bars, toolbars and menus.

Menu commands which are assumed to be used very often, are also available as toolbar buttons
in the corresponding toolbars.

Instead of using the menus, you can choose toolbar buttons or use shortcut keys.

In contrast to Natural itself:

■ the debugger has no command line.
■ the debugger's Toolsmenu contains the following options:

■ Customize, which allows you to modify your menu and toolbar appearance as well as define
shortcuts for frequently used commands;

■ Fonts, which allows you to modify the font of the source window;
■ Warningmessages, which allows you to decidewhetherwarningmessages onmissing source
code or symbolic information are to be displayed or not. Amessage that informs youwhether
the currently displayed source code is newer than the corresponding generated program is
also affected.

Debugger10

Using the Debugger

Toolbar Buttons

The toolbars provide you with fast access to frequently used commands. To display a short de-
scription of a command, place the mouse pointer over the corresponding button. The description
appears in the status bar at the bottom of the debugger's main window. If a command is currently
not applicable, the button is disabled.

Shortcut Keys

A further way to execute a debugger command is by entering a corresponding shortcut by using
the keyboard. By default the following shortcuts are defined:

FunctionShortcutMenu

OpenCtrl+OFile

FindCtrl+FEdit

Find NextF3

CloseF4Debug

GoF5

Step OverF6

Step InF7

Step OutCtrl+F7

Run To CursorCtrl+F6

Show Trace PositionAlt+*

Toggle BreakpointF9

Modify VariableCtrl+MVariables

Display VariableCtrl+D

Add to WatchvariablesCtrl+V

Add to WatchpointsCtrl+W

Watchpoints and Breakpoints

Two types of entries can be defined in a program for debugging purposes:watchpoints and
breakpoints. Each watchpoint or breakpoint is displayed in its corresponding control bar. For
each watchpoint, a name is assigned that corresponds to the name of the variable it belongs to.

Each watchpoint or breakpoint can be activated or deactivated at any time during a debugging
session using its corresponding check box.

Every watchpoint or breakpoint has an event count, which increases every time the debug entry
is passed. The number of executions of a debug entry, however, can be restricted in two ways:

11Debugger

Using the Debugger

1. A number of skips can be specified before the watchpoint or breakpoint is executed. The debug
entry is then ignored until the event count is higher than the number of skips specified.

2. A maximum number of executions can be specified, so that the watchpoint or breakpoint is ig-
nored as soon as the event count exceeds the specified number of executions.

Restarting the Debugging Session

When you restart your debugging session, the debugger repositions to the beginning of the applic-
ation while all your current settings (for example, watchpoints or breakpoints) are kept and all
counters as well as the calls history are newly initialized. Thus, restarting a debugging session is
useful if want to rerun your application without having to specify the settings relevant for debug-
ging again. You can restart your debugging session from any point within an application by
choosing either the "Restart" command or the corresponding toolbar icon. The Restart command
is available in the debug menu.

Note: If you are running a debugging session in a remote environment, theRestart command
is not available, and if you are debugging a DCOM or RPC server, the Restart command
restarts the called method or subprogram.

Debugger Source Window

When the debugger is invoked, it receives control of the specified Natural object and displays the
corresponding source in the sourcewindow.When the source is not available, thewindow remains
empty. The trace cursor is placed on the first executable source code line.

When a user opens a new object or when a watchpoint or breakpoint is hit inside another object
but the currently active one, a new source window is opened displaying the source of this new
object.

The following topics are covered below:

■ Debug Menu
■ Variables Menu
■ Dialog Boxes
■ Selecting Variables
■ Marking Text in the Source Window
■ Display
■ Modify
■ Quick Watch
■ Add Watch
■ Add Watchpoint
■ File Menu

Debugger12

Using the Debugger

■ Edit Menu

Debug Menu

The following commands of theDebugmenu are available in conjunctionwith the sourcewindow:

Step Into
When you choose the Step Into command, the next program step is executed and the trace
cursor is placed on the corresponding source code line.

If this source code line invokes or includes a further Natural object, the debugger steps into
this object.

Step Over
When you choose the Step Over command, the next program step is executed and the trace
cursor is placed on the corresponding source code line. This time, however, the debugger steps
over any invoked or included Natural object, but stops if this object contains watchpoints or
breakpoints.

Step Out
When you choose theStepOut command, the debugger returns to the previous program level,
but stops if it finds a watchpoint or breakpoint before this previous level is reached.

Animated Step Into
When you choose the Animated Step Into command, the program is automatically executed
step by step until the end of the program. The debugger steps into any Natural object invoked
or included.

Animated Step Over
When you choose theAnimated Step Over command, the program is automatically executed
step by step until the end of the program. The debugger steps over any invoked or included
Natural object; if a watchpoint or breakpoint is set, it jumps to the corresponding statement
line and continues animation.

Go
When you choose theGo command, the program is executed until the next active watchpoint
or breakpoint, and the trace cursor is placed on the corresponding source code line.

Go Until Next Event
When you choose theGoUntil Next Event command, this will have the same effect as theGo
command in a non-event driven application. In an event-driven application, however, the
object is executed until the next event is sent to the application; it stops if an active watchpoint
or breakpoint occurs before the next event is sent.

Run to Cursor
When you choose the Run to Cursor command, the program is executed until the source line
at the current cursor position is reached.

Show Trace Position
Whenyou choose theShowTrace Position command, the current trace cursorwill be displayed.

13Debugger

Using the Debugger

Toggle Breakpoint
When you choose theToggle Breakpoint command, a breakpoint for the current trace position
is added to the breakpoints control bar. If a breakpoint already exists for this cursor position,
it will be removed from the breakpoints control bar.

Calls
TheCalls submenu provides youwith a list (history) of themost recently calledNatural objects
including copycodes and inline subroutines. Up to 20 objects can be listed; the most recently
called object appears at the top of the list.

The objects list consists of the following information:
■ The program level of the called object without counting copycodes and inline subroutines.
■ The program level of the called object counting copycodes and inline subroutines.
■ The name of the called object.
■ The type of the called object.
■ The event and control handle of the event handler to be processed (with event-driven applic-
ations only).

The status bar at the bottom of the debugger's main window displays additional information
on the called object:
■ The name of the calling object:

"Natural" is displayed as the calling object if the called object is the application start-up
programor a programactivated from theNatural stack (including error transaction programs
and programs activated by a RUN statement from inside the application).

■ The source code line in which the object was called:

If you select an object from the list, except with "Natural", the source of the calling program
is displayed in the middle of the source window with the cursor placed at the beginning of
the line in which the call occurred.

Variables Menu

The Variablesmenu is used to:

■ Display the contents of selected variables.
■ Modify the contents of selected variables.
■ Quick watch the contents of the variable at the current trace position.
■ Add variables to the watchvariables control bar.
■ Add variables to the watchpoints control bar.

Debugger14

Using the Debugger

Dialog Boxes

When you choose the,Display,Modify, AddWatch or AddWatchpoint command, a dialog box
is appears, which displays a list of all local, global, AIV or system variables active in the current
debugging context. The following controls are part of this dialog box:

■ The Variable text box, which shows the currently selected variable.
■ TheLineReference orContext ID box,which shows the source code line number of the variable
or context variable currently contained in the Variable text box.

The Line Reference box is only displayed if the line reference is needed to make the variable
selection unambiguous. This is the case if:
■ the variable belongs to a map; then the box contains the source code line number of the cor-
responding RULEVAR syntax element generated by the map editor;

■ the variable is either a database variable (reporting mode only) or one of the following vari-
ables: *ISN, *COUNTER, *NUMBER; then the box contains the source code line number of the
corresponding database loop or access statement;

■ the variable is defined in reporting mode, but without a DEFINE DATA statement.

The Context ID box is only displayed if the variable is a context variable; then the box contains
the “ctx-Id” (context ID).

■ TheHistory List list box (Display command only), which contains the most recently selected
variables (up to 20) using a first-in first-out mechanism.

The history list helps you to quickly locate a variable that has been already selected before.
Variables can be selected from the history list in the same way as from the variable list.

■ The Variable list box, which contains the corresponding variable listing.

Selecting Variables

When you choose a variable in the variable list of a dialog box, it is shown in the corresponding
Variable text box.

When you choose a variable in the variable list of a dialog box, a further dialog box is displayed
(except with theWatch command).

When you choose an array or variable group:

■ the individual array or group elements are displayed in the second dialog box (display),
■ the array is displayed in the second dialog box for modification; groups cannot be modified
(modify),

■ a corresponding error message is displayed (watchpoint).

15Debugger

Using the Debugger

You can also choose a variable by first marking it directly in the source window and then select
theDisplay,Modify, AddWatch or AddWatchpoint command respectively. Then, the Variable
text box of the corresponding dialog box exactly shows the piece of source code you havemarked,
which then can be modified.

Marking Text in the Source Window

In the source window, you can mark variables or character strings for selection with either the
mouse or the keyboard.

When marking text using the mouse, place the mouse pointer on the first character to be selected,
drag the pointer to the last character you want to select, and release the mouse button. To cancel
a selection, choose anywhere in the document.

When using the keyboard to mark text, cursor movement keys are used. First place the cursor on
a character by using an arrow key, then press and hold down the SHIFT key and use the following
keys for text selection:

■ the LEFT-ARROW key to mark the area to the left of your cursor position,
■ the RIGHT-ARROW key to mark the area to the right of your cursor position,
■ the END key to mark the area until the end of the source code line,
■ the HOME key to mark the area until the beginning of the source code line.

Display

With this command, a variable can be selected from the listing in the dialog box for display along
with its current content in a secondDisplay Variable dialog box, where you can choose between
alphanumeric and binary representation of the variable value.

When you select an array, a handle variable or a group of variables, the individual elements and
their values are listed in the second dialog box. With arrays, any variable index expression is
evaluated.

The element listing can be expanded or contracted by choosing the Expand/Contract button.
Whenever the number of arrays, groups or dialog element on the list exceeds a certain display
limit, a "More" line appears, which can be used to display further objects. Alternatively, the Expand
command can also be used.

A variable, array or group of variables can also be selected for display in the Display Variable
dialog box by choosing it with the left mouse button directly in the source window.

Debugger16

Using the Debugger

Modify

With this command, a variable can be selected from the listing in the dialog box for display together
with its current value in a secondModify Variable dialog box, where its value can be modified.

If youwant tomodify a systemvariable, only systemvariableswhich can bemodified are displayed
in the first dialog box.

If you want to modify an array, only its name but no values are displayed in the second dialog
box. The value you enter will then be valid for all array elements.

Groups of variables cannot be selected for modification.

Quick Watch

With this command, a dialog box appears displaying the contents of the variable at the current
cursor position.

Add Watch

With this command, variables, arrays or groups of variables can be selected from the list in the
dialog box in order to add them to the watchvariables control bar.

Add Watchpoint

With this command, single variables and individual group or array elements can be selected from
the listing in the dialog box for the definition of a watchpoint in a second Set Watchpoint dialog
box; arrays and groups of variables cannot be selected.

The second Set Watchpoint dialog box displays the name of the watchpoint (which corresponds
to the name of the selected variable) together with its line reference (if applicable), and the names
of the corresponding Natural object and library.

Note: With system variables, the corresponding watchpoint is not attached to a specific
library and object; therefore, the object and library name will always be SYSTEM.

To define a watchpoint, you specify the following items in the corresponding boxes:

■ the state of the watchpoint,
■ a condition for the watchpoint to be activated (optional),
■ the number of skips before execution of the watchpoint,
■ the maximum number of executions of the watchpoint.

17Debugger

Using the Debugger

File Menu

The following commands of the Filemenu are available in conjunction with the source window:

Open
With theOpen command you can specify a further source program to be loaded into the source
window. TheOpen Source dialog box appears, in which you specify the program name and
the appropriate library name if the program is not contained in the current library (default).

You can also select a character string for being placed into theOpen Source dialog box by
marking its name in the source window and then choosing theOpen command.

Close
The Close command will close the currently active source window. If the source window you
are about to close contains the trace bar, the window will be iconized.

Exit
The Exit command will exit the debugger and end the current program execution.

Edit Menu

The following commands of the Edit menu are available in conjunction with the source window:

Find
With the Find command, you can search up or down through the activewindow to locate each
occurrence of a specified word or character string.

The Find dialog box appears, where you can enter the text to be located in the Find text box.
In addition, you can turn theMatch Upper/Lower Case andWhole Words Only options on
or off.

If found, the first occurrence of the specified text is highlighted (selected), whereas a message
lets you know if the text could not be found.

With theMatch Upper/Lower Case option, you can specify whether the find operation is to
look for an exact match (ON) or for the same characters only, regardless of case (OFF).

With theWhole Words Only option, you can specify whether the find operation is to look for
occurrences that arewholewords only, not part of a character string (ON), or for all occurrences
of the specified text, whole words and parts of a character string (OFF).

To change the direction of the find, choose the Up button to search upwards, to the top of the
text, or theDown button to search downwards, to the bottom of the text;Down is the default.

If the find does not start at the top (or bottom) of the text, and the specified text cannot be
found, a dialog appears. You can choose Yes to continue the find at the top (or bottom) of the
text orNo to cancel the search.

Debugger18

Using the Debugger

You can also select a character string to be placed into the Find text box bymarking it directly
in the source window and then choosing the Find command.

Find Next
With this command, you can repeat the previous find operation and locate the next occurrence
of the text specified with the Find command.

Watchvariables Control Bar

The watchvariables control bar is primarily intended to display previously selected variables for
closer and permanent observation of their content.

It offers a context menu which either displays the commands which can be used in combination
with the entire control bar or displays the commands which can be used with each individual
watchvariable.

To open the context menu, choose with the right mouse button either on the control bars caption
or on a particular watchvariable.

Variables Control Bar

The variables control bar displays all variables which are available at current state of the program
execution. All variables are grouped in different categories. These categories are Locals,Globals,
Systems, AIVs and Contexts. You can switch between these categories by choosing the corres-
ponding tab at the bottom of the control bar. In order to modify the content, select the content
field of a particular variable. Some systemvariables are read-only and therefore cannot bemodified.

The Variables control bar offers a context menu which either displays the commands which can
be used in combination with the entire control bar or displays the commands which can be used
with each individual variable.

To open the context menu, choose with the right mouse button on either the control bars caption
or on a particular variable.

19Debugger

Using the Debugger

Watchpoints and Breakpoints Control Bar

The Watchpoints and Breakpoints control bar is used to add and maintain watchpoints and
breakpoints. You can switch between thewatchpoints and breakpoint by choosing the correspond-
ing tab at the bottom of the control bar.

Watchpoints

Usingwatchpoints, you can rapidly detect “illegal” alterations to Natural variables by objects that
contain errors.

By default, watchpoints are used to instruct the debugger to interrupt the execution of Natural
objects when the contents of a variable change. However, by specifying a certain value to the
variable together with a watchpoint operator when setting a watchpoint, a condition can be set
which only activates the watchpoint when condition becomes true.

A variable is considered to have changed either when its current value differs from the value re-
corded when the watchpoint was last triggered or when it differs from the initial value.

In order to deactivate a watchpoint temporarily, remove the check mark from the check box of
the corresponding watchpoint entry.

The watchpoint tab of this control bar offers a context menu which either displays the commands
which can be used in combination with the entire tab or displays the commands which can be
used with each individual watchpoint.

To open the context menu, choose with the right mouse button on either the tabs caption or on a
particular watchpoint.

Add Watchpoint

A new watchpoint can be added either by selecting the AddWatchpoint command from the
variables menu or by selecting the command Add from the context menu of the watchvariables
tab.

TheAddWatchpoint dialog box allows you to select single variables, arrays and individual group
elements from the list of available variables. Closing the dialog with theOK button will open the
Set Watchpoint dialog box which allows you specify a condition for this watchpoint.

Note: With system variables, the corresponding watchpoint is not attached to a specific
library and object; therefore, the object and library name will always be SYSTEM.

Debugger20

Using the Debugger

Set Watchpoint Dialog Box

The Set Watchpoint dialog box displays the name of the watchpoint (which corresponds to the
name of the selected variable) together with its line reference/context ID (if applicable) and the
names of the corresponding Natural object and library.

Note: With system variables, the corresponding watchpoint is not attached to a specific
library and object; therefore, the object and library name will always be SYSTEM.

To define a watchpoint, you can specify the following items in the corresponding boxes:

■ The state of the watchpoint to be set; valid states are "active" (default) and "pending".
■ A condition for the watchpoint to be activated (optional).

You can specify an appropriate value and watchpoint operator; if no operator and value (that is,
condition) is specified, the default setting (MOD) applies (for a description of the individual
watchpoint operators, see below).

■ The number of skips before execution of the watchpoint if it is not to be executed until the pro-
gram has run a certain number of times; the default is 0.

■ The maximum number of executions of the watchpoint; the default is 0.

A watchpoint will not be set until you either choose theOK button or press ENTER. If you choose
the Cancel button or press ESC, no watchpoint will be set.

Once a watchpoint has been specified, it remains until you delete it explicitly.

Watchpoint Operators

Watchpoint operators are set via option buttons; the available watchpoint operators are:

DescriptionStands forOperator

The watchpoint is activated each time a modification of the variable occurs.
Default.

ModificationMOD

The watchpoint is activated only when the current value of the variable is less
than the specified value.

Less ThanLT

The watchpoint is activated only when the current value of the variable is less
than or equal to the specified value.

Less or EqualLE

Thewatchpoint is activated onlywhen the current value of the variable is greater
than the specified value.

Greater ThanGT

Thewatchpoint is activated onlywhen the current value of the variable is greater
than or equal to the specified value.

Greater or EqualGE

The watchpoint is activated only when the current value of the variable is equal
to the specified value.

EqualEQ

21Debugger

Using the Debugger

DescriptionStands forOperator

The watchpoint is activated only when the current value of the variable is not
equal to the specified value.

Not EqualNE

Breakpoints

A breakpoint is a point at which control is returned to the user while a Natural object is executing.

In order to deactivate a breakpoint temporarily, remove the check mark from the check box of the
corresponding breakpoint entry.

The breakpoint tab of this control bar offers a context menu which either displays the commands
which can be used in combination with the entire tab or displays the commands which can be
used with each individual breakpoint.

To open the context menu, choose with the right mouse button on either the tabs caption or on a
particular breakpoint.

Add Breakpoint

With the Add command, you can define a new breakpoint. The Add Breakpoint dialog box is
displayed,where you define the breakpoint by specifying the following items in the corresponding
boxes:

■ The state of the breakpoint to be set; valid states are "active" (default) and "pending".
■ The name of the Natural object to contain the breakpoint; the default object name is the name
of the object currently in the source window.

■ The name of the Natural library that contains the object with the breakpoint; the default library
name is the name of the library which contains the object currently in the source window.

■ The line number of the object's source code where the breakpoint is to be executed.

Beginmeans that the breakpoint is to be set at the first executable line of code of the specified
object; Endmeans that the breakpoint is to be set at the last executable line of code of the specified
object.

■ The number of skips before execution of the breakpoint if it is not to be executed until the program
has run a certain number of times; the default is 0.

■ The maximum number of executions of the breakpoint; the default is 0.

A breakpoint will not be set until you either choose theOK button or press ENTER. If you choose
the Cancel button or press ESC, no breakpoint will be set.

Breakpoints can also be set directly in the program currently contained in the source window by
double-clicking the appropriate statement linewith the rightmouse button. Thisway, a breakpoint

Debugger22

Using the Debugger

is definedwith all default values and the corresponding source code line number. It can be displayed
and/or modified by using the corresponding functions.

Breakpoints cannot be set on comment lines or on any statement line other than the first one if a
single statement occupies more than one line.

Once a breakpoint has been defined, it remains until you delete it explicitly.

23Debugger

Using the Debugger

24

	Debugger
	Table of Contents
	Preface
	1 General Information
	Remote Debugging
	Installing the Remote Debugger
	Setting Up Your Environment for Remote Debugging
	Windows Side without Terminal Services
	Windows Side with Terminal Services
	Natural Side

	Scenarios for Remote Debugging
	Scenario 1: Debugging a Single Natural Application
	Scenario 2: Debugging a Distributed Natural Application
	Scenario 3: Debugging the Natural Part of a Heterogeneous Application

	2 Using the Debugger
	Preparing Natural Objects
	Starting the Debugger
	Leaving the Debugger
	Exit Command

	Operating the Debugger
	Windows and Menus
	Toolbar Buttons
	Shortcut Keys
	Watchpoints and Breakpoints
	Restarting the Debugging Session

	Debugger Source Window
	Debug Menu
	Variables Menu
	Dialog Boxes
	Selecting Variables
	Marking Text in the Source Window
	Display
	Modify
	Quick Watch
	Add Watch
	Add Watchpoint
	File Menu
	Edit Menu

	Watchvariables Control Bar
	Variables Control Bar
	Watchpoints and Breakpoints Control Bar
	Watchpoints
	Add Watchpoint
	Set Watchpoint Dialog Box

	Watchpoint Operators
	Breakpoints
	Add Breakpoint

