
Natural

Operations

Version 6.3.12 for OpenVMS

October 2012

This document applies to Natural Version 6.3.12 for OpenVMS.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © 1984-2012 Software AG, Darmstadt, Germany and/or Software AG USA, Inc., Reston, VA, United States of America,
and/or their licensors.

Detailed information on trademarks and patents owned by Software AG and/or its subsidiaries is located at
http://documentation.softwareag.com/legal/.

Use of this software is subject to adherence to Software AG's licensing conditions and terms. These terms are part of the product doc-
umentation, located at http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

This softwaremay include portions of third-party products. For third-party copyright notices and license terms, please refer to "License
Texts, Copyright Notices and Disclaimers of Third-Party Products". This document is part of the product documentation, located at
http://documentation.softwareag.com/legal/ and/or in the root installation directory of the licensed product(s).

Document ID: NATOV-NNATOPERATIONS-6312-20121005

Table of Contents

Preface .. v
1 Profile Parameter Usage .. 1

Parameter Hierarchy .. 2
Static Assignment of Parameter Values ... 3
Dynamic Assignment of Parameter Values ... 4
Runtime Assignment of Parameter Values .. 5

2 System Files ... 7
System File Structure ... 8
System Files FNAT and FUSER ... 9
System File FDDM ... 11
Important Information and Warnings ... 14
The File FILEDIR.SAG ... 15
Portable Natural System Files .. 15
Natural Root Directory .. 18
Using NFS to Store Natural Libraries .. 18

3 Work Files .. 19
Defining Work Files .. 20
Work File Formats .. 21
Record File Format ... 25
Special Considerations for Work Files with the Extension NCD 25
Using the Work File Type Transfer .. 27

4 Natural Buffer Pool .. 29
General Information ... 30
Setting up a Buffer Pool .. 32
Using the Utility NATBPSRV for Creating the Buffer Pool 32
Monitoring the Buffer Pool .. 33
Trouble Shooting .. 33
Shutting Down and Restarting the Buffer Pool ... 34

5 Using the Buffer Pool Monitor (NATBPMON) ... 37
Invoking the NATBPMON Utility ... 38
NATBPMON Commands ... 38
Displaying the Objects in the Buffer Pool .. 40
Specifying a Pattern .. 41
Displaying the Buffer Pool Settings ... 42
Statistical Information About the Buffer Pool .. 42

6 Natural in Batch Mode .. 47
What is Batch Mode? .. 48
Starting a Natural Session in Batch Mode .. 48
Terminating a Natural Session in Batch Mode .. 49
Using Natural in Batch Mode .. 49
Sample Session for Batch Mode ... 51
Batch Mode Detection .. 54
Batch Mode Restrictions ... 54

iii

Batch Mode Simulation .. 55
7 Support of Different Character Sets with NATCONV.INI .. 57

Why is the Support of Different Character Sets Important? 58
Character Sets that are Supported ... 58
How to Use Different Character Sets ... 60

8 Natural Exit Codes .. 65
Special Considerations for Natural on OpenVMS ... 66
Natural Startup Errors ... 67

9 Setting Up the Entire System Server Interface .. 71
Prerequisites ... 72
Activation ... 72
Changing the Database ID for the Entire System Server DDMs 73

10 User Exit for Computation of Sort Keys - NATUSKnn ... 75

Operationsiv

Operations

Preface

This documentation contains information for operating Natural in an OpenVMS environment. It
is organized under the following headings:

Information on the parameter hierarchy. How to assign profile
parameter values statically, dynamically and at runtime.

Profile Parameter Usage

How system files and Natural objects are stored in the file system.
Information on the system files FNAT, FUSER and FDDM.

System Files

How to define work files. Information on the different work file
formats.

Work Files

How the buffer pool is used by Natural and how it is started.Natural Buffer Pool

How to invoke the NATBPMON utility. Information on the commands
that are available with this utility.

Using the Buffer Pool Monitor
(NATBPMON)

How to run Natural in batch mode. Information on the required
input and output channels. How to use batch mode simulation.

Natural in Batch Mode

How to define different character sets in the file NATCONV.INI.Support of Different Character Sets
with NATCONV.INI

Information on the Natural exit codes, including startup errors.Natural Exit Codes

How to activate the Entire System Server Interface for the product
Entire System Server.

Setting Up the Entire System Server
Interface

How to sort characters of other languages in the correct alphabetical
order.

User Exit forComputation of SortKeys
- NATUSKnn

TheNatural utilitieswhich can be used to execute numerous administrative functions are described
separately; see the Tools and Utilities documentation for detailed information.

Security is also described separately; see theNatural Securitydocumentation for detailed information.

v

vi

1 Profile Parameter Usage

■ Parameter Hierarchy .. 2
■ Static Assignment of Parameter Values ... 3
■ Dynamic Assignment of Parameter Values ... 4
■ Runtime Assignment of Parameter Values .. 5

1

Natural profile parameters affect the appearance and the response of your working environment.

The parameters are described in detail in the Parameter Reference.

Parameter Hierarchy

The values for the Natural parameters are taken from different sources. The priority of the para-
meters is as follows:

1. Static Assignments
Lowest priority. Static assignments are made by parameters specified in the Natural parameter
file NATPARM.

2. Dynamic Assignments
Dynamic assignments are made by specifying an alternative parameter file and/or individual
parameters when starting Natural.

3. Runtime Assignments
Highest priority. Runtime assignments are made during the session by specifying session
parameters.

See the remainder of this section for further information on the different types of assignments.

Note: When Natural Security is active, the use of specific parameters may be restricted.

The following graphic illustrates the parameter hierarchy:

Operations2

Profile Parameter Usage

Static Assignment of Parameter Values

By default, the parameter specifications in the parameter file NATPARM are used to determine the
characteristics of yourNatural environment. Initially, this file contains the default values as supplied
by Software AG. It can be changed using the Configuration Utility.

Tip: It is recommended that you do not modify the default parameter file NATPARM. If you
want to use Natural with parameter values other than the default values, create your own
parameter file (see also the following section).

3Operations

Profile Parameter Usage

Dynamic Assignment of Parameter Values

Using the dynamic parameters, you can set up your own environment when starting Natural.
When the session is started, the operating system passes the values for the dynamic parameters
to Natural.

The dynamic parameters are valid for the current Natural session. They override the static assign-
ments specified in the default parameter file NATPARM.

Using the Configuration Utility can also create your own parameter files. To use one of your own
parameter files, you have to specify its name when starting Natural.

To start Natural with dynamic parameter values

■ Add the dynamic parameters and their values to the command that is used to start Natural.

Example: The profile parameter PARM is used to invokeNaturalwith the alternative parameter
file MYPARM. The values for the profile parameters SM and DTFORM are to be used instead of
those defined in MYPARM:

natnn PARM=MYPARM SM=ON DTFORM=I

where nn stands for the current version number. natnn is defined in SAG$Root:[Natural]lo-
gin.com as a foreign command for passing parameters to Natural.

Special Characters

Special characters like brackets and asterisks are interpreted by the operating system. Therefore,
it is necessary to put the parameters which use these special characters in double quotationmarks.
Example:

natnn "FNAT=(99,30) FUSER=(99,32)"

As an exception to this rule, the parameters FNAT, FDIC, FSEC, FDDM and FUSER can also be specified
without brackets to avoid using quotation marks. Example:

natnn FNAT=99,30 FUSER=99,32

Operations4

Profile Parameter Usage

Runtime Assignment of Parameter Values

The runtime assignments are made during the session by setting session parameters. The values
of the session parameters override static and dynamic assignments.

Session parameters are set with the system command GLOBALS. Example:

GLOBALS SA=ON,IM=D

In reportingmode, session parameters can also be setwith the SET GLOBALS statement in a program.
Example:

SET GLOBALS SA=ON,IM=D

Note: In addition to setting the session parameters at session level (as described above), you
can also set themat program, statement or field level. For further information, see Introduction
to Session Parameters in the Parameter Reference.

5Operations

Profile Parameter Usage

6

2 System Files

■ System File Structure ... 8
■ System Files FNAT and FUSER ... 9
■ System File FDDM .. 11
■ Important Information and Warnings .. 14
■ The File FILEDIR.SAG ... 15
■ Portable Natural System Files .. 15
■ Natural Root Directory .. 18
■ Using NFS to Store Natural Libraries ... 18

7

Natural for OpenVMS stores objects in files accessible by operating system functions. Unlike
Natural forMainframeswhere the objects are stored inAdabas systemfiles,Natural forOpenVMS
stores the objects in specific directories on the disk. Thus, a database such as Adabas is not required
to run Natural for OpenVMS.

System File Structure

By default, the Natural libraries are created as subdirectories below the Natural root directory of
a specific Natural version. The subdirectories have the same names as the libraries.

The Natural objects are stored as files in the subdirectories. The file name for a Natural object has
the following form:

file-name.NKT

This the name of the object. See also Object Naming Conventions in Using Natural.file-name

The first character of the extension is always "N". It stands for “Natural”.N

K The second character of the extension can be one of the following:

for source filesS

for generated programsG

for resourcesR

The third character of the extension stands of the type of the object. For valid values, see the
list below.

T

For example, the source program TESTPROG is stored as file TESTPROG.NSP, while the generated
code for the map TESTMAP is stored as file TESTMAP.NGM.

Note: The file name is not always identical to the object name. Both the current object name
and the corresponding internal object name are documented in the file FILEDIR.SAG.

The following object types and the respective letters and numbers are used for the extensions
available:

Object TypeLetter or Number

Parameter data area (PDA)A

CopycodeC

DDMD

Global data area (GDA)G

HelproutineH

Local data area (LDA)L

Operations8

System Files

Object TypeLetter or Number

MapM

SubprogramN

ProgramP

SubroutineS

TextT

Class4

Command processor5

Function7

Adapter8

System Files FNAT and FUSER

The Natural system files FNAT (for system programs) and FUSER (for user-written programs) are
located in different subdirectories.

FNAT assumes the following directory structure:

FNAT

LIBDIR.SAG

SYSTEM

FILEDIR.SAG

SRC

GP

ERR

RES

SYS*

FILEDIR.SAG

SRC

GP

ERR

RES

The file LIBDIR.SAG, which is only available for FNAT, contains information on all further installed
Software AG products using Natural. This information can be displayed by using the system
command SYSPROD.

FUSER assumes the following directory structure:

9Operations

System Files

FUSER

SYSTEM

FILEDIR.SAG

SRC

GP

ERR

RES

user-library1

FILEDIR.SAG

SRC

GP

ERR

RES

The name of a user library must not start with "SYS".

The directory structure is generated during the installation ofNatural. The directories representing
the system and user libraries contain the following:

■ FILEDIR.SAG
This file contains internal library information used by Natural. For further information, see The
File FILEDIR.SAG below.

■ SRC
This subdirectory contains the Natural source objects stored in the library.

■ GP
This subdirectory contains the generated Natural programs stored in the library.

■ ERR
This subdirectory contains the error messages stored in the library.

■ RES
This subdirectory contains the private and shared resources stored in the library.

DDMs can be stored in local libraries. If DDMs are used by a program, Natural first searches the
current library, then the steplibs, and then the library SYSTEM. If the DDMs are not found, the
program does not compile and displays an error message. However, if FDDMmode has been
activated, Natural searches for the DDMs only in the system file FDDM.

The paths to the system files FNAT, FUSER and FDDM are defined in the ConfigurationUtility. System
files are version-dependent. Therefore, Natural can only access system files of the current Natural
version. It is recommended that you only have one FNAT system file. It is possible, however, to
define several FUSER system files (for example, when you have different development areas for
different purposes).

Operations10

System Files

System File FDDM

The system file FDDM is a container in which all DDMs can be stored.

FDDM assumes the following directory structure:

FDDM

SYSTEM

FILEDIR.SAG

SRC

GP

By default, the system file FDDM is not active. If you want to use it, you have to activate FDDM
mode as described below.

■ Activating FDDM Mode
■ Migrating DDMs to the System File FDDM
■ Checking whether the System File FDDM is Used

Activating FDDM Mode

If FDDMmode is activated (both database ID and file number do not equal 0 in the global config-
uration file), all DDMs are stored and read in the system file FDDM. DDMs stored in libraries will
no longer be accessible fromNatural. This is similar to the mainframe, where all DDMs are stored
in the system file FDIC.

If the FDDM system file is undefined in the global configuration file, the DDMs are stored in the
Natural libraries FUSER and FNAT.

To activate FDDM mode

1 Create an empty directory in which the DDMs are to be stored in FDDMmode. The directory
can have any name which corresponds to the Natural naming conventions.

2 Invoke the Configuration Utility.

3 In the global configuration file (category System Files), assign a database ID and file number
for the system file FDDM and define the path to the directory that you have created in the first
step.

4 Open the required parameter file.

5 Locate the parameter FDDM.

Tip: Locate this parameter by searching for "FDDM". See Finding a Parameter in the
Configuration Utility documentation for further information.

11Operations

System Files

6 For the parameter FDDM, specify the same database ID and file number that you have defined
in the global configuration file.

7 Save your changes.

8 Migrate all required DDMs to the system file FDDM as described below.

Migrating DDMs to the System File FDDM

All DDMs that are to be available in FDDMmodemust be contained in the system file FDDM. Espe-
cially the example DDMs delivered with Natural in library SYSEXDDMmust be available in the
system file FDDM.

For migration of DDMs to the FDDM system file, you can choose between different alternatives:

■ You can use the Object Handler which supports the FDDM system file and offers the possibility
to migrate the DDMs into the FDDM system file. The DDMs can be unloaded from the Natural
libraries and can be stored into the FDDM system file in the active Natural session.

Important: To migrate a complete development environment, it is recommended to use
the Object Handler.

■ It is also possible to migrate the DDMs with the copy or move function of the SYSMAIN utility.
In this case, it is required that the FDDM parameter is first deactivated so that your old environment
is used again.

These alternatives are described below in detail.

Note: The INPL utility loads DDMs either to Natural libraries if FDDMmode is not active
or to the system file FDDM if FDDMmode is active. This may have some impact if the loaded
INPL files are intended to work in both modes. It may be necessary that the DDMs are
available in the Natural libraries as well as in the FDDM system file.

To migrate DDMs to the system file FDDM using the Object Handler

1 Activate FDDMmode as described above.

2 Start Natural using the modified parameter file (that is, the parameter file in which path for
the parameter FDDM has been defined).

3 Issue the direct command SYSOBJH to invoke the Object Handler.

The following steps assume that you use the Object Handler wizards.

4 In the main menu, mark the Unload function and press ENTER.

5 In the resulting screen, mark the option Unload objects into Natural work file(s) and press
ENTER.

6 In the resulting screen, mark the option Set additional options and press ENTER.

Operations12

System Files

7 In the resulting screen, deactivate the optionUse FDDMfile for processingDDMs and press
ENTER to return to the previous screen.

This activates your old environment (which contains the DDM to migrated). If you do not
deactivate this option, you cannot access the DDMs that are to be migrated.

8 Press ENTER repeatedly until the screen is shown in which the object type for the unload has
to be selected.

The optionNatural library objects only is selected by default. This option is required for the
next steps.

9 Press ENTER.

10 In the resulting screen, enter an asterisk (*) in the fields Library andObject name. In addition,
mark the fieldMore detailed specification of objects. Press ENTER.

11 In the resulting screen, deactivate the options Error messages and Shared resources. In the
Natural types field, enter "V" and press ENTER.

12 Press ENTER to display the command that is to be processed.

13 Press ENTER to start the unload function.

14 When the objects have been unloaded, return to the main menu.

15 In the main menu, mark the Load function and press ENTER.

16 In the resulting screen, mark the option Load objects from Natural work file(s) and press
ENTER.

17 In the resulting screen, mark the option Set additional options and press ENTER.

18 In the resulting screen, activate the option Use FDDM file for processing DDMs.

This activates your new environment containing the FDDM system file.

Note: In different libraries, DDMs can existwith identical names. To prevent overwriting
DDMs in the FDDM system file and to detect DDMs with identical names, it is recom-
mended to load the DDMs with the Do not replace option. This option is located on
the same page as the option Use FDDM file for processing DDMs.

19 Press ENTER to return to the previous screen.

20 Press ENTER repeatedly until the screen is shown in which the object type for the load has to
be selected.

The option Load all option from the work file is selected by default. This option is required
for the next steps.

21 Press ENTER.

The command that is to be processed is now shown.

13Operations

System Files

22 Press ENTER to load the objects.

Checking whether the System File FDDM is Used

When you have migrated all DDMs to the system file FDDM, you can check whether FDDM is used.

To check whether FDDM is used

1 Start Natural.

2 Issue the system command SYSPROF.

3 If the FDDM file is displayed, Natural will access only DDMs stored in this system file.

If the FDDM file is not displayed or if the expected files are not displayed, revise the parameter
file used for your session.

Important Information and Warnings

A Natural developer must have read, write and delete rights for all objects.

An end-user must only have read rights for the generated programs (and in some special cases
also read rights for the sources).

Do not accessNatural fileswith operating systemutilities. These utilitiesmightmodify and destroy
the Natural directory information.

The use of an external editor is not recommended as code page conflicts may arise. These conflicts
can - but not necessarily must - deteriorate your source code.

Do not store private data files in the directories FNAT, FUSER and FDDM, since Natural may delete
or modify them in an unexpected way.

Do not use one of the directories FNAT, FUSER and FDDM as working directories for your OpenVMS
applications, since this can cause problems when issuing Natural system commands.

The file name (i.e path including file name in 8.3 format) of any object accessed by Natural must
not exceed 255 bytes.

Operations14

System Files

The File FILEDIR.SAG

The file FILEDIR.SAG supports up to 60000 objects. It contains internal library information used
by Natural including the programmingmode of an object (structured or reporting) and internally
converted object names. These internal object names are automatically created when storing Nat-
ural objects to disk with:

■ names longer than 8 characters (which can be the case with DDMs);
■ names containing any special character supported by Natural but not by the operating system.

Internal object names are unique and consist of an abbreviation of the current object name and an
arbitrary number. Both the current object name and the corresponding internal object name are
documented in FILEDIR.SAG.

Even if an object is located in the correct directory, it can only be used by Natural after this library
information is included in FILEDIR.SAG. For objects createdwithinNatural, the library information
is included automatically. For all other objects, the Import function of the SYSMAIN utility should
be used.

The utility FTOUCH can be used to update FILEDIR.SAGwithout entering Natural.

Portable Natural System Files

Starting with Natural Version 6.2, the directory file FILEDIR.SAG in a Natural library as well as
theNatural errormessage files are created in a portable platform-independent format. This offers,
for example, the possibility of exchanging FUSER libraries between different Windows, UNIX and
OpenVMS platforms simply by copying the libraries via operating system commands.

The FNAT system file belongs to a Natural installation and is both version-specific and platform-
specific. Therefore, it is not recommended to share FNAT system files among different platforms.
Especially the FNAT system file on a Windows platform contains a completely different set of util-
ities as the FNAT system file on some UNIX or OpenVMS platforms.

Although it is nowpossible to share an FUSER systemfile among different platforms, this possibility
should by handled with care because Natural's locking mechanism does not cross machine
boundaries and hence it would be possible for two Natural sessions on different platforms to
modify the same object at the same time with unpredictable results.

All libraries that are newly created as of Natural Version 6.2 have a new FILEDIR.SAG structure.
Especially the FNAT system file delivered and installed as of Natural Version 6.2 has only libraries
with the new structure.

The following topics are covered below:

15Operations

System Files

■ Language-dependent Objects
■ Migrating an Old FILEDIR.SAG File
■ Migrating Non-Portable Message Files to 64-Bit Platforms

Language-dependent Objects

When the application to be ported uses the system variable *LANGUAGE, you have to take notice of
the following information.

Almost all Natural objects are stored in the system file with a name which contains only upper-
case characters. An exception are the language-dependent objects (that is: the objects which have
been created for a specific language). Language-dependent objects may contain lower-case char-
acters in their names. Since Windows is a case-preserving operating system (whereas UNIX is a
case-sensitive operating system), it may happen that names which have been created under UNIX
cause a conflict in Windows, or that an application which has been developed under UNIX yields
unexpected results in Windows.

Note: OpenVMS behaves similar to Windows. It does not distinguish between upper-case
and lower-case characters. However, file names are always createdwith upper-case charac-
ters.

Example

The command SAVE PGM& creates an object where the object name contains the language identifier.
The resulting object name depends on the setting of *LANGUAGE:

An object with the following name is createdSetting of *LANGUAGE

PGMX (with an upper-case X)33

PGMx (with a lower-case x)59

The separate objects which have been created under UNIX (PGMX.NGP and PGMx.NGP) get
entries in the file FILEDIR.SAGwith the names PGMX and PGMx. These two objects will be treated
differently, depending on the environment in which Natural is being executed:

■ When you execute PGMXwith Natural for UNIX, the file PGMX.NGP is loaded into the buffer
pool and executed.

■ When you execute PGMXwith Natural for Windows, either the file PGMX.NGP or PGMx.NGP
is loaded into the buffer pool and executed. This is because Windows does not distinguish
between these two objects and treats them as one and the same object. Thus it may be possible
that applicationswhich share an FUSER, or a copy of such an FUSER, behave in a differentmanner.

Operations16

System Files

Migrating an Old FILEDIR.SAG File

Startingwith version 6.2, Natural can read old platform-specific FILEDIR.SAGfiles on the platform
for which they were formerly generated, but it cannot modify old FILEDIR.SAG files. When a
library with an old FILEDIR.SAG file is accessed for modification, FILEDIR.SAG is converted into
the new format before any further modification takes place.

Important: It is recommended that you create a backup copy of the old FUSER system file
before executing any of the steps (which lead to a conversion of FILEDIR.SAG) listed below.

There are a number of possibilities that lead to a conversion of an old FILEDIR.SAG file into the
new format:

■ As of version 6.2, Natural automatically converts an old FILEDIR.SAG format when a modify
access is made. This is completely transparent for the user; it has not to be forced in any way.
A modify access is, for example, a SAVE of a new source, a CATALOG of a source or a CATALL. A
copy operationmodifies the destination library and hence the FILEDIR.SAGfile of the destination
library. A move operation additionally modifies the source library because the object has to be
deleted there. In any case, the original FILEDIR.SAG file is saved as FILEDIR.BCK in the library
directory.

■ All libraries that are to be converted can be unloaded with the Object Handler (SYSOBJH). When
the resulting work file is reloaded into a new FUSER system file, all libraries are generated with
the new FILEDIR.SAG structure.

■ The utility FTOUCH provides the option convertwhich converts the FILEDIR.SAG file of the
specified library into the new structure. The original FILEDIR.SAG file remains in the library
directory as FILEDIR.BCK. Refer to the description of the FTOUCH utility for the syntax and a
usage example.

■ The copy function of the utility SYSMAIN can be used to copy a complete set of libraries from an
old format FUSER system file into a new FUSER system file. In the destination FUSER, the
FILEDIR.SAG files are automatically generated with the new structure.

The Natural versions prior to Natural Version 6.2 cannot access libraries with a new portable
FILEDIR.SAG file. Therefore, system files cannot be shared between Natural Version 6.2 or above
and an older version of Natural. This is only possible when all libraries are still in the old
FILEDIR.SAG format andwhennomodify access has ever beenmade. In a production environment,
it is possible, for example, to make use of an FUSER fromNatural Version 6.1 with Natural Version
6.2 when no modification on the libraries is made. However, it is recommended not share system
files between Natural Version 6.2 or above and an older version

17Operations

System Files

Migrating Non-Portable Message Files to 64-Bit Platforms

Message files which have been createdwith a Natural version older than 6.2 are not automatically
converted to the portable format. In addition, they are not converted to the portable format by
simply changing and saving themwith a newer version ofNatural. This does not cause difficulties
on 32-bit platforms. On 64-bit platforms, however, message files in the old, non-portable format
which have not been created on a 64-bit platform are not readable.

If youwant to migrate your applications from a 32-bit platform to a 64-bit platform, youmust first
convert your old message files to the portable format. You do this by using the export and import
functions of the SYSERR utility. First, you export the message file to a text file, and then you gen-
erate a new message file by importing the text file into Natural. This creates a portable message
file which is readable on Windows, UNIX and OpenVMS. For detailed information on the export
and import functions, seeGeneratingMessage and Text Files in the Tools and Utilities documentation.

Natural Root Directory

During the installation, the logical names NATDIR and NATVERS are created automatically. They
point to Natural's version-dependent root directory.

NATDIR:['F$Trnlnm("NATVERS")']

Using NFS to Store Natural Libraries

When you use NFS (Network File System) to store Natural libraries, you can run into problems
when the directories in which the Natural libraries are stored are mounted via NFS from a file
server in your network.

The reason for this is the need to lock the FILEDIR.SAG file stored in each library during update
operations of Natural objects.

If your NFS locking is incompatible or not properly set up between the involved platforms, Nat-
ural can hang in an uninterruptible state while waiting for NFS locking requests to be processed.
These requests are generally logged on the consoles of the involved systems or in some other
system-dependent log file.

The work-around to solve this problem is to store Natural libraries only on local disks if problems
with a hanging and uninterruptible nucleus occur.

Operations18

System Files

3 Work Files

■ Defining Work Files .. 20
■ Work File Formats ... 21
■ Record File Format .. 25
■ Special Considerations for Work Files with the Extension NCD ... 25
■ Using the Work File Type Transfer .. 27

19

Work files are files to which data can be written and from which data can be read by Natural
programs. They are used for intermediate storage of data and for data exchange between programs.
Data can be transferred from or to a work file by using the Natural statements READ WORK FILE
and WRITE WORK FILE, or UPLOAD PC FILE and DOWNLOAD PC FILE.

Defining Work Files

Using the ConfigurationUtility or the DEFINE WORK FILE statement, you can assign names (includ-
ing the path) for up to 32 work files.

The maximum number of work files that can be used depends on the setting of the parameter
WORK.

If you run a program which uses a work file for which a name and path has not been assigned,
Natural automatically creates the file name and writes the work file into the temporary directory
specified in the local configuration file. The name of such a file consists of the specified work file
number and an arbitrary number assigned by the operating system. The generation of the work
file name is based on an algorithm which tries to generate a unique name. Depending on the
Natural parameter TMPSORTUNIQ, the naming conventionmay vary. Ifwork file names are referenced
from outside Natural, it is recommended that you specify the names explicitly to avoid problems
identifying the files.

The following topics are covered below:

■ Defining Work File Names with the Configuration Utility
■ Defining Work File Names with Environment Variables
■ Defining Work File Names with an Application Programming Interface

Defining Work File Names with the Configuration Utility

In the Configuration Utility, the work file names are assigned in the categoryWork Files of a
parameter file. The above mentioned parameters WORK and TMPSORTUNIQ can also be found in this
category. SeeWork File Assignments in the Configuration Utility documentation for further inform-
ation.

The work file name consists of the prefix "W", a number of up to seven digits and the extension
SAG.

Tip: Locate the work file assignments by searching for "Work Files". See Finding a Parameter
in the Configuration Utility documentation for further information.

Operations20

Work Files

Defining Work File Names with Environment Variables

The following topics are covered below:

■ General Information

General Information

Work files can also be defined by using OpenVMS logical names. Once you have defined thework
file names in the parameter file, the work file names can be set without further change to the
parameter file. For example, when you specify the following name for a work file in the parameter
file (or in a DEFINE WORK FILE statement):

MYWORKFILE

the following logical name must be defined in your operating system:

DEFINE MYWORKFILE mydevice:[mydir]myworkfile.dat

Instead of MYWORKFILE, you can also enter the following in the parameter file:

Work1:myfile.txt

In this case, the logical name Work1must be defined in your operating system:

DEFINE Work1 mydevice:[mydir.sub1.sub2]

Defining Work File Names with an Application Programming Interface

You can also define work files with the application programming interface USR1050N in library
SYSEXT.

Work File Formats

The format of a work file depends on the work file type that has been defined. Different work file
formats are available. Natural recognizes the format by checking the file name and its extension:

21Operations

Work Files

file-name.extension

where file-name can have a maximum of 8 characters and extension can have a maximum of 3
characters.

The work file formats are:

■ Binary Format
■ ASCII Format
■ Entire Connection Format
■ Portable Format
■ Unformatted Format
■ CSV Format

See alsoWork Files and Print Files in the Unicode and Code Page Support documentation.

Binary Format

Possible type: SAG.

This format, which is specific to Software AG, is the preferred format since it can be used with all
data types.

Each record that is written is preceded by two bytes which contain the length of the record.

To define binary format for a work file, use either a file namewith a period and the extension SAG
(for example, <file-name>.SAG), or just the file namewithout a period (for example, <file-name>).

ASCII Format

Possible types: ASCII and ASCII compressed.

Since each written record is terminated with a line feed (LF), ASCII format is only recommended
for alphanumeric data.

To define ASCII format for a work file, enter either a file name with a period and any extension
except SAG andNCD (for example, <file-name>.<ext>), or a file namewith a period andwithout
an extension (for example, <file-name>).

Operations22

Work Files

Entire Connection Format

Possible types: Entire Connection and Transfer.

Work files can be accessed in two different ways:

■ Locally on UNIX. The work file type Entire Connection is used for this purpose.
■ Via a data transfer with Entire Connection. The work file type Transfer is used for this purpose.
The data are sent to Entire Connection which writes the data to the PC.

The product Entire Connection uses two files: a data file which contains the actual data and a
format file which contains formatting information about the data in the data file.

Natural automatically generates the corresponding format file for the type Entire Connection. The
format file has the same name as the data file, however the extension isNCF. For detailed inform-
ation on the content of a format file with the extensionNCF, see the Entire Connection document-
ation.

When using the type Transfer, the format file is generated by the product Entire Connection
(provided that the option Create format file has not been deactivated in the user properties; see
the Entire Connection documentation for further information).

To define Entire Connection format for awork file, enter a file namewith a period and the extension
NCD (for example, <file-name>.NCD).

You can read/write work files in Entire Connection format directly from/to your local disk.

See also Special Considerations for Work Files with Extension NCD.

Notes:

1. The RECORD option of the READ WORK FILE statement is not available for reading work files of
format Entire Connection.

2. The operand format U (Unicode) is not supported for the work file types Entire Connection
and Transfer. If U is used with these work file types, a runtime error message is displayed.

Portable Format

Possible type: Portable.

The type Portable performs an automatic endian conversion of a work file when the work file is
transferred to a different machine. For example, a work file written on a PC (little endian) can be
read correctly on an RS6000 or HP machine (big endian). The endian conversion applies only to
field formats I2, I4, F4, F8 and U. The floating point format is assumed to be IEEE. There are,
however, slight differences in IEEE floating point representation by different hardware systems.

23Operations

Work Files

As a rule, these differences apply only to infinity and NaN representations, which are normally
not written into work files. Check the hardware descriptions if you are uncertain.

The files are alwayswritten in themachine-specific representation, so that a conversion is performed
only if the file is read by a machine with different representation. This keeps performance as fast
as possible.

There are no other conversions for this format apart from the conversions mentioned above.

When a READ WORK FILE statement is used for a dynamic variable, the variable is resized to the
length of the current record.

Unformatted Format

Possible type: Unformatted.

The type Unformatted reads or writes a complete file with just one dynamic variable and just one
record (for example, to store a video which was read from a database). No formatting information
is inserted; everything is written and read just as it is.

CSV Format

Possible type: CSV (comma-separated values).

Note: If you want to use the work file type CSV, you have to recatalog your sources using
the CATALOG or STOW command. It is not possible to use thework file typeCSVwith generated
programs of Natural Version 4.

The Natural fields are stored in a CSV work file as described below.

1. In the first step, the internal field data is converted into a readable format:
■ The field data of the internal Natural data formats B (binary), O (object handle), G (GUI
handle) and C (attribute control) is copied to the record without field conversion. The data
is taken as it is.

■ The field data of the internal Natural data format A (alphanumeric) is converted into the
specified work file code page (seeWork Files in the Configuration Utility documentation). If
no work file code page is specified in the Configuration Utility, the default code page which
is defined with the parameter CP is used and no conversion is done.

The field data of the internal Natural data format U (Unicode), is converted into the specified
work file code page (seeWork Files in the Configuration Utility documentation) or, if no work
file code page is specified, into the default code page which is defined with the parameter
CP.

Operations24

Work Files

■ The values of the internal Natural formats D (date) and T (time) are converted into an alpha-
numeric output format. The DTFORM parameter is evaluated so that the user-specified date
and time format is used.

■ The internal field values of the numeric types are converted into an alphanumeric output
format.

2. In the second step, the field data in readable format is copied to the CSV work file record. The
fields in the work file are separated by the specified separator character. If a field contains
special characters, the field is delimited by double quotes. Each written record is terminated
with a carriage return and line feed (CR/LF).

If you have defined that a header with the Natural field names is to be written to the work file
(seeWork File Assignments in the Configuration Utility documentation), the following applies:

■ With the WRITE WORK FILE statement, a header line containing the field names of the first written
record is stored in the first line of the work file. If subsequent CSV records contain a different
number of fields, it may be possible that the header line does not correspond to these subsequent
CSV records.

■ With the READ WORK FILE statement, it is assumed that the first line of the CSV work file is the
header line. Therefore, the first line is skipped (that is: the record data in the first line is not re-
turned).

Record File Format

Work files (1 to 32) with binary format are created with RMS file format variable length, whereas
all other files are createdwith RMSfile format stream line feed and record attribute carriage return
carriage control.

Special Considerations for Work Files with the Extension NCD

If files with the extension NCD are created by Entire Connection and are then read into Natural
via the READ WORK FILE statement, it is required that the Entire Connection option Keep trailing
blanks is activated in the session properties. See your Entire Connection documentation for further
information.

Note: When you create an NCD file using Entire Connection and load this file using the
ObjectHandler, youmay receive an error indicating that the source control record ismissing.
To avoid this, make sure that the optionKeep trailing blanks is active when you create the
NCD file.

The following considerations apply for work files in Entire Connection format:

25Operations

Work Files

■ If an NCD file is read with a READ WORK FILE statement and the corresponding NCF format file
is not available or contains invalid information, the NCD file is assumed to be an ASCII work
file.

■ When the APPEND attribute is used to append data to an NCD file, the record layouts (that is:
the field format and length information which is written to the NCF format file) of the old and
new data must match. If the record layouts are different, an error occurs during runtime.

■ The maximum work-file record size for WRITE WORK FILE VARIABLE that can be handled by
Entire Connection is 32767 bytes.

■ If you have “old” work files with the extension NCD, the extensions must be changed.
■ Each of the following profile parameters must be set to the same value for both read and write
operations:

DC (decimal character)
IA (input assign character)
ID (input delimiter character)

■ Remember that the range of possible values for floating point variables on amainframe computer
is different from that on other platforms. The possible value range for F4 and F8 variables on a
mainframe is:

±5.4 * 10-79 to ±7.2 * 1075

The possible value range on most other platforms for F4 variables is:

±1.17 * 10-38 to ±3.40 * 1038

The possible value range on most other platforms for F8 variables is:

±2.22 * 10-308 to ±1.79 * 10308

■ ANatural error message is returned if DBMS calls are issued during an Entire Connection data
transfer and their number exceeds the limit for DBMS calls permitted between screen I/Os
(specifiedwith the profile parameter MADIO). To circumvent this error, the application program-
ming interface USR1068N in library SYSEXT is provided. USR1068 resets the database call counter
to zero (0). It must be invoked each time a DBMS call is issued during data transfer.

Operations26

Work Files

Using the Work File Type Transfer

With local access (that is, without any data transfer being involved), you can read/write work files
in Entire Connection format directly from/to your local disk. However, work files in Entire Con-
nection format can also be accessed by using a data transfer. Both methods can be used simultan-
eously, but with different work file numbers only.

Work files to be accessed by using a data transfer (type Transfer) must be in Entire Connection
format (NCD).

With data transfer, the Natural statements READ WORK FILE and WRITE WORK FILE do not read
from and/or write to your local disk, but transfer the data to a PC that runs Entire Connection.
The read/write operations are then done by Entire Connection from/to the disk of the PC.

For the work file number to be used, you have to set the profile parameter ECPMOD to ON in the
ConfigurationUtility. It is not required that you assign awork file name in this case, because Entire
Connection prompts you to enter a file name.

27Operations

Work Files

28

4 Natural Buffer Pool

■ General Information ... 30
■ Setting up a Buffer Pool .. 32
■ Using the Utility NATBPSRV for Creating the Buffer Pool ... 32
■ Monitoring the Buffer Pool ... 33
■ Trouble Shooting ... 33
■ Shutting Down and Restarting the Buffer Pool ... 34

29

General Information

The Natural buffer pool is used to share Natural objects between several Natural processes that
access objects on the same computer. It is a storage area into which compiled Natural programs
are placed in preparation for their execution. Programs are moved into and out of the buffer pool
as Natural users request Natural objects.

Since Natural generates reentrant Natural object code, it is possible that a single copy of a Natural
program can be executed by more than one user at the same time. For this purpose, each object is
loaded only once from the system file into the Natural buffer pool, instead of being loaded by
every caller of the object.

The following topics are covered below:

■ Objects in the Buffer Pool
■ Coordination under OpenVMS
■ Multiple Buffer Pools
■ Storing Objects in the Buffer Pool
■ Restrictions

Objects in the Buffer Pool

Objects in the buffer pool can be any executable objects such as programs andmaps. The following
executable objects are only placed in the buffer pool for compilation purposes: local data areas,
parameter data areas and copycodes.

When a Natural object is loaded into the buffer pool, a control block called a directory entry is al-
located for that object. This control block contains information such as the name of the object, to
which library or application the object belongs, from which database ID and Natural system file
number the object was retrieved, and certain statistical information (for example, the number of
users who are concurrently executing a program).

Coordination under OpenVMS

The buffer pool uses a standard locking mechanism which need not be configured by the admin-
istrator.

Operations30

Natural Buffer Pool

Multiple Buffer Pools

Depending on the individual requirements, it is possible to run different buffer pools of the same
Natural version simultaneously on the same computer.

Storing Objects in the Buffer Pool

When a user executes a program, a call is made to the buffer pool manager. The directory entries
are searched to determine whether the program has already been loaded into the buffer pool. If
it does not yet exist in the buffer pool, a copy is retrieved from the appropriate library and loaded
into the buffer pool.

When a Natural object is being loaded into the buffer pool, a new directory entry is defined to
identify this program, and one ormore otherNatural objectswhich are currently not being executed
may be deleted from the buffer pool in order to make room for the newly loaded object.

For this purpose, the buffer pool maintains a record of which user is currently using which object,
and it detects situations inwhich a user exitsNaturalwithout releasing all its objects. It dynamically
deletes unused or out-of-date objects to accommodate new objects belonging to other applications.

Restrictions

When using the Natural buffer pool, only minimum restrictions must be considered:

■ When a Natural session hangs up, do not terminate it by using the OpenVMS command STOP.

If this session is currently performing changes to the buffer pool internal data structures, an
interruption may occur at a stage where the update is not fully completed. If the buffer pool
internal data structures are inconsistent, this could have negative effects.

Note: This can only happen when the Natural nucleus is executing buffer pool routines.

■ All resources must be shared among all users of one Natural buffer pool. Group membership
of a process is used to give access rights for the buffer pool. This means that the sharedmemory
can be changed by all group members, but not by anyone else.

Note: OpenVMS group or system membership depends on the buffer pool assignments
in the Configuration Utility.

■ Since on OpenVMS the common resource "bufferpool" is administrated by the OpenVMS lock
manager, each buffer pool on each node has to be addressed by its own cluster-wide unique
lock resource name and global section descriptor name. To ensure this, the installation procedure
inserts for each node where it is executed a new node-specific buffer pool section into the natur-
al.ini file. Consequently, the buffer pool service has to be started on a given node using its spe-
cific buffer pool name, therefore the natetc:natbpenv_<node>.comwas changed. Also eachNatural

31Operations

Natural Buffer Pool

session has to be started using the buffer pool name for the node where the user is currently
logged on. To ensure this, the symbol to start Natural contains the string BPID = BP <node>
(defined in the LOGIN.COM forNatural). If applicationswith different priorities are in use, then
every application should have its own buffer pool to avoid a system dead lock.

Setting up a Buffer Pool

The buffer pool assignments are stored in the local configuration file. To set up a buffer pool, you
have to specify specific values in the local configuration file using the Configuration Utility. For
a list of these values, see Buffer Pool Assignments in the Configuration Utility documentation.

Using the Utility NATBPSRV for Creating the Buffer Pool

The buffer pool is created using the utility NATBPSRV.

Note: The utility NATBPSRV should not be accessible to all Natural users, because it can cause
damage to the work of other buffer pool users.

The following system privileges are required: CMKRNL, PRMGBL, SYSGBL, SYSNAM, SYSPRV.

NATBPSRV allocates the resources required by the buffer pool and creates the permanent commu-
nication facilities (that is, sharedmemory and semaphores) used for the buffer pool. The necessary
specifications for the resources and facilities are made with the Configuration Utility (see Setting
up a Buffer Pool).

The NATBPSRV utility should only be used during system startup, fromwithin the startup procedure
STARTUP_NAT<v>.COM (where <v> in the file name stands for the first digit of theNatural version
number).

NATBPSRVwithout a parameter starts the buffer pool NATBP. If another buffer pool is to be started,
you specify its name with the following NATBPSRV command line option:

NATBPSRV BP = buffer-pool-name

If NATBPSRV discovers in the process of creating a buffer pool that a buffer pool of the same name
is already active, it deletes the already active buffer pool. If the deletion fails, NATBPSRV terminates
with an appropriate error message.

Operations32

Natural Buffer Pool

Monitoring the Buffer Pool

The Buffer Pool Monitor is used to oversee the buffer pool's activity during its operation. The
Buffer Pool Monitor can also be used to shut down the buffer pool whenNatural must be stopped
on a computer.

The Buffer Pool Monitor collects information on the current state of your Natural buffer pool.

If multiple buffer pools are active on the same computer and an object that is loaded to more than
one buffer pool is modified by a Natural process, the object will only be removed from the buffer
pool to which the modifying Natural process is attached.

For detailed information for how to use the Buffer Pool Monitor, see Using the Buffer Pool Mon-
itor (NATBPMON).

Trouble Shooting

This section describes problems that may occur when using the Natural buffer pool and how to
solve them.

The following are typical command output examples, with an explanation of what went wrong
during execution.

Problem

Either Natural or the Natural Buffer Pool Monitor (NATBPMON utility) cannot be started.

Examples

The following examples describe the most typical problems you are likely to encounter as a Nat-
ural administrator or user. These problems occur when you start Natural or the Natural Buffer
Pool Monitor, and the buffer pool is not active.

You try to start Natural with the following command:

NATnnURAL

The following message appears:

33Operations

Natural Buffer Pool

Unable to open Buffer Pool,
Buffer Pool error: "unexpected system call error occurred" (20)
Global shared memory could not be attached.: NATBP6340_NODE1

%SYSTEM-W-NOSUCHSEC, no such (global) section

You try to start the Natural Buffer Pool Monitor with the following command:

NATnnBPMON

When you enter the STATUS command at the NATBPMON prompt, the following message appears:

%SYSTEM-W-NOSUCHSEC, no such (global) section
Buffer Pool error: "unexpected system call error occurred" (20)
Global shared memory could not be attached.: NATBP6340_NODE1

Solution

Start the buffer pool service from a sufficiently privileged account as shown in the following ex-
ample:

$ @STARTUP_NAT<v>.COM STARTUP BP

where <v> in the file name stands for the first digit of the Natural version number.

This command procedure is either located in SYS$STARTUP or in the directory
SAG$ROOT:[NATURAL].

Shutting Down and Restarting the Buffer Pool

Usually it should not be necessary to shut down and restart the buffer pool. This may only be ne-
cessary if the buffer pool should become unusable due to serious internal errors in the buffer pool,
which is extremely unlikely to occur, or because the parameters defining the buffer pool structure
became obsolete.

If the NATBPMON utility is still able to access the buffer pool, proceed as follows:

1. Shut down the buffer pool with the SHUTDOWN command of the NATBPMON utility.

Once the SHUTDOWN command is executed, new users are denied access to the buffer pool.

Tip: Active buffer pool users can bemonitored by issuing the WHO and STATUS commands
of the NATBPMON utility.

2. After the last user has stopped accessing the buffer pool, buffer pool resources can be deleted
by issuing the IPCRM command of the NATBPMON utility.

Operations34

Natural Buffer Pool

3. To restart the buffer pool, call the file STARTUP_NAT<v>.COM from a sufficiently privileged
account (where <v> in the file name stands for the first digit of the Natural version number).

You can use the FORCE option of the SHUTDOWN command:

1. Shut down the buffer pool with the SHUTDOWN FORCE grace-period command of the NATBPMON
utility.

This command - like the SHUTDOWN command without options - denies new users access the
buffer pool. However, the terminate signal SIGTERM is sent to all activeNatural sessions, forcing
them to log off from the buffer pool.

If the optional parameter grace-period is omitted, this commandwaits until all active sessions
have performed their shutdown processing and then executes the IPCRM command of the
NATBPMON utility .

If the optional parameter grace-period has been specified, NATBPMONwaits the specified number
of seconds before it executes its IPCRM command - regardless of the closedown status of the
sessions logged on to the buffer pool. Therefore, the value defined for the grace period should
be sufficiently large to allow the sessions to terminate in time.

Note: SHUTDOWN FORCE 0 is the same as SHUTDOWN FORCE (without the parameter grace-
period).

2. To restart the buffer pool after successful execution of the SHUTDOWN FORCE command, call the
file STARTUP_NAT<v>.COM from a sufficiently privileged account (where <v> in the file name
stands for the first digit of the Natural version number).

If the NATBPMON utility is not able to perform a clean shutdown of the buffer pool, the buffer pool
must be deleted by using operating system commands. It is only possible to rename the section
file, because a section file cannot be deleted as long as it is locked by another user. Then restart
the buffer pool using STARTUP_NAT<v>.COM and delete the renamed section file after the next
reboot.

35Operations

Natural Buffer Pool

36

5 Using the Buffer Pool Monitor (NATBPMON)

■ Invoking the NATBPMON Utility .. 38
■ NATBPMON Commands ... 38
■ Displaying the Objects in the Buffer Pool .. 40
■ Specifying a Pattern ... 41
■ Displaying the Buffer Pool Settings ... 42
■ Statistical Information About the Buffer Pool ... 42

37

See alsoNatural Buffer Poolwhich provides general information on the buffer pool and explains
how to start the buffer pool.

Caution: This utility should not be generally accessible to all users of Natural, because its
use can cause damage to the work of other users of the buffer pool.

Invoking the NATBPMON Utility

You can invoke the NATBPMON utility either for the default buffer pool NATBP or for another existing
buffer pool.

To invoke the NATBPMON utility

■ If the default buffer pool NATBP is to be used, enter the following command in the command
line:

NATBPMON

Or:

If another buffer pool is to be used, enter the following command in the command line:

NATBPMON BP=buffer-pool-name

The following prompt appears:

NATBPMON>

NATBPMON Commands

The following commands can be entered at the NATBPMON prompt:

DescriptionCommand

This is the same as the ZERO command.CLEAR

Displays the list of corpses. A corpse is an object that has been deleted, but was still
being used in the buffer pool when its deletion took place. Once this object is no longer
used, it will automatically disappear from the list of corpses.

Note: The column cusrwhich is shown with the DIR command indicates if an object
is being used.

CORPSES

Operations38

Using the Buffer Pool Monitor (NATBPMON)

DescriptionCommand

Deletes an object from the buffer pool. All objects can be deleted from the buffer pool
by using an asterisk (*). A pattern is used to specify a collection of objects, similar to

DELETE
{pattern|[*]}

current operating systemswhich allow the specification of a class of fileswithwildcards.
For further information, see Specifying a Pattern.

Displays a directory containing all objects in the buffer pool. For further information,
see the sections Specifying a Pattern and Displaying the Objects in the Buffer Pool.

DIR
{pattern|[*]}

Used for error analysis.

Important: Do not use this command unless you are requested to do so by Software
AG Support.

DUMP

Exits the NATBPMON utility.EXIT

Exits the NATBPMON utility. This is the same as the EXIT command.FIN

Displays a list of all available commands of the NATBPMON utility.HELP

Frees the resources allocated to the buffer pool. This command should only be used
following a SHUTDOWN command when there are no active users.

IPCRM

Kills the specified buffer pool user. n is the number of the user to be “killed”. This
number corresponds to the index number as displayed by the WHO command.

This command is used to start theOpenVMS commandSTOP fromwithin theNATBPMON
utility in a safeway; that is, without the danger of destroying the internal data structure
of the buffer pool.

KILL n

Displays the buffer pool settings. For further information, see Displaying the Buffer
Pool Settings.

PARAM

Exits the NATBPMON utility. This is the same as the EXIT command.QUIT

Without the option FORCE: Shuts down the buffer pool. No new processes will be able
to use the buffer pool once this command has been issued. The NATBPMON utility is

SHUTDOWN [FORCE
[grace-period]]

able to runwith a buffer poolwhich has the shutdown status “pending”; all commands
of the NATBPMON utility are available in this case. As soon as all users have stopped
using the buffer pool, the buffer pool's resources can be deleted with the IPCRM
command.

The option FORCE requires NATBPMON to be executedwith super user rights. After SUDO
or SU has validated the password and given control to NATBPMON, any new sessions
will be inhibited to log in and the terminate signal SIGTERMwill be sent to all active
Natural sessions. NATBPMONwill then wait the number of seconds defined with the
parametergrace-period before the IPC resources used by the buffer pool are removed
from the system. If the optional parameter grace-period is omitted (or set to 0),
NATBPMONwillwait until all processes performed their cleanupprocessing. This process
can be considered as an emergency stop. If it is executed without super user rights, no
action takes place and a message reporting the incapability to execute the command
is sent. See also Shutting Down and Restarting the Buffer Pool.

Note: To start the buffer pool after shutdown, you can use the utility NATBPSRV.

Displays statistical information about the buffer pool. For further information, see
Statistical Information About the Buffer Pool.

STATUS

39Operations

Using the Buffer Pool Monitor (NATBPMON)

DescriptionCommand

Displays a list of all users who are using the buffer pool. The following statistics are
displayed: a number that the NATBPMON utility automatically assigns to each buffer

WHO

pool user (index) and the user ID, terminal ID and process ID of the process using the
buffer pool (tid).

Writes a buffer pool object onto the disk. You are prompted to specify an index and a
file name.

Note: The column “indx” which is shown with the DIR command shows the index
numbers.

WRITE

Resets to 0 all counters that are displayed by the STATUS command.ZERO

Displaying the Objects in the Buffer Pool

The DIR command displays a list of objects. This list contains the following information:

ExplanationColumn

A number that the NATBPMON utility automatically assigns to an object when it is loaded into the
buffer pool.

indx

The current number of users that are using an object in the buffer pool.cusr

The peak number of concurrent activations of an object in the buffer pool.pusr

The number of times an object has been activated in the buffer pool.nusg

g Specifies whether an object is being loaded into the buffer pool from the system file. Has one of
the following values:

The object is not being loaded.0

The object is being loaded.1

Specifies the size (in bytes) of an object in the buffer pool.size

The version number of the generated program.gpv

key Specifies the following information about an object:

Database ID.D

File number.F

The library in which the object is located.L

The name of the object. Numbers and the at sign (@) indicate chunks of
FILEDIR.SAG for the currently loaded library.

N

The kind of object (G=generated object module; S=source; D=part of
FILEDIR.SAG).

K

The object type (which is blank when D is shown in the K field).T

Operations40

Using the Buffer Pool Monitor (NATBPMON)

When the DIR command is issued, all objects in the pool will be displayed in a notation similar to
the following:

indx: index of the element
cusr: current number of concurrent users
pusr: peak number of concurrent users
nusg: number of usages
g : set if object is generating
gpv : version of generated program

indx | cusr | pusr | nusg | g | size | gpv | key
-----+------+------+--------+-----+--------+-------+---
1 | 0 | 1 | 4 | 0 | 920 | | (D=99 F=101 L="DEMO" N="SEL-MAP" K='G' T='M')
2 | 1 | 7 | 2 | 0 | 3096 | | (D=99 F=101 L="DEMO" N="EMWND" K='G' T='P')
3 | 4 | 9 | 4 | 0 | 604 | | (D=99 F=101 L="DEMO" N="HDR" K='G' T='P')
4 | 2 | 3 | 7 | 0 | 412 | | (D=99 F=101 L="RPA" N="MMUPROG1" K='G' T='P')
5 | 0 | 1 | 5 | 0 | 372 | | (D=99 F=101 L="RPA" N="MMUPROG2" K='G' T='P')
6 | 0 | 5 | 4 | 0 | 372 | | (D=99 F=101 L="RPA" N="MMUPROG3" K='G' T='P')

Specifying a Pattern

Apattern can be specifiedwith the commands DIR and DELETE. The examples in this section apply
to the DIR command.

To select some objects, it is possible to restrict the values of certain key fields by specifying a
matching pattern expression.

To restrict the allowed field values of a given field, the following pattern notation must be used:

name=expression

You can specify multiple patterns by separating them with a comma.

The specified patterns must all match their corresponding fields in order to accept the entire key.

The expression accepts the specification of the wildcard characters "*" and "?".

The character "*" matches any or no occurrences of a sequence of characters, and the wildcard
character "?" matches exactly one specific character.

Examples

To select all objects of type P in the sample above, the following command would be used:

DIR T=P

To select all programs in the demo library, the following command would be used:

DIR T=P, L=DEMO

To select all objects containing an M in their name, the following command would be used:

41Operations

Using the Buffer Pool Monitor (NATBPMON)

DIR N=*M*

Displaying the Buffer Pool Settings

The following settings are displayed with the PARAM command:

Active since: 3-SEP-2007 13:50:01.35, Version 6.3(633)
Last time cleared: 3-SEP-2007 13:50:01.35

Bpid: BPNATAN2
Systemwide: 1
Sfdelete: 0
Lckresname: NATBPLCK631S_NATAN2
Gsdname: NATBP631S_NATAN2
Sectionfile: NATAN2$USER:[NATURAL_BP]NATBP631S_NATAN2.SEC
Memsize: 10485760
Maxusers: 200

Buffer pool ID.Bpid

Unique name used to create a buffer pool or to connect to a buffer pool.Shmkey

Unique name used to synchronize accesses to the buffer pool memory.Semkey

Size of the available shared memory.Memsize

Maximum number of users that can have simultaneous access to the buffer pool.Maxusers

See Buffer Pool Assignments in the Configuration Utility documentation.

Statistical Information About the Buffer Pool

The following statistics are displayed with the STATUS command:

Operations42

Using the Buffer Pool Monitor (NATBPMON)

Active since: 4-JAN-2007 10:16:52, Version 6.3(631)
Last time cleared: 4-JAN-2007 10:16:52
Bpid: NATBP
Allocated memory (bytes) ..: 18207752 Max users: 50
Smallest allocation: 32 Current users: 5
Largest allocation: 4707272 Peak users: 9
Free memory (bytes): 2763768 Dead users purged: 623
Smallest free: 136
Largest free: 33136

Dormant objects: 2010 Smallest object (bytes) .: 15
Active objects: 1 Largest object (bytes) ..: 49383
Generating objects: 0 Total object sizes: 12394644
Obsolete objects: 0

Attempted locates: 1646837910 Stored objects: 0
Attempted fast locates: 823725223 Loaded objects: 1520609
Successful fast locates ...: 822423506 Activated objects: 1645410434
Percent: 99.84 Aborted loads: 323104

Dormant objects purged: 51919 Peak parallel activations: 4
Object reusage factor: 1082.07

General Information

Date and time when the buffer pool was started and the version number of
the buffer pool.

Active since

Date and time when the buffer pool was most recently cleared.Last time cleared

Buffer pool ID.Bpid
Memory Allocation

Total of all allocated memory.Allocated memory (bytes)

Smallest amount of allocated memory.Smallest allocatio

Largest amount of allocated memory.Largest allocation

Total of all free memory.Free memory (bytes)

Smallest amount of contiguous free memory.Smallest free

Largest amount of contiguous free memory.Largest free
User Statistics

Maximum number of users that can have simultaneous access to the buffer
pool. See Buffer Pool Assignments in the Configuration Utility documentation.

Max. users

Number of users currently using the buffer pool.Current users

Peak number of users that have been using the buffer pool.Peak users

Number of inactive users that have been deleted from the buffer pool. This
number should be close to 0 (zero). An increment of this number indicates that

Dead users purged

entries for buffer pool users (i.e. Natural sessions) were canceled or killed
unconditionally. Each time an entry for such a user is identified by the buffer

43Operations

Using the Buffer Pool Monitor (NATBPMON)

poolmanager, this number is incremented and cleanup is performed to remove
residuals which have been left in the buffer pool by a canceled session.

Object Use Statistics

Number of available, but inactive objects. These objects are in the buffer pool,
but are not being used. They are available for later use and will become active
objects as soon as a buffer pool user requests their availability.

Dormant objects

Number of active objects. These objects are currently in use by one or more
buffer pool users.

Active objects

Number of objects that are currently being loaded into the buffer pool. These
objects will become available as soon as the load operation completes.

Generating objects

Number of objects that are to be deleted from the buffer pool, but are still being
used. These objects can be displayed by using the CORPSES command. An

Obsolete objects

obsolete object is removed from the buffer pool as soon as all users who
activated this object have released this object. In a production environment,
this number should be 0 (zero). A value other than zero indicates that objects
were deleted either using the DELETE command of NATBPMON or became
obsolete because new objects were created (for example, due to a CATALOG
command).

Object Size Statistics

Size of smallest object in the buffer pool.Smallest object (bytes)

Size of largest object in the buffer pool.Largest object (bytes)

Total size of all objects in the buffer pool.Total object sizes
Locate Statistics

Number of successful and failed object locates. This number tells you how
many times the buffer poolmanagerwas asked to locate an object in the buffer
pool.

Attempted locates

Number of attempted activationswith known slot. This is the number of object
activations when the former location of an object was known. It is highly

Attempted fast locates

probable that an object can be found in the same place in the buffer pool when
it is reactivated.

Number of successful fast locates.Successful fast locates

Percentage of successful fast locates.Percent
Object Loading Statistics

The number of objects stored in the buffer pool. This is the number of objects
that were stored into the buffer pool and which were not loaded from the
system file.

Stored objects

The number of objects loaded from the system file. Each time an object is not
found in the buffer pool, it is loaded from the system file. This number is
increased each time an object is successfully loaded into the buffer pool.

Loaded objects

The number of activated objects. Activation is the process ofmarking an object
which is found in the buffer pool as “in use” by a buffer pool user.

Activated objects

Operations44

Using the Buffer Pool Monitor (NATBPMON)

The number of load operations that were aborted due to memory shortages
within the buffer pool, or due to an errorwhen loading an object into the buffer
pool. This number should not vary in a noticeable way.

Aborted loads

General Loading Statistics

The number of unused objects deleted from the buffer pool to make room for
newly loaded ones.

Dormant objects purged

Themaximumnumber of parallel activations of one of the objects in the buffer
pool.

Peak parallel activations

Average number of times an object was reactivated. This number is the ratio
of the number of object activations to the number of objects loaded into the
buffer pool.

Object reusage factor

45Operations

Using the Buffer Pool Monitor (NATBPMON)

46

6 Natural in Batch Mode

■ What is Batch Mode? ... 48
■ Starting a Natural Session in Batch Mode ... 48
■ Terminating a Natural Session in Batch Mode ... 49
■ Using Natural in Batch Mode ... 49
■ Sample Session for Batch Mode ... 51
■ Batch Mode Detection .. 54
■ Batch Mode Restrictions ... 54
■ Batch Mode Simulation ... 55

47

This chapter contains special considerations that apply when running Natural in batch mode.

What is Batch Mode?

Natural distinguishes between two processing modes:

■ interactive mode (via the Natural Main Menu)
■ batch mode

Themain difference between these twomodes is that in interactivemode, the commands and data
are input by the user by means of the keyboard and the output is displayed on a screen. In batch
mode, input is read from a file and output is written to a file - without user interaction.

WhenNatural is run as a batch job, no interaction betweenNatural and the personwho submitted
the batch job is necessary. The batch job consists of programs that are executed sequentially and
that receive sequential input data.

Batch mode is useful for mass data processing on a regular basis.

Starting a Natural Session in Batch Mode

Batch mode is activated with the parameter BATCHMODE.

To start a Natural session in batch mode

1 Start Natural with the dynamic parameter BATCHMODE as shown below:

natnn BATCHMODE

where nn is the current version number

The above call (where only the BATCHMODE parameter is specified) assumes that the required
input and output channels have already been defined in theConfigurationUtility. For inform-
ation on the input and output channels, seeUsingNatural in BatchMode later in this section).
For information on the batch-mode-relevant profile parameters in the parameter file, see Batch
Mode in the Configuration Utility documentation.

It is also possible to add the required input and output channels as dynamic parameters to
the above call. This is illustrated in Sample Session for Batch Mode later in this section. Any
input and output channels that are specified as dynamic parameters with the above call
override the channel definitions in the parameter file.

Operations48

Natural in Batch Mode

2 Check the filewhich has been defined as the output channel. At its end, this file should contain
the message that your session has terminated normally.

Terminating a Natural Session in Batch Mode

A Natural session in batch mode is terminated when one of the following is encountered during
the session:

■ the system command FIN in the batch input file, or
■ a TERMINATE statement in a Natural program which is being executed.

Note: When an end-of-input condition occurs in the batch input file, the batch session is
also terminated. In this case, the file which has been defined as the output channel contains
a message which indicates an unexpected end.

Using Natural in Batch Mode

To start a Natural session in batch mode you have to specify the dynamic parameter BATCHMODE.
In addition, input and output channels have to be defined as described below.

Important: The input channels CMSYNIN and/or CMOBJIN and the output channel CMPRINT are
always required for batch mode.

The following topics are covered below:

■ Input and Output Channels
■ Code Pages for the Input and Output Files

Input and Output Channels

The following parameters are available for batch mode:

DescriptionParameter

Defines the batch input file which contains the Natural commands and (optionally) data to be
read by INPUT statements during execution of Natural programs.

CMSYNIN

Defines the batch input file which contains the data to be read by INPUT statements. This data
can alternatively be placed in the file definedwith the parameter CMSYNIN, immediately following
the relevant RUN or EXECUTE command.

CMOBJIN

Defines the batch output file for the output resulting from DISPLAY, PRINT and WRITE statements
in a Natural program.

CMPRINT

49Operations

Natural in Batch Mode

DescriptionParameter

Defines an output file for additional reports referenced by anyNatural program executed during
the session. nn is a two-digit decimal number in the range from 01 to 31 which corresponds to
the report number used in a DISPLAY, PRINT or WRITE statement.

CMPRTnn

Defines a work file referenced by any Natural program executed during the session. nn is a
two-digit decimal number in the range from 01 to 32 which corresponds to the number used in
a READ WORK FILE or WRITE WORK FILE statement.

CMWRKnn

Used to logmessages that could not bewritten to the batch output file definedwith the parameter
CMPRINT. It is recommended to enable NATLOG in batch mode.

NATLOG

Code Pages for the Input and Output Files

The following parameters are used to specify the code pages in which the input files are encoded
and in which the output file shall be encoded.

DescriptionParameter

Specifies the code page inwhich the batch input file for commands is encoded. This file is defined
with the parameter CMSYNIN.

CPSYNIN

Specifies the code page in which the batch input file for data is encoded. This file is definedwith
the parameter CMOBJIN.

CPOBJIN

Specifies the code page in which the batch output file shall be encoded. This file is defined with
the parameter CMPRINT.

CPPRINT

Encoding for CMSYNIN and CMOBJIN:

■ If a code page is specified for one of the input files CMSYNIN or CMOBJIN, it is assumed that the
data in the input file is encoded using this code page.

■ If no code page is specified for one of the input files CMSYNIN or CMOBJIN, it is assumed that the
data in the input file is encoded using the default code page specified in the Natural parameter
CP.

■ If no code page is specified in the Natural parameter CP, it is assumed that the data in the input
file is encoded using the current system code page.

Encoding for CMPRINT:

■ If a code page is specified for the output file CMPRINT, the output data will be encoded using
this code page.

■ If no code page is specified for the output file CMPRINT, the output data will be encoded using
the default code page specified in the Natural parameter CP.

■ If no code page is specified in the Natural parameter CP, the output data will be encoded using
the current system code page.

Operations50

Natural in Batch Mode

If the encoding/decoding fails (for instance if a character is written to CMPRINT that is not contained
in the code page used to encode the file), the batch job terminates with a startup error 42 (batch
mode driver error) that specifies the file on which the encoding/decoding error occurred.

Note that it is possible in particular to specify UTF-8 as code page in each of these parameters.
This allows for reading and writing Unicode data encoded in UTF-8.

Sample Session for Batch Mode

This example demonstrates how to start Natural in batch mode. A simple Natural program is ex-
ecuted and data items are taken from the batch input file. After the items are processed with the
INPUT statement, a DISPLAY statement follows,whichwrites the data to the batch output file. Then,
Natural terminates.

This example uses the program RECCONTwhich is stored in the library SYSEXBAT.

Note: See the text A-README in the library SYSEXBAT for information on the objects that are
stored in this library.

The sample session is invoked with the following call:

natnn BATCHMODE CMSYNIN=cmd.txt CMOBJIN=data.txt CMPRINT=out.txt NATLOG=ALL

Note: This call assumes that all files can be found in the current directory and that the output
is written to this directory. If the files are located in different directories or if the output is
to be written to a different directory, you have to specify the path.

The parameters in the above call are described below:

BATCHMODE
The parameter BATCHMODE enables batchmode and sets the value of the systemvariable *DEVICE
to BATCH.

CMSYNIN=cmd.txt
The batch input file cmd.txt is a text file which is stored in your file system. The content of this
file is shownbelow. It containsNatural system commands for logging on to the library SYSEXBAT,
executing the Natural program RECCONT, and terminating the Natural session.

LOGON SYSEXBAT
EXECUTE RECCONT
FIN

The Natural program RECCONT has the following content:

51Operations

Natural in Batch Mode

DEFINE DATA
LOCAL

1 #firstname (A10)
1 #lastname (A10)

END-DEFINE
INPUT (IP=OFF AD=M) #firstname #lastname
DISPLAY #firstname #lastname
END

CMOBJIN=data.txt
The INPUT statement in the program RECCONT uses the data which is defined in the batch input
file data.txt. This is a text file which is stored in your file system. The content of this file is
shown below.

Ben %
Smith

Note: The percent character (%) indicates that the information continues in the next line.

CMPRINT=out.txt
The DISPLAY statement in the program RECCONTwrites the data to the batch output file out.txt
which is created in your file system. The content of this file is shown below:

NEXT LOGON SYSEXBAT
Logon accepted to library SYSEXBAT.
NEXT EXECUTE RECCONT

DATA Ben %
DATA Smith
Page 1 25.04.05 13:39:09

#FIRSTNAME #LASTNAME
---------- ----------

Ben Smith
NEXT FIN
NAT9995 Natural session terminated normally.

NATLOG=ALL
When you invoke the sample session with the above call, a log file is created with contains all
types of messages (which also includes the names of the batch input and outfile files). The log
file is normally created in Natural's temporary directory which is defined in the local config-
uration file. See also the description of the NATLOG parameter.

The image below illustrates the different ways in which Natural reads input and writes output in
batch mode.

Operations52

Natural in Batch Mode

As shown in the above graphic, you can proceed in one of the following ways:

■ CMOBJIN andCMSYNIN
Different files are used for batch input. One file contains the Natural commands and the other
file contains the data:

natnn BATCHMODE CMSYNIN=cmd.txt CMOBJIN=data.txt CMPRINT=out.txt

■ CMSYNIN
One file is used for batch input. It contains both the Natural commands and data:

natnn BATCHMODE CMSYNIN=data.txt CMOBJIN=data.txt CMPRINT=out.txt

53Operations

Natural in Batch Mode

Note: Even though only one batch input file is used, both parameters CMSYNIN and CMOBJIN

have to be specified. Both parameters must refer to the same file.

■ CMOBJIN andSTACK
One file is used for batch input. It contains the data. The Natural commands are specified with
the profile parameter STACK:

natnn BATCHMODE CMOBJIN=data.txt STACK="(LOGON SYSEXBAT; RECCONT;FIN)"

Batch Mode Detection

The system variable *DEVICE indicates whether Natural is running in batch mode or interactive
mode.

DescriptionMode

*DEVICE contains the value BATCH. This value is set by the parameter BATCHMODE.Batch mode

*DEVICE contains a value other than BATCH. In most cases, it contains the value VIDEO.Interactive mode

Example:

IF *DEVICE = "BATCH" THEN
WRITE 'This is the background task'

ELSE
WRITE 'This is the interactive session'

END-IF

Batch Mode Restrictions

When Natural is running in batch mode, some features are not available or are disabled:

■ Interactive input or output is not possible.
■ Only data for an INPUT statement can be processed.
■ The terminal database SAGtermcap is not supported. Therefore, the terminal capability TCS
which is used for a different character set is not supported. To use a different character set, use
environment variable NATTCHARSET instead.

■ No colors and video attributes are written to the batch output file defined by CMPRINT.
■ Filler characters are not displayed within an INPUT statement.

Operations54

Natural in Batch Mode

■ Certain Natural system commands are not executable in batch mode, and are ignored. In the
System Commands documentation, a corresponding note is provided for each system command
to which this restriction applies.

Batch Mode Simulation

In addition to the batch mode as described above, you can also simulate batch mode. However,
it is recommended to use batch mode instead of batch mode simulation. Batch mode has the fol-
lowing advantages over batch mode simulation:

■ Easy data input with support of keyword delimiter mode.
■ Configurable and formatted output processing.
■ Extended error handling.
■ Faster startup and shutdown.
■ Faster program execution.

If the input channel is redirected to a file, Natural does not read the input commands and data
from the keyboard but from this file. You have to specify the data in exactly the same way as you
would do on the terminal. For example, for two input fields you have to fill up the first field with
trailing blanks to position to the second field. No keyword delimiter mode is supported. To use
keyword delimiter mode, use batch mode instead of batch mode simulation.

If the output channel is redirected to a file, Natural writes any output that would appear on the
screen to this file. Control sequences are also written to the file, which makes the file unreadable.
To get a formatted output, use batch mode instead of batch mode simulation.

Use the dynamic parameter BATCHwhen starting Natural, to set the system variable *DEVICE to
the value BATCH. This value can be checked within a Natural program.

Example: Redirecting the Input Channel

DEFINE NATINPUT input-file-name
NATURAL BATCH

Natural then receives all input operations from this input file (an example of this input file is
provided below).

Example: Redirecting the Input and Output Channel

DEFINE NATINPUT input-file-name
DEFINE NATOUTPUT output-file-name
NATURAL BATCH

55Operations

Natural in Batch Mode

If youwant to keepNatural reports only and hide all other output (write output to the null device),
set the profile parameter MAINPR to a valid printer number and assign an executable file to the
corresponding logical printer (device) in the parameter file, then specify:

DEFINE NATINPUT input-file-name
DEFINE NATOUTPUT nla0:
NATURAL BATCH

Any Natural reports are written to the executable file, whereas any screen output is suppressed.
An input file must be specified even if Natural does not expect any input at all. In this case, also
the null device may be used.

Sample Input File

dlist program *
fin

The input file for batch mode simulation must contain the same keystrokes that you would make
in an interactive session.

The following keystrokes are used in the above sample input file:

Opens the Direct Commandwindow.d

Executes the Natural system command which is used to list all programs.list program *

Executes the Natural system command which is used to terminate the Natural session.fin

Operations56

Natural in Batch Mode

7 Support of Different Character Sets with NATCONV.INI

■ Why is the Support of Different Character Sets Important? ... 58
■ Character Sets that are Supported .. 58
■ How to Use Different Character Sets ... 60

57

The settings in the configuration file NATCONV.INI apply to the A format. For the U format, the
ICU library is used.

This chapter describes how Natural supports different character sets.

Why is the Support of Different Character Sets Important?

The support of multiple languages with different character sets represents Natural's approach
towards internationalization. It can help you when using:

■ terminals and printers with different character sets, all communicating with the same Natural
environment;

■ several Natural environments sharing one database and located on different platforms;
■ upper-/lower-case translation of language-specific characters;
■ language-specific characters in Natural identifiers, object names and library names;
■ language-specific characters in an operand comparedwith a mask definition (seeMASKOption
in the Programming Guide).

Character Sets that are Supported

Natural supports any single-byte character set that conforms to the ASCII character set in the
lowest seven bits.

Natural distinguishes between an internal character and several external character sets; the internal
character set is used by Natural itself.

As illustrated below, conversion between the internal and an external character set is performed
after the input from a terminal and before the output to a terminal or printer. There is no conversion
to an external character set available for work file I/Os, database I/Os and reading/writing of
Natural objects.

Operations58

Support of Different Character Sets with NATCONV.INI

Internal Character Set

By default, Natural uses the internal character set ISO8859_1. If the default character set does not
meet your requirements, you can choose either one of the predefined character sets provided by
Natural or any other standard character set.

Note: Problemsmay occur if you run computerswith different internal character sets sharing
the same database, or if you try to exchange data or programming objects between such
computers.

59Operations

Support of Different Character Sets with NATCONV.INI

External Character Sets

You can define an external character set for any terminal and printer.

For a terminal, the name of its character set is defined by the TCS entry in the terminal database,
for example:

:TCS = usascii:

You can also use the OpenVMS logical NATTCHARSETwhich overrides all TCS settings.

If neither a TCS entry nor the logical NATTCHARSET is defined, no conversion is performed during
terminal I/O.

For a printer, the name of an external character set name can be defined in the printer profile. This
is part of the global configuration file. See Printer Profiles in the Overview of Configuration File
Parameters of the Configuration Utility documentation.

How to Use Different Character Sets

All check, translation and classification tables used by Natural to support language-specific char-
acters reside in the configuration file NATCONV.INI. By default, this file is located in Natural's
etc directory (NATDIR:['F$Trnlnm("NATVERS")'.etc).

You can modify NATCONV.INI to support local or application-specific character sets.

In a standard application,NATCONV.INI need not and should not bemodified, because this could
lead to serious inconsistencies, in particular if Natural objects and database data are already present.

Modifications are necessary if you want to do any of the following:

■ use an internal character set other than the default one,
■ use a terminal or printer whose character set is not supported by NATCONV.INI,
■ allow or disallow the use of certain characters in identifiers,
■ support local characters when evaluating the MASK option.

Anymodifications ofNATCONV.INI should bewell considered and carefully performed, otherwise
problems might occur that are difficult to locate.

NATCONV.INI is subdivided in sections and subsections. The following sections are defined:

Operations60

Support of Different Character Sets with NATCONV.INI

DescriptionSection

This section defines the name of the internal character set. The default is
ISO8859_1.

If you choose a different character set, subsections for this character set
must be contained in the sections described below.

CHARACTERSET-DEFINITION

This section contains the tables required for the conversion between the
internal character set and external character sets.

If you use, for example, a terminal with an entry in SAGtermcap of :TCS
= ASCII_GERMAN: and if ISO8859_1 is used as internal character set, the
following two subsections must be contained in this section:

CHARACTERSET-TRANSLATION

■ [ISO8859_1->ASCII_GERMAN]

■ [ASCII_GERMAN->ISO8859_1]

This section contains the tables required for the conversion fromupper-case
to lower-case which is performed when one of the following is specified:

CASE-TRANSLATION

■ the terminal command %U,
■ the field attribute AD=T,
■ the statement EXAMINE TRANSLATE.

This conversion is done within the internal character set. If the internal
character set is, for example, ISO8859_5, the following two subsections
must be contained in this section:

■ [ISO8859_5->UPPER]

■ [ISO8859_5->LOWER]

This section contains the tables required for the validation of identifiers
(that is, user-defined variables in source programs), object names and

IDENTIFIER-VALIDATION

library names. It contains a subsection for each defined internal character
set.

The special characters "#" (for non-database variables), "+" (for
application-independent variables), "@" (for SQL andAdabas null or length
indicators) and "&" (for dynamic source generation) can be redefined in
this section. In addition, the set of valid first and subsequent characters for
identifiers, object names and library names can be modified.

Note: When extending the set of valid characters for object names with
values greater than x7f (decimal 127), the sorting sequence of the objects
(for example, during a LIST * command) may not be in the numerical
order.

This section contains the tables required for the classification of characters,
which, for example, are usedwhen evaluating the MASK option. It contains
a subsection for each defined internal character set.

CHARACTER-CLASSIFICATION

61Operations

Support of Different Character Sets with NATCONV.INI

The section CHARACTERSET-DEFINITION and each subsection contain lines which describe how
characters are to be converted and which characters are related with which attributes. These lines
are represented as follows:

line ::= key = value
key ::= name_key | range_key
name_key ::= keyword{ CHARS }
keyword ::= INTERNAL-CHARACTERSET | NON-DB-VARI | DYNAMIC-SOURCE |

GLOBAL-VARI | FIRST-CHAR | SUBSEQUENT-CHAR |
LIB-FIRST-CHAR | LIB-SUBSEQUENT-CHAR | ALTERNATE-CARET
ISASCII | ISALPHA | ISALNUM | ISDIGIT | ISXDIGIT |
ISLOWER | ISUPPER | ISCNTRL | ISPRINT | ISPUNCT |
ISGRAPH | ISSPACE

range_key ::= hexnum | hexnum-hexnum
value ::= val {, val }
val ::= hexnum | hexnum-hexnum
hexnum ::= xhexdigithexdigit | xhexdigithexdigit

Notes:

1. If the range_key variable is specified on the left-hand side, the number of values specified on
the right-hand side must correspond to the number of values specified in the key range, unless
only one value is specified on the right-hand side, which is then assigned to each element of
the key range.

2. When the name_key variable is specified on the left-hand side and the corresponding list of
character codes does not fit in one line, it can be continued on the next line by specifying name_key
= again. You must not start the lines with leading blanks or tabulators.

Examples of Valid Lines

All characters between x00 and x1f are converted to x00.x00-x1f = x00

All characters between x00 and x7f are not converted.x00-x7f = x00-x7f

The characters x00 and x08 are converted to x00 and characters
between x01 and x07 are not converted.

x00-x08 = x00,x01-x07,x00

The attribute ISALPHA is assigned to all characters specified in
these two lines.

ISALPHA= x41-x5a,x61-x7a,xc0-xd6,xd8
ISALPHA = xd9-xf6,xf8-xff

Operations62

Support of Different Character Sets with NATCONV.INI

Examples of Invalid Lines

All characters must be specified in hexadecimal format.x41 = 'A'

Hexadecimal values have to be specified in either of the following ways:0x00-0x1f = 0x00

xdigitdigit
Xdigitdigit

The number of specified values does not correspond to the number of elements in the
key range.

x00-x0f = x00,x01

63Operations

Support of Different Character Sets with NATCONV.INI

64

8 Natural Exit Codes

■ Special Considerations for Natural on OpenVMS ... 66
■ Natural Startup Errors .. 67

65

There are two types of Natural exit codes:

■ Startup errors, where exit codes 0 and 1 indicate success and all other exit codes indicate errors.
■ Errors generated by the TERMINATE statement, where exit codes 0 to 255 are possible.

Special Considerations for Natural on OpenVMS

If Natural fails during startup or is terminated by the TERMINATE statement, you can query the exit
code fromwithin a DCL file. Natural does not return low return code values such as "12" (startup
error “Parametermodule not found”). Instead,Natural adds the value "268,435,456" to theNatural
error code. If this value were not added, the image run-down handler would interpret the value
"12" as aNatural internal access violation and a system access violationmessagewould be printed.

Exception

If Natural is terminated by using the TERMINATE statement with value 0, Natural exits with exit
code 1. This is because under OpenVMS the C runtime makes no difference between an exit (0)
and an exit (1) statement. In both cases, 1 is returned.

You can retrieve this error code in a DCL command file by inquiring the status value $STATUS.
The example below shows how to retrieve the Natural exit code.

Recommendation

The value of $STATUS does not explain whether this is a startup error or an error generated by the
TERMINATE statement. For Natural, the exit codes 1 to 99 are reserved for the startup errors. For
that reason, use exit codes 100 to 255 for TERMINATE, otherwise you cannot not clearly indicate the
reason for the exit.

Example

$ SET NOON
$ NAT :== $NATBIN:NATURAL.EXE
$ DEFINE/USER NATINPUT SYS$INPUT
$ DEFINE/USER NATOUTPUT SYS$OUTPUT
$
$ nat parm=unknown
$
$! Note:
$! %X10000000 is hexadecimal and stands for the decimal number 268,435,456
$!
$ status_value = $STATUS .AND. .NOT. %X10000000
$
$ IF status_value .GE. 100
$ THEN
$ WRITE SYS$OUTPUT "NATURAL terminates by using TERMINATE statement"

Operations66

Natural Exit Codes

$ ELSE
$ IF status_value .EQ. 1
$ THEN
$ WRITE SYS$OUTPUT "NATURAL terminates successfully"
$ ELSE
$ WRITE SYS$OUTPUT "NATURAL terminates with startup error " + "''status_value'"
$ ENDIF
$ ENDIF
$
$ EXIT

Natural Startup Errors

The following exit codes may occur when starting Natural.

Terminal Control String (TCS) capability specified in SAGtermcap or Environment Variable
NATTCHARSET.

2

Failed to initialize character conversion table.3

Error in character conversion file NATCONV.INI.4

Unable to read database assignments from global configuration file NATCONF.CFG.5

Unable to find FNAT(dbid,fnr) or FUSER(dbid,fnr). Check your configuration files.6

Cannot initialize LFILE table.7

Obsolete.8

Obsolete.9

Obsolete.10

Obsolete.11

Unable to read specified parameter file. Please verify the parameter file.12

Unable to read parameter file NATPARM.13

Storage manager initialization failed.14

End of file (EOF) encountered while reading from STDIN.15

Unable to open buffer pool; contact the Natural system administrator.16

Unable to read buffer pool assignments from NATURAL.INI file.17

Invalid FDIC assignment.18

Invalid FNAT assignment.19

Invalid FSEC assignment.20

Invalid FUSER assignment.21

Unable to load Natural login module.22

Unable to allocate memory for local data. Reduce USIZE and/or SSIZE parameter.23

Unable to load Natural display module.24

67Operations

Natural Exit Codes

Error loading shareable image or DLL.25,26

Login cancelled. Natural terminates.27

Security violation during start of Natural. Natural terminates.28

Security violation during start of Natural. Login aborted due to too many login failures.29

Natural system error message raised.30

NAT0866 Your Natural nucleus is not a Natural Security nucleus.31

Password check failed.32

Lock manager cannot create/initialize semaphores.33

No library is accessible or present in specified FNAT/FUSER. Check system file assignments and file
attributes of FNAT and FUSER (directories and files).

34

Internal wfc i/o terminal driver error.35

Internal XVT error.36

Creation of runtime context failed.38

Unable to find NATDIR and/or NATVERS environment variable. If you have set the NATDIR environment
variable, please check that it does not contain invalid or whitespace characters! NATVERS should only
contain the Natural version. The path must contain a valid drive ID.

39

Natural zmodem error.40

Creation of TF table failed because there are entrieswith different database types fromolder parameter
module. Check parameter module with Natural Configuration Utility.

41

Batch mode driver error.42

Screen window size is too small.43

Exit from SQL signal handler.44

Unable to load add-on product.45

Unable to access FNAT library SYSLIB. Insufficient privilege or file protection violation.46

Unable to read PARM_PATH entry from NATURAL.INI file or directory is not accessible.47

Unable to read CONFIG_NAME entry from NATURAL.INI file or file is not accessible.48

Unable to read NATTCAP entry from NATURAL.INI file or file is not accessible.49

Unable to read NATCONV entry from NATURAL.INI file or file is not accessible.50

Unable to process TMP_PATH entry from NATURAL.INI file. Path 'path' not accessible.51

Unable to read PROFILE_PATH entry from NATURAL.INI file or directory is not accessible.52

Unable to open local configuration file NATURAL.INI.NATOSDEP53

Unable to read NATCONF.CFG for .54

Unable to read NATURAL.INI for NATEXTLIB.55

Unable to read NATDIR entry in SAG.INI file.56

Not used.57

Unable to read NATINI entry in SAG.INI file.58

Unrecognized option 'option' specified.59

Not enough memory to initalize internal tables.60

Operations68

Natural Exit Codes

Batch error occurred, but processing continued due to CC=ON parameter.61

More than one Natural session with active repository not allowed.62

Natural session with active repository already running.63

Failed to open FNAT's LIBDIR.SAG. Check presence and access protection.64

The FNAT assigned to this Natural session is out of date.65

This is an evaluation copy of Natural ... It is valid until...72

The test period of this evaluation copy of Natural ... has expired. It was valid until...73

Invalid FDDM assignment.77

Natural runtime startup error during context initialization.85

Invalid code page [name] specified.86

Failure initializing signal handlers.87

Conflicting buffer pool usage.88

69Operations

Natural Exit Codes

70

9 Setting Up the Entire System Server Interface

■ Prerequisites .. 72
■ Activation ... 72
■ Changing the Database ID for the Entire System Server DDMs .. 73

71

The Entire System Server Interface is required if the product Entire System Server is to be used.
The Entire System Server Interface is part of Natural and no extra installation is needed.

Additionally, Natural provides the libraries SYSNPE and SYSNPR.

SYSNPE is the Entire System Server online tutorial which is provided as a starting help for Entire
System Server users. For more information about Entire System Server, see the Entire System
Server documentation.

The library SYSNPR contains the program CHANGEDBwhich is used to change the database ID of the
Entire System Server DDMs.

Prerequisites

The Entire System Server Interface provides access to Entire System Server on z/OS, z/VSE and
BS2000/OSD via Entire Net-Work. For full support of the Entire System Server Interface, Entire
Net-Work Version 5.8.1 or above is required on the mainframe platforms.

Activation

The Entire System Server Interface is not active if you use the standard Natural configuration
settings. The value of the Entire System Server Interface database (Natural profile parameter ESXDB)
is set to 0 by default. To use the Entire System Server Interface you have to set the value of the
parameter ESXDB to 148 using the Configuration Utility.

In the Configuration Utility, the parameter ESXDB is assigned in the parameter group Product
Configuration of a parameter file.

Tip: Locate this parameter by searching for "ESXDB". See Finding a Parameter in the Config-
uration Utility documentation for further information.

ESXDB specifies the database ID used for the DDMs of Entire System Server. This DBID does not
specify the target DBID of Entire System Server requests but tells Natural which DBID is used for
the cataloged Entire System Server DDMs. The effective Entire System Server target DBID will be
specified with the NODE field which is part of all Entire System Server DDMs.

Important: Change the value of ESXDB to 148 to run Natural with Entire System Server Inter-
face support. All Entire System Server DDMs are cataloged with DBID 148.

After startingNatural again, youmay access Entire SystemServer nodes running on themainframes
via Entire Net-Work.

Operations72

Setting Up the Entire System Server Interface

The customization of Entire System Server Interface supports themodification of the Entire System
Server DDMs only.

Changing the Database ID for the Entire System Server DDMs

The library SYSNPR contains the program CHANGEDBwhich is used to modify the database ID of all
Entire System Server DDMs. You will find all Entire System Server DDMs in the library SYSNPE.
The database ID entered as a new DBID value in the program CHANGEDBmust also be specified as
the value of the Entire System Server Interface database parameter (ESXDB) in the Configuration
Utility.

73Operations

Setting Up the Entire System Server Interface

74

10 User Exit for Computation of Sort Keys - NATUSKnn

Some national languages contain characters which are not sorted in the correct alphabetical order
by a sort program or database system. With the system function SORTKEY you can convert such
“incorrectly sorted” characters into other characters that are “correctly sorted” alphabetically.

When you use the SORTKEY function in a Natural program, the user exit NATUSKnnwill be invoked
- nn being the current language code (that is, the current value of the system variable *LANGUAGE).

You can write a NATUSKnn user exit in the C programming language using the CALL interface. The
character-string specified with SORTKEYwill be passed to the user exit. The user exit has to be
programmed so that it converts “incorrectly sorted” characters in this string into corresponding
“correctly sorted” characters. The converted character string is then used in the Natural program
for further processing.

Note: A conversion table is not supplied.

NATUSKnn is called using the CALL interface. The parameters of the C function have the following
values:

ContentsParameter

The number of arguments.1

The array of pointers to the operands.2

The array of field information for each operand.3

If you use the Natural system function #OP1=SORTKEY(#OP2), the source operand is in the arrays
at index 0 and the target operand (#OP1) is in the arrays at index 1.

A sample user exit, natusk01.c, is provided in source form: it applies to English and converts all
English lower-case letters in the character string to upper-case letters. The sample is to be found
in NATDIR:['F$Trnlnm("NATVERS")'.samples.sysexuex], where you can also find the other user
exits.

75

The source code of the example contains all comments which are needed to write a specific user
exit for SORTKEY.

For linkage and loading conventions, refer to the CALL statement.

Operations76

User Exit for Computation of Sort Keys - NATUSKnn

	Operations
	Table of Contents
	Preface
	1 Profile Parameter Usage
	Parameter Hierarchy
	Static Assignment of Parameter Values
	Dynamic Assignment of Parameter Values
	Runtime Assignment of Parameter Values

	2 System Files
	System File Structure
	System Files FNAT and FUSER
	System File FDDM
	Activating FDDM Mode
	Migrating DDMs to the System File FDDM
	Checking whether the System File FDDM is Used

	Important Information and Warnings
	The File FILEDIR.SAG
	Portable Natural System Files
	Language-dependent Objects
	Migrating an Old FILEDIR.SAG File
	Migrating Non-Portable Message Files to 64-Bit Platforms

	Natural Root Directory
	Using NFS to Store Natural Libraries

	3 Work Files
	Defining Work Files
	Defining Work File Names with the Configuration Utility
	Defining Work File Names with Environment Variables
	General Information

	Defining Work File Names with an Application Programming Interface

	Work File Formats
	Binary Format
	ASCII Format
	Entire Connection Format
	Portable Format
	Unformatted Format
	CSV Format

	Record File Format
	Special Considerations for Work Files with the Extension NCD
	Using the Work File Type Transfer

	4 Natural Buffer Pool
	General Information
	Objects in the Buffer Pool
	Coordination under OpenVMS
	Multiple Buffer Pools
	Storing Objects in the Buffer Pool
	Restrictions

	Setting up a Buffer Pool
	Using the Utility NATBPSRV for Creating the Buffer Pool
	Monitoring the Buffer Pool
	Trouble Shooting
	Problem

	Shutting Down and Restarting the Buffer Pool

	5 Using the Buffer Pool Monitor (NATBPMON)
	Invoking the NATBPMON Utility
	NATBPMON Commands
	Displaying the Objects in the Buffer Pool
	Specifying a Pattern
	Displaying the Buffer Pool Settings
	Statistical Information About the Buffer Pool

	6 Natural in Batch Mode
	What is Batch Mode?
	Starting a Natural Session in Batch Mode
	Terminating a Natural Session in Batch Mode
	Using Natural in Batch Mode
	Input and Output Channels
	Code Pages for the Input and Output Files

	Sample Session for Batch Mode
	Batch Mode Detection
	Batch Mode Restrictions
	Batch Mode Simulation

	7 Support of Different Character Sets with NATCONV.INI
	Why is the Support of Different Character Sets Important?
	Character Sets that are Supported
	Internal Character Set
	External Character Sets

	How to Use Different Character Sets

	8 Natural Exit Codes
	Special Considerations for Natural on OpenVMS
	Natural Startup Errors

	9 Setting Up the Entire System Server Interface
	Prerequisites
	Activation
	Changing the Database ID for the Entire System Server DDMs

	10 User Exit for Computation of Sort Keys - NATUSKnn

