
MOVE
This chapter covers the following topics:

Function

Syntax Description

Examples

Related Statements: ADD | COMPRESS | COMPUTE | DIVIDE | EXAMINE | MOVE ALL |
MULTIPLY | RESET | SEPARATE | SUBTRACT

Belongs to Function Group: Arithmetic and Data Movement Operations

Function
The MOVE statement is used to move the value of an operand to one or more operands (field or array).

A MOVE statement with multiple target operands is identical to the corresponding individual MOVE
statements:

MOVE #SOURCE TO #TARGET1 #TARGET2

is identical to

MOVE #SOURCE TO #TARGET1
MOVE #SOURCE TO #TARGET2

Example:

DEFINE DATA LOCAL
1 #ARRAY(I4/1:3) INIT <3,0,9>
1 #INDEX(I4)
1 #RESULT(I4)
END-DEFINE
*
#INDEX := 1
MOVE #ARRAY(#INDEX) TO #INDEX /* #INDEX is 3
 #RESULT /* #RESULT is 9
*
#INDEX := 2
MOVE #ARRAY(#INDEX) TO #INDEX /* #INDEX is 0
 #ARRAY(3) /* returns run time error NAT1316

If operand2 is a dynamic variable, its length may be modified by the MOVE operation. The current length
of a dynamic variable can be ascertained by using the system variable *LENGTH. For general information
on the dynamic variable, see the section Using Dynamic and Large Variables in the Programming Guide.

If operand2 is of format C, operand1 may also be specified as (parameter) . Valid parameters are:

1

MOVEMOVE

Parameters that can be specified with the
MOVE statement

Specification (S = at statement level, E = at
element level)

AD Attribute Definition SE

CD Color Definition S

For more information on data transfer compatibility and the rules for data transfer, see the section Data
Transfer in the Programming Guide.

Other Considerations

If a database field is used as the result field, the MOVE operation results in an update only to the internal
value of the field as used within the program. The value of the field in the database remains unchanged.

A Natural system function may be used only if the MOVE statement is specified in conjunction with an AT
BREAK, AT END OF DATA or AT END OF PAGE statement.

See also the section Rules for Arithmetic Assignment in the Programming Guide.

Note:
If operand1 is a time variable (Format T), only the time component of the variable content is transferred,
but not the date component (except with MOVE EDITED, described under Syntax 4 and Syntax 5).

Syntax Description
Different structures are possible for this statement.

Syntax 1 - MOVE ROUNDED

Syntax 2 - MOVE SUBSTRING

Syntax 3 - MOVE BY NAME / POSITION

Syntax 4 - MOVE EDITED (Edit Mask Specified with operand2)

Syntax 5 - MOVE EDITED (Edit Mask Specified with operand1)

Syntax 6 - MOVE LEFT / RIGHT JUSTIFIED

Syntax 7 - MOVE NORMALIZED

Syntax 8 - MOVE ENCODED

For an explanation of the symbols used in the syntax diagrams below, see Syntax Symbols.

Syntax 1 - MOVE ROUNDED

MOVE [ROUNDED] operand1 [(parameter)] TO operand2

2

Syntax DescriptionMOVE

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A N A U N P I F B D T L C G O yes no

operand2 S A M A U N P I F B D T L C G O yes yes

Syntax Element Description:

MOVE
ROUNDED

This option causes operand2 to be rounded.

ROUNDED is ignored if operand2 is not numeric.

If operand2 is of format N or P and operand2 is specified more than once,
ROUNDED is ignored for target operands with seven positions after the decimal
point.

See also Example 1 - Various Samples of MOVE Statement Usage.

(parameter) As parameter, you can specify the option PM=I or the session parameter DF:

PM=I In order to support languages whose writing direction is from right to
left, you can specify PM=I so as to transfer the value of operand1 in
inverse (right-to-left) direction to operand2.

For example, as a result of the following statements, the content of #B
would be ZYX:

MOVE ’XYZ’ TO #A
MOVE #A (PM=I) TO #B

PM=I can only be specified if operand2 has alphanumeric format.

Any trailing blanks in operand1 will be removed (blanks and binary
zeros are removed), then the value is reversed and moved to operand2. If
operand1 is not of alphanumeric format, the value will be converted to
alphanumeric format before it is reversed.

See also the use of PM=I in conjunction with MOVE LEFT/RIGHT
JUSTIFIED .

DF If operand1 is a date variable and operand2 is an alphanumeric field,
you can specify the session parameter DF as parameter for this date
variable. The session parameter DF is described in the Parameter
Reference.

Syntax 2 - MOVE SUBSTRING

MOVE operand1 [(parameter)] TO operand2

SUBSTRING (operand1, operand3, operand4) SUBSTRING (operand2,operand5,operand6)

3

MOVESyntax 2 - MOVE SUBSTRING

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A A U B yes no

operand2 S A A U B yes no

operand3 C S N P I B* yes no

operand4 C S N P I B* yes no

operand5 C S N P I B* yes no

operand6 C S N P I B* yes no

* See text.

Syntax Element Description:

4

Syntax 2 - MOVE SUBSTRINGMOVE

MOVE
SUBSTRING

Without the SUBSTRING option, the whole content of a field is moved.

The SUBSTRING option allows you to move only a certain part of an
alphanumeric, Unicode or a binary field. After the field name (operand1) in
the SUBSTRING clause you specify first the starting position (operand3) and
then the length (operand4) of the field portion to be moved.

If the underlying field format of operand1 is

alphanumeric (A) or binary (B), then the values supplied with operand3
or operand4 are considered as byte numbers;

Unicode (U), then the values supplied with operand3 or operand4 are
considered as number of Unicode code units; that is, as double-bytes.

For example, to move the 5th to 12th position inclusive of the value in a field
#A into a field #B, you would specify:

MOVE SUBSTRING(#A,5,8) TO #B

If operand1 is a dynamic variable, the specified field portion to be moved
must be within its current length; otherwise, a runtime error will occur.

Also, you can move a value of an alphanumeric, Unicode or binary field into a
certain part of the target field. After the field name (operand2) in the
SUBSTRING clause you specify first the starting position (operand5) and
then the length (operand6) of the field portion into which the value is to be
moved.

If the underlying field format of operand2 is

alphanumeric (A) or binary (B), then the values supplied with operand5
or operand6 are considered as byte numbers;

Unicode (U), then the values supplied with operand3 or operand4 are
considered as number of Unicode code units; that is, as double-bytes.

For example, to move the value of a field #A into the 3rd to 6th position
inclusive of a field #B, you would specify:

MOVE #A TO SUBSTRING(#B,3,4)

If operand2 is a dynamic variable, the specified starting position (operand5)
must not be greater than the variable’s current length plus 1; a greater starting
position will lead to a runtime error, because it would cause an undefined gap
within the content of operand2.

If operand3/5 or operand4/6 is a binary variable, it may be used only with a
length of less than or equal to 4.

If you omit operand3/5, the starting position is assumed to be 1. If you omit
operand4/6, the length is assumed to range from the starting position to the
end of the field.

If operand2 is a dynamic variable and the specified starting position
(operand5) is the variable’s current length plus 1, which means that the MOVE
operation is used to increase the length of the variable, operand6 must be
specified in order to determine the new length of the variable.

Note:
MOVE with the SUBSTRING option is a byte-by-byte move (that is, the rules
described under Rules for Arithmetic Assignment in the Programming Guide
do not apply).

5

MOVESyntax 2 - MOVE SUBSTRING

Syntax 3 - MOVE BY NAME / POSITION

MOVE BY [NAME] operand1 TO operand2

POSITION

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 G yes no

operand2 G yes no

Syntax Element Description:

6

Syntax 3 - MOVE BY NAME / POSITIONMOVE

MOVE BY NAME operand1 TO operand2 This option is used to move individual fields
contained in a data structure to another data
structure, independent of their position in the
structure.

A field is moved only if its name appears in both
structures (this includes REDEFINEd fields as well
as fields resulting from a redefinition). The
individual fields may be of any format. The
operands can also be views.

Note:
The sequence of the individual moves is determined
by the sequence of the fields in operand1.

See also Example 2 - MOVE BY NAME Statement.

MOVE BY NAME with Arrays:

If the data structures contain arrays, these will
internally be assigned the index (*) when moved;
this may lead to an error if the arrays do not comply
with the rules for assignment operations with arrays;
see the section Processing of Arrays in the
Programming Guide.

See also Example 3 - MOVE BY NAME with Arrays.

MOVE BY POSITION operand1 TO
operand2

This option allows you to move the contents of
fields in a group to another group, regardless of the
field names.

The values are moved field by field from one group
to the other in the order in which the fields are
defined (this does not include fields resulting from a
redefinition).

The individual fields may be of any format. The
number of fields in each group must be the same;
also, the level structure and array dimensions of the
fields must match. Format conversion is done
according to the rules for arithmetic assignment; see
the section Rules for Arithmetic Assignments in the
Programming Guide. The operands can also be
views.

See also Example 4 - MOVE BY POSITION.

7

MOVESyntax 3 - MOVE BY NAME / POSITION

Syntax 4 - MOVE EDITED (Edit Mask Specified with operand2)

MOVE EDITED operand1 TO operand2 (EM=value)

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A A U B yes no

operand2 S A A U N P I F B D T L yes yes

Syntax Element Description:

MOVE
EDITED

If an edit mask is specified for operand2, the value of operand1 will be placed into
operand2 using this edit mask.

The edit mask can be considered as an input edit mask for operand2, that is used to
specify at which positions in the alphanumeric contents of operand1 the significant
input data for operand2 can be found.

If the edit mask refers more characters or digits than existent in operand2, it is
truncated accordingly. The length of operand1 may not be smaller than the length
of the input value represented by the edit mask. If operand1 is longer than the edit
mask length, all the overhanging data is ignored.

Under the pre-condition not to have an operand1 length larger than the edit mask
length, you may regard a

MOVE EDITED operand1 TO operand2 (EM= value)

operation like the execution of

STACK TOP DATA operand1
INPUT operand2 (EM= value)

See also Example 1 - Various Samples of MOVE Statement Usage.

EM For details on edit masks, see the session parameter EM in the Parameter
Reference.

Syntax 5 - MOVE EDITED (Edit Mask Specified with operand1)

MOVE EDITED operand1 (EM=value) TO operand2

Operand Definition Table:

8

Syntax 4 - MOVE EDITED (Edit Mask Specified with operand2)MOVE

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A N A U N P I F B D T L yes no

operand2 S A A U B yes yes

Syntax Element Description:

MOVE
EDITED

If an edit mask is specified for operand1, the edit mask will be applied to operand1
and the result will be moved to operand2.

The edit mask can be considered as an output edit mask for operand1, that is used
to create an alphanumeric string with the layout and length described by the edit
mask. Besides data characters or digits originating from operand1, you may
include additional decoration characters into the output string.

If the edit mask refers more characters or digits than existent in operand1, it is
truncated accordingly. The length of the created output string (resulting from
operand1 value after the edit mask has been applied) must not exceed the length of
operand2.

Under the pre-condition not to have an operand2 length smaller than the edit mask
length, you may regard a

MOVE EDITED operand1 (EM= value) TO operand2

operation like a

WRITE operand1 (EM= value)

that does not write the output to the screen, but fills it into variable operand2.

See also Example 1 - Various Samples of MOVE Statement Usage.

EM For details on edit masks, see the session parameter EM in the Parameter
Reference.

Syntax 6 - MOVE LEFT / RIGHT JUSTIFIED

MOVE LEFT [JUSTIFIED] operand1 [(parameter)] TO operand2

RIGHT

Operand Definition Table:

9

MOVESyntax 6 - MOVE LEFT / RIGHT JUSTIFIED

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A N A U N P I F B D T L yes no

operand2 S A A U yes yes

Syntax Element Description:

MOVE LEFT /
RIGHT
JUSTIFIED

This option is used to cause the values to be moved to be left- or right-justified in
operand2.

MOVE LEFT/RIGHT JUSTIFIED cannot be used if operand2 is a dynamic
variable.

MOVE LEFT
JUSTIFIED

With MOVE LEFT JUSTIFIED , any leading blanks in operand1 are removed
(blanks and binary zeros are removed) before the value is placed left-justified into
operand2. The remainder of operand2 will then be filled with blanks. If the value
is longer than operand2, the value will be truncated on the right-hand side.

MOVE RIGHT
JUSTIFIED

With MOVE RIGHT JUSTIFIED , any trailing blanks in operand1 are truncated
(blanks and binary zeros are removed) before the value is placed right-justified
into operand2. The remainder of operand2 will then be filled with blanks. If the
value is longer than operand2, the value will be truncated on the left-hand side.

See also Example 1 - Various Samples of MOVE Statement Usage.

parameter When you use MOVE LEFT/RIGHT JUSTIFIED in conjunction with PM=I,
the move is performed in the following steps:

1. If operand1 is not of alphanumeric format, the value is converted to
alphanumeric format.

2. Any trailing blanks in operand1 are removed (blanks and binary zeros are
removed).

3. In the case of LEFT JUSTIFIED , any leading blanks in operand1 are also
removed (blanks and binary zeros are removed).

4. The value is reversed, and then moved to operand2.

5. If applicable, the remainder of operand2 is filled with blanks, or the value is
truncated (see above).

Syntax 7 - MOVE NORMALIZED

The MOVE NORMALIZED statement converts a Unicode string into the "Unicode Normalization Form C"
(NFC). The resulting Unicode string does no longer contain combining sequences for characters which are
available as pre-composed characters.

If the format of the target operand is not Unicode itself, an implicit conversion from Unicode into the
target operand takes place - during this conversion the default code page (see system variable
*CODEPAGE) will be used.

10

Syntax 7 - MOVE NORMALIZEDMOVE

For further information on the MOVE NORMALIZED statement, see the section Statements in the Unicode
and Code Page Support documentation.

Syntax Diagram:

MOVE NORMALIZED operand1 TO operand2

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A U yes no

operand2 S A A U yes yes

Syntax Element Description:

MOVE
NORMALIZED

This option is used to convert Unicode fields with potentially unnormalized
content into the "Unicode Normalization Form C" (NFC). This composite form of
a Unicode string does not contain combining sequences for characters which are
available as pre-composed characters. See also:
http://www.unicode.org/reports/tr15/#Canonical_Composition_Examples
("Normalization Forms D and C Examples").

Example:

MOVE NORMALIZED #SCR TO #TGT

operand1 Unicode string to be converted.

operand2 Target operand.

Example:

Some code points have different representations in Unicode. For example, the German letter ’Ä’: the
decomposed representation in Unicode is U+0041 followed by U+0308 and uses a combining character
(U+0308); another representation is the pre-composed character U+00C4 . The MOVE NORMALIZED
statement converts the Unicode representation with combining characters into a normalized Unicode
representation using pre-composed characters where possible.

Syntax 8 - MOVE ENCODED

This section explains the syntax of the MOVE ENCODED statement. For information on the purpose of
this statement, see the section Statements in the Unicode and Code Page Support documentation.

Syntax Diagram:

11

MOVESyntax 8 - MOVE ENCODED

http://www.unicode.org/reports/tr15/#Canonical_Composition_Examples

MOVE ENCODED

 operand1 [[IN] CODEPAGE operand2] TO

 operand3 [[IN] CODEPAGE operand4]

 [GIVING operand5]

Operand Definition Table:

Operand Possible
Structure

Possible Formats Referencing
Permitted

Dynamic
Definition

operand1 C S A A U B yes no

operand2 S A U yes no

operand3 S A U B yes yes

operand4 S A A U yes no

operand5 S I4 yes yes

Syntax Element Description:

12

Syntax 8 - MOVE ENCODEDMOVE

MOVE
ENCODED

The MOVE ENCODED statement converts a character string, encoded in one code
page, into the equivalent character string of another code page.

Note:
Natural uses the International Components for Unicode (ICU) library for Unicode
conversion. For more information, see http://icu.sourceforge.net/userguide/.

operand1 String to be converted.

operand2 Code page of operand1. Can only be supplied if operand1 is of format A or B. See
Note 1 and 3.

operand3 Target.

If the conversion result does not fit into the target field, the result is padded or
truncated, respectively, and as padding character the blank of the resulting code page
is used.

If the target field is defined as a dynamic variable, no padding or truncation is needed,
since the length of the dynamic variable is automatically adjusted to the length of the
conversion result.

operand4 Code page of operand3. Can only be supplied if operand3 is of format A or B. See
Note 1 and 3.

operand5 Without the keyword GIVING , a Natural error message is returned in case of an
error. If the keyword GIVING is used, operand5 returns 0 or the Natural error code
instead of the Natural error message.

If the target gets truncated, no Natural error message is given, but when the keyword
GIVING is used, operand5 will contain an appropriate error code to indicate
truncation.

Notes:

1. If a code page operand is not supplied, then the default code page (value of the system variable
*CODEPAGE) is used.

2. If the session parameter CPCVERR in the statement SET GLOBALS or in the system command
GLOBALS is set to ON, an error is output if at least one character of the source field could not be
converted properly into the destination code page, but was replaced in the target field by a
substitution character.

3. Only code page names defined with the macro NTCPAGE in the source module NATCONFG can be
used. Other code page names are rejected with a corresponding runtime error.

Examples:

MOVE ENCODED A-FIELD1 TO A-FIELD2

Invalid: This results in a syntax error, since the code page names are taken by default and are the same for
operand1 and operand3.

MOVE ENCODED A-FIELD1 CODEPAGE ’IBM01140’ TO A-FIELD2 CODEPAGE ’IBM01140’

13

MOVESyntax 8 - MOVE ENCODED

http://icu.sourceforge.net/userguide/

Invalid: This results in an error, since the coded code page names are the same for operand1 and
operand3.

MOVE ENCODED A-FIELD1 CODEPAGE ’IBM01140’ TO A-FIELD2 CODEPAGE ’IBM037’

Valid: The string in A-FIELD1 which is coded in IBM01140 is converted into A-FIELD2 which is
coded in IBM037.

MOVE ENCODED U-FIELD TO U-FIELD

Invalid: This results in an error, since at least one operand must be of format A or B.

MOVE ENCODED U-FIELD TO A-FIELD

Valid: The Unicode string in U-FIELD which, considered to be encoded in UTF-16, is converted into the
alphanumeric A-FIELD in the default code page (*CODEPAGE).

MOVE ENCODED A-FIELD TO U-FIELD

Valid: The string in A-FIELD which, considered to be encoded in the default code page (*CODEPAGE),
is converted into the Unicode field U-FIELD .

MOVE ENCODED A100-FIELD CODEPAGE ’IBM1140’ TO A50-FIELD CODEPAGE ’IBM037’

Valid: Conversion is done from A100-FIELD (format/length: A100) to A50-FIELD (format/length:
A50), using the relevant code pages. The target is truncated. No Natural error message is returned.

MOVE ENCODED A100-FIELD CODEPAGE ’IBM1140’ TO A50-FIELD CODEPAGE ’IBM037’ GIVING RC-FIELD

Valid: Conversion is done from A100-FIELD (format/length: A100) to A50-FIELD (format/length:
A50), using the relevant code pages. The target is truncated. Since a GIVING clause is supplied, the
RC-FIELD receives an error code, indicating that a value truncation has taken place.

Examples
Example 1 - Various Samples of MOVE Statement Usage

Example 2 - MOVE BY NAME

Example 3 - MOVE BY NAME with Arrays

Example 4- MOVE BY POSITION

Example 1 - Various Samples of MOVE Statement Usage
** Example ’MOVEX1’: MOVE
**
DEFINE DATA LOCAL
1 #A (N3)
1 #B (A5)
1 #C (A2)
1 #D (A7)
1 #E (N1.0)
1 #F (A5)
1 #G (N3.2)
1 #H (A6)

14

ExamplesMOVE

END-DEFINE
*
MOVE 5 TO #A
WRITE NOTITLE ’MOVE 5 TO #A’ 30X ’=’ #A
*
MOVE ’ABCDE’ TO #B #C #D
WRITE ’MOVE ABCDE TO #B #C #D’ 20X ’=’ #B ’=’ #C ’=’ #D
*
MOVE -1 TO #E
WRITE ’MOVE -1 TO #E’ 28X ’=’ #E
*
MOVE ROUNDED 1.995 TO #E
WRITE ’MOVE ROUNDED 1.995 TO #E’ 18X ’=’ #E
*
*
MOVE RIGHT JUSTIFIED ’ABC’ TO #F
WRITE ’MOVE RIGHT JUSTIFIED ’’ABC’’ TO #F’ 10X ’=’ #F
*
MOVE EDITED ’003.45’ TO #G (EM=999.99)
WRITE ’MOVE EDITED ’’003.45’’ TO #G (EM=999.99)’ 4X ’=’ #G
*
MOVE EDITED 123.45 (EM=999.99) TO #H
WRITE ’MOVE EDITED 123.45 (EM=999.99) TO #H’ 6X ’=’ #H
*
END

Output of Program MOVEX1:

MOVE 5 TO #A #A: 5
MOVE ABCDE TO #B #C #D #B: ABCDE #C: AB #D: ABCDE
MOVE -1 TO #E #E: -1
MOVE ROUNDED 1.995 TO #E #E: 2
MOVE RIGHT JUSTIFIED ’ABC’ TO #F #F: ABC
MOVE EDITED ’003.45’ TO #G (EM=999.99) #G: 3.45
MOVE EDITED 123.45 (EM=999.99) TO #H #H: 123.45

Example 2 - MOVE BY NAME
** Example ’MOVEX2’: MOVE BY NAME
**
DEFINE DATA LOCAL
1 #SBLOCK
 2 #FIELDA (A10) INIT <’AAAAAAAAAA’>
 2 #FIELDB (A10) INIT <’BBBBBBBBBB’>
 2 #FIELDC (A10) INIT <’CCCCCCCCCC’>
 2 #FIELDD (A10) INIT <’DDDDDDDDDD’>
1 #TBLOCK
 2 #FIELD1 (A15) INIT <’ ’>
 2 #FIELDA (A10) INIT <’ ’>
 2 #FIELD2 (A10) INIT <’ ’>
 2 #FIELDB (A10) INIT <’ ’>
 2 #FIELD3 (A20) INIT <’ ’>
 2 #FIELDC (A10) INIT <’ ’>
END-DEFINE
*
MOVE BY NAME #SBLOCK TO #TBLOCK
*
WRITE NOTITLE ’CONTENTS OF #TBLOCK AFTER MOVE BY NAME:’
 // ’=’ #TBLOCK.#FIELD1
 / ’=’ #TBLOCK.#FIELDA
 / ’=’ #TBLOCK.#FIELD2
 / ’=’ #TBLOCK.#FIELDB

15

MOVEExample 2 - MOVE BY NAME

 / ’=’ #TBLOCK.#FIELD3
 / ’=’ #TBLOCK.#FIELDC
*
END

Contents of #TBLOCK after MOVE BY NAME Processing:

CONTENTS OF #TBLOCK AFTER MOVE BY NAME:

#FIELD1:
#FIELDA: AAAAAAAAAA
#FIELD2:
#FIELDB: BBBBBBBBBB
#FIELD3:
#FIELDC: CCCCCCCCCC

Example 3 - MOVE BY NAME with Arrays
DEFINE DATA LOCAL
 1 #GROUP1
 2 #FIELD (A10/1:10)
 1 #GROUP2
 2 #FIELD (A10/1:10)
END-DEFINE
...
MOVE BY NAME #GROUP1 TO #GROUP2
...

In this example, the MOVE statement would internally be resolved as:

MOVE #GROUP1.#FIELD (*) TO #GROUP2.#FIELD (*)

If part of an indexed group is moved to another part of the same group, this may lead to unexpected results
as shown in the example below.

DEFINE DATA LOCAL
 1 #GROUP1 (1:5)
 2 #FIELDA (N1) INIT <1,2,3,4,5>
 2 REDEFINE #FIELDA
 3 #FIELDB (N1)
END-DEFINE
...
MOVE BY NAME #GROUP1 (2:4) TO #GROUP1 (1:3)
...

In this example, the MOVE statement would internally be resolved as:

MOVE #FIELDA (2:4) TO #FIELDA (1:3)MOVE #FIELDB (2:4) TO #FIELDB (1:3)

First, the contents of the occurrences 2 to 4 of #FIELDA are moved to the occurrences 1 to 3 of
#FIELDA ; that is, the occurrences receive the following values:

Occurrence: 1. 2. 3. 4. 5.

Value before: 1 2 3 4 5

Value after: 2 3 4 4 5

16

Example 3 - MOVE BY NAME with ArraysMOVE

Then the contents of the occurrences 2 to 4 of #FIELDB are moved to the occurrences 1 to 3 of
#FIELDB ; that is, the occurrences receive the following values:

Occurrence: 1. 2. 3. 4. 5.

Value before: 2 3 4 4 5

Value after: 3 4 4 4 5

Example 4- MOVE BY POSITION
DEFINE DATA LOCAL
 1 #GROUP1
 2 #FIELD1A (N5)
 2 #FIELD1B (A3/1:3)
 2 REDEFINE #FIELD1B
 3 #FIELD1BR (A9)
 1 #GROUP2
 2 #FIELD2A (N5)
 2 #FIELD2B (A3/1:3)
 2 REDEFINE #FIELD2B
 3 #FIELD2BR (A9)
END-DEFINE
...
MOVE BY POSITION #GROUP1 TO #GROUP2
...

In this example, the content of #FIELD1A is moved to #FIELD2A , and the content of #FIELD1B to
#FIELD2B ; the fields #FIELD1BR and #FIELD2BR are not affected.

17

MOVEExample 4- MOVE BY POSITION

	MOVE
	Function
	Other Considerations

	Syntax Description
	Syntax 1 - MOVE ROUNDED
	Syntax 2 - MOVE SUBSTRING
	Syntax 3 - MOVE BY NAME / POSITION
	Syntax 4 - MOVE EDITED (Edit Mask Specified with operand2)
	Syntax 5 - MOVE EDITED (Edit Mask Specified with operand1)
	Syntax 6 - MOVE LEFT / RIGHT JUSTIFIED
	Syntax 7 - MOVE NORMALIZED
	Syntax 8 - MOVE ENCODED

	Examples
	Example 1 - Various Samples of MOVE Statement Usage
	Output of Program MOVEX1:

	Example 2 - MOVE BY NAME
	Contents of #TBLOCK after MOVE BY NAME Processing:

	Example 3 - MOVE BY NAME with Arrays
	Example 4- MOVE BY POSITION

