
Code Conversion
This chapter covers the following topics:

General Information

Generating Adapters

Structure of a Map-Based Application

Structure of a Natural for Ajax Application

Tasks of the Code Conversion

DEFINE DATA Statement

INPUT Statement

REINPUT Statement

PF-Key Event Handling

SET KEY Statement

Processing Rules

System Variables

Variable Names Containing Special Characters

General Information
After the Map Converter has been used to create page layouts from map extract files, the last step in the
conversion process is adapting the application code to the new user interface. This step can either be
performed manually or, with Natural Engineer, partly automatically. In the following, the manual code
conversion is described.

Generating Adapters
First of all, it is necessary to generate HTML code and Natural adapters from the page layouts that have
been created by the Map Converter. This is the same procedure as with page layouts that have been
created manually with the Layout Painter. Then, the adapters are imported into the Natural development
environment.

Structure of a Map-Based Application
In this context, we need not consider the application code as a whole, but only the layer that handles the
user interface. Often, the user interface handling part of a map-based application is structured in the
following way:

1

Code ConversionCode Conversion

DEFINE DATA

Initialization

REPEAT

INPUT [USING MAP map-name]

Includes client-side validations (processing rules)

Server-side validations

REINPUT or ESCAPE TOP

DECIDE ON *PF-KEY

Function key handler 1

Processing

REINPUT or ESCAPE TOP

Function key handler 2

Processing

REINPUT or ESCAPE TOP

Function key handler n

Processing

ESCAPE BOTTOM

...

END-DECIDE

END-REPEAT

Cleanup

END

In practice,

the REPEAT loop might or might not be there, and

there might not be a clean DECIDE structure for the function key handlers. Instead, checks for the
pressed function key might be spread all over the code.

However, accepting these differences, the above structure should match a large number of applications.

2

Structure of a Map-Based ApplicationCode Conversion

Structure of a Natural for Ajax Application
The corresponding part of a Natural for Ajax application looks as follows:

DEFINE DATA

Initialization

REPEAT

PROCESS PAGE USING adapter-name

Includes client-side validations

Server-side validations

PROCESS PAGE UPDATE FULL

DECIDE ON *PAGE-EVENT

Event handler 1

Processing

PROCESS PAGE UPDATE FULL or ESCAPE TOP

Event handler 2

Processing

PROCESS PAGE UPDATE FULL or ESCAPE TOP

Event handler n

Processing

ESCAPE BOTTOM

...

END-DECIDE

END-REPEAT

Cleanup

END

Tasks of the Code Conversion
The code conversion should achieve the following:

3

Code ConversionStructure of a Natural for Ajax Application

It should be minimal invasive.

It should not duplicate business code.

The converted application should be able to run not only with the new user interface, but also in a
terminal session, in a Natural Web I/O Interface session and in batch, if it did so before the code
conversion.

In detail, the code conversion needs to deal with the statements and constructs mentioned below.

DEFINE DATA Statement
The DEFINE DATA statement must be extended because the data structures exchanged between a
program and map are not fully identical to those exchanged between a program and the corresponding
adapter.

The default conversion rules delivered with the Map Converter perform a data type mapping that tries to
ensure that the data elements in the map interface are mapped to data elements of the same type and name
in the adapter interface.

The Application Designer controls are usually not only bound to business data elements, but also to
additional control fields. Which control fields these are depends on the way in which the elements of a
map are mapped to Application Designer controls by the Map Converter rules. For instance, a
statusprop can be assigned to a field, which results in an additional parameter in the parameter data
area of the adapter. An array on a map can have been converted to a grid control with server-side
scrolling. In this case, the additional data structures needed to control server-side scrolling need to be
added to the DEFINE DATA statement.

statusprop

The statusprop is needed to control the error status or focus of a FIELD control dynamically (see
example 3 for the REINPUT statement below where it is used to replace the MARK *field-name
clause). The default conversion rules contain a rule that creates a statusprop property for each map
field that is controlled by a control variable. The adapter generator creates from this property a
corresponding status variable and a comment line that identifies the status variable as belonging to the
field.

Example

The parameter data area of the map contains:

01 LIB-NAME (A8)
01 LIB-NAME-CV (C)

The parameter data area of the adapter will then contain:

* statusprop= STATUS_LIB-NAME-CV
01 LIB-NAME (A8)
01 STATUS_LIB-NAME-CV (A) DYNAMIC

The variable STATUS_LIB-NAME-CV is not yet known to the main program and must be defined there.

4

DEFINE DATA StatementCode Conversion

INPUT Statement
The replacement for the INPUT statement is the PROCESS PAGE statement. In its simplest form, the
INPUT statement just references the map. In this case, it is just replaced by a PROCESS PAGE statement
with the corresponding adapter.

Example 1

Main program before conversion:

INPUT USING MAP ’MMENU’

Main program after conversion:

IF *BROWSER-IO NE ’RICHGUI’
 INPUT USING MAP ’MMENU’
ELSE
 PROCESS PAGE USING ’AMENU’
END-IF

The INPUT statement can come with a message text that is displayed in the status bar. There is no direct
replacement for this construction because the PROCESS PAGE statement (in contrast to the PROCESS
PAGE UPDATE statement) does not support the SEND EVENT clause.

Example 2

Main program before conversion:

INPUT WITH TEXT MSG01 USING MAP ’MMENU’

Main program after conversion (no message will be displayed):

IF *BROWSER-IO NE ’RICHGUI’
 INPUT WITH TEXT MSG01 USING MAP ’MMENU’
ELSE
 PROCESS PAGE USING ’AMENU’
END-IF

REINPUT Statement
The replacement for the REINPUT statement is the PROCESS PAGE UPDATE statement. In its simplest
form, the REINPUT statement comes with a message text that is displayed in the status bar. In the
converted code, this is handled by the SEND EVENT clause of the PROCESS PAGE UPDATE statement.

Example 1

Main program before conversion:

REINPUT [FULL] WITH TEXT MSG01

Main program after conversion:

5

Code ConversionINPUT Statement

IF *BROWSER-IO NE ’RICHGUI’
 REINPUT [FULL] WITH TEXT MSG01
ELSE
 PROCESS PAGE UPDATE [FULL]
 AND SEND EVENT ’nat:page.message’
 WITH PARAMETERS
 NAME ’type’ VALUE ’E’
 NAME ’short’ VALUE MSG01
 END-PARAMETERS
END-IF

The REINPUT statement can come with a message number and replacements. In this case, the message
must be created from number and replacements before it is sent to the status bar with the SEND EVENT
clause.

Example 2

This example uses a subprogram GETMSTXT that builds the message text from number and replacements.

Main program before conversion:

REINPUT [FULL] WITH TEXT *MSGNR, REPL1, REPL2

Main program after conversion:

IF *BROWSER-IO NE ’RICHGUI’
 REINPUT [FULL] WITH TEXT *MSGNR, REPL1, REPL2
ELSE
 CALLNAT ’GETMSTXT’ MSTEXT MSGNR REPL1 REPL2
 PROCESS PAGE UPDATE [FULL]
 AND SEND EVENT ’nat:page.message’
 WITH PARAMETERS
 NAME ’type’ VALUE ’E’
 NAME ’short’ VALUE MSTEXT
 END-PARAMETERS
END-IF

Example 3

The REINPUT statement can come with a MARK clause in order to put the focus on a field. This case
requires that a statusprop property is created for the field during map conversion. The variable bound
to the statusprop property is then used before the PROCESS PAGE UPDATE statement to set the
FOCUS to the field.

Main program before conversion:

REINPUT [FULL] WITH TEXT MSG01 MARK *LIB-NAME

Main program after conversion:

01 STATUS_LIB-NAME-CV (A) DYNAMIC
...
IF *BROWSER-IO NE ’RICHGUI’
 REINPUT [FULL] WITH TEXT MSG01 MARK *LIB-NAME
ELSE
 STATUS_LIB-NAME-CV := ’FOCUS’
 PROCESS PAGE UPDATE FULL
 AND SEND EVENT ’nat:page.message’
 WITH PARAMETERS

6

REINPUT StatementCode Conversion

 NAME ’type’ VALUE ’W’
 NAME ’short’ VALUE MSG01
 END-PARAMETERS
END-IF

PF-Key Event Handling
The original application might contain checks for the content of the system variable *PF-KEY at arbitrary
places in the code. In order to handle function key events correctly in the converted application, several
things need to be achieved:

In response to the function keys, the converted application must raise events that are named like the
possible contents of *PF-KEY . This can be achieved by using a page template such as
NATPAGEHOTKEYS_TEMPLATE.xml which contains the required hot key definitions.

A common local variable must be set up right after the INPUT or PROCESS PAGE statement that
contains either the value *PF-KEY or *PAGE-EVENT, depending on the execution environment.
The name of the variable can be freely chosen. In the example below, the name XEVENT is used.

The event nat:page.end must be handled in such a way so that the program terminates. This
event is raised when the user leaves the page or closes the browser session.

A default event handler must be set up that takes care of the values of *PAGE-EVENT that are not
expected by the original application code. These unexpected events are simply replied with a
PROCESS PAGE UPDATE FULL statement.

Example

01 XEVENT (U) DYNAMIC
...
PROCESS PAGE USING ...
...
IF *BROWSER-IO = ’RICHGUI’
 DECIDE FOR FIRST CONDITION
 WHEN *PAGE-EVENT = ’nat:page.end’
 STOP
 WHEN *PAGE-EVENT = MASK (’PF’*) OR = MASK (’PA’*)
 OR = ’ENTR’ OR = ’CLR’
 XEVENT := *PAGE-EVENT
 WHEN NONE
 PROCESS PAGE UPDATE FULL
 END-DECIDE
ELSE
 XEVENT := *PF-KEY
END-IF

All references to *PF-KEY in the code must then be replaced by references to XEVENT.

SET KEY Statement
Natural for Ajax provides two controls (NJX:BUTTONITEMLIST and NJX:BUTTONITEMLISTFIX)
that represent a row of buttons. These controls can be used to replace the visual representation of the
function keys from the original application. If the page template NATPAGEPFKEYS_TEMPLATE.xml or a
similar individually adapted template is used during map conversion, each resulting page will contain a
row of function key buttons. The subject of this section is how the converted application can control the

7

Code ConversionPF-Key Event Handling

labeling and the program-sensitivity of the function keys with only little code changes.

Natural controls the labeling and program-sensitivity of the function keys in a highly dynamic way. The
corresponding application code (SET KEY statements) can be distributed across program levels and can
be lexically separated from the corresponding INPUT statements. Also, the SET KEY statement has
several flavors, some affecting all keys and others affecting only individual keys. As a result, the status of
the function keys at a given point in time can only be determined at application runtime.

Therefore, the following approach is chosen: Natural provides the application programming interface
(API) USR4005 that reads the current function key naming and program-sensitivity at runtime. During
code conversion, a call to this API is inserted after each SET KEY statement or into each round trip. This
call reads the function key status and passes it to the user interface.

Example

Main program before conversion:

SET KEY ENTR NAMED ’Enter’ PF1 NAMED ’F1’ PF2 NAMED ’F2’
PF3 NAMED ’Modify’ PF4 NAMED ’Delete’ PF5 NAMED ’F5’
PF6 NAMED ’F6’ PF7 NAMED ’Create’ PF8 NAMED ’Display’
PF9 NAMED ’F9’ PF10 NAMED ’F10’ PF11 NAMED ’F11’ PF12 NAMED ’F12’
*
INPUT USING MAP "KEYS-M"
*
END

Map before conversion:

 *** PF-Keys ***

Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
Enter F1 F2 Modif Delet F5 F6 Creat Displ F9 F10 F11 F12

Main program after conversion:

8

SET KEY StatementCode Conversion

DEFINE DATA LOCAL
1 PFKEY (1:*)
2 METHOD (A) DYNAMIC
2 NAME (A) DYNAMIC
2 TITLE (A) DYNAMIC
2 VISIBLE (L)
1 METHODS (A4/13) CONST <’ENTR’,’PF1’,’PF2’,’PF3’,’PF4’,
’PF5’,’PF6’,’PF7’,’PF8’,’PF9’,’PF10’,’PF11’,’PF12’>
END-DEFINE
*
SET KEY ENTR NAMED ’Enter’ PF1 NAMED ’F1’ PF2 NAMED ’F2’
PF3 NAMED ’Modify’ PF4 NAMED ’Delete’ PF5 NAMED ’F5’
PF6 NAMED ’F6’ PF7 NAMED ’Create’ PF8 NAMED ’Display’
PF9 NAMED ’F9’ PF10 NAMED ’F10’ PF11 NAMED ’F11’ PF12 NAMED ’F12’
*
IF *BROWSER-IO NE "RICHGUI"
 INPUT USING MAP "KEYS-M"
ELSE
 EXPAND ARRAY PFKEY TO (1:13)
 METHOD(1:13) := METHODS (*)
 CALLNAT "GETKEY-N" PFKEY (*)
 PROCESS PAGE USING "KEYS-A"
END-IF
*
END

Page after conversion:

9

Code ConversionSET KEY Statement

Explanation

The structure PFKEY is generated into the Natural adapter of the page as the application interface to the
BUTTONITEMLISTFIX control.

The subprogram GETKEY-N is a convenience wrapper for the API subprogram USR4005. It uses
USR4005 to determine the labeling and the program-sensitivity status for a given list of function keys.
Each function key is identified by the *PF-KEY value it raises. GETKEY-N returns the function key
information in a data structure suitable for the application interface of the BUTTONITEMLISTFIX
control. The subprogram is delivered in the library SYSEXNJX in source code and can be adapted to the
needs of the application.

Processing Rules
The Natural maps in the application to be converted may contain processing rules. In the sense of a
Natural for Ajax application, the processing rules are server-side validations because they are executed on
the Natural server side of the application.

10

Processing RulesCode Conversion

In order to extract processing rules from the maps and to turn them into server-side validations in the
converted application, the Natural Engineer function "Separate Processing Rules from Maps" can be used.

There is currently no function available that automatically turns processing rules into client-side
validations in Application Designer.

System Variables
If a map displays a system variable (for example, *DATX), a specific default conversion rule takes care
that the necessary code for handling the system variable is generated into the Natural adapter of the
resulting page layout.

Example 1

The map displays the contents of the system variables *DATX and *TIMX . The contents of these system
variables are not modifiable.

The DEFINE DATA statement of the adapter will then contain:

LOCAL
01 XDATX (A8)
01 XTIMX (A8)

The body of the adapter will then contain:

XDATX := *DATX
XTIMX := *TIMX
*
PROCESS PAGE ... WITH
PARAMETERS
...
 NAME U’XDATX’
 VALUE XDATX
 NAME U’XTIMX’
 VALUE XTIMX
END-PARAMETERS

The main program needs no special adaptation.

Example 2

The map displays the content of the system variable *CODEPAGE. The content of this system variables is
modifiable.

The DEFINE DATA statement of the adapter will then contain:

LOCAL
01 XCODEPAGE (A64)

The body of the adapter will then contain:

11

Code ConversionSystem Variables

XCODEPAGE := *CODEPAGE
*
PROCESS PAGE ... WITH
PARAMETERS
...
 NAME U’XCODEPAGE’
 VALUE XCODEPAGE
...
END-PARAMETERS
*
*CODEPAGE := XCODEPAGE

The main program needs no special adaptation.

Variable Names Containing Special Characters
A similar procedure applies to special characters contained in variable names. These are the following
special characters:

+
#
/
@
§
&
$

Note:
The hash (#) can occur only as the first character.

Variables names containing these special characters cannot be directly bound to Application Designer
control attributes. A specific default conversion rule replaces the names containing these special
characters with configurable replacements. The original field name is generated into the parameter data
area of the Natural adapter and a corresponding mapping is generated into the PROCESS PAGE statement
of the adapter.

Example

The map displays the variables #FIRST and #LAST.

The DEFINE DATA statement of the adapter will then contain:

DEFINE DATA PARAMETER
1 #FIRST (A16)
1 #LAST (A20)

The body of the adapter will then contain:

12

Variable Names Containing Special CharactersCode Conversion

...
PROCESS PAGE ... WITH
PARAMETERS
...
NAME U’HFIRST’
 VALUE #FIRST
 NAME U’HLAST’
 VALUE #LAST
...
END-PARAMETERS

The main program needs no special adaptation.

13

Code ConversionVariable Names Containing Special Characters

	Code Conversion
	General Information
	Generating Adapters
	Structure of a Map-Based Application
	Structure of a Natural for Ajax Application
	Tasks of the Code Conversion
	DEFINE DATA Statement
	statusprop
	Example

	INPUT Statement
	
	Example 1
	Example 2

	REINPUT Statement
	
	Example 1
	Example 2
	Example 3

	PF-Key Event Handling
	
	Example

	SET KEY Statement
	
	Example
	Explanation

	Processing Rules
	System Variables
	
	Example 1
	Example 2

	Variable Names Containing Special Characters
	
	Example

