
Developing the Application Code
This chapter covers the following topics:

Importing the Adapter

Creating the Main Program

Structure of the Main Program

Handling Page Events

Built-in Events and User-defined Events

Sending Events to the User Interface

Using Pop-Up Windows

Using Natural Maps

Navigating between Pages and Maps

Using Pages and Maps Alternatively

Starting a Natural Application from the Logon Page

Starting a Natural Application with a URL

Natural for Ajax Tools, which is an optional plug-in for Natural Studio, allows you to use some of the
Natural for Ajax functionality which is described in this chapter directly from within Natural Studio. For
further information, see Natural for Ajax Tools in the Natural Studio Extensions documentation which is
provided for Natural for Windows.

Importing the Adapter
After having generated the adapter, the next step is making it available to your Natural development
project.

As described previously, the adapter code is generated into a directory in your application server
environment. The way you access the adapter depends on the Natural development tool you use.

The following topics are covered below:

Importing the Adapter Using Natural Studio

Importing the Adapter Using Natural for Eclipse

1

Developing the Application Code Developing the Application Code

Importing the Adapter Using Natural Studio

It is assumed that your development library is located on a Natural development server and that you have
mapped this development server in Natural Studio.

 To import the adapter from a remote environment

Use drag-and-drop.

Or:
Remote UNIX environment only: Use the import function of SYSMAIN.

Importing the Adapter Using Natural for Eclipse

It is assumed that you have

installed Natural for Eclipse,

installed Application Designer’s Eclipse plug-in,

created a Natural project in Eclipse,

defined a Natural server for the Natural project.

The Navigator view will then look similar to the following:

2

Importing the Adapter Using Natural StudioDeveloping the Application Code

 To import the adapter from a remote environment

1. Proceed as described below to create the Page Layouts folder in your Natural project. This is the
folder where you edit your page layouts with Application Designer.

1. Invoke the Properties dialog for your Natural project.

2. Set the Application Designer properties as follows:

Option Description

Layout Folder Specify the application server directory in which the
page layouts of your project are stored.

Web Server
Connection

Specify host name and port number of your application
server.

Web
Application

Specify "cisnatural".

3

Developing the Application CodeImporting the Adapter Using Natural for Eclipse

2. Proceed as described below to create an additional folder in your Natural project. This is the folder in
which the generated adapters are located.

1. Select your Natural project, invoke the context menu and choose New > Natural Folder.

2. Expand the resulting dialog by choosing the Advanced button.

3. Specify a folder name of your choice (for example, "Adapters").

4. Enable the Link to folder in the file system check box and specify the application server
directory in which the generated adapters of your project are stored.

Now you have access to your page layouts and adapters in your Natural project.

3. Copy or move the generated adapter from the new folder you have just created into your Natural
source folder.

4

Importing the Adapter Using Natural for EclipseDeveloping the Application Code

The Navigator view should now look similar to the following (with the new folders for the page
layouts and adapters, and with your adapter in the Natural source folder).

4. Catalog or stow the adapter in the Natural source folder. To do so, you have to upload and compile
the adapter with Natural for Eclipse.

Creating the Main Program
After you have imported the adapter, you create a program that calls the adapter to display the page and
handles the events that the user raises on the page. This program can be a Natural program, subprogram,
subroutine or function. We use a Natural program as example.

The adapter already contains the data structure that is required to fill the page. It contains also a skeleton
with the necessary event handlers. You can therefore create a program with event handlers from an
adapter in a few steps.

Open or list the adapter in the development tool of your choice (Natural Studio or Natural for Eclipse).

* PAGE1: PROTOTYPE --- CREATED BY Application Designer ---
* PROCESS PAGE USING ’XXXXXXXX’ WITH
* FIELD1 FIELD2
DEFINE DATA PARAMETER
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*

5

Developing the Application CodeCreating the Main Program

PROCESS PAGE U’/MyProject/mypage’ WITH
PARAMETERS
 NAME U’field1’
 VALUE FIELD1
 NAME U’field2’
 VALUE FIELD2
END-PARAMETERS
*
* TODO: Copy to your calling program and implement.
/*/*(DEFINE EVENT HANDLER
* DECIDE ON FIRST *PAGE-EVENT
* VALUE U’nat:page.end’
* /* Page closed.
* IGNORE
* VALUE U’onExit’
* /* TODO: Implement event code.
* PROCESS PAGE UPDATE FULL
* NONE VALUE
* /* Unhandled events.
* PROCESS PAGE UPDATE
* END-DECIDE
/*/*) END-HANDLER
*
END

Create a new program, copy the adapter source into the program and then proceed as follows:

Remove the comment lines in the header.

Change DEFINE DATA PARAMETER into DEFINE DATA LOCAL.

Replace the PROCESS PAGE statement with a PROCESS PAGE USING operand4 statement,
where operand4 stands for the name of your adapter.

Remove the comment lines that surround the DECIDE block.

Uncomment the DECIDE block.

Your program should now look as follows:

DEFINE DATA LOCAL
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING ’MYPAGE’
*
DECIDE ON FIRST *PAGE-EVENT
 VALUE U’nat:page.end’
 /* Page closed.
 IGNORE
 VALUE U’onExit’
 /* TODO: Implement event code.
 PROCESS PAGE UPDATE FULL
 NONE VALUE
 /* Unhandled events.
 PROCESS PAGE UPDATE
END-DECIDE
*
END

6

Creating the Main ProgramDeveloping the Application Code

Stow the program with a name of your choice. The resulting program can be executed in a browser where
it displays the page. However, it does not yet do anything useful, because it handles the incoming events
only in a default way and contains no real application logic.

Structure of the Main Program
The main program that displays the page and handles its events has the following general structure:

A PROCESS PAGE USING statement with the page adapter. The PROCESS PAGE statement
displays the page in the user’s web browser and fills it with data. Then, it waits for the user to modify
the data and to raise an event.

A DECIDE block with a VALUE clause for each event that shall be explictly handled.

A default event handler for all events that shall not be explicitly handled.

Each event handler does the following:

It processes the data the has been returned from the page in the user’s web browser.

It performs a PROCESS PAGE UPDATE FULL statement to re-execute the previous PROCESS
PAGE USING statement with the modified data and to wait for the next event.

The default event handler does not modify the data. It does the following:

It performs a PROCESS PAGE UPDATE statement to re-execute the previous PROCESS PAGE
USING statement and to wait for the next event.

Handling Page Events
When the PROCESS PAGE statement receives an event, the data structure that was passed to the adapter
is filled with the modified data from the page and the system variable *PAGE-EVENT is filled with the
name of the event. Now, the corresponding VALUE clause in the DECIDE statement is met and the code in
the clause is executed.

The application handles the event by processing and modifying the data and resending it to the page with a
PROCESS PAGE UPDATE FULL statement. Alternatively, it uses the PROCESS PAGE UPDATE
statement without the FULL clause in order to resend the original (not modified) data.

Built-in Events and User-defined Events
There are built-in events and user-defined events.

Built-in Events

The following built-in events can be received from the page:

nat:page.end

7

Developing the Application CodeStructure of the Main Program

This event is raised when the user closes the page with the Close button in the upper right corner of
the page, opens another page or closes the web browser.

nat:page.default

This event is sent if the Natural for Ajax client needs to synchronize the data displayed on the page
with the data held in the application. It is usually handled in the default event handler and just
responded with a PROCESS PAGE UPDATE.

Other built-in events can be sent by specific controls. These events are described in the control reference.

User-defined Events

User-defined events are those events that the user has assigned to controls while designing the page layout
with the Layout Painter. The names of these events are freely chosen by the user. The meaning of the
events is described in the control reference.

Sending Events to the User Interface
The PROCESS PAGE UPDATE statement can be accompanied by a SEND EVENT clause. With the
SEND EVENT clause, the application can trigger certain events on the page when resending the modified
data.

The following events can be sent to the page:

nat:page.message

This event is sent to display a text in the status bar of the page. It has the following parameters:

Name Format Value

type A or
U

Sets the icon in the status bar ("S"=success icon, "W"=warning
icon, "E"=error icon).

short A or
U

Short text.

long A or
U

Long text.

nat:page.valueList

This event is sent to pass values to a FIELD control with value help on request (see also the
description of the FIELD control in the control reference). It has the following parameters:

8

Sending Events to the User InterfaceDeveloping the Application Code

Name Format Value

id A or
U

A list of unique text identifiers displayed in the FIELD control
with value help. The list must be separated by semicolon
characters.

text A or
U

A list of texts displayed in the FIELD control with value help.
The list must be separated by semicolon characters.

nat:page.xmlDataMode

This event is sent to switch several properties of controls on the page in one call to a predefined state.
The state must be defined in an XML file that is expected at a specific place. See the information on
XML property binding in the Application Designer documentation for further information.

Name Format Value

data A or U Name of the property file to be used.

Using Pop-Up Windows
A rich GUI page can be displayed as a modal pop-up in a separate browser window. A modal pop-up
window can open another modal pop-up window, thus building a window hierarchy. If a PROCESS
PAGE statement and its corresponding event handlers are enclosed within a PROCESS PAGE MODAL
block, the corresponding page is opened as a modal pop-up window.

The application can check the current modal pop-up window level with the system variable
*PAGE-LEVEL. *PAGE-LEVEL = 0 indicates that the application code is currently dealing with the
main browser window. *PAGE-LEVEL > 0 indicates that the application code is dealing with a modal
pop-up window and indicates the number of currently stacked pop-up windows.

In order to modularize the application code, it makes sense to place the code for the handling of a modal
pop-up window and the enclosing PROCESS PAGE MODAL block in a separate Natural module, for
instance, a subprogram. Then the pop-up window can be opened with a CALLNAT statement and can thus
be reused in several places in the application.

Example program MYPAGE-P:

DEFINE DATA LOCAL
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
PROCESS PAGE USING ’MYPAGE-A’
*
DECIDE ON FIRST *PAGE-EVENT
 VALUE U’nat:page.end’
 /* Page closed.
 IGNORE
 VALUE U’onPopup’
 /* Open a pop-up window with the same fields.
 CALLNAT ’MYPOP-N’ FIELD1 FIELD2
 PROCESS PAGE UPDATE FULL
 NONE VALUE
 /* Unhandled events.

9

Developing the Application CodeUsing Pop-Up Windows

 PROCESS PAGE UPDATE
END-DECIDE
*
END

Example subprogram MYPOP-N:

DEFINE DATA PARAMETER
1 FIELD1 (U) DYNAMIC
1 FIELD2 (U) DYNAMIC
END-DEFINE
*
/* The following page will be opened as pop-up.
PROCESS PAGE MODAL
*
 PROCESS PAGE USING ’MYPOP-A’
*
 DECIDE ON FIRST *PAGE-EVENT
 VALUE U’nat:page.end’
 /* Page closed.
 IGNORE
 NONE VALUE
 /* Unhandled events.
 PROCESS PAGE UPDATE
 END-DECIDE
*
END-PROCESS
*
END

Using Natural Maps
Rich internet applications written with Natural for Ajax need not only consist of rich GUI pages, but may
also use classical maps. This is especially useful when an application that was originally written with
maps shall only be partly changed to provide a rich GUI. In this case the application can run under Natural
for Ajax from the very beginning and can then be "GUIfied" step by step.

Navigating between Pages and Maps
Due to the similar structure of programs that use maps and programs that use adapters, it is easy for an
application to leave a page and open a map, and vice versa. For each rich GUI page, you write a program
that displays the page and handles its events. For each map, you write a program that displays the map and
handles its events. In an event handler of the page, you call the program that handles the map. In an "event
handler" of the map, you call the program that handles the page.

Example for program MYPAGE-P:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
PROCESS PAGE USING ’MYPAGE’
*
DECIDE ON FIRST *PAGE-EVENT
 VALUE U’nat:page.end’
 /* Page closed.

10

Using Natural MapsDeveloping the Application Code

 IGNORE
 VALUE U’onDisplayMap’
 /* Display a Map.
 FETCH ’MYMAP-P’
 NONE VALUE
 /* Unhandled events.
 PROCESS PAGE UPDATE
END-DECIDE
*
END

Example for program MYMAP-P:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
SET KEY ALL
INPUT USING MAP ’MYMAP’
*
DECIDE ON FIRST *PF-KEY
 VALUE ’PF1’
 /* Display a rich GUI page.
 FETCH ’MYPAGE-P’
 NONE VALUE
 REINPUT WITH TEXT
 ’Press PF1 to display rich GUI page.’
END-DECIDE
*
END

Using Pages and Maps Alternatively
An application can also decide at runtime whether to use maps or rich GUI pages, depending on the
capabilities of the user interface. The system variable *BROWSER-IO lets the application decide if it is
running in a web browser at all. If this is the case, the system variable tells whether the application has
been started under Natural for Ajax and may thus use both maps and pages, or whether it has been started
under the Natural Web I/O Interface and may thus use only maps.

Example:

DEFINE DATA LOCAL
1 FIELD1 (U20)
1 FIELD2 (U20)
END-DEFINE
*
IF *BROWSER-IO = ’RICHGUI’
 /* If we are running under Natural for Ajax,
 /* we display a rich GUI page.
 PROCESS PAGE USING ’MYPAGE’
 DECIDE ON FIRST *PAGE-EVENT
 VALUE U’nat:page.end’
 /* Page closed.
 IGNORE
 NONE VALUE
 /* Unhandled events.
 PROCESS PAGE UPDATE
 END-DECIDE

11

Developing the Application CodeUsing Pages and Maps Alternatively

ELSE
 /* Otherwise we display a map.
 SET KEY ALL
 INPUT USING MAP ’MYMAP’
 DECIDE ON FIRST *PF-KEY
 VALUE ’PF1’
 /* Map closed.
 IGNORE
 NONE VALUE
 REINPUT WITH TEXT
 ’Press PF1 to terminate.’
END-DECIDE
END-IF
*
END

Starting a Natural Application from the Logon Page
In order to start a Natural application from the logon page, you proceed as described in Configuring the
Client which is part of the Natural Web I/O Interface documentation.

Starting a Natural Application with a URL
See Starting a Natural Application with a URL and Wrapping a Natural for Ajax Application as a Servlet
in the section Configuring the Client which is part of the Natural Web I/O Interface documentation.

12

Starting a Natural Application from the Logon PageDeveloping the Application Code

	 Developing the Application Code
	 Importing the Adapter
	Importing the Adapter Using Natural Studio
	Importing the Adapter Using Natural for Eclipse

	Creating the Main Program
	Structure of the Main Program
	Handling Page Events
	Built-in Events and User-defined Events
	
	Built-in Events
	User-defined Events

	Sending Events to the User Interface
	Using Pop-Up Windows
	Using Natural Maps
	Navigating between Pages and Maps
	Using Pages and Maps Alternatively
	Starting a Natural Application from the Logon Page
	 Starting a Natural Application with a URL

