
Defining the Width of Controls inside a
Container
As mentioned in the previous section, each control is automatically embedded into a column.
Consequently, the width of the control is, on the one hand, determined by the size of the control itself - on
the other hand, the column is part of a table row and also follows the table row’s sizing.

This chapter covers the following topics:

Controlling the Width of Controls

HDIST and VDIST Controls

HDIST Properties

VDIST Properties

rowspan and colspan Definitions

CELLSPAN Control

CELLSPAN Properties

Rules for Positioning Controls inside Containers

Controlling the Width of Controls
Every control that allows width sizing offers a corresponding width property. In this property, put either
an absolute pixel (width="100") or a percentage value (width="50%"). The rendering follows the
strategy:

If the width of a control is specified as a pixel value, the width is fixed: if the browser screen is too
small to display all controls, the controls will not be reduced but keep their pixel size. Depending on
your settings in the PAGEBODY tag (hscroll property), the displayed elements will be cut off or
will be accessible by a scroll bar.

If the width of a control is defined as a percentage value (width="50%"), HTML renders the
control accordingly. If the screen is too small to show all controls, the browser will try to reduce
elements according to the table rendering rules.

If you define the width of a control as a percentage value, the width relates to

the width of the area in case of using TR rows, or to

the width definition of the ITR row if using ITR rows. This width definition can either be absolute or
percentage-based.

The following example shows a page in which controls hold absolute width values:

1

Defining the Width of Controls inside a ContainerDefining the Width of Controls inside a Container

<itr takefullwidth="true">
 <label name="Factor1" width="20%">
 </label>
 <field valueprop="factor1" width="80%">
 </field>
</itr>
<itr takefullwidth="true">
 <label name="Factor2" width="20%">
 </label>
 <field valueprop="factor2" width="60%">
 </field>
 <hdist width="20%">
 </hdist>

For two different screen sizes, the HTML page looks as follows:

The size of the controls changes according to their percentage definition.

A similar screen is now built using absolutely defined pixel sizes:

<itr takefullwidth="false">
 <label name="Factor1" width="100">
 </label>
 <field valueprop="factor1" width="200">
 </field>
</itr>
<itr takefullwidth="true">
 <label name="Factor2" width="100">
 </label>
 <field valueprop="factor2" width="150">
 </field>
</itr>

In the ITR definition, there is no width specification - therefore, the controls will occupy exactly the
space they require. The result looks as follows:

The size of the controls will not change when changing the screen size.

Pay attention to what was said previously: Controls are placed into columns; columns are placed into table
rows; and table rows are placed into containers. If you place a control into a row and define this control to
have a width of 100%, then the elements "above" have to take care of providing the space to which the
control relates its "100%". More concrete: If you place a FIELD control with a width of 100% into an ITR
row that does not provide for a width of 100% itself (using the property takefullwidth), then the
result will be a minimum-width field (100% of nothing).

2

Controlling the Width of ControlsDefining the Width of Controls inside a Container

Pixel sizing represents a bottom-up sizing approach: a control defines its width - all the other controls
around (e.g. the container in which the control is placed) have as a consequence to adapt to the control’s
size: if the control is defined to occupy more space, then the container has to follow and provide for the
space.

Percentage sizing represents a top-down sizing approach: the inner control tells how many percentages of
the space that is granted from the outer control is occupied. As a consequence the outer control needs to
define its size properly. Either the outer control itself defines a pixel size or it itself defines a percentage
size - thus passig the respsonsibility to the next higher level. This might end up in a casacading defintion
of "percentage sizing" - up to the PAGEBODY control, which is the outer-most container of a page.

There are four commonly used properties for sizing:

width/height - this is the quite obvious definition as explained in this section.

takefullwidth/takefullheight - this is an equivalent to width="100%" and
height="100%".

HDIST and VDIST Controls
HDIST means "horizontal distance". VDIST means "vertical distance".

HDIST Control

The HDIST control represents a distance to be placed between controls. The distance itself holds a certain
width that again can either be a pixel width or a percentage width.

The following example shows a table row into which a town and a zip code is put:

Between the two FIELD controls, you see a small distance that separates the fields from one another. The
corresponding XML layout definition is:

<rowarea name="HDIST Example">
 <itr>
 <label name="Zip Code / Town" width="120">
 </label>
 <field valueprop="zipcode" width="80">
 </field>
 <hdist width="5">
 </hdist>
 <field valueprop="town" width="200">
 </field>
 </itr>
</rowarea>

The HDIST control is also very useful for percentage-based sizing of widths. If you want a control to
occupy 50% of the available width, you have to "fill the gap" in the following way:

3

Defining the Width of Controls inside a ContainerHDIST and VDIST Controls

The corresponding XML layout definition is:

<rowarea name="HDIST Example">
 <itr height="100%">
 <label name="First Name" width="120">
 </label>
 <field valueprop="fname" width="50%">
 </field>
 <hdist width="50%">
 </hdist>
 </itr>
</rowarea>

Pay attention: when using percentage sizing, then you should take care of filling the "100%" by the
controls inside the row. Otherwise, the browser will distribute the remaining space to its columns - i.e. the
controls will not be positioned the way you expect.

VDIST Control

The VDIST control is the counterpart of the HDIST control - in vertical direction. The following example
shows a scenario in which the line containing the BUTTON control keeps a vertical distance of 10 pixels
from the lines containing the FIELD controls:

The layout definition is:

<rowarea name="VDIST Example">
 <itr height="100%">
 <label name="First Name" width="120">
 </label>
 <field valueprop="fname" width="200">
 </field>
 </itr>
 <itr height="100%">
 <label name="Last Name" width="120">
 </label>
 <field valueprop="lname" width="200">
 </field>
 </itr>
 <vdist height="10">
 </vdist>
 <itr>
 <hdist width="120">
 </hdist>

4

VDIST ControlDefining the Width of Controls inside a Container

 <button name="Search" method="onSearch">
 </button>
 </itr>
</rowarea>

Note that an HDIST control is used in the line containing the BUTTON control to align the button to the
fields.

HDIST Properties

Basic

width Width of the HDIST control, either in pixels or as
percentage value.

If no width is defined then a default width of 2 pixels is
assigned.

Optional 100

120

140

160

180

200

50%

100%

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout editor’s
tree view.

Optional

Binding

visibleprop Name of the adapter parameter that provides the
information if this control is displayed or not. As
consequence you can control the visibility of the control
dynamically.

Optional

VDIST Properties

5

Defining the Width of Controls inside a ContainerHDIST Properties

Basic

height Height of the VDIST control, either in pixels or as
percentage value. If no width is defined then a default
width of 3 pixels is assigned.

Optional 100

150

200

250

300

250

400

50%

100%

backgroundstyleCSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where direct
style definitions are applied. Press right mouse-button
in your browser and select the "View source" or
"View frame’s source" function.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

rowspan and colspan Definitions
Each control has a colspan and rowspan property that is "1" by default. This definition is directly
transferred to the column definition that is placed around the control.

Example:

<tr>
 <control colspan="2">
 </control>
</tr>

6

rowspan and colspan DefinitionsDefining the Width of Controls inside a Container

If you specify the above definition, the created HTML code looks like this:

<tr>
 <td colspan="2" rowspan="1">
 ... control-specific HTML code ...
 </td>
</tr>

The usage of rowspan and colspan only makes sense in scenarios in which you define multiple rows
inside one container and if you use TR rows at the same time. You do not have to pay attention to them if
working in ITR rows.

Again: first check if the TR way of arranging controls is really the best approach - compared to the ITR
approach. Using TR means you have to "fight" with colspan and rowspan definitions in order to
properly lay out your controls. With ITR, each row is independently defined from its neighbor rows.

CELLSPAN Control
Inside one row, you can place controls or nested containers. Containers again allow you to specify new
rows inside the container.

There is a special control, the CELLSPAN control. With the CELLSPAN control, you can quickly define
one cell inside a row of a container to place other controls. The CELLSPAN control has a width
property to specify the width of its inner content.

Have a look at the following example:

<rowarea name="Cellspan Example">
 <tr>
 <label name="Factor 1" width="25%">
 </label>
 <field valueprop="factor1" width="25%">
 </field>
 <hdist></hdist>
 <cellspan width="50%">
 <label name="Factor 1" width="50%">
 </label>
 <field valueprop="factor1" width="50%">
 </field>
 </cellspan>
 </tr>
 <tr>
 <label name="Factor 2" width="25%">
 </label>
 <field valueprop="factor2" width="25%">
 </field>
 <hdist></hdist>
 <cellspan width="50%">
 <checkbox valueprop="activated" width="10%">
 </checkbox>
 <label name="Activated" width="40%" asplaintext="true">
 </label>
 <checkbox valueprop="generated" width="10%">
 </checkbox>
 <label name="Generated" width="40%" asplaintext="true">

7

Defining the Width of Controls inside a ContainerCELLSPAN Control

 </label>
 </cellspan>
 </tr>
</rowarea>

Each TR row contains one CELLSPAN definition with a width of 50%. The inner content of the
CELLSPAN definitions is completely different between the rows:

You could add controls to the CELLSPAN definition in the first row without any implications inside the
second row. The CELLSPAN control internally operates similar to the ITR control: it builds a table on its
own and decouples its content from the surrounding table rendering.

CELLSPAN Properties

Basic

width Width of the control.

There are three possibilities to define the width:

(A) You do not define a width at all. In this case the
width of the control will either be a default width or -
in case of container controls - it will follow the width
that is occupied by its content.

(B) Pixel sizing: just input a number value (e.g.
"100").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only
bring up correct results if the parent element of the
control properly defines a width this control can
reference. If you specify this control to have a width of
50% then the parent element (e.g. an ITR-row) may
itself define a width of "100%". If the parent element
does not specify a width then the rendering result may
not represent what you expect.

Optional 100

120

140

160

180

200

50%

100%

8

CELLSPAN PropertiesDefining the Width of Controls inside a Container

height Height of the control.

There are three possibilities to define the height:

(A) You do not define a height at all. As consequence
the control will be rendered with its default height. If
the control is a container control (containing) other
controls then the height of the control will follow the
height of its content.

(B) Pixel sizing: just input a number value (e.g. "20").

(C) Percentage sizing: input a percantage value (e.g.
"50%"). Pay attention: percentage sizing will only
bring up correct results if the parent element of the
control properly defines a height this control can
reference. If you specify this control to have a height
of 50% then the parent element (e.g. an ITR-row) may
itself define a height of "100%". If the parent element
does not specify a width then the rendering result may
not represent what you expect.

Optional 100

150

200

250

300

250

400

50%

100%

title Text that is shown as tooltip for the control.

Either specify the text "hard" by using this TITLE
property - or use the TITLETEXTID in order to define
a language dependent literal.

Optional

titletextid Text ID that is passed to the multi lanaguage
management - representing the tooltip text that is used
for the control.

Optional

colspan Column spanning of control.

If you use TR table rows then you may sometimes
want to control the number of columns your control
occupies. By default it is "1" - but you may want to
define the control to span over more than one columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

Optional 1

2

3

4

5

50

int-value

colspanprop $en/popupwizard/njx__attr_colspanprop$ Optional

9

Defining the Width of Controls inside a ContainerCELLSPAN Properties

rowspan Row spanning of control.

If you use TR table rows then you may sometimes
want to control the number of rows your control
occupies. By default it is "1" - but you may want to
define the control two span over more than one
columns.

The property only makes sense in table rows that are
snychronized within one container (i.e. TR, STR table
rows). It does not make sense in ITR rows, because
these rows are explicitly not synched.

Optional 1

2

3

4

5

50

int-value

cellstyle CSS style definition that is directly passed into this
control.

With the style you can individually influence the
rendering of the control. You can specify any style
sheet expressions. Examples are:

border: 1px solid #FF0000

background-color: #808080

You can combine expressions by appending and
separating them with a semicolon.

Sometimes it is useful to have a look into the
generated HTML code in order to know where direct
style definitions are applied. Press right mouse-button
in your browser and select the "View source" or "View
frame’s source" function.

Optional background-color:
#FF0000

color: #0000FF

font-weight: bold

comment Comment without any effect on rendering and
behaviour. The comment is shown in the layout
editor’s tree view.

Optional

backgroundclassCSS style class definition that is directly passed into
this control.

The style class can be either one which is part of the
"normal" CIS style sheet files (i.e. the ones that you
maintain with the style sheet editor) - or it can be one
of an other style sheet file that you may reference via
the ADDSTYLESHEET property of the PAGE tag.

Optional

Rules for Positioning Controls inside Containers
This is a collection of rules you should consider when positioning controls inside containers:

10

Rules for Positioning Controls inside ContainersDefining the Width of Controls inside a Container

Make up your mind where to use relative percentage values or absolute pixel definitions.

Do not mix percentage and pixel values inside one container.

Internally, Application Designer controls are mapped to the HTML tags TABLE, TR and TD. When
developing, you should have in mind the normal HTML table management.

Structure your container not as one big container holding one complex table, each row holding a lot
of controls. Instead, use the possibility to define nested containers or CELLSPAN controls in order to
structure your layout.

11

Defining the Width of Controls inside a ContainerRules for Positioning Controls inside Containers

	Defining the Width of Controls inside a Container
	Controlling the Width of Controls
	HDIST and VDIST Controls
	HDIST Control
	VDIST Control

	HDIST Properties
	VDIST Properties
	rowspan and colspan Definitions
	CELLSPAN Control
	CELLSPAN Properties
	Rules for Positioning Controls inside Containers

