
Debugger Tutorial
This tutorial introduces the basic features of the debugger and discusses different debugging methods. It
takes you through a simple scenario that demonstrates how the debugger can be used to analyze runtime
errors and control program execution. 

It is important that you work through Sessions 1 to 5 in sequence. 

Notes:

1.  For ease of use, the tutorial primarily quotes direct commands to demonstrate the debugger features
and not the alternative menu functions. 

2.  For a full description of all debugger features mentioned in this tutorial, refer to the relevant sections
in the remainder of the Debugger documentation. 

Prerequisites

Fundamentals of Debugging

Session 1 - Analyzing a Natural Error

Session 2 - Using a Breakpoint

Session 3 - Using a Watchpoint

Session 4 - Tracing the Logical Flow of Programs

Session 5 - Using Statistics about the Program Execution

Additional Hints for Using the Debugger

Example Sources

Prerequisites
You should be familiar with programming in Natural.

Before you start with Session 1, you need to create all example programs (DEBUG1P and
DEBUG2P) and subprograms (DEBUG1N, DEBUG2N, DEBUG3N and DEBUG4N) provided in
the section Example Sources later in this tutorial. Save and catalog these objects with the system
command STOW. 

Fundamentals of Debugging
The debugger can be used to interrupt the execution flow of a Natural object at a particular debug event
and obtain information on the current status of the interrupted object such as the next statement to be
executed, the value of a variable and the hierarchy (program levels) of objects called. 

1

Debugger TutorialDebugger Tutorial



You basically need to take the following two major steps to pass control to the debugger for program
interruption: 

1.  Activate the debugger with the system command TEST ON. 

This allows the debugger to receive control for each statement to be executed by the Natural runtime
system. 

2.  Set one or more debug entries (breakpoints and watchpoints) for the Natural objects to be executed. 

This allows the debugger to decide when to take over control from the Natural runtime system and
interrupt the program execution. 

A Natural error always interrupts the program execution. No debug entry is required then, the
debugger steps in automatically. 

The following is an overview of all possible program interruptions:

Program 
Interruption

Explanation 

Breakpoint Causes a program interruption for a statement line in a Natural object. 

The debugger interrupts the program execution whenever the statement line for
which a breakpoint is set is to be executed, that is, before the statement contained in
this line is processed. 

Watchpoint Causes a program interruption for a variable in a Natural object. 

The debugger interrupts the program execution whenever the contents of the
variable for which a watchpoint is set have changed, that is, after the statement that
references this variable is processed. 

Step mode Steps through the object during the program execution. 

Step mode is initiated by a debugger command and requires that the debugger
previously received control because of a breakpoint or a watchpoint. In step mode,
the debugger interrupts the program execution before each executable statement
contained in this object is processed. 

Natural error Causes an automatic program interruption. 

Session 1 - Analyzing a Natural Error
This session describes investigation methods for a Natural error that occurs during program execution. 

 To simulate a Natural error

1.  From the NEXT prompt, execute DEBUG1P.

The following Natural error message appears: DEBUG1N 0180 NAT0954 Abnormal
termination S0C7 during program execution.

2

Session 1 - Analyzing a Natural ErrorDebugger Tutorial



The message points to line 180 in the subprogram DEBUG1N: BONUS := SALARY * PERCENT
/ 100 . This indicates that incorrect values are returned for one or more of the variables referenced.
However, at this point, this is no clear evidence of what actually causes the problem; and it could be
difficult to determine the cause if the variable values were retrieved from a database (as is typical for
employee records). 

 To activate the debugger for further problem investigation

1.  At the NEXT prompt, enter the following:

TEST ON

The message Test mode started.  indicates that the debugger is activated. 

Note:
TEST ON remains active for the duration of the current session or until you enter TEST OFF to
deactivate the debugger. 

2.  Again, execute DEBUG1P from the NEXT prompt.

A Debug Break window similar to the example below appears: 

+------------------- Debug Break -------------------+ 
| Break by ABEND S0C7 at NATARI2+2A4-4 (NAT0954)    | 
| at line  180 in subprogram DEBUG1N (level 2)      | 
| in library DEBUG    in system file (10,32).       | 
|                                                   | 
|         G   Go                                    | 
|         L   List break                            | 
|         M   Debug Main Menu                       | 
|         N   Next break command                    | 
|         R   Run (set test mode OFF)               | 
|         S   Step mode                             | 
|         V   Variable maintenance                  | 
|                                                   | 
| Code .. G                                         | 
|                                                   | 
| Abnormal termination S0C7 during program execution| 
| PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS   | 
+---------------------------------------------------+

Since a Natural error occurs, the debugger steps in automatically and displays the Debug Break
window. 

Additional information on where the error occurs is displayed at the top of the window: the module 
(NATARI2) in the Natural nucleus (helpful for Software AG technical support), the type of object 
(subprogram ) the library (DEBUG) and the database ID and file number (10,32 ) of the system
file. 

The Debug Break window also provides debugger functions that can be used, for example, to
continue the program execution (Go or Run), invoke the debugger maintenance menu (Debug Main 
Menu) or activate step mode. You execute a function by using either the appropriate function code or
PF key. 

3

Debugger TutorialSession 1 - Analyzing a Natural Error



 To inspect the erroneous statement line

1.  In the Code field, replace the default entry G by L to execute the List break function. 

The source of DEBUG1N is displayed:

13:48:54              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON                - List Object Source -              Object DEBUG1N 
                                                                 Bottom of data
Co Line Source                                                    Message      
__ 0070   2 NUMCHILD  (N2)                                      |              
__ 0080   2 ENTRYDATE (D)                                       |              
__ 0090   2 SALARY    (P7.2)                                    |              
__ 0100   2 BONUS     (P7.2)                                    |              
__ 0110 LOCAL                                                   |              
__ 0120 1 TARGETDATE  (D)    INIT <D’2009-01-01’>               |              
__ 0130 1 DIFFERENCE  (P3.2)                                    |              
__ 0140 1 PERCENT     (P2.2) INIT <3.5>                         |              
__ 0150 END-DEFINE                                              |              
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365            |              
__ 0170 IF DIFFERENCE GE 10        /* BONUS FOR YEARS IN COMPAN | last line    
__ 0180   BONUS := SALARY * PERCENT / 100                       | * NAT0954 *  
__ 0190 END-IF                                                  |              
__ 0200 SALARY := SALARY + 1800    /* SALARY PLUS ANNUAL INCREA |              
__ 0210 END                                                     |              
                                                                               
Command ===>                                                                   
                                                                               
                                                                               
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Scan  Flip  -     +     Li Br <     >     Canc

last line  indicates that the statement contained in line 170 is the last statement that executed
successfully. 

The statement in line 180 which causes the problem is highlighted and annotated with * NAT0954 
* . 

This indicates that the error is caused by either the contents of the variable SALARY or PERCENT.
Most likely, this is SALARY since PERCENT is properly initialized. 

 To check the contents of SALARY

1.  In the Command line, enter the following:

DIS VAR SALARY

A Display Variable screen similar to the example below appears for the variable SALARY: 

4

Session 1 - Analyzing a Natural ErrorDebugger Tutorial



18:59:51              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON          - Display Variable (Alphanumeric) -       Object DEBUG1N 
                                                                               
                                                                               
Name ...... EMPLOYEE.SALARY                                                    
Fmt/Len ... P 7.2                                                              
Type ...... parameter                                                          
Index .....                                                                    
Range .....                                                                    
                                                                               
Position ..                                                                    
Contents ..                                                                    
                                                                  
                                                                               
Command ===>                                                                   
                                             
                                                                               
Variable contains invalid data.                                                
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Mod   Flip              Li Br Alpha Hex   Canc

The message Variable contains invalid data.  indicates that the contents of the
variable, which seems to be blank, does not match the format of the variable. This becomes clear
when you view the hexadecimal representation of the variable contents as described in the next step. 

2.  Press PF11 (Hex) to display the hexadecimal contents of the variable. 

The screen now looks similar to the example below:

11:13:33              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON          - Display Variable (Hexadecimal) -        Object DEBUG1N 
                                                                               
                                                                               
Name ...... EMPLOYEE.SALARY                                                    
Fmt/Len ... P 7.2                                                              
Type ...... parameter                                                          
Index .....                                                                    
Range .....                                                                    
                                                                               
Position ..                                                                    
Contents .. 4040404040                                                         
                                                                               
                                                                               
Command ===>                                                                   
                                                                               
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Mod   Flip              Li Br Alpha Hex   Canc

The hexadecimal value shows that the variable is not in packed numeric format, thus leading to a
calculation error during the program execution. DEBUG1P obviously provides DEBUG1N with an
incorrect value for SALARY. 

Tip:
You can press PF10 (Alpha) to switch back to the alphanumeric representation. 

5

Debugger TutorialSession 1 - Analyzing a Natural Error



3.  In the Command line, enter the following:

GO

The command GO returns control from the debugger to the Natural runtime system, which continues
the program execution until the end of the program or the next debug event. In this case, there is no
additional debug event and the NEXT prompt appears with the known Natural error message. 

 To correct SALARY in the object source

1.  Open DEBUG1P with the program editor and remove the comment sign (*) entered for SALARY := 
99000 . 

2.  Save and catalog the program with the system command STOW. 

3.  Execute DEBUG1P.

The debugger does not interrupt the program though TEST ON is still set. The program executes
successfully and outputs a report: 

Page      1                                                  07-09-06  15:28:06
                                                                               
EMPLOYEE RECEIVES:   100800.00                                                 
    PLUS BONUS OF:     3465.00                                                 
                                                                               
                                                                               

                                                                               
NEXT                                                               LIB=DEBUG

Session 2 - Using a Breakpoint
You can interrupt the program execution at a specific statement line by setting a breakpoint for this line. 

 To set a breakpoint for a statement line in DEBUG1N

1.  At the NEXT prompt, enter the following:

TEST SET BP DEBUG1N 170

The message Breakpoint DEBUG1N0170 set at line 170 of object DEBUG1N.
confirms that a breakpoint with the name DEBUG1N0170 is set for statement line 170 in the
DEBUG1N subprogram. 

Notes:

1.  A breakpoint can only be set for an executable statement. If you try to set a statement for a
non-executable statement, an appropriate error message appears. 

2.  A breakpoint is usually only valid during the current Natural session. If required, you can save a

6

Session 2 - Using a BreakpointDebugger Tutorial



breakpoint for future sessions: see Saving Breakpoints and Watchpoints in Additional Hints for
Using the Debugger. 

2.  Execute DEBUG1P.

The debugger now interrupts the program execution at the statement line, where the new breakpoint
is set. The Debug Break window appears: 

 +------------------- Debug Break -------------------+
 | Break by breakpoint DEBUG1N0170                   |
 | at line  170 in subprogram DEBUG1N (level 2)      |
 | in library DEBUG    in system file (10,32).       |
 |                                                   |
 |         G   Go                                    |
 |         L   List break                            |
 |         M   Debug Main Menu                       |
 |         N   Next break command                    |
 |         R   Run (set test mode OFF)               |
 |         S   Step mode                             |
 |         V   Variable maintenance                  |
 |                                                   |
 | Code .. G                                         |
 |                                                   |
 |                                                   |
 | PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS   |
 +---------------------------------------------------+

The window indicates the name of the breakpoint, the corresponding statement line and object and
the library that contains the object. It also indicates the operational level of subprogram DEBUG1N. 

 To view the statement indicated in the Debug Break window

Execute the List break function. 

The source of DEBUG1N is displayed on the List Object Source screen: 

7

Debugger TutorialSession 2 - Using a Breakpoint



11:36:45              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON                - List Object Source -              Object DEBUG1N 
                                                                 Bottom of data
Co Line Source                                                    Message      
__ 0070   2 NUMCHILD  (N2)                                      |              
__ 0080   2 ENTRYDATE (D)                                       |              
__ 0090   2 SALARY    (P7.2)                                    |              
__ 0100   2 BONUS     (P7.2)                                    |              
__ 0110 LOCAL                                                   |              
__ 0120 1 TARGETDATE  (D)    INIT <D’2009-01-01’>               |              
__ 0130 1 DIFFERENCE  (P3.2)                                    |              
__ 0140 1 PERCENT     (P2.2) INIT <3.5>                         |              
__ 0150 END-DEFINE                                              |              
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365            | last line    
__ 0170 IF DIFFERENCE GE 10        /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170  
__ 0180   BONUS := SALARY * PERCENT / 100                       |              
__ 0190 END-IF                                                  |              
__ 0200 SALARY := SALARY + 1800    /* SALARY PLUS ANNUAL INCREA |              
__ 0210 END                                                     |              
                                                                               
Command ===>                                                                   
                                                                             
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Scan  Flip  -     +     Li Br <     >     Canc

Statement line 170 indicated in the Debug Break window is highlighted. The Message column
indicates the name of the breakpoint (DEBUG1N0170) set for this statement line and the last
statement line executed (line 160 as indicated by last line ).
Remember: A breakpoint interrupts the program execution before the statement for which the
breakpoint is set is processed. 

There are several direct commands you can enter on the List Object Source screen to obtain more
information on the current object. As an example, you can view all variables as described in the
following step. 

 To display a list of variables contained in DEBUG1N

1.  In the Command line, enter the following:

DIS VAR

A Display Variables screen similar to the example below appears: 

8

Session 2 - Using a BreakpointDebugger Tutorial



11:06:13              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON         - Display Variables (Alphanumeric) -       Object DEBUG1N 
                                                                            All
Co Le Variable Name                    F       Leng Contents               Msg.
    1 EMPLOYEE                                                                 
__  2 NAME                             A         20 MEIER                      
__  2 ENTRYDATE                        D            1989-01-01                 
__  2 SALARY                           P        7.2 99000.00                   
__  2 BONUS                            P        7.2 *** invalid data ***       
__  1 TARGETDATE                       D            2009-01-01                 
__  1 DIFFERENCE                       P        3.2 20.00                      
__  1 PERCENT                          P        2.2 3.50                       
                                                                               
                                                                         
                                                                               
Command ===>                                                                   
                                                                   
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Zoom  Flip  -     +     Li Br Alpha Hex   Canc

The screen lists all variables defined in DEBUG1N. You can neglect the remark invalid data
for BONUS. In this case, it is not essential whether BONUS is properly initialized since it is used as a
target operand only. However, to exercise another debugger command, change the contents of 
BONUS in the following step. 

 To check and modify the contents of BONUS

1.  In the Co column, next to BONUS, enter the following: 

MO

Or:
In the Command line, enter the following: 

MOD VAR BONUS

A Modify Variable screen similar to the example below appears: 

9

Debugger TutorialSession 2 - Using a Breakpoint



11:29:50              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON          - Modify Variable (Alphanumeric) -        Object DEBUG1N 
                                                                               
                                                                               
Name ...... EMPLOYEE.BONUS                                                     
Fmt/Len ... P 7.2                                                              
Type ...... parameter                                                          
Index .....                                                                    
Range .....                                                                    
                                                                               
Position .. 1                                                                  
Contents .. ___________                                                        
 
                                                                  
                                                                             
Command ===>                                                                   
                                                                               
                                                                               
Variable contains invalid data.                                                
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Save  Flip              Li Br Alpha Hex   Canc

2.  You can use the hexadecimal display to verify that the variable is not in packed numeric format.
Press PF10 (Alpha) to switch back to the alphanumeric representation. 

3.  In the Contents field, enter a value in packed numeric format, for example, 12345.00  and press
PF5 (Save). 

The screen now looks similar to the example below:

11:50:00              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON          - Display Variable (Alphanumeric) -       Object DEBUG1N 
                                                                               
                                                                               
Name ...... EMPLOYEE.BONUS                                                     
Fmt/Len ... P 7.2                                                              
Type ...... parameter                                                          
Index .....                                                                    
Range .....                                                                    
                                                                               
Position ..                                                                    
Contents .. 12345.00                                                           
                                                                              
                                                                               
                                                                               
Command ===>                                                                   
                                                                               
                                                                               
Variable BONUS modified.                                                       
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Mod   Flip              Li Br Alpha Hex   Canc

A message confirms the modification of Contents. 

10

Session 2 - Using a BreakpointDebugger Tutorial



4.  Press PF9 (Li Br) or PF3 (Exit). 

The List Object Source screen appears. 

5.  In the Command line, enter the following:

GO

The debugger returns control to the Natural runtime system, which finishes executing DEBUG1P
since no further debug event occurs. The report produced by the program is output: 

Page      1                                                  07-09-06  10:02:51
                                                                               
EMPLOYEE RECEIVES:   100800.00                                                 
    PLUS BONUS OF:     3465.00                                                 
                                                                               
                                                                               
                                                                               
                                                                               
NEXT                                                               LIB=DEBUG

6.  Before you continue with the next session, delete all current breakpoints by entering the following at
the NEXT prompt: 

TEST DEL BP * *

A message appears confirming that all breakpoint (in this case, only one breakpoint) are deleted. 

Session 3 - Using a Watchpoint
DEBUG1P and DEBUG1N perform a calculation for a single employee’s bonus and salary payment. If
multiple employee records were processed, you would probably test whether the variable BONUS is now
updated correctly. This is done by setting a watchpoint for this variable. A watchpoint allows the debugger
to interrupt the program execution when the contents of the specified variable change. 

 To set a watchpoint for the variable BONUS

1.  At the NEXT prompt, enter the following:

TEST SET WP DEBUG1N BONUS

The message Watchpoint BONUS set for variable EMPLOYEE.BONUS.  confirms that
a watchpoint is set for the variable BONUS in the DEBUG1N example subprogram. 

Notes:

11

Debugger TutorialSession 3 - Using a Watchpoint



1.  If you enter a debugger direct command in the Command line of a debugger screen, you must
omit the keyword TEST. For example, instead of TEST SET WP DEBUG1N BONUS, you
would then enter SET WP DEBUG1N BONUS only. 

2.  A watchpoint is usually only valid during the current Natural session. If required, you can save a
watchpoint for future sessions: see Saving Breakpoints and Watchpoints in Additional Hints for
Using the Debugger. 

2.  Execute DEBUG1P from the NEXT prompt.

The debugger interrupts the program execution at the new watchpoint and invokes the Debug Break
window: 

+------------------- Debug Break -------------------+
| Break by watchpoint BONUS                         |
| at line  180 in subprogram DEBUG1N (level 2)      |
| in library DEBUG    in system file (10,32).       |
|                                                   |
|         G   Go                                    |
|         L   List break                            |
|         M   Debug Main Menu                       |
|         N   Next break command                    |
|         R   Run (set test mode OFF)               |
|         S   Step mode                             |
|         V   Variable maintenance                  |
|                                                   |
| Code .. G                                         |
|                                                   |
|                                                   |
| PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS   |
+---------------------------------------------------+

The window indicates that a watchpoint was detected in line 180. This line contains the statement
that processes the variable BONUS. 

The debugger interrupted the program execution after the statement for BONUS was processed. Only
then could the debugger recognize that the contents of the variable had changed. 

3.  Execute the List break function. 

The List Object Source now looks similar to the example below: 

12

Session 3 - Using a WatchpointDebugger Tutorial



16:24:46              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON                - List Object Source -              Object DEBUG1N 
                                                                 Bottom of data
Co Line Source                                                    Message      
__ 0070   2 NUMCHILD  (N2)                                      |              
__ 0080   2 ENTRYDATE (D)                                       |              
__ 0090   2 SALARY    (P7.2)                                    |              
__ 0100   2 BONUS     (P7.2)                                    |              
__ 0110 LOCAL                                                   |              
__ 0120 1 TARGETDATE  (D)    INIT <D’2009-01-01’>               |              
__ 0130 1 DIFFERENCE  (P3.2)                                    |              
__ 0140 1 PERCENT     (P2.2) INIT <3.5>                         |              
__ 0150 END-DEFINE                                              |              
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365            |              
__ 0170 IF DIFFERENCE GE 10        /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170  
__ 0180   BONUS := SALARY * PERCENT / 100                       | BONUS        
__ 0190 END-IF                                                  |              
__ 0200 SALARY := SALARY + 1800    /* SALARY PLUS ANNUAL INCREA |              
__ 0210 END                                                     |              
                                                                               
Command ===>                                 
                                                                               
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Scan  Flip  -     +     Li Br <     >     Canc

The statement which references the variable BONUS is highlighted and the Message column indicates
the name of the watchpoint set for the variable. 

 To check for changes in BONUS

1.  In the Command line, enter the following:

DIS VAR BONUS

The Display Variable screen appears and displays a value of 3465.00  in the Contents field. This
shows that the contents of the variable BONUS have changed. 

2.  Press PF3 (Exit) to return to the List Object Source screen. 

 To check for changes in SALARY

1.  To test the contents of the variable SALARY in a later step, set a breakpoint for SALARY by entering
the following in the Co column of line 200: 

SE

From the List Object Source screen, a line command such as SE is a convenient alternative to using
the SET BP direct command. 

13

Debugger TutorialSession 3 - Using a Watchpoint



The Message column indicates that a breakpoint (BP) is set for line 200: 

17:55:58              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON                - List Object Source -              Object DEBUG1N 
                                                                 Bottom of data
Co Line Source                                                    Message      
__ 0070   2 NUMCHILD  (N2)                                      |              
__ 0080   2 ENTRYDATE (D)                                       |              
__ 0090   2 SALARY    (P7.2)                                    |              
__ 0100   2 BONUS     (P7.2)                                    |              
__ 0110 LOCAL                                                   |              
__ 0120 1 TARGETDATE  (D)    INIT <D’2009-01-01’>               |              
__ 0130 1 DIFFERENCE  (P3.2)                                    |              
__ 0140 1 PERCENT     (P2.2) INIT <3.5>                         |              
__ 0150 END-DEFINE                                              |              
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365            |              
__ 0170 IF DIFFERENCE GE 10        /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170  
__ 0180   BONUS := SALARY * PERCENT / 100                       | BONUS        
__ 0190 END-IF                                                  |              
__ 0200 SALARY := SALARY + 1800    /* SALARY PLUS ANNUAL INCREA | BP set       
__ 0210 END                                                     |              
                                                                               
Command ===>                                                                   
                                                                              
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Scan  Flip  -     +     Li Br <     >     Canc

2.  In the Command line, enter the following:

GO

The Debug Break window appears: 

+------------------- Debug Break -------------------+
| Break by breakpoint DEBUG1N0200                   |
| at line  200 in subprogram DEBUG1N (level 2)      |
| in library DEBUG    in system file (10,32).       |
|                                                   |
|         G   Go                                    |
|         L   List break                            |
|         M   Debug Main Menu                       |
|         N   Next break command                    |
|         R   Run (set test mode OFF)               |
|         S   Step mode                             |
|         V   Variable maintenance                  |
|                                                   |
| Code .. G                                         |
|                                                   |
|                                                   |
| PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS   |
+---------------------------------------------------+

3.  Execute the List break function. 

14

Session 3 - Using a WatchpointDebugger Tutorial



The List Object Source screen now looks similar to the example below: 

10:49:31              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON                - List Object Source -              Object DEBUG1N 
                                                                 Bottom of data
Co Line Source                                                    Message      
__ 0070   2 NUMCHILD  (N2)                                      |              
__ 0080   2 ENTRYDATE (D)                                       |              
__ 0090   2 SALARY    (P7.2)                                    |              
__ 0100   2 BONUS     (P7.2)                                    |              
__ 0110 LOCAL                                                   |              
__ 0120 1 TARGETDATE  (D)    INIT <D’2009-01-01’>               |              
__ 0130 1 DIFFERENCE  (P3.2)                                    |              
__ 0140 1 PERCENT     (P2.2) INIT <3.5>                         |              
__ 0150 END-DEFINE                                              |              
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365            |              
__ 0170 IF DIFFERENCE GE 10        /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170  
__ 0180   BONUS := SALARY * PERCENT / 100                       | last line    
__ 0190 END-IF                                                  |              
__ 0200 SALARY := SALARY + 1800    /* SALARY PLUS ANNUAL INCREA | DEBUG1N0200  
__ 0210 END                                                     |              
                                                                               
Command ===>                                                                   
                                                                               
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Scan  Flip  -     +     Li Br <     >     Canc

Since this is a breakpoint, the statement that references (and updates) SALARY has not yet been
executed. As a result, the contents of the variable have not changed. 

4.  In the Command line, enter DIS VAR SALARY  to verify that the contents of SALARY are
unchanged. 

The variable screen proves that SALARY still contains 99000 , the initial value assigned in
DEBUG1P. 

5.  To view the update of the variable contents, step to the next statement by choosing either of the
following methods: 

In the Command line, enter the following:

STEP

Or:
Press PF2 (Step). 

The screen now looks similar to the example below:

15

Debugger TutorialSession 3 - Using a Watchpoint



13:38:24              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON                - List Object Source -              Object DEBUG1N 
                                                                 Bottom of data
Co Line Source                                                    Message      
__ 0070   2 NUMCHILD  (N2)                                      |              
__ 0080   2 ENTRYDATE (D)                                       |              
__ 0090   2 SALARY    (P7.2)                                    |              
__ 0100   2 BONUS     (P7.2)                                    |              
__ 0110 LOCAL                                                   |              
__ 0120 1 TARGETDATE  (D)    INIT <D’2009-01-01’>               |              
__ 0130 1 DIFFERENCE  (P3.2)                                    |              
__ 0140 1 PERCENT     (P2.2) INIT <3.5>                         |              
__ 0150 END-DEFINE                                              |              
__ 0160 DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365            |              
__ 0170 IF DIFFERENCE GE 10        /* BONUS FOR YEARS IN COMPAN | DEBUG1N0170  
__ 0180   BONUS := SALARY * PERCENT / 100                       |              
__ 0190 END-IF                                                  |              
__ 0200 SALARY := SALARY + 1800    /* SALARY PLUS ANNUAL INCREA | last line    
__ 0210 END                                                     | step mode    
                                                                               
Command ===>                                                                   
                                                                           
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Scan  Flip  -     +     Li Br <     >     Canc

You skipped one line and processed the next executable statement in line 200, which updates 
SALARY. The Message column indicates that step mode is set. In step mode, the debugger continues
the program execution at the next executable statement. 

6.  In the Command line, enter DIS VAR SALARY  to check the variable contents. 

The Display Variable screen appears and displays a value of 100800.00  in the Contents field.
This proves that the contents of the variable SALARY have changed. 

7.  In the Command line, enter the following:

GO

The debugger returns control to the Natural runtime system, which finishes executing DEBUG1P
since no further debug event occurs. The report produced by the program is output. 

Session 4 - Tracing the Logical Flow of Programs
This session describes debugging methods you can use to better understand, overview and control a
complex Natural application with numerous objects. 

The session starts out with instructions for analyzing the logical flow of an application on the statement
level. It then demonstrates how breakpoints can be used to find out the sequence in which programs are
executed. 

16

Session 4 - Tracing the Logical Flow of ProgramsDebugger Tutorial



The instructions in this session are based on a simple (but sufficient for demonstration) example
application that consists of one program (DEBUG2P) and three subprograms (DEBUG2N, DEBUG3N
and DEBUG4N). 

 To set a breakpoint at program begin or end

1.  Set a breakpoint for DEBUG2P by entering the following at the NEXT prompt: 

TEST SET BP DEBUG2P BEG

The message Breakpoint DEBUG2P-BEG set at line BEG of object DEBUG2P.
confirms that a breakpoint is set in DEBUG1N. 

Using the keyword BEG instead of a specific line number has the effect that the breakpoint is set at
the beginning of the program, that is, for the first statement to be executed. This can even be the 
DEFINE DATA statement, for example, if an INIT  clause is used, which generates an executable
statement when the program is cataloged. 

Tip:

You can also specify the keyword END to set a breakpoint for the last statement to be executed. This
can be the END statement but also the FETCH or CALLNAT statement. 

2.  Execute DEBUG2P.

The Debug Break window appears: 

+------------------- Debug Break -------------------+
| Break by breakpoint DEBUG2P-BEG                   |
| at line  130 in program DEBUG2P (level 1)         |
| in library DEBUG    in system file (10,32).       |
|                                                   |
|         G   Go                                    |
|         L   List break                            |
|         M   Debug Main Menu                       |
|         N   Next break command                    |
|         R   Run (set test mode OFF)               |
|         S   Step mode                             |
|         V   Variable maintenance                  |
|                                                   |
| Code .. G                                         |
|                                                   |
|                                                   |
| PF2=Step,PF13=Next,PF14=Go,PF15=Menu,PF17=SkipS   |
+---------------------------------------------------+

The debugger now steps in at the first breakpoint set for the program. 

3.  Execute the List break function to check the source and see that the debugger now steps in at the
first executable statement NAME := ’MEIER’ . 

17

Debugger TutorialSession 4 - Tracing the Logical Flow of Programs



 To step through an application

1.  On the List Object Source screen, set step mode by either pressing PF2 (Step) or entering STEP in
the Command line. 

The last statement executed is annotated with last line . The next statement to be executed is
highlighted and annotated with step mode . 

Tip:

If you do not want the debugger to pause at every single statement but step through an application
more quickly, in the STEP command, specify the number of statements you want to skip, for
example: STEP 2  or STEP 10 . 

2.  Press PF2 (Step) repeatedly until the CALLNAT statement is annotated with step mode . 

3.  Continue with PF2 (Step) and execute the CALLNAT. 

The invoked subprogram DEBUG2N is displayed, where the next statement to be executed is
highlighted: 

11:59:19              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON                - List Object Source -              Object DEBUG2N 
                                                                    Top of data
Co Line Source                                                    Message      
__ 0010 ** SUBPROGRAM DEBUG2N: CALLS ’DEBUG3N’ AND ’DEBUG4N’FOR |              
__ 0020 ******************************************************* |              
__ 0030 DEFINE DATA                                             | step mode    
__ 0040 PARAMETER                                               |              
__ 0050 1 EMPLOYEE                                              |              
__ 0060   2 NAME      (A20)                                     |              
__ 0070   2 NUMCHILD  (N2)                                      |              
__ 0080   2 ENTRYDATE (D)                                       |              
__ 0090   2 SALARY    (P7.2)                                    |              
__ 0100   2 BONUS     (P7.2)                                    |              
__ 0110 LOCAL                                                   |              
__ 0120 1 TARGETDATE  (D)    INIT <D’2009-01-01’>               |              
__ 0130 1 DIFFERENCE  (P3.2)                                    |              
__ 0140 1 PERCENT     (P2.2) INIT <3.5>                         |              
__ 0150 END-DEFINE                                              |              
                                                                               
Command ===>                                                                   
                                                                            
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help  Step  Exit  Last  Scan  Flip  -     +     Li Br <     >     Canc

As an alternative, you could skip the CALLNAT by entering STEP SKIP  in the Command line. 

You would then only step through the statements in the invoking program DEBUG2 but not through
the statements within an invoked subprogram. 

 To view the levels at which the objects are executed 

18

Session 4 - Tracing the Logical Flow of ProgramsDebugger Tutorial



1.  In the List Object Source screen of DEBUG2N, enter the following in the Command line: 

OBJCHAIN

A Break Information screen similar to the example below appears: 

13:45:34               ***** NATURAL TEST UTILITIES *****            2007-09-06
                             - Break Information -
                                                  
No GDA active for the current program.            
                                                  
Break by step mode                                
at line   30 in subprogram DEBUG2N (level 2)
in library DEBUG    in system file (10,32).

In addition to the object information already known, this screen indicates whether the program
references a GDA (global data area). 

2.  Press ENTER to scroll down one page. 

The screen now looks similar to the example below:

13:46:34               ***** NATURAL TEST UTILITIES *****            2007-09-06
                           - Current Object Chain -

Level Name     Type        Line Library   DBID   FNR
  2   DEBUG2N  Subprogram     0 DEBUG       10    32
  1   DEBUG2P  Program      170 DEBUG       10    32

This screen indicates the operational levels at which the objects are executed: subprogram
DEBUG2N is executed at level 2 and program DEBUG2P (which invokes the subprogram) is
executed at the superior level 1. 

3.  Press ENTER. 

The List Object Source screen appears. 

4.  In the Command line, enter the following:

GO

The debugger returns control to the Natural runtime system, which finishes executing DEBUG2P
since no further debug event occurs. The report produced by the program is output: 

19

Debugger TutorialSession 4 - Tracing the Logical Flow of Programs



Page      1                                                  07-09-06  10:04:21
                                                                               
EMPLOYEE RECEIVES:    99300.00                                                 
    PLUS BONUS OF:     3565.00                                                 

                                                         
                                                                               
                                                                               
NEXT                                                               LIB=DEBUG

5.  Delete all breakpoints currently set by entering the following at the NEXT prompt: 

TEST DEL BP * *

A message appears confirming that all breakpoints are deleted. 

 To set breakpoints to follow the program execution

1.  At the NEXT prompt, enter the following:

TEST SET BP ALL BEG

The message Breakpoint ALL-BEG set at line BEG of object ALL.  appears. 

This indicates that you have set a breakpoint for the first executable statement of each object to be
executed. 

2.  Execute DEBUG2P.

A Debug Break window appears for DEBUG2P. 

3.  Execute the Go function repeatedly. 

Each time you execute Go, the next object invoked is indicated in the Debug Break window
(DEBUG2N first and then DEBUG3N and DEBUG4N). Thus, you can easily determine which
objects are invoked at what point during the program execution. Additionally, for each object, you
can apply the menu functions of the Debug Break window. 

4.  When the NEXT prompt appears, delete all breakpoints currently set by entering the following: 

TEST DEL BP * *

A message appears confirming that all breakpoints are deleted. 

20

Session 4 - Tracing the Logical Flow of ProgramsDebugger Tutorial



Session 5 - Using Statistics about the Program Execution
You can use the debugger to view statistical information on which objects are called and how often they
are called. Additionally, you can find out which statements are executed, and how often. 

 To check what objects are called during program execution

1.  At the NEXT prompt, enter the following:

TEST SET CALL ON

The message Call statistics started.  confirms that the statistics function is activated. 

2.  Execute DEBUG2P.

The debugger logs all object calls executed, and the report produced by the program is output. 

3.  At the NEXT prompt, enter the following:

TEST DIS CALL

A Display Called Objects screen similar to the example below appears: 

10:43:47              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON              - Display Called Objects -            Object         
                                                                            All
Object   Library  Type         DBID   FNR S/C Ver Cat Date   Time       Calls  
*_______ DEBUG___                                                              
DEBUG2P  DEBUG    Program        10    32 S/C 4.2 2007-08-30 13:48          1  
DEBUG2N  DEBUG    Subprogram     10    32 S/C 4.2 2007-08-30 13:48          1  
DEBUG3N  DEBUG    Subprogram     10    32 S/C 4.2 2007-08-30 13:48          1  
DEBUG4N  DEBUG    Subprogram     10    32 S/C 4.2 2007-08-30 13:48          1  
                                                                           
                                                                               
                                                                               
Command ===>                                                                   
                                                                               
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help        Exit  Last        Flip        +                       Canc

The screen lists all objects executed: the invoking program (DEBUG2P) and all other objects
invoked (DEBUG2N, DEBUG3N and DEBUG4N). It also indicates how frequently each object is
invoked (CALLS), the type of object called, where the object is stored and under which Natural
version, whether source and cataloged objects exist, and when the object was cataloged. 

4.  Press PF3 (Exit) or PF12 (Canc) until the NEXT prompt appears. 

21

Debugger TutorialSession 5 - Using Statistics about the Program Execution



 To check which statements are executed during program execution

1.  At the NEXT prompt, enter the following:

TEST SET XSTAT COUNT

The message Statement execution counting started for library/object 
*/*.  confirms that the statistics function is activated for all objects contained in the current library
and all steplibs concatenated with this library. 

2.  Execute DEBUG2P.

The debugger logs all statements processed by the program before the report produced by the
program is output. 

3.  At the NEXT prompt, enter the following:

TEST DIS XSTAT

A List Statement Execution Statistics screen similar to the example below appears: 

11:39:10              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON        - List Statement Execution Statistics -     Object         
                                                                            All
Co Object   Library  Type        DBID   FNR Obj.Called Exec Exec   %  Total No.
   *_______ *_______                           n Times able uted     Executions
__ DEBUG2P  DEBUG    Program       10    32          1    8    8 100          8
__ DEBUG2N  DEBUG    Subprogram    10    32          1    8    8 100          8
__ DEBUG3N  DEBUG    Subprogram    10    32          1    2    2 100          2
__ DEBUG4N  DEBUG    Subprogram    10    32          1   10    7  70          7
                                                                               
                                                                               
                                                                               
Command ===>                                                                   
                                                                               
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help        Exit  Last        Flip  -     +                       Canc

The screen lists the number of calls (Obj. Called n Times ), the number of executable
statements (Exec able ), the number of executed statements (Executed ), the percentage of
executed statements as related to the total number of executable statements (%), and the total number
of executed statements (Total No. Executions ). 

4.  In the Co column, next to DEBUG4N, enter the following: 

DS

22

Session 5 - Using Statistics about the Program ExecutionDebugger Tutorial



A statistics screen similar to the example below appears:

12:11:19              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON             - Display Statement Lines -            Object DEBUG4N 
                                                                               
Line Source                                                              Count 
0010 ** SUBPROGRAM ’DEBUG4N’: CALCULATES SPECIAL SALARY INCREASE               
0020 ************************************************************              
0030 DEFINE DATA                                                               
0040 PARAMETER                                                                 
0050 1 SALARY (P7.2)                                                           
0060 END-DEFINE                                                                
0070 DECIDE FOR FIRST CONDITION                                              1 
0080   WHEN SALARY < 50000                                                   1 
0090     SALARY := SALARY + 1800                                  not executed 
0100   WHEN SALARY < 70000                                                   1 
0110     SALARY := SALARY + 1200                                  not executed 
0120   WHEN SALARY < 90000                                                   1 
0130     SALARY := SALARY + 600                                   not executed 
0140   WHEN NONE                                                             1 
0150     SALARY := SALARY + 300                                              1 
                                                                               
Command ===>                                                                   
                                                                               
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help        Exit  Last        Flip        +                       Canc

The screen indicates how often a statement was executed and the executable statements that were not
processed. 

Additional Hints for Using the Debugger
This section provides additional hints for using the debugger. 

Time Stamps of Objects

Saving Breakpoints and Watchpoints

Debug Main Menu for Maintenance Functions

Help for Commands on Maintenance Screens

Major Functions Available during Program Interruption

Next Option for Additional Commands During Program Interruption

Displaying Large Variables and Arrays

Printing Debugger Statistics

Using the Debugger in Batch Mode

23

Debugger TutorialAdditional Hints for Using the Debugger



Time Stamps of Objects

A cataloged object that does not exactly correspond to the source object can cause debugging errors. If
you want to guarantee that source and cataloged object correspond to each other, save and catalog them
with the system command STOW. 

For details, see the section Operational Requirements. 

Saving Breakpoints and Watchpoints

You can save the breakpoints and watchpoints set in the current session as a debug environment and load
this environment for use in a future session. This is helpful if you want to repeatedly test an application
with the same debug entries. 

For details, see the section Debug Environment Maintenance. 

Debug Main Menu for Maintenance Functions

All debugger maintenance functions, such as setting a breakpoint or creating statistics, can be executed by
using either a direct command or the maintenance functions provided in the Debug Main Menu. You
open this menu by entering one of the following: 

TEST
at a command prompt. 

MENU
at the Command line of a debugger screen. 

M
in the Code field of the Debug Break window. 

Help for Commands on Maintenance Screens

For a list of direct commands available on a debugger maintenance screen, press PF1 (Help) or enter a
question mark (?) in the Command line. 

A debugger maintenance screen that contains list items usually also provides line commands that can be
used to further process an item. You enter a line command in the Co column, next to the required item.
For a list of valid line commands, enter a question mark (?) in this column. 

Major Functions Available during Program Interruption

The major functions available during the program interruption are listed in the following section. They can
be executed from either the Debug Break window or the Command line of a debugger maintenance
screen. 

24

Time Stamps of ObjectsDebugger Tutorial



Code in
Debug
Window 

Alternative
Direct Command

Function 

G GO Continues the program execution until the next debug event
occurs. 

L LIST BREAK Lists the object source at the statement line where the debug
event occurs. 

N NEXT Executes the next break command if specified for a breakpoint or
watchpoint. See also Next Option for Additional Commands
During Program Interruption. 

R RUN Switches test mode off and continues the program execution. 

S STEP Processes the executable statements line by line. 

V DIS VAR Displays a list of variables defined for the interrupted object. 

Next Option for Additional Commands During Program Interruption 

When displaying or modifying a breakpoint or watchpoint, you will notice that the debugger command 
BREAK is attached to each of them. This command invokes the Debug Break window and must not be
removed. However, you can specify additional debugger commands to be executed during the program
interruption after the BREAK command. An additional command is executed when you enter either the
command NEXT in the Command line or the function code N in the Debug Break window. 

You enter the debugger commands in the Commands field of the appropriate breakpoint or watchpoint
maintenance screen as shown in the following example: 

11:38:55              ***** NATURAL TEST UTILITIES *****             2007-09-06
Test Mode ON                - Modify Breakpoint -               Object         
                                                                               
Spy number ..............   1                                                  
Initial state ........... A (A = Active, I = Inactive)                         
Breakpoint name ......... DEBUG1P0170_   DBID/FNR ....... 10/32                
Object name ............. DEBUG1P_       Library ........ DEBUG                
Line number ............. 0170                                                 
Label ................... ________________________________                     
Skips before execution .. ____0                                                
Max number executions ... ____0                                                
                                                                               
                                                                               
Commands ... BREAK_______________________________________________________      
             STACK_______________________________________________________      
             DIS VAR BONUS_______________________________________________      
             ____________________________________________________________      
             ____________________________________________________________      
             ____________________________________________________________      
                                                                               
Command ===>                                                                   
                                                                         
                                                                               
Enter-PF1---PF2---PF3---PF4---PF5---PF6---PF7---PF8---PF9---PF10--PF11--PF12---
      Help        Exit  Last  Save  Flip                                Canc

25

Debugger TutorialNext Option for Additional Commands During Program Interruption



In the example above, the command STACK instructs the debugger to view the Natural stack. The
command DIS VAR BONUS instructs the debugger to display the specified variable. This is helpful, for
example, if you set a breakpoint in a loop and always want to view the value of one particular variable
only. You then do not have to enter the DIS VAR  command repeatedly. 

For details, see the description of the field Commands in the sections Fields and Columns on Breakpoint 
Screens and Fields and Columns on Watchpoint Screens. 

Displaying Large Variables and Arrays

The Display Variable screen shows all definitions of a variable and displays its contents in alphanumeric
or hexadecimal format. For the display features available for large variables, whose contents extend
beyond the current screen or variables with array definitions, see the section Display Variable - 
Individual. 

Printing Debugger Statistics

You can print the statistical reports produced by the debugger or download them to a PC. 

For details, see Print Objects in the section Call Statistics Maintenance and Print Statements in the section 
Statement Execution Statistics Maintenance. 

Using the Debugger in Batch Mode

The debugger is mainly designed for interactive operations in online mode. Although you can, in
principle, execute all debugger features in batch mode, processing online operations in batch (for example,
the use of PF keys) can require complex batch programming. However, there are also debugger features
for which batch processing is a convenient alternative. One example is collecting and printing statistical
data about an application as described in Example of Generating and Printing Statistics in Batch in the
section Batch Processing. 

Example Sources
This section contains the source code of the example programs and subprograms required in Sessions 1 to
5. 

Program DEBUG1P 

** PROGRAM ’DEBUG1P: CALLS ’DEBUG1N’ FOR SALARY AND BONUS CALCULATION 
**********************************************************************
DEFINE DATA                                                           
LOCAL                                                                 
1 EMPLOYEE    (A42)                                                   
1 REDEFINE EMPLOYEE                                                   
  2 NAME      (A20)                                                   
  2 NUMCHILD  (N2)                                                    
  2 ENTRYDATE (D)                                                     
  2 SALARY    (P7.2)                                                  
  2 BONUS     (P7.2)                                                  
END-DEFINE                                                            
NAME      := ’MEIER’                                                  
NUMCHILD  := 2                                                        
ENTRYDATE := D’1989-01-01’                                            
* SALARY  := 99000                                                    

26

Example SourcesDebugger Tutorial



CALLNAT ’DEBUG1N’ NAME NUMCHILD ENTRYDATE SALARY BONUS                
WRITE ’EMPLOYEE RECEIVES:’   SALARY                                   
WRITE ’    PLUS BONUS OF:’   BONUS                                    
END

Subprogram DEBUG1N 

** SUBPROGRAM ’DEBUG1N’: CALCULATES BONUS AND SALARY INCREASE           
************************************************************************
DEFINE DATA                                                             
PARAMETER                                                               
1 EMPLOYEE                                                              
  2 NAME      (A20)                                                     
  2 NUMCHILD  (N2)                                                      
  2 ENTRYDATE (D)                                                       
  2 SALARY    (P7.2)                                                    
  2 BONUS     (P7.2)                                                    
LOCAL                                                                   
1 TARGETDATE  (D)    INIT <D’2009-01-01’>                               
1 DIFFERENCE  (P3.2)                                                    
1 PERCENT     (P2.2) INIT <3.5>                                         
END-DEFINE                                                              
DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365                            
IF DIFFERENCE GE 10        /* BONUS FOR YEARS IN COMPANY                
  BONUS := SALARY * PERCENT / 100                                       
END-IF                                                                  
SALARY := SALARY + 1800    /* SALARY PLUS ANNUAL INCREASE               
END

Program DEBUG2P 

** PROGRAM ’DEBUG2P’: CALLS ’DEBUG2N’FOR SALARY AND BONUS CALCULATION   
************************************************************************
DEFINE DATA                                                             
LOCAL                                                                   
1 EMPLOYEE    (A42)                                                     
1 REDEFINE EMPLOYEE                                                     
  2 NAME      (A20)                                                     
  2 NUMCHILD  (N2)                                                      
  2 ENTRYDATE (D)                                                       
  2 SALARY    (P7.2)                                                    
  2 BONUS     (P7.2)                                                    
END-DEFINE                                                              
NAME      := ’MEIER’                                                    
NUMCHILD  := 2                                                          
ENTRYDATE := D’1989-01-01’                                              
SALARY    := 99000                                                      
CALLNAT ’DEBUG2N’ NAME NUMCHILD ENTRYDATE SALARY BONUS                  
WRITE ’EMPLOYEE RECEIVES:’   SALARY                                     
WRITE ’    PLUS BONUS OF:’   BONUS                                      
END

Subprogram DEBUG2N 

** SUBPROGRAM DEBUG2N: CALLS ’DEBUG3N’ AND ’DEBUG4N’FOR SPECIAL RATES   
************************************************************************
DEFINE DATA                                                             
PARAMETER                                                               
1 EMPLOYEE                                                              
  2 NAME      (A20)                                                     
  2 NUMCHILD  (N2)                                                      
  2 ENTRYDATE (D)                                                       

27

Debugger TutorialExample Sources



  2 SALARY    (P7.2)                                                    
  2 BONUS     (P7.2)                                                    
LOCAL                                                                   
1 TARGETDATE  (D)    INIT <D’2009-01-01’>                               
1 DIFFERENCE  (P3.2)                                                    
1 PERCENT     (P2.2) INIT <3.5>                                         
END-DEFINE                                                              
DIFFERENCE := (TARGETDATE - ENTRYDATE) / 365                            
IF DIFFERENCE GE 10        /* BONUS FOR YEARS IN COMPANY                
  BONUS := SALARY * PERCENT / 100                                       
END-IF                                                                  
IF NUMCHILD > 0                                                         
  CALLNAT ’DEBUG3N’ NUMCHILD BONUS     /* SPECIAL BONUS                 
END-IF                                                                  
CALLNAT ’DEBUG4N’ SALARY               /* SPECIAL SALARY INCREASE       
END

Subprogram DEBUG3N 

** SUBPROGRAM ’DEBUG3N’: CALCULATES SPECIAL BONUS                        
************************************************************************
DEFINE DATA                                                             
PARAMETER                                                               
1 NUMCHILD (N2)                                                         
1 BONUS    (P7.2)                                                       
END-DEFINE                                                              
BONUS := BONUS + NUMCHILD * 50                                          
END

Subprogram DEBUG4N 

** SUBPROGRAM ’DEBUG4N’: CALCULATES SPECIAL SALARY INCREASE             
************************************************************************
DEFINE DATA                                                             
PARAMETER                                                               
1 SALARY (P7.2)                                                         
END-DEFINE                                                              
DECIDE FOR FIRST CONDITION                                              
  WHEN SALARY < 50000                                                   
    SALARY := SALARY + 1800                                             
  WHEN SALARY < 70000                                                   
    SALARY := SALARY + 1200                                             
  WHEN SALARY < 90000                                                   
    SALARY := SALARY + 600                                              
  WHEN NONE                                                             
    SALARY := SALARY + 300                                              
END-DECIDE                                                              
END

28

Example SourcesDebugger Tutorial


	Debugger Tutorial
	Prerequisites
	Fundamentals of Debugging
	Session 1 - Analyzing a Natural Error
	Session 2 - Using a Breakpoint
	Session 3 - Using a Watchpoint
	Session 4 - Tracing the Logical Flow of Programs
	Session 5 - Using Statistics about the Program Execution
	Additional Hints for Using the Debugger
	Time Stamps of Objects
	Saving Breakpoints and Watchpoints
	Debug Main Menu for Maintenance Functions
	Help for Commands on Maintenance Screens
	Major Functions Available during Program Interruption
	Next Option for Additional Commands During Program Interruption
	Displaying Large Variables and Arrays
	Printing Debugger Statistics
	Using the Debugger in Batch Mode

	Example Sources
	
	Program DEBUG1P
	Subprogram DEBUG1N
	Program DEBUG2P
	Subprogram DEBUG2N
	Subprogram DEBUG3N
	Subprogram DEBUG4N




