
Using Natural Statements and System
Variables
This section contains special considerations concerning Natural data manipulation language (DML)
statements (that is, Natural native DML statements and Natural SQL DML statements), and Natural
system variables when used with SQL/DS

It mainly consists of information also contained in the Natural basic documentation set where each
Natural statement and variable is described in detail.

For an explanation of the symbols used in this section to describe the syntax of Natural statements, see
Syntax Symbols in the Natural Statements documentation.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SQL Statements in the DBLOG Utility documentation.

This section covers the following topics:

Using Natural Native DML Statements

Using Natural SQL Statements

Using Natural System Variables

Error Handling

Using Natural Native DML Statements
This section summarizes particular points you have to consider when using Natural native data
manipulation language (DML) statements with SQL/DS. Any Natural statement not mentioned in this
section can be used with SQL/DS without restriction.

Below is information on the following Natural DML statements:

BACKOUT TRANSACTION

DELETE

END TRANSACTION

FIND

GET

HISTOGRAM

READ

1

Using Natural Statements and System VariablesUsing Natural Statements and System Variables

STORE

UPDATE

BACKOUT TRANSACTION

The Natural native DML statement BACKOUT TRANSACTION undoes all database modifications made
since the beginning of the last logical transaction. Logical transactions can start either after the beginning
of a session or after the last SYNCPOINT, END TRANSACTION, or BACKOUT TRANSACTION
statement.

How the statement is translated and which command is actually issued depends on the environment:

Under CICS, the BACKOUT TRANSACTION statement is translated into an EXEC CICS ROLLBACK
command. However, in pseudo-conversational mode, only changes made to the database since the last
terminal I/O are undone. This is due to CICS-specific transaction processing, see Natural for DB2 under
CICS.

In batch mode, the BACKOUT TRANSACTION statement is translated into an SQL ROLLBACK
command.

Note:
Be aware that with terminal input in SQL/DS database loops, Natural switches to conversational mode if
no file server is used.

As all cursors are closed when a logical unit of work ends, a BACKOUT TRANSACTION statement must
not be placed within a database loop; instead, it has to be placed outside such a loop or after the outermost
loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must issue the BACKOUT TRANSACTION
statement for the external program.

DELETE

The Natural native DML statement DELETE is used to delete a row from a DB2 table which has been read
with a preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement DELETE
WHERE CURRENT OF cursor-name, which means that only the row which was read last can be
deleted.

Example:

FIND EMPLOYEES WITH NAME = ’SMITH’
 AND FIRST_NAME = ’ROGER’
DELETE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

2

BACKOUT TRANSACTIONUsing Natural Statements and System Variables

DECLARE CURSOR1 CURSOR FOR
SELECT FROM EMPLOYEES
 WHERE NAME = ’SMITH’ AND FIRST_NAME = ’ROGER’
DELETE FROM EMPLOYEES
 WHERE CURRENT OF CURSOR1

Both the SELECT and the DELETE statement refer to the same cursor.

Natural translates a Natural native DML DELETE statement into a Natural SQL DELETE statement in the
same way it translates a Natural native DML FIND statement into a Natural SQL SELECT statement.

A row read with a FIND SORTED BY cannot be deleted due to DB2 restrictions explained with the
FIND statement. A row read with a READ LOGICAL cannot be deleted either.

END TRANSACTION

The Natural native DML statement END TRANSACTION indicates the end of a logical transaction and
releases all DB2 data locked during the transaction. All data modifications are committed and made
permanent.

How the statement is translated and which command is actually issued depends on the environment:

Under CICS, the END TRANSACTION statement is translated into an EXEC CICS SYNCPOINT
command.

In batch mode, the END TRANSACTION statement is translated into an SQL COMMIT WORK command.

As all cursors are closed when a logical unit of work ends, the END TRANSACTION statement must not
be placed within a database loop; instead, it has to be placed outside such a loop or after the outermost
loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMIT command if the Natural program issues
database calls, too. The calling Natural program must issue the END TRANSACTION statement on behalf
of the external program.

Note:
With SQL/DS, the END TRANSACTION statement cannot be used to store transaction data.

FIND

The Natural native DML statement FIND corresponds to the Natural SQL statement SELECT.

Example:

Natural native DML statements:

FIND EMPLOYEES WITH NAME = ’BLACKMORE’
 AND AGE EQ 20 THRU 40
OBTAIN PERSONNEL_ID NAME AGE

Equivalent Natural SQL statement:

3

Using Natural Statements and System VariablesEND TRANSACTION

SELECT PERSONNEL_ID, NAME, AGE
 FROM EMPLOYEES
 WHERE NAME = ’BLACKMORE’
 AND AGE BETWEEN 20 AND 40

Natural internally translates a FIND statement into an SQL SELECT statement as described in Processing
of SQL Statements Issued by Natural in the section Internal Handling of Dynamic Statements. The
SELECT statement is executed by an OPEN CURSOR statement followed by a FETCH command. The
FETCH command is executed repeatedly until either all records have been read or the program flow exits
the FIND processing loop. A CLOSE CURSOR command ends the SELECT processing.

The WITH clause of a FIND statement is converted to the WHERE clause of the SELECT statement. The
basic search criterion for an SQL/DS table can be specified in the same way as for an Adabas file. This
implies that only database fields which are defined as descriptors can be used to construct basic search
criteria and that descriptors cannot be compared with other fields of the Natural view (that is, database
fields) but only with program variables or constants.

Note:
As each database field (column) of a SQL/DS table can be used for searching, any database field can be
defined as a descriptor in a Natural DDM.

The WHERE clause of the FIND statement is evaluated by Natural after the rows have been selected via
the WITH clause. Within the WHERE clause, non-descriptors can be used and database fields can be
compared with other database fields.

Note:
SQL/DS does not have sub-, super-, or phonetic descriptors.

A FIND NUMBER statement is translated into a SELECT statement containing a COUNT(*) clause. The
number of rows found is returned in the Natural system variable *NUMBER as described in the Natural
System Variables documentation.

The FIND UNIQUE statement can be used to ensure that only one record is selected for processing. If the
FIND UNIQUE statement is referenced by an UPDATE statement, a non-cursor (Searched) UPDATE
operation is generated instead of a cursor-oriented (Positioned) UPDATE operation. Therefore, it can be
used if you want to update an SQL/DS primary key. It is, however, recommended to use the Natural SQL
Searched UPDATE statement to update a primary key.

In static mode, the FIND NUMBER and FIND UNIQUE statements are translated into a SELECT
SINGLE statement as described in the section Using Natural SQL Statements.

The FIND FIRST statement cannot be used. The PASSWORD, CIPHER, COUPLED and RETAIN clauses
cannot be used either.

The SORTED BY clause of a FIND statement is translated into the SQL SELECT ... ORDER BY
clause, which follows the search criterion. Because this produces a read-only result table, a row read with
a FIND statement that contains a SORTED BY clause cannot be updated or deleted.

A limit on the depth of nested database loops can be specified at installation time. If this limit is exceeded,
a Natural error message is returned.

4

FINDUsing Natural Statements and System Variables

GET

The Natural native DML statement GET is based on Adabas internal sequence numbers (ISNs) and
therefore cannot be used with SQL/DS tables.

HISTOGRAM

The Natural native DML statement HISTOGRAM returns the number of rows in a table which have the
same value in a specific column. The number of rows is returned in the Natural system variable *NUMBER
as described in the Natural System Variables documentation.

Example:

Natural native DML statements:

HISTOGRAM EMPLOYEES FOR AGE
OBTAIN AGE

Equivalent Natural SQL statement:

SELECT COUNT(*), AGE FROM EMPLOYEES
 WHERE AGE > -999
 GROUP BY AGE
 ORDER BY AGE

Natural translates the HISTOGRAM statement into an SQL SELECT statement, which means that the
control flow is similar to the flow explained for the FIND statement.

READ

The Natural native DML statement READ can also be used to access SQL/DS tables. Natural translates a
READ statement into a Natural SQL SELECT statement.

READ PHYSICAL and READ LOGICAL can be used; READ BY ISN , however, cannot be used, as
there is no DB2 equivalent to Adabas ISNs. The PASSWORD and CIPHER clauses cannot be used either.

Since a READ LOGICAL statement is translated into a SELECT ... ORDER BY statement, which
produces a read-only table, a row read with a READ LOGICAL statement cannot be updated or deleted
(see Example 1). The start value can only be a constant or a program variable; any other field of the
Natural view (that is, any database field) cannot be used.

A READ PHYSICAL statement is translated into a SELECT statement without an ORDER BY clause and
can therefore be updated or deleted (see Example 2).

Example 1:

The Natural native DML statements:

READ PERSONNEL BY NAME
OBTAIN NAME FIRSTNAME DATEOFBIRTH

Equivalent Natural SQL statement:

5

Using Natural Statements and System VariablesGET

SELECT NAME, FIRSTNAME, DATEOFBIRTH FROM PERSONNEL
 WHERE NAME >= ’ ’
 ORDER BY NAME

Example 2:

The Natural native DML statements:

READ PERSONNEL PHYSICAL
OBTAIN NAME

Equivalent Natural SQL statement:

SELECT NAME FROM PERSONNEL

If the READ statement contains a WHERE clause, this clause is evaluated by the Natural processor after the
rows have been selected according to the descriptor value(s) specified in the search criterion.

STORE

The Natural native DML statement STORE is used to add a row to an SQL/DS table. The STORE
statement corresponds to the SQL statement INSERT.

Example:

The Natural native DML statement:

STORE RECORD IN EMPLOYEES
 WITH PERSONNEL_ID = ’2112’
 NAME = ’LIFESON’
 FIRST_NAME = ’ALEX’

Equivalent Natural SQL statement:

INSERT INTO EMPLOYEES (PERSONNEL_ID, NAME, FIRST_NAME)
 VALUES (’2112’, ’LIFESON’, ’ALEX’)

The PASSWORD, CIPHER and USING/GIVING NUMBER clauses of the STORE statement cannot be
used.

UPDATE

The Natural native DML statement UPDATE updates a row in an SQL/DS table which has been read with
a preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement UPDATE WHERE
CURRENT OF cursor-name (Positioned UPDATE), which means that only the row which was read
last can be updated.

UPDATE with FIND/READ

As explained with the Natural native DML statement FIND, Natural translates a FIND statement into an
SQL SELECT statement. When a Natural program contains a DML UPDATE statement, this statement is
translated into an SQL UPDATE statement and a FOR UPDATE OF clause is added to the SELECT
statement.

6

STOREUsing Natural Statements and System Variables

Example:

FIND EMPLOYEES WITH SALARY < 5000
 ASSIGN SALARY = 6000
 UPDATE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR
SELECT SALARY FROM EMPLOYEES WHERE SALARY < 5000
 FOR UPDATE OF SALARY
UPDATE EMPLOYEES SET SALARY = 6000
 WHERE CURRENT OF CURSOR1

Both the SELECT and the UPDATE statement refer to the same cursor.

Due to DB2 logic, a column (field) can only be updated if it is contained in the FOR UPDATE OF clause;
otherwise updating this column (field) is rejected. Natural includes automatically all columns (fields) into
the FOR UPDATE OF clause which have been modified anywhere in the Natural program or which are
input fields as part of a Natural map.

However, a DB2 column is not updated if the column (field) is marked as "not updateable" in the Natural
DDM. Such columns (fields) are removed from the FOR UPDATE OF list without any warning or error
message. The columns (fields) contained in the FOR UPDATE OF list can be checked with the LISTSQL
command.

The Adabas short name in the Natural DDM determines whether a column (field) can be updated.

The following table shows the ranges that apply:

Short-Name Range Type of Field

AA - N9 non-key field that can be updated

Aa - Nz non-key field that can be updated

OA - O9 primary key field

PA - P9 ascending key field that can be updated

QA - Q9 descending key field that can be updated

RA - X9 non-key field that cannot be updated

Ra - Xz non-key field that cannot be updated

YA - Y9 ascending key field that cannot be updated

ZA - Z9 descending key field that cannot be updated

1A - 9Z non-key field that cannot be updated

1a - 9z non-key field that cannot be updated

Be aware that a primary key field is never part of a FOR UPDATE OF list. A primary key field can only
be updated by using a non-cursor UPDATE operation (see also Natural SQL UPDATE statement in the
section Using Natural SQL Statements).

7

Using Natural Statements and System VariablesUPDATE

A row read with a FIND statement that contains a SORTED BY clause cannot be updated (due to SQL/DS
limitations as explained with the FIND statement). A row read with a READ LOGICAL statement cannot
be updated either (as explained with the READ statement).

If a column is to be updated which is redefined as an array, it is strongly recommended to update the
whole column and not individual occurrences; otherwise, results are not predictable. To do so, in reporting
mode you can use the OBTAIN statement, which must be applied to all field occurrences in the column to
be updated. In structured mode, however, all these occurrences must be defined in the corresponding
Natural view.

The data locked by an UPDATE statement are released when an END TRANSACTION (COMMIT WORK)
or BACKOUT TRANSACTION (ROLLBACK WORK) statement is executed by the program.

Note:
If a length indicator field or NULL indicator field is updated in a Natural program without updating the
field (column) it refers to, the update of the column is not generated for SQL/DS and thus no updating
takes place.

UPDATE with SELECT

In general, the Natural native DML statement UPDATE can be used in both structured and reporting mode.
However, after a SELECT statement, only the syntax defined for Natural structured mode is allowed:

UPDATE [RECORD] [IN] [STATEMENT] [(r)]

This is due to the fact that in combination with the SELECT statement, the Natural native DML UPDATE
statement is only allowed in the special case of:

...
SELECT ...
 INTO VIEW view-name
 ...

Thus, only a whole Natural view can be updated; individual columns (fields) cannot.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
END-DEFINE

SELECT *
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE NAME LIKE ’S%’

 IF NAME = ’SMITH’
 ADD 1 TO AGE
 UPDATE
 END-IF

END-SELECT
 ...

8

UPDATEUsing Natural Statements and System Variables

In combination with the Natural native DML UPDATE statement, any other form of the SELECT
statement is rejected and an error message is returned.

In all other respects, the Natural native DML UPDATE statement can be used with the SELECT statement
in the same way as with the Natural FIND statement.

Using Natural SQL Statements
This section covers points you have to consider when using Natural SQL statements with SQL/DS. These
SQL/DS-specific points partly consist in syntax enhancements which belong to the Extended Set of
Natural SQL syntax. The Extended Set is provided in addition to the Common Set to support
database-specific features; see Common Set and Extended Set in the section SQL Statements in the Natural
Statements documentation. It also includes features not supported by SQL/DS.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SQL Statements in the DBLOG Utility documentation.

Below is information on the following Natural SQL statements and on common syntactical items:

Syntactical Items Common to Natural SQL Statements

COMMIT - SQL

DELETE - SQL

INSERT - SQL

PROCESS SQL

ROLLBACK - SQL

SELECT - SQL

UPDATE - SQL

Syntactical Items Common to Natural SQL Statements

The following common syntactical items are either SQL/DS-specific and do not conform to the standard
SQL syntax definitions (that is, to the Common Set of Natural SQL syntax) or impose restrictions when
used with SQL/DS (see also SQL Statements in the Natural Statements documentation).

Below is information on the following common syntactical items:

atom
comparison
factor
scalar-function
scalar-operator
special-register
units

9

Using Natural Statements and System VariablesUsing Natural SQL Statements

atom

An atom can be either a parameter (that is, a Natural program variable or host variable) or a constant.
When running dynamically, however, the use of host variables is restricted by SQL/DS. For further
details, refer to the relevant SQL/DS literature by IBM.

comparison

The comparison operators specific to SQL/DS belong to the Natural Extended Set. For a description, refer
to Comparison Predicate in Search Condition, Natural SQL Statements in the Natural Statements
documentation.

factor

The following factors are specific to SQL/DS and belong to the Natural SQL Extended Set:

special-register
scalar-function (scalar-expression, ...)
scalar-expression unit
case-expression

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions. Scalar functions are specific to SQL/DS and belong to the Natural SQL Extended Set.

The following scalar functions are supported:

CHAR
DATE
DAY
DAYS
DECIMAL
DIGITS
FLOAT
HEX
HOUR
INTEGER
LENGTH
MICROSECOND
MINUTE
MONTH
SECOND
STRIP
SUBSTR
TIME
TIMESTAMP
TRANSLATE
VALUE
VARGRAPHIC
YEAR

10

Syntactical Items Common to Natural SQL StatementsUsing Natural Statements and System Variables

Each scalar function is followed by one or more scalar expressions in parentheses. The number of scalar
expressions depends upon the scalar function. Multiple scalar expressions must be separated from one
another by commas.

Example:

SELECT NAME
 INTO NAME
 FROM SQL-PERSONNEL
 WHERE SUBSTR (NAME, 1, 3) = ’Fri’
 ...

scalar-operator

The concatenation operator (CONCAT or ||) does not conform to standard SQL. It is specific to SQL/DS
and belongs to the Natural Extended Set.

special-register

The following special registers do not conform to standard SQL. They are specific to SQL/DS and belong
to the Natural SQL Extended Set:

USER
CURRENT TIMEZONE
CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP

A reference to a special register returns a scalar value.

units

Units, also called "durations", are specific to SQL/DS and belong to the Natural SQL Extended Set.

The following units are supported:

DAY
DAYS
HOUR
HOURS
MICROSECOND
MICROSECONDS
MINUTE
MINUTES
MONTH
MONTHS
SECOND
SECONDS
YEAR
YEARS

11

Using Natural Statements and System VariablesSyntactical Items Common to Natural SQL Statements

COMMIT - SQL

The Natural SQL statement COMMIT indicates the end of a logical transaction and releases all SQL/DS
data locked during the transaction. All data modifications are made permanent.

COMMIT is a synonym for the Natural native DML statement END TRANSACTION as described in the
section Using Natural Native DML Statements.

As all cursors are closed when a logical unit of work ends, the COMMIT statement must not be placed
within a database loop; instead, it has to be placed outside such a loop or after the outermost loop of
nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMIT command if the Natural program issues
database calls, too. The calling Natural program must issue the COMMIT statement on behalf of the
external program.

For further details and statement syntax, see COMMIT - SQL in the Natural Statements documentation.

DELETE - SQL

Both the cursor-oriented or Positioned DELETE, and the non-cursor or Searched DELETE statements are
supported as part of Natural SQL; the functionality of the Positioned DELETE statement corresponds to
that of the Natural native DML DELETE statement.

With SQL/DS, a table name in the FROM clause of a Searched DELETE statement can be assigned a
correlation-name. This does not correspond to the standard SQL syntax definition and therefore
belongs to the Natural SQL Extended Set.

For further details and statement syntax, see DELETE - SQL in the Natural Statements documentation.

INSERT - SQL

The Natural SQL statement INSERT is used to add one or more new rows to a table.

Since the SQL INSERT statement can contain a select expression, all the SQL/DS-specific common
syntactical items described above apply.

For further details and statement syntax, see INSERT - SQL in the Natural Statements documentation.

PROCESS SQL

The Natural SQL statement PROCESS SQL is used to issue SQL statements to the underlying database.
The statements are specified in a statement-string, which can also include constants and
parameters. The set of statements which can be issued is also referred to as Flexible SQL and comprises
those statements which can be issued with the SQL statement EXECUTE.

In addition, Flexible SQL includes the following SQL/DS-specific statement CONNECT.

With the PROCESS SQL statement you can also specify the statement-string SQLDISCONNECT
to release the connection to your SQL/DS application server. SQLDISCONNECT is transformed into the
SQL/DS ROLLBACK WORK RELEASE command.

12

COMMIT - SQLUsing Natural Statements and System Variables

Execution of SQLDISCONNECT is only allowed if no transaction (logical unit of work) is open.
Therefore, an explicit COMMIT (END TRANSACTION) or ROLLBACK (BACKOUT TRANSACTION)
statement is required before executing SQLDISCONNECT, otherwise an error message is returned.

Note:
To avoid transaction synchronization problems between the Natural environment and SQL/DS, the
COMMIT and ROLLBACK statements must not be used within PROCESS SQL.

For further details and statement syntax, see PROCESS SQL in the Natural Statements documentation.

ROLLBACK - SQL

The Natural SQL statement ROLLBACK undoes all database modifications made since the beginning of
the last logical transaction. Logical transactions can start either after the beginning of a session or after the
last COMMIT/END TRANSACTION or ROLLBACK/BACKOUT TRANSACTION statement. All records
held during the transaction are released.

ROLLBACK is a synonym for the Natural statement BACKOUT TRANSACTION as described in the
section Using Natural Native DML Statements.

As all cursors are closed when a logical unit of work ends, a ROLLBACK statement must not be placed
within a database loop; instead, it has to be placed outside such a loop or after the outermost loop of
nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must issue the ROLLBACK statement on behalf of
the external program.

For further details and statement syntax, see ROLLBACK -SQL in the Natural Statements documentation.

SELECT - SQL

The Natural SQL SELECT statement supports both the cursor-oriented selection, which is used to retrieve
an arbitrary number of rows, and the non-cursor selection (Singleton SELECT), which retrieves at most
one single row.

SELECT - Cursor-Oriented

Like the Natural native DML FIND statement, the cursor-oriented SELECT statement is used to select a
set of rows (records) from one or more SQL/DS tables, based on a search criterion. Since a database loop
is initiated, the loop must be closed by a LOOP statement (in reporting mode) or by an END-SELECT
statement (in structured mode). With this construction, Natural uses the same loop processing as with the
FIND statement. In addition, no cursor management is required from the application program; it is
automatically handled by Natural.

For further details and syntax, see SELECT SQL, Syntax 1 - Cursor-Oriented Selection in the Natural
Statements documentation.

13

Using Natural Statements and System VariablesROLLBACK - SQL

SELECT SINGLE - Non-Cursor-Oriented

The Natural SQL statement SELECT SINGLE provides the functionality of a non-cursor selection
(Singleton SELECT); that is, a select expression that retrieves at most one row without using a cursor.

Since SQL/DS supports the Singleton SELECT command in static SQL only, in dynamic mode, the
Natural SELECT SINGLE statement is executed like a set-level SELECT statement, which results in a
cursor operation. However, Natural checks the number of rows returned by SQL/DS. If more than one row
is selected, a corresponding error message is returned.

For further details and syntax, see SELECT SQL, Syntax 2 - Non-Cursor Selection in the Natural
Statements documentation.

UPDATE - SQL

Both the cursor-oriented or Positioned UPDATE and the non-cursor or Searched UPDATE statements are
supported as part of Natural SQL. Both of them reference either a table or a Natural view.

With SQL/DS, the name of a table or Natural view to be referenced by a Searched UPDATE can be
assigned a correlation-name. This does not correspond to the standard SQL syntax definition and
therefore belongs to the Natural Extended Set.

The Searched UPDATE statement must be used, for example, to update a primary key field, since SQL/DS
does not allow updating of columns of a primary key by using a Positioned UPDATE statement.

Note:
If you use the SET * notation, all fields of the referenced Natural view are added to the FOR UPDATE
OF and SET lists. Therefore, ensure that your view contains only fields which can be updated; otherwise,
a negative SQLCODE is returned by SQL/DS.

For further details and syntax, see UPDATE - SQL in the Natural Statements documentation.

Using Natural System Variables
When used with DB2, there are restrictions and/or special considerations concerning the following Natural
system variables:

*ISN

*NUMBER

*ROWCOUNT

For information on restrictions and/or special considerations, refer to the section Database-Specific
Information in the corresponding system variable documentation.

Error Handling
In contrast to the normal Natural error handling, where either an ON ERROR statement is used to intercept
execution time errors or standard error message processing is performed and program execution is
terminated, the enhanced error handling of Natural for DB2 provides an application controlled reaction to
the encountered SQL error.

14

Using Natural System VariablesUsing Natural Statements and System Variables

Two Natural subprograms, NDBERR and NDBNOERR, are provided to disable the usual Natural error
handling and to check the encountered SQL error for the returned SQL code. This functionality replaces
the E function of the DB2SERV interface, which is still provided but no longer documented.

For further information on Natural subprograms provided for SQL/DS, see the section Interface
Subprograms.

Example:

DEFINE DATA LOCAL
 01 #SQLCODE (I4)
 01 #SQLSTATE (A5)
 01 #SQLCA (A136)
 01 #DBMS (B1)
 END-DEFINE
 *
 * Ignore error from next statement
 *
 CALLNAT ’NDBNOERR’
 *
 * This SQL statement produces an SQL error
 *
 INSERT INTO SYSIBH-SYSTABLES (CREATOR, NAME, COLCOUNT)
 VALUES (’SAG’, ’MYTABLE’, ’3’)
 *
 * Investigate error
 *
 CALLNAT ’NDBERR’ #SQLCODE #SQLSTATE #SQLCA #DBMS
 *
 IF #DBMS NE 2 /* not DB2
 MOVE 3700 TO *ERROR-NR
 END-IF
 *
 DECIDE ON FIRST VALUE OF #SQLCODE
 VALUE 0, 100 /* successful execution
 IGNORE
 VALUE -803 /* duplicate row
 /* UPDATE existing record
 /*
 IGNORE
 NONE VALUE
 MOVE 3700 TO *ERROR-NR
 END-DECIDE
 *
 END

15

Using Natural Statements and System VariablesError Handling

	Using Natural Statements and System Variables
	Using Natural Native DML Statements
	BACKOUT TRANSACTION
	DELETE
	END TRANSACTION
	FIND
	GET
	HISTOGRAM
	READ
	STORE
	UPDATE
	UPDATE with FIND/READ
	UPDATE with SELECT

	Using Natural SQL Statements
	Syntactical Items Common to Natural SQL Statements
	atom
	comparison
	factor
	scalar-function
	scalar-operator
	special-register
	units

	COMMIT - SQL
	DELETE - SQL
	INSERT - SQL
	PROCESS SQL
	ROLLBACK - SQL
	SELECT - SQL
	SELECT - Cursor-Oriented
	SELECT SINGLE - Non-Cursor-Oriented

	UPDATE - SQL

	Using Natural System Variables
	Error Handling

