
Interface Subprograms
Several Natural and non-Natural subprograms are available to provide you with internal information from
Natural SQL Gateway or specific functions for which no equivalent Natural statements exist. Natural
subprograms are invoked with the Natural CALLNAT statement.

Overview of Interface Subprograms

Subprogram Function

NDBCONV Sets or resets conversational mode 2.

NDBERR Provides diagnostic information on the most recently executed SQL call.

NDBISQL Executes SQL statements in dynamic mode.

NDBNOERR Suppresses normal Natural error handling.

NDBNROW Obtains the number of rows affected by a Natural SQL statement.

NDBSTMP Provides an SQL TIMESTAMP column as an alphanumeric field and vice versa.

All these subprograms are provided in the Natural system library SYSTEM on the system file FNAT.

For detailed information on these subprgrams, follow the links shown in the table above and read the
description of the call format and of the parameters in the text member provided with the subprogram
(subprogram-nameT).

NDBCONV Subprogram
The Natural subprogram NDBCONV is used to either set or reset the conversational mode 2 in CICS
environments. Conversational mode 2 means that update transactions are spawned across terminal I/Os
until either a COMMIT or ROLLBACK has been issued (Caution SQL and CICS resources are kept across
terminal I/Os!). This means conversational mode 2 has the same effect as the Natural profile parameter
PSEUDO=OFF, except that the conversational mode is entered after an SQL update statement (UPDATE,
DELETE, INSERT) and left again after a COMMIT or ROLLBACK, while PSEUDO=OFF causes
conversational mode for the total Natural session.

A sample program called CALLCONV is provided in library SYSDB2; it demonstrates how to invoke
NDBCONV. A description of the call format and of the parameters is provided in the text member
NDBCONVT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBCONV’ #CONVERS #RESPONSE

The various parameters are described in the following table:

1

Interface SubprogramsInterface Subprograms

Parameter Format/Length Explanation

#CONVERS I1 Contains the desired conversational mode(input)

#RESPONSEI4 Contains the response of NDBCONV(output)

The #CONVERS parameter can contain the following values:

Code Explanation

0 The conversational mode 2 has to be reset.

1 The conversational mode 2 has to be set.

The #RESPONSE parameter can contain the following response codes:

Code Explanation

0 The conversational mode 2 has been successfully set or reset.

-1 The specified value of #CONVERS is invalid, the conversational mode has not been changed.

-2 NDBCONV is called in a environment, which is not a CICS environment, where the conversational
mode 2 is not supported.

NDBERR Subprogram
The Natural subprogram NDBERR replaces Function E of the DB2SERV interface, which is still provided
but no longer documented. It provides diagnostic information on the most recent SQL call. It also returns
the database type which returned the error. NDBERR is typically called if a database call returns a non-zero
SQL code, which means a NAT3700 error.

A sample program called CALLERR is provided on the installation tape; it demonstrates how to invoke
NDBERR. A description of the call format and of the parameters is provided in the text member
NDBERRT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBERR’ #SQLCODE #SQLSTATE #SQLCA #DBTYPE

The parameters are described in the following table:

2

NDBERR SubprogramInterface Subprograms

Parameter Format/Length Explanation

#SQLCODE I4 Returns the SQL return code.

#SQLSTATE A5 Returns a return code for the output of the most recently executed SQL
statement.

#SQLCA A136 Returns the SQL communication area of the most recent SQL access.

#DBTYPE B1 Returns the identifier (in hexadecimal format) for the currently used
database.

X’04’ Identifies access via Natural SQL Gateway.

X’02’ Identifies access via Natural for DB2.

NDBISQL Subprogram
The Natural subprogram NDBISQL is used to execute SQL statements in dynamic mode. The SELECT
statement and all SQL statements which can be prepared dynamically by the accessed SQL database
system can be passed to NDBISQL.

A sample program called CALLISQL is provided on the installation tape; it demonstrates how to invoke
NDBISQL. A description of the call format and of the parameters is provided in the text member
NDBISQLT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBISQL’#FUNCTION #TEXT-LEN #TEXT (*) #SQLCA #RESPONSE #WORK-LEN #WORK (*)

The various parameters are described in the following table:

Parameter Format/Length Explanation

#FUNCTION A8 For valid functions, see below.

#TEXT-LEN I2 Length of the SQL statement or of the buffer for the return area.

#TEXT A1(1:V) Contains the SQL statement or receives the return code.

#SQLCA A136 Contains the SQLCA.

#RESPONSEI4 Returns a response code.

#WORK-LENI2 Length of the workarea specified by #WORK (optional).

#WORK A1(1:V) Workarea used to hold SQLDA/SQLVAR and auxiliary fields across calls
(optional).

Valid functions for the #FUNCTION parameter are:

3

Interface SubprogramsNDBISQL Subprogram

Function Parameter Explanation

CLOSE Closes the cursor for the SELECT statement.

EXECUTE#TEXT-LEN
#TEXT (*)

Executes the SQL statement.
Contains the length of the statement.
Contains the SQL statement.
The first two characters must be blank.

FETCH #TEXT-LEN
#TEXT (*)

Returns a record from the SELECT statement.
Size of #TEXT (in bytes).
Buffer for the record.

TITLE #TEXT-LEN
#TEXT (*)

Returns the header for the SELECT statement.
Size of #TEXT (in bytes);
receives the length of the header (= length of the record).
Buffer for the header line.

The #RESPONSE parameter can contain the following response codes:

Code Function Explanation

5 EXECUTE The statement is a SELECT statement.

6 TITLE , FETCH Data are truncated; only set on first TITLE or FETCH call.

100 FETCH No record / end of data.

-2 Unsupported data type (for example, GRAPHIC).

-3 TITLE , FETCH No cursor open;
probably invalid call sequence or statement other than SELECT.

-4 Too many columns in result table.

-5 SQL code from call.

-6 Version mismatch.

-7 Invalid function.

-8 Error from SQL call.

-9 Workarea invalid (possibly relocation).

-10 Interface not available.

-11 EXECUTE First two bytes of statement not blank.

Call Sequence

The first call must be an EXECUTE call. NDBISQL has a fixed SQLDA AREA holding space for 50
columns. If this area is too small for a particular SELECT it is possible to supply an optional work area on
the calls to NDBISQL by specifying #WORK-LEN (I2) and #WORK(A1/1:V) .

This workarea is used to hold the SQLDA and temporary work fields like null indicators and auxiliary
fields for numeric columns. Calculate 16 bytes for SQLDA header and 44 bytes for each result column
and 2 bytes null indicator for each column and place for each numeric column, when supplying
#WORK-LEN and #WORK(*) during NDBISQL calls. If these optional parameters are specified on an

4

NDBISQL SubprogramInterface Subprograms

EXECUTE call they have also to be specified on any following call.

If the statement is a SELECT statement (that is, response code 5 is returned), any sequence of TITLE and
FETCH calls can be used to retrieve the data. A response code of 100 indicates the end of the data.

The cursor must be closed with a CLOSE call.

Function code EXECUTE implicitly closes a cursor which has been opened by a previous EXECUTE call
for a SELECT statement.

In TP environments, no terminal I/O can be performed between an EXECUTE call and any TITLE ,
FETCH or CLOSE call that refers to the same statement.

NDBNOERR Subprogram
The Natural subprogram NDBNOERR is used to suppress Natural NAT3700 errors caused by the next SQL
call. This allows a program controlled continuation if an SQL statement produces a non-zero SQL code.
After the SQL call has been performed, NDBERR is used to investigate the SQL code.

A sample program called CALLNOER is provided on the installation tape; it demonstrates how to invoke
NDBNOERR. A description of the call format and of the parameters is provided in the text member
NDBNOERT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBNOERR’

There are no parameters provided with this subprogram.

Note:
Only NAT3700 errors (that is, non-zero SQL response codes) are suppressed, and also only errors caused
by the next following SQL call.

Restrictions with Database Loops

If NDBNOERR is called before a statement that initiates a database loop and an initialization error
occurs, no processing loop will be initiated, unless a IF NO RECORDS FOUND clause has been
specified.

If NDBNOERR is called within a database loop, it does not apply to the processing loop itself, but
only to the SQL statement subsequently executed inside this loop.

NDBNROW Subprogram
The Natural subprogram NDBNROW is used to obtain the number of rows affected by the Natural SQL
statements Searched UPDATE, Searched DELETE, and INSERT. The number of rows affected is read
from the SQL communication area (SQLCA). A positive value represents the number of affected rows,
whereas a value of minus one (-1) indicates that all rows of a table in a segmented tablespace have been
deleted; see also the Natural system variable *NUMBER as described in the Natural System Variables
documentation.

5

Interface SubprogramsNDBNOERR Subprogram

A sample program called CALLNROW is provided on the installation tape; it demonstrates how to invoke
NDBNROW. A description of the call format and of the parameters is provided in the text member
NDBNROWT.

The calling Natural program must use the following syntax:

CALLNAT ’NDBNROW’ #NUMBER

The parameter #NUMBER (I4) contains the number of affected rows.

NDBSTMP Subprogram
For SQL, Natural provides a TIMESTAMP column as an alphanumeric field (A26) of the format
YYYY-MM-DD-HH.MM.SS.MMMMMM.

Since Natural does not yet support computation with such fields, the Natural subprogram NDBSTMP is
provided to enable this kind of functionality. It converts Natural time variables to SQL time stamps and
vice versa and performs SQL time stamp arithmetics.

A sample program called CALLSTMP is provided on the installation tape; it demonstrates how to invoke
NDBSTMP. A description of the call format and of the parameters is provided in the text member
NDBSTMPT.

The functions available are:

Code Explanation

ADD Adds time units (labeled durations) to a given SQL time stamp and returns a Natural time
variable and a new SQL time stamp.

CNT2 Converts a Natural time variable (format T) into a SQL time stamp (column type TIMESTAMP)
and labeled durations.

C2TN Converts a SQL time stamp (column type TIMESTAMP) into a Natural time variable (format T)
and labeled durations.

DIFF Builds the difference between two given SQL time stamps and returns labeled durations.

GEN Generates a SQL time stamp from the current date and time values of the Natural system variable
*TIMX and returns a new SQL time stamp.

SUB Subtracts labeled durations from a given SQL time stamp and returns a Natural time variable and
a new SQL time stamp.

TEST Tests a given SQL time stamp for valid format and returns TRUE or FALSE.

Note:
Labeled durations are units of year, month, day, hour, minute, second and microsecond.

6

NDBSTMP SubprogramInterface Subprograms

	Interface Subprograms
	
	
	Overview of Interface Subprograms

	NDBCONV Subprogram
	NDBERR Subprogram
	NDBISQL Subprogram
	
	Call Sequence

	NDBNOERR Subprogram
	
	Restrictions with Database Loops

	NDBNROW Subprogram
	NDBSTMP Subprogram

