
Processing Natural Stored Procedures and
UDFs
Natural for DB2 supports the writing and executing of Natural stored procedures and Natural user-defined
functions (Natural UDFs).

Natural stored procedures are user-written programs that are invoked by the SQL statement CALL and
executed by DB2 in the SPAS (Stored Procedure Address Space). SPAS is a separate address space
reserved for stored procedures.

A function is an operation denoted by a function name followed by zero or more operands that are
enclosed in parentheses. A function represents a relationship between a set of input values and a set of
result values. If a function has been implemented by a user-written program, DB2 refers to it as a
user-defined function (UDF).

The following topics are covered below:

Types of Natural UDF

PARAMETER STYLE

Writing a Natural Stored Procedure

Writing a Natural UDF

Example Stored Procedure

Example Natural User Defined Function

Types of Natural UDF
There are two types of Natural used defined functions (UDF):

Scalar UDF

The scalar UDF accepts several input arguments and returns one output value. It can be invoked by
any SQL statement like a DB2 built-in-function.

Table UDF

The table UDF accepts several input arguments and returns a set of output values comprising one
table row during each invocation.

You invoke a table UDF with a Natural SQL SELECT statement by specifying the table-function
name in the FROM Clause . A table UDF performs as a DB2 table and is invoked for each FETCH
operation for the table-function specified in the SELECT statement.

1

Processing Natural Stored Procedures and UDFsProcessing Natural Stored Procedures and UDFs

PARAMETER STYLE
The PARAMETER STYLE identifies the linkage convention used to pass parameters to a DB2 stored
procedure or a DB2 user defined functions (UDFs).

This section describes the PARAMETER STYLEs and the STCB Natural for DB2 uses for processing
Natural for DB2 stored procedures or Natural UDFs.

Note:
PARAMETER STYLE GENERAL (or GENERAL WITH NULL) and STCB Layout only apply to Natural
stored procedures.

GENERAL and GENERAL WITH NULL

STCB Layout

DB2SQL

GENERAL and GENERAL WITH NULL

Note:
Only applies to Natural stored procedures.

A Natural stored procedure defined with PARAMETER STYLE GENERAL only receives the user
parameters specified.

A Natural stored procedure defined with PARAMETER STYLE GENERAL WITH NULL receives the
user parameters specified and, additionally, a NULL indicator array that contains one NULL indicator for
each user parameter.

Natural stored procedures defined with PARAMETER STYLE GENERAL/PARAMETER STYLE
GENERAL WITH NULL, require that the definition of the stored procedure within the DB2 catalog
includes one additional parameter of the type VARCHAR in front of the user parameters of the stored
procedure.

This parameter in front of the parameters is the Stored Procedure Control Block (STCB); see also STCB
Layout below.

Below is information on:

Stored Procedure Control Block
Example of PARAMETER STYLE GENERAL
Example of GENERAL WITH NULL

Stored Procedure Control Block

The Stored Procedure Control Block (STCB) contains information the Natural for DB2 server stub uses to
execute Natural stored procedures, such as the library and the subprogram to be invoked. It also contains
the format descriptions of the parameters passed to the stored procedure.

2

PARAMETER STYLEProcessing Natural Stored Procedures and UDFs

The STCB is invisible to the Natural stored procedure called. The STCB is evaluated by the Natural for
DB2 server stub and stripped off the parameter list that is passed to the Natural stored procedure.

If the caller of a Natural stored procedure defined with PARAMETER STYLE GENERAL/PARAMETER
STYLE GENERAL WITH NULL is a Natural program, the program must use a Natural SQL
CALLDBPROC statement with the keyword CALLMODE=NATURAL.

If the caller of the Natural stored procedure is not a Natural program, the caller has to set up the STCB for
the DB2 CALL statement and pass the STCB as the first parameter.

If an error occurs during the execution of a Natural stored procedure defined with PARAMETER STYLE
GENERAL/PARAMETER STYLE GENERAL WITH NULL, the error message text is returned to the
STCB.

If the caller is a Natural program that uses CALLDBPROC and CALLMODE=NATURAL, the Natural for
DB2 runtime will wrap up the error text in the NAT3286 error message.

Example of PARAMETER STYLE GENERAL

In the Natural stored procedure, define the parameters as shown in the example program below:

DEFINE DATA PARAMETER
01 P1 ...
01 P2 ...
...
...
01 P n ...
LOCAL
...
...
END-DEFINE

Example of GENERAL WITH NULL

In the Natural stored procedure, define the parameters as shown in the example program below:

DEFINE DATA PARAMETER
01 P1 ...
01 P2 ...
...
...
01 P n ...
01 NULL-INDICATOR-ARRAY (I2/1: n)
LOCAL
...
...
END-DEFINE

STCB Layout

Note:
Only applies to Natural stored procedures.

The following table describes the first parameter passed between the caller and the Natural stored
procedure if CALLMODE=NATURAL is specified in a Natural SQL CALLDBPROC statement.

3

Processing Natural Stored Procedures and UDFsSTCB Layout

Name Format Processing Mode Server

STCBL I2 Input (size of following information)

Procedure Information

STCBLENG A4 Input (printable STCBL)

STCBID A4 Input (STCB)

STCBVERS A4 Input (version of STCB 310)

STCBUSER A8 Input (user ID)

STCBLIB A8 Input (library)

STCBPROG A8 Input (calling program)

STCBPSW A8 Unused (password)

STCBSTNR A4 Input (CALLDBPROC statement number)

STCBSTPC A8 Input (procedure called)

STCBPANR A4 Input (number of parameters)

Error Information

STCBERNR A5 Output (Natural error number)

STCBSTAT A1 Unused (Natural error status)

STCBLIB A8 Unused (Natural error library)

STCBPRG A8 Unused (Natural error program)

STCBLVL A1 Unused (Natural error level)

STCBOTP A1 Unused (error object type)

STCBEDYL A2 Output (error text length)

STCBEDYT A88 Output (error text)

 A100 Reserved for future use

Parameter Information

STCBPADE A
variable

Input. See also PARAMETER DESCRIPTION (STCBPADE)
below.

PARAMETER DESCRIPTION (STCBPADE)

PARAMETER DESCRIPTION contains a description for each parameter passed to the Natural stored
procedure consisting of parameter type, format specification and length. Parameter type is the AD attribute
of the Natural CALLNAT statement as described in the Natural Statements documentation.

Each parameter has the following format description element in the STCBPADE string

atl, p[, d1]....

4

STCB LayoutProcessing Natural Stored Procedures and UDFs

where

a is an attribute mark which specifies the parameter type:

Mark Type Equivalent
AD Attribute

Equivalent
DB2 Clause

M modifiable AD=M INOUT

O non-modifiable AD=O IN

A input only AD=A OUT

t is one of the following Natural format tokens:

t Description l p dl Example

A Alphanumeric 1-253 0 1-32767
or
-

A30,0
or
A30,0,10

N Numeric unpacked 1-29 0-7 - N10,3

P Packed numeric 1-29 0-7 - P13,4

I Integer 2 or 4 0 - I2,0

F Floating point 0 - I4,0

B Binary 0 - B23,0

D Date 6 0 - D6

T Time 12 0 - T12

L Logical (unsupported)

l is an integer denoting the length/scale of the field. For numeric and packed numeric fields, l
denotes the total number of digits of the field that is, the sum of the digits left and right of the
decimal point. The Natural format N7.3 is, for example, represented by N10.3. See also the table
above.

p is an integer denoting the precision of the field. It is usually 0, except for numeric and packed
fields where it denotes the number of digits right of the decimal point. See also the table above.

d1 is also an integer denoting the occurrences of the alphanumeric array (alphanumeric only). See
also the table above.

This descriptive/control parameter is invisible to the calling Natural program and to the called Natural
stored procedure, but it has to be defined in the parameter definition of the stored procedure row with the
CREATE PROCEDURE statement and the DB2 PARAMETER STYLE GENERAL/PARAMETER STYLE
GENERAL WITH NULL.

The following table shows the number of parameters which have to be defined with the CREATE
PROCEDURE statement for a Natural stored procedure defined with PARAMETER STYLE GENERAL
depending on the number of user parameters and whether the client (that is, the caller of a stored
procedure for DB2) and the server (that is, the stored procedure for DB2) is written in Natural or in

5

Processing Natural Stored Procedures and UDFsSTCB Layout

another standard programming host language. n denotes the number of user parameters.

Client\Server Natural not Natural

Natural n + 1 n (CALLMODE=NONE)

non-Natural n + 1 n

DB2SQL

Note:
PARAMETER DB2SQL applies to Natural stored procedures and Natural UDFs.

A Natural stored procedure or Natural user defined function (UDF) with PARAMETER STYLE DB2SQL
first receives the user parameters specified and then the parameters listed below, under Additional
Parameters Passed. For a Natural UDF, the input parameters are passed before the output parameters.

Additional Parameters Passed:

A NULL indicator for each user parameter of the CALL statement,

the SQLSTATE to be returned to DB2,

the qualified name of the Natural stored procedure or UDF,

the specific name of the Natural stored procedure or UDF,

the SQL DIAGNOSE field with a diagnostic string to be returned to DB2.

The SQLSTATE, the qualified name, the specific name and the DIAGNOSE field are defined in the
Natural parameter data area (PDA) DB2SQL_P which is supplied in the Natural system library SYSDB2.

If the optional feature SCRATCHPAD nnn is specified additionally in the CREATE FUNCTION
statement for the Natural UDF, the SCRATCHPAD storage parameter is passed to the Natural UDF.

Use the following definitions:

01 SCRATCHPAD A(4+nnn)
01 REDEFINE SCRATCHPAD
02 SCRATCHPAD_LENGTH(I4)
02 ...

Redefine the SCRATCHPAD in the Natural UDF according to your requirements.

The first four bytes of the SCRATCHPAD area contain an integer length field. Before initially invoking the
Natural UDF with an SQL statement, DB2 resets the SCRATCHPAD area to x’00’ and sets the size nnn
specified for the SCRATCHPAD into the first four bytes as an integer value.

Thereafter, DB2 does not reinitialize the SCRATCHPAD between the invocations of the Natural UDF for
the invoking SQL statement. Instead, after returning from the Natural UDF, the contents of the
SCRATCHPAD is preserved and restored at the next invocation of the Natural UDF.

6

DB2SQLProcessing Natural Stored Procedures and UDFs

Below is information on:

Parameter CALL TYPE
Parameter DBINFO
Determining Library, Subprogram and Parameter Formats
Invoking a Natural Stored Procedure
Error Handling
Lifetime of Natural Session
Example of DB2SQL - Natural Stored Procedure
Example of DB2SQL - Natural UDF

Parameter CALL TYPE

Note:
This parameter is optional and only applies to Natural UDFs.

The CALL TYPE parameter is passed if the FINAL CALL option is specified for a Natural scalar UDF,
or if the Natural UDF is a table UDF. The CALL TYPE parameter is an integer indicating the type of call
DB2 performs on the Natural UDF. See the DB2 SQL GUIDE for details on the parameter values provided
in the CALL_TYPE parameter.

Parameter DBINFO

This parameter is optional.

If the option DBINFO is used, the DBINFO structure is passed to the Natural stored procedure or UDF.
The DBINFO structure is described in the Natural PDA DBINFO_P supplied in the Natural system library
SYSDB2.

Determining Library, Subprogram and Parameter Formats

The Natural for DB2 server stub determines the subprogram and the library from the qualified and specific
name of the Natural stored procedure or UDF. The SCHEMA name is used as library name, and the
procedure or function name is used as subprogram name.

The ROUTINEN subprogram is supplied in the Natural system library SYSDB2. This subprogram is used
to access the DB2 catalog to determine the formats of the user parameters defined for the Natural stored
procedure or UDF. After the formats have been determined, they are stored in the Natural buffer pool.
During subsequent invocations of the Natural stored procedure, the formats are then retrieved from the
Natural buffer pool. This requires that at least READS SQL DATA is specified for Natural stored
procedures or UDFs with PARAMETER STYLE DB2SQL.

The ROUTINEN subprogram is generated statically. The DBRM of ROUTINEN is bound as package in the
COLLECTION SAGNDBROUTINENPACK. Before starting to access the DB2 catalog, the subprogram
will save the CURRENT PACKAGESET and set SAGNDBROUTINENPACK to CURRENT PACKAGESET.
After processing, the ROUTINEN subprogram will restore the CURRENT PACKAGESET saved.

7

Processing Natural Stored Procedures and UDFsDB2SQL

Invoking a Natural Stored Procedure

If the caller of the Natural stored procedure with PARAMETER STYLE DB2SQL is a Natural program,
the caller must use the Natural SQL CALLDBPROC statement with the specification
CALLMODE=NATURAL, which is the default.

Error Handling

If a Natural runtime error occurs during the execution of a Natural stored procedure or UDF with
PARAMETER STYLE DB2SQL, SQLSTATE is set to 38N99 and the diagnostic string contains the text
of the Natural error message.

If an error occurs in the Natural for DB2 server stub during the execution of the Natural stored procedure
or UDF with PARAMETER STYLE DB2SQL, the SQLSTATE is set to 38S99 and the diagnostic string
contains the text of the error message.

If the application wants to raise an error condition during the execution of a Natural stored procedure or
UDF, the SQLSTATE parameter must be set to a value other than ’00000’ . See the DB2 SQL Guide for
specifications of user errors in the SQLSTATE parameter.

Additionally, a text describing the errors can be placed in the DIAGNOSE parameter.

If a Natural table UDF wants to signal to DB2 that it has found no row to return, ’02000’ must be
returned in the SQLSTATE parameter.

Lifetime of Natural Session

For a Natural UDF that contains the attributes DISALLOW PARALLEL and FINAL CALL , the Natural
for DB2 server stub retains the Natural session allocated earlier. This Natural session will then be reused
by all subsequent UDF invocations until Natural encounters the final call.

Example of DB2SQL - Natural Stored Procedure

In a Natural stored procedure, define the parameters as shown in the example program below:

DEFINE DATA PARAMETER
01 P1 ...
01 P2 ...
...
...
01 PN ...
01 N1 (I2)
01 N2 (I2)
...
...
01 N
n (I2)
PARAMETER USING DB2SQL_P
[PARAMETER USING DBINFO_P] /* only if DBINFO is defined
LOCAL
...
...
END-DEFINE

8

DB2SQLProcessing Natural Stored Procedures and UDFs

Example of DB2SQL - Natural UDF

In a Natural UDF, define the parameters as shown in the example program below:

DEFINE DATA PARAMETER
01 PI1 ... /* first input parameter
01 PI2 ...
...
...
01 PI n ... /* last input parameter
01 RS1... /* first result parameter
...
...
01 RS n ... /* last result parameter
01 N_PI1 (I2) /* first NULL indicator
01 N_PI2 (I2)
...
...
01 N_Pi n (I2)
01 N_RS1 (I2)
...
...
01 N_RSn (I2) /* last NULL indicator
PARAMETER USING DB2SQL_P /* function, specific, sqlstate, diagnose
PARAMETER
01 SCRATCHPAD A(4+nnn) /* only if SCRATCHPAD nnn is specified
 01 REDEFINES SCRATCHPAD
02 SCRATCHPAD_LENGTH (I4)
02 ...
01 CALL_TYPE (I4) /* --- only if FINAL CALL is specified or table UDF

PARAMETER USING DBINFO_P /* ---- only if DBINFO is specified
LOCAL
...
...
END-DEFINE

Writing a Natural Stored Procedure
This section provides a general guideline of how to write a Natural Stored Procedure and what to consider
when writing it.

 To write a Natural stored procedure

1. Determine the format and attributes of the parameters that are passed between the caller and the
stored procedure. Consider creating a Natural parameter data area (PDA). Stored procedures do not
support data groups and redefinition within their parameters.

2. Determine the PARAMETER STYLE of the stored procedure: GENERAL, GENERAL WITH NULL
or DB2SQL.

If you use GENERAL WITH NULL, append the parameters to the Natural stored procedure by
defining a NULL indicator array that contains a NULL indicator (I2) for each other parameter.

9

Processing Natural Stored Procedures and UDFsWriting a Natural Stored Procedure

If you use DB2SQL, append the parameters of the Natural stored procedure by defining NULL
indicators (one for each parameter), include the PDA DB2SQL_P and the PDA DBINFO_P
(only with DBINFO specified), if desired. See also the relevant DB2 literature by IBM.

3. Decide which and how many result sets the stored procedure will return to the caller.

4. Code your stored procedure as a Natural subprogram.

Returning result sets
To return result sets, code a Natural SQL SELECT statement with the WITH RETURN option.

To return the whole result set, code an ESCAPE BOTTOM statement immediately after the
SELECT statement.

To return part of the result set code, an IF *COUNTER = 1 ESCAPE TOP END-IF
immediately following the SELECT statement. This ensures that you do not process the first
empty row that is returned by the SELECT WITH RETURN statement. To stop row processing,
execute an ESCAPE BOTTOM statement.

 If you do not leave the processing loop initiated by the SELECT WITH RETURN via ESCAPE
BOTTOM, the result set created is closed and nothing is returned to the caller.

Attention when accessing other databases
You can access other databases (for instance Adabas) within a Natural stored procedure.
However, keep in mind that your access to other databases is synchronized neither with the
updates done by the caller of the stored procedure, nor with the updates done against DB2
within the stored procedure.

Natural for DB2 handling of COMMIT and ROLLBACK statements
DB2 does not allow a stored procedure to issue Natural SQL COMMIT or ROLLBACK
statements (the execution of those statements puts the caller into a must-rollback state).
Therefore, the Natural for DB2 runtime handles those statements as follows when they are
issued from a stored procedure:

COMMIT against DB2 will be skipped. This allows the stored procedure to commit Adabas
updates without getting a must-rollback state from DB2.

ROLLBACK against DB2 will be skipped if it is created by Natural itself.

ROLLBACK against DB2 will be executed if it is user-programmed. Thus, after a Natural error,
the caller receives the Natural error information and not the unqualified must-rollback state.
Additionally, this function ensures that, if the user program backs out the transaction, every
database transaction of the stored procedure is backed out.

5. For DB2 UDB: Issue a CREATE PROCEDURE statement that defines your stored procedure, for
example:

10

Writing a Natural Stored ProcedureProcessing Natural Stored Procedures and UDFs

CREATE PROCEDURE <PROCEDURE>
 (INOUT STCB VARCHAR(274+13*N),
 INOUT <PARM1> <FORMAT>,
 INOUT <PARM2> <FORMAT>,
 INOUT <PARM3> <FORMAT>
 .
)
 DYNAMIC RESULT SET <RESULT_SETS>
 EXTERNAL NAME <LOADMOD>
 LANGUAGE ASSEMBLE
 PROGRAM TYPE <PGM_TYPE>
 PARAMETER STYLE GENERAL <WITH NULLS depending on LINKAGE>;

The data specified in angle brackets (< >) correspond to the data listed in the table above, PARM1 -
PARM3 and FORMAT depend on the call parameter list of the stored procedure. See also Example
Stored Procedure NDBPURGN, Member CR6PURGN.

6. Code your Natural program invoking the stored procedure via the Natural SQL CALLDBPROC
statement.

Code the parameters in the CALLDBPROC statement in the same sequence as they are specified in the
stored procedure. Define the parameters in the calling program in a format that is compatible with the
format defined in the stored procedure.

If you use result sets, specify a RESULT SETS clause in the CALLDBPROC statement followed by a
number of result set locator variables of FORMAT (I4) . The number of result set locator variables
should be the same as the number or result sets created by the stored procedure. If you specify fewer
than are created, some result sets are lost. If you specify more than are created, the remaining result
set locator variables are lost. The sequence of locator variables corresponds to the sequence in which
the result sets are created by the stored procedure.

Keep in mind that the fields into which the result set rows are read have to correspond to the fields
used in the SELECT WITH RETURN statement that created the result set.

Writing a Natural UDF
This section provides a general guideline of how to write a Natural user defined function (UDF) and what
to consider when writing it.

See also the section Writing a Natural Stored Procedure.

 To write a Natural UDF

1. Determine the format and attributes of the parameters, which are passed between the caller and the
stored procedure.

2. Create a Natural parameter data area (PDA).

3. Append the parameter definitions of the Natural UDF by defining NULL indicators (one for each
parameter) and include the PDA DB2SQL_P.

4. If required, code a SCRATCHPAD area in the parameter list.

11

Processing Natural Stored Procedures and UDFsWriting a Natural UDF

5. If required, code a call-type parameter. If you have specified DBINFO, include the PDA DBINFO_P.
See also the relevant DB2 literature by IBM.

6. Code your UDF as a Natural subprogram and consider the following:

Attention when accessing other databases
You can access other databases (for example, Adabas) within a Natural UDF. However, keep in
mind that your access to other databases is synchronized neither with the updates done by the
caller of the stored procedure, nor with the updates done against DB2 within the stored
procedure.

Natural for DB2 handling of COMMIT and ROLLBACK statements
DB2 does not allow a stored procedure to issue COMMIT or ROLLBACK statements; the
execution of these statements results in a must-rollback state. If a Natural stored procedure
issues a COMMIT or ROLLBACK, the Natural for DB2 runtime processes these statements as
follows:

COMMIT against DB2 is skipped. This allows the stored procedure to commit Adabas updates
without entering a must-rollback state by DB2.

ROLLBACK against DB2 is skipped if it is implicitly issued by the Natural runtime.

ROLLBACK against DB2 is executed if it is user-programmed. Thus, after a Natural error, the
caller receives a corresponding Natural error message text, but does not enter an unqualified
must-rollback state. Additionally, this reaction ensures that every database transaction the stored
procedure performs is backed out if the user program backs out the transaction.

7. Issue a CREATE FUNCTION statement that defines your UDF, for example:

CREATE FUNCTION <FUNCTION>
 ([PARM1] <FORMAT>,
 [PARM2] <FORMAT>,
 [PARM3] <FORMAT>

)
 RETURNS <FORMAT>

 EXTERNAL NAME <LOADMOD>
 LANGUAGE ASSEMBLE
 PROGRAM TYPE <PGM TYPE>
 PARAMETER STYLE DB2SQL
.
.
.;

In the example above, the variable data are enclosed in angle brackets (< >) and refer to the keywords
preceding the brackets. Specify a valid value, for example:

LOADMOD denotes the Natural for DB2 server stub module, for example, NDBvrSRV, where vr
stands for the Natural version number. PARM1 - PARM3 and FORMAT relate to the call parameter list
of the UDF. See also the Example Natural User Defined Function.

8. Code a Natural program containing SQL statements that invoke the UDF.

12

Writing a Natural UDFProcessing Natural Stored Procedures and UDFs

Specify the parameters of the Natural UDF invocation in the same sequence as specified in the
Natural UDF definition. The format of the parameters in the calling program must be compatible with the
format defined in the Natural UDF.

Example Stored Procedure
This section describes the example stored procedure NDBPURGN, a Natural subprogram which purges
Natural objects from the buffer pool used by the Natural stored procedures server.

The following topics are covered below:

Members of NDBPURGN

Defining the Stored Procedure NDBPURGN

Members of NDBPURGN

The example stored procedure NDBPURGN comprises the following text members which are stored in the
Natural system library SYSDB2:

Member Explanation

CR6PURGNInput member for SYSDB2 ISQL.

Contains SQL statements used to declare NDBPURGN in DB2.

NDBPURGPThe client (Natural) program which

Requests the name of the program to be purged and the library where it resides,

Invokes the stored procedure NDBPURGN and

Reports the outcome of the request.

NDBPURGNThe stored procedure which purges objects from the buffer pool.

NDBPURGN invokes the application programming interface USR0340N supplied in the
Natural system library SYSEXT.

Therefore, USR0340N must be available in the library defined as the steplib for the
execution environment.

Defining the Stored Procedure NDBPURGN

 To define the example stored procedure NDBPURGN

1. Define the stored procedure in the DB2 catalog by using the SQL statements provided as text
members CR5PURGN (for DB2 Version 5) and CR6PURGN (for DB2 Version 6).

2. Specify the name of the Natural stored procedure stub (here: NDBvrSRV, where vr stands for the
Natural version number) as LOADMOD (V5) or EXTERNAL NAME (V6). The Natural stored
procedure stub is generated during the installation by assembling the NDBSTUB macro.

13

Processing Natural Stored Procedures and UDFsExample Stored Procedure

3. As the first parameter, pass the internal Natural parameter STCB to the stored procedure. The STCB
parameter is a VARCHAR field which contains information required to invoke the stored procedure in
Natural:

The program name of the stored procedure and the library where it resides,

The description of the parameters passed to the stored procedure and

The error message created by Natural if the stored procedure fails during the execution.

The STCB parameter is generated automatically by the CALLMODE=NATURAL clause of the Natural
SQL CALLDBPROC statement and is removed from the parameters passed to the Natural stored
procedure by the server stub. Thus, STCB is invisible to the caller and the stored procedure.
However, if a non-Natural client intends to call a Natural stored procedure, the client has to pass the
STCB parameter explicitly. See also Stored Procedure Control Block below.

Stored Procedure Control Block (STCB)

Below is the Stored Procedure Control Block (STBC) generated by the CALLMODE=NATURAL clause as
generated by the stored procedure NDBPURGN before and after execution. Changed values are emphasized
in boldface:

STCB before Execution:

004C82 0132F0F3 F0F6E2E3 C3C2F3F1 F040C8C7 *..0306STCB310 HG* 11097D42
004C92 D2404040 4040C8C7 D2404040 4040D5C4 *K SAG ND* 11097D52
004CA2 C2D7E4D9 C7D74040 40404040 4040F0F5 *BPURGP 05* 11097D62
004CB2 F7F0D5C4 C2D7E4D9 C7D5F0F0 F0F6 F0F9 *70NDBPURGN0006 09* 11097D72
004CC2 F9F9F940 40404040 40404040 40404040 * 999 * 11097D82
004CD2 40404040 40404040 40404040 40404040 * * 11097D92
004CE2 40404040 40404040 40404040 40404040 * * 11097DA2
004CF2 40404040 40404040 40404040 40404040 * * 11097DB2
004D02 40404040 40404040 40404040 40404040 * * 11097DC2
004D12 40404040 40404040 40404040 40404040 * * 11097DD2
004D22 40404040 40404040 40404040 40404040 * * 11097DE2
004D32 40404040 40404040 40404040 40404040 * * 11097DF2
004D42 40404040 40404040 40404040 40404040 * * 11097E02
004D52 40404040 40404040 40404040 40404040 * * 11097E12
004D62 40404040 40404040 40404040 40404040 * * 11097E22
004D72 40404040 40404040 40404040 40404040 * * 11097E32
004D82 40404040 40404040 40404040 40404040 * * 11097E42
004D92 40404040 D4C1F86B F0D4C1F4 F06BF0D4 * MA8,0MA40,0M* 11097E52
004DA2 C2F26BF0 D4C2F26B F0D4C9F2 6BF0D4C9 *I2,0MI2,0MI2,0MI* 11097E62
004DB2 F26BF04B *2,0. * 11097E72

STCB after Execution:

004C82 0132F0F3 F0F6E2E3 C3C2F3F1 F040C8C7 *..0306STCB310 HG* 11097D42
004C92 D2404040 4040C8C7 D2404040 4040D5C4 *K SAG ND* 11097D52
004CA2 C2D7E4D9 C7D74040 40404040 4040F0F5 *BPURGP 05* 11097D62
004CB2 F7F0D5C4 C2D7E4D9 C7D5F0F0 F0F6 F0F0 *70NDBPURGN0006 00* 11097D72
004CC2 F0F0F040 40404040 40404040 40404040 * 000 * 11097D82
004CD2 40404040 40404040 40404040 40404040 * * 11097D92
004CE2 40404040 40404040 40404040 40404040 * * 11097DA2
004CF2 40404040 40404040 40404040 40404040 * * 11097DB2
004D02 40404040 40404040 40404040 40404040 * * 11097DC2
004D12 40404040 40404040 40404040 40404040 * * 11097DD2
004D22 40404040 40404040 40404040 40404040 * * 11097DE2

14

Defining the Stored Procedure NDBPURGNProcessing Natural Stored Procedures and UDFs

004D32 40404040 40404040 40404040 40404040 * * 11097DF2
004D42 40404040 40404040 40404040 40404040 * * 11097E02
004D52 40404040 40404040 40404040 40404040 * * 11097E12
004D62 40404040 40404040 40404040 40404040 * * 11097E22
004D72 40404040 40404040 40404040 40404040 * * 11097E32
004D82 40404040 40404040 40404040 40404040 * * 11097E42
004D92 40404040 D4C1F86B F0D4C1F4 F06BF0D4 * MA8,0MA40,0M* 11097E52
004DA2 C2F26BF0 D4C2F26B F0D4C9F2 6BF0D4C9 *I2,0MI2,0MI2,0MI* 11097E62
004DB2 F26BF04B *2,0. * 11097E72

Example Natural User Defined Function
This section describes the example user defined function (UDF) NAT.DEM2UDFN, a Natural subprogram
used to calculate the product of two numbers.

The example UDF NAT.DEM2UDF comprises the following members that are supplied in the Natural
system library SYSDB2:

Member Explanation

DEM2CUDFContains SQL statements used to create DEM2UDFN (see below).

DEM2UDFPThe client (Natural) program that

Fetches rows from the UDF NAT.DEMO table,

invokes the NAT.DEM2UDFN (see below) in the WHERE clause, and

Displays the rows fetched.

DEM2UDFNThe UDF that builds the product of two numbers. DEM2UDFN has to be copied to the
Natural library NAT on the Natural sytem file FUSER in the executing environment.

15

Processing Natural Stored Procedures and UDFsExample Natural User Defined Function

	Processing Natural Stored Procedures and UDFs
	Types of Natural UDF
	PARAMETER STYLE
	GENERAL and GENERAL WITH NULL
	Stored Procedure Control Block
	Example of PARAMETER STYLE GENERAL
	Example of GENERAL WITH NULL

	STCB Layout
	PARAMETER DESCRIPTION (STCBPADE)

	DB2SQL
	Additional Parameters Passed:
	Parameter CALL TYPE
	Parameter DBINFO
	Determining Library, Subprogram and Parameter Formats
	Invoking a Natural Stored Procedure
	Error Handling
	Lifetime of Natural Session
	Example of DB2SQL - Natural Stored Procedure
	Example of DB2SQL - Natural UDF

	Writing a Natural Stored Procedure
	Writing a Natural UDF
	Example Stored Procedure
	Members of NDBPURGN
	Defining the Stored Procedure NDBPURGN
	Stored Procedure Control Block (STCB)
	STCB before Execution:
	STCB after Execution:

	Example Natural User Defined Function

