
Using Natural Statements and System
Variables
This section contains special considerations concerning Natural data manipulation language (DML)
statements (that is, Natural native DML statements and Natural SQL DML statements), and Natural
system variables when used with DB2.

It mainly consists of information also contained in the Natural basic documentation set where each
Natural statement and variable is described in detail.

For an explanation of the symbols used in this section to describe the syntax of Natural statements, see
Syntax Symbols in the Natural Statements documentation.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SQL Statements in the DBLOG Utility documentation.

This section covers the following topics:

DB2 Special Register Consideration

Using Natural Native DML Statements

Using Natural SQL Statements

Using Natural System Variables

Multiple Row Processing

Error Handling

DB2 Special Register Consideration
NDB refreshes the following DB2 special registers automatically to the values, which applied to the least
previous executed transaction.

CURRENT SQLID

CURRENT SCHEMA

CURRENT PATH

CURRENT PACKAGE PATH

NDB refreshes the following DB2 special registers only automatically to the values, which applied to the
least previous executed transaction, if the parameter REFRESH=ON is set.

CURRENT PACKAGESET

1

Using Natural Statements and System VariablesUsing Natural Statements and System Variables

CURRENT SERVER

Those special registers are refreshed regardless whether the previously executed transaction was rolled
back or was committed.

All other special registers are not implicitly manipulated by NDB.

Using Natural Native DML Statements
This section summarizes particular points you have to consider when using Natural data manipulation
language (DML) statements with DB2. Any Natural statement not mentioned in this section can be used
with DB2 without restriction.

Below is information on the following Natural DML statements:

BACKOUT TRANSACTION

DELETE

END TRANSACTION

FIND

HISTOGRAM

READ

STORE

UPDATE

BACKOUT TRANSACTION

The Natural native DML statement BACKOUT TRANSACTION undoes all database modifications made
since the beginning of the last logical transaction. Logical transactions can start either after the beginning
of a session or after the last SYNCPOINT, END TRANSACTION, or BACKOUT TRANSACTION
statement.

How the statement is translated and which command is actually issued depends on the TP-monitor
environment:

If this command is executed within a Natural stored procedure or Natural user-defined function
(UDF), Natural for DB2 executes the underlying rollback operation. This sets the caller into a
must-rollback state. If this command is executed within a Natural stored procedure or UDF for
Natural error processing (implicit ROLLBACK), Natural for DB2 does not execute the underlying
rollback operation, thus allowing the caller to receive the original Natural error.

Under CICS, the BACKOUT TRANSACTION statement is translated into an EXEC CICS
ROLLBACK command. However, in pseudo-conversational mode, only changes made to the database
since the last terminal I/O are undone. This is due to CICS-specific transaction processing, see
Natural for DB2 under CICS.

2

Using Natural Native DML StatementsUsing Natural Statements and System Variables

Note:
Be aware that with terminal input in database loops, Natural switches to conversational mode if no
file server is used.

In batch mode and under TSO, the BACKOUT TRANSACTION statement is translated into an SQL
ROLLBACK command.

Note:
If running in a DSNMTV01 environment, the BACKOUT TRANSACTION statement is ignored if the
used PSB has been generated without the CMPAT=YES option.

Under IMS TM, the BACKOUT TRANSACTION statement is translated into an IMS Rollback
(ROLB) command. However, only changes made to the database since the last terminal I/O are
undone. This is due to IMS TM-specific transaction processing, see Natural for DB2 under IMS TM.

As all cursors are closed when a logical unit of work ends, a BACKOUT TRANSACTION statement must
not be placed within a database loop; instead, it has to be placed outside such a loop or after the outermost
loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must issue the BACKOUT TRANSACTION
statement for the external program.

If a program tries to backout updates which have already been committed, for example by a terminal I/O,
a corresponding Natural error message (NAT3711) is returned.

DELETE

The Natural native DML statement DELETE is used to delete a row from a table which has been read with
a preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement DELETE WHERE
CURRENT OF cursor-name, which means that only the row which was read last can be deleted.

Example:

FIND EMPLOYEES WITH NAME = ’SMITH’
 AND FIRST_NAME = ’ROGER’
DELETE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR
SELECT FROM EMPLOYEES
 WHERE NAME = ’SMITH’ AND FIRST_NAME = ’ROGER’ FOR UPDATE OF NAME
DELETE FROM EMPLOYEES
 WHERE CURRENT OF CURSOR1

Both the SELECT and the DELETE statement refer to the same cursor.

Natural translates a Natural native DML DELETE statement into a Natural SQL DELETE statement in the
same way it translates a Natural native DML FIND statement into a Natural SQL SELECT statement.

3

Using Natural Statements and System VariablesDELETE

A row read with a FIND SORTED BY cannot be deleted due to DB2 restrictions explained with the
FIND statement. A row read with a READ LOGICAL cannot be deleted either.

DELETE when Using the File Server

If a row rolled out to the file server is to be deleted, Natural rereads automatically the original row from
the database to compare it with its image stored in the file server. If the original row has not been
modified in the meantime, the DELETE operation is performed. With the next terminal I/O, the transaction
is terminated, and the row is deleted from the actual database.

If the DELETE operates on a scrollable cursor, the row on the file server is marked as DELETE hole and is
deleted from the base table.

However, if any modification is detected, the row will not be deleted and Natural issues the NAT3703
error message for non-scrollable cursors.

If the DELETE operates on a scrollable cursor, Natural for DB2 simulates SQLCODE -224 THE RESULT
TABLE DOES NOT AGREE WITH THE BASE TABLE USING for DB2 compliance.

If the DELETE operates on a scrollable cursor and the row has become a hole, Natural for DB2 simulates
SQLCODE -222 AN UPDATE OR DELETE OPERATION WAS ATTEMPTED AGAINST A HOLE.

Since a DELETE statement requires that Natural rereads a single row, a unique index must be available for
the respective table. All columns which comprise the unique index must be part of the corresponding
Natural view.

END TRANSACTION

The Natural native DML statement END TRANSACTION indicates the end of a logical transaction and
releases all DB2 data locked during the transaction. All data modifications are committed and made
permanent.

How the statement is translated and which command is actually issued depends on the TP-monitor
environment:

If this command is executed from a Natural stored procedure or user defined function (UDF), Natural
for DB2 does not execute the underlying commit operation. This allows the stored procedure or UDF
to commit updates against non DB2 databases.

Under CICS, the END TRANSACTION statement is translated into an EXEC CICS SYNCPOINT
command. If the file server is used, an implicit end-of-transaction is issued after each terminal I/O.
This is due to CICS-specific transaction processing in pseudo-conversational mode, see Natural for
DB2 under CICS.

In batch mode and under TSO, the END TRANSACTION statement is translated into an SQL
COMMIT WORK command.

Note:
If running in a DSNMTV01 environment the END TRANSACTION statement is ignored if the used
PSB has been generated without the CMPAT=YES option.

4

END TRANSACTIONUsing Natural Statements and System Variables

Under IMS TM, the END TRANSACTION statement is not translated into an IMS CHKP call, but is
ignored. Due to IMS TM-specific transaction processing (see Natural for DB2 under IMS TM), an
implicit end-of-transaction is issued after each terminal I/O.

Except when used in combination with the SQL WITH HOLD clause (see SELECT - SQL in Using
Natural SQL Statements), an END TRANSACTION statement must not be placed within a database loop,
since all cursors are closed when a logical unit of work ends. Instead, it has to be placed outside such a
loop or after the outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMIT command if the Natural program issues
database calls, too. The calling Natural program must issue the END TRANSACTION statement on behalf
of the external program.

Note:
With DB2, the END TRANSACTION statement cannot be used to store transaction data.

FIND

The Natural native DML statement FIND corresponds to the Natural SQL statement SELECT.

Example:

Natural native DML statements:

FIND EMPLOYEES WITH NAME = ’BLACKMORE’
 AND AGE EQ 20 THRU 40
OBTAIN PERSONNEL_ID NAME AGE

Equivalent Natural SQL statement:

SELECT PERSONNEL_ID, NAME, AGE
 FROM EMPLOYEES
 WHERE NAME = ’BLACKMORE’
 AND AGE BETWEEN 20 AND 40

Natural internally translates a FIND statement into an SQL SELECT statement as described in Processing
of SQL Statements Issued by Natural in the section Internal Handling of Dynamic Statements. The
SELECT statement is executed by an OPEN CURSOR statement followed by a FETCH command. The
FETCH command is executed repeatedly until either all records have been read or the program flow exits
the FIND processing loop. A CLOSE CURSOR command ends the SELECT processing.

The WITH clause of a FIND statement is converted to the WHERE clause of the SELECT statement. The
basic search criterion for a DB2 table can be specified in the same way as for an Adabas file. This implies
that only database fields which are defined as descriptors can be used to construct basic search criteria and
that descriptors cannot be compared with other fields of the Natural view (that is, database fields) but only
with program variables or constants.

Note:
As each database field (column) of a DB2 table can be used for searching, any database field can be
defined as a descriptor in a Natural DDM.

5

Using Natural Statements and System VariablesFIND

The WHERE clause of the FIND statement is evaluated by Natural after the rows have been selected via
the WITH clause. Within the WHERE clause, non-descriptors can be used and database fields can be
compared with other database fields.

Note:
DB2 does not have sub-, super-, or phonetic descriptors.

A FIND NUMBER statement is translated into a SELECT statement containing a COUNT(*) clause. The
number of rows found is returned in the Natural system variable *NUMBER as described in the Natural
System Variables documentation.

The FIND UNIQUE statement can be used to ensure that only one record is selected for processing. If the
FIND UNIQUE statement is referenced by an UPDATE statement, a non-cursor (Searched) UPDATE
operation is generated instead of a cursor-oriented (Positioned) UPDATE operation. Therefore, it can be
used if you want to update a DB2 primary key. It is, however, recommended to use the Natural SQL
Searched UPDATE statement to update a primary key.

In static mode, the FIND NUMBER and FIND UNIQUE statements are translated into a SELECT
SINGLE statement as described in the section Using Natural SQL Statements.

The FIND FIRST statement cannot be used. The PASSWORD, CIPHER, COUPLED and RETAIN clauses
cannot be used either.

The SORTED BY clause of a FIND statement is translated into the SQL SELECT ... ORDER BY
clause, which follows the search criterion. Because this produces a read-only result table, a row read with
a FIND statement that contains a SORTED BY clause cannot be updated or deleted.

A limit on the depth of nested database loops can be specified at installation time. If this limit is exceeded,
a Natural error message is returned.

Notes:

1. If a processing limit is specified as a constant integer number, for example, FIND (5) , the
limitation value will be translated into a FETCH FIRST integer ROWS ONLY clause in the
generated SQL string.

2. Natural for DB2 supports DB2 multiple row processing on behalf of the MULTIFETCH clause of the
FIND statement.

FIND when using the File Server

As far as the file server is concerned, there are no programming restrictions with selection statements. It
is, however, recommended to make yourself familiar with its functionality considering performance and
file server space requirements.

HISTOGRAM

The Natural DML statement HISTOGRAM returns the number of rows in a table which have the same
value in a specific column. The number of rows is returned in the Natural system variable *NUMBER as
described in the Natural System Variables documentation.

6

HISTOGRAMUsing Natural Statements and System Variables

Example:

Natural native DML statements:

HISTOGRAM EMPLOYEES FOR AGE
OBTAIN AGE

Equivalent Natural SQL statement:

SELECT COUNT(*), AGE FROM EMPLOYEES
 WHERE AGE > -999
 GROUP BY AGE
 ORDER BY AGE

Natural translates the HISTOGRAM statement into an SQL SELECT statement, which means that the
control flow is similar to the flow explained for the FIND statement.

Note:
With Universal Database Server for z/OS Version 8, Natural for DB2 supports DB2 multiple row
processing on behalf of the MULTIFETCH clause of the HISTOGRAM statement.

READ

The Natural native DML statement READ can also be used to access DB2 tables. Natural translates a
READ statement into an SQL SELECT statement.

READ PHYSICAL and READ LOGICAL can be used; READ BY ISN , however, cannot be used, as
there is no DB2 equivalent to Adabas ISNs. The PASSWORD and CIPHER clauses cannot be used either.

Since a READ LOGICAL statement is translated into a SELECT ... ORDER BY statement, which
produces a read-only table, a row read with a READ LOGICAL statement cannot be updated or deleted
(see Example 1). The start value can only be a constant or a program variable; any other field of the
Natural view (that is, any database field) cannot be used.

A READ PHYSICAL statement is translated into a SELECT statement without an ORDER BY clause and
can therefore be updated or deleted (see Example 2).

Example 1:

Natural native DML statements:

READ PERSONNEL BY NAME
OBTAIN NAME FIRSTNAME DATEOFBIRTH

Equivalent Natural SQL statement:

SELECT NAME, FIRSTNAME, DATEOFBIRTH FROM PERSONNEL
 WHERE NAME >= ’ ’
 ORDER BY NAME

Example 2:

The Natural native DML statements:

7

Using Natural Statements and System VariablesREAD

READ PERSONNEL PHYSICAL
OBTAIN NAME

Equivalent Natural SQL statement:

SELECT NAME FROM PERSONNEL

If the READ statement contains a WHERE clause, this clause is evaluated by the Natural processor after the
rows have been selected according to the descriptor value(s) specified in the search criterion.

Processing Limit

If a processing limit is specified as a constant integer number, for example, READ (5) , in the SQL string
generated, the value that defines the limitation will be translated into the clause

FETCH FIRST integer ROWS ONLY

Cursors for DB2 Clauses

Natural for DB2 uses insensitive scrollable cursors to process the following READ statement:

READ .. [IN] [LOGICAL] VARIABLE/DYNAMIC operand5 [SEQUENCE]

Natural for DB2 uses insensitive scrollable cursors to process the READ statement below. If relating to a
Positioned UPDATE or Positioned DELETE statement, Natural for DB2 uses insensitive static cursors.

READ .. [IN] [PHYSICAL] DESCENDING/VARIABLE/DYNAMIC operand5 [SEQUENCE]

operand5

Value A will be translated into a FETCH FIRST/NEXT DB2 access, and value D into a FETCH
LAST/PRIOR DB2 access.

Note:
Natural for DB2 supports DB2 multiple row processing on behalf of the MULTIFETCH clause of the
READ statement.

READ when Using the File Server

As far as the file server is concerned there are no programming restrictions with selection statements. It is,
however, recommended to make yourself familiar with its functionality considering performance and file
server space requirements.

STORE

The Natural native DML statement STORE is used to add a row to a DB2 table. The STORE statement
corresponds to the SQL statement INSERT.

8

STOREUsing Natural Statements and System Variables

Example:

The Natural native DML statement:

STORE RECORD IN EMPLOYEES
 WITH PERSONNEL_ID = ’2112’
 NAME = ’LIFESON’
 FIRST_NAME = ’ALEX’

Equivalent Natural SQL statement:

INSERT INTO EMPLOYEES (PERSONNEL_ID, NAME, FIRST_NAME)
 VALUES (’2112’, ’LIFESON’, ’ALEX’)

The PASSWORD, CIPHER and USING/GIVING NUMBER clauses of the STORE statement cannot be
used.

UPDATE

The Natural native DML statement UPDATE updates a row in a DB2 table which has been read with a
preceding FIND, READ, or SELECT statement. It corresponds to the SQL statement UPDATE WHERE
CURRENT OF cursor-name (Positioned UPDATE), which means that only the row which was read
last can be updated.

UPDATE when Using the File Server

If a row rolled out to the file server is to be updated, Natural automatically rereads the original row from
the database to compare it with its image stored in the file server. If the original row has not been
modified in the meantime, the UPDATE operation is performed. With the next terminal I/O, the transaction
is terminated and the row is definitely updated on the database.

If the UPDATE operates on a scrollable cursor, the row on the file server and the row in the base table are
updated. If the row no longer qualifies for the search criteria of the related SELECT statement after the
update, the row is marked as UPDATE hole on the file server.

However, if any modification is detected, the row will not be updated and Natural issues the NAT3703
error message for non-scrollable cursors.

If the UPDATE operates on a scrollable cursor, Natural for DB2 simulates SQLCODE -224 THE RESULT
TABLE DOES NOT AGREE WITH THE BASE TABLE USING for DB2 compliance.

If the UPDATE operates on a scrollable cursor and the row has become a hole, Natural for DB2 simulates
SQLCODE -222 AN UPDATE OR DELETE OPERATION WAS ATTEMPTED AGAINST A HOLE.

Since an UPDATE statement requires rereading a single row by Natural, a unique index must be available
for this table. All columns which comprise the unique index must be part of the corresponding Natural
view.

UPDATE with FIND/READ

As explained with the Natural native DML statement FIND, Natural translates a FIND statement into an
SQL SELECT statement. When a Natural program contains a DML UPDATE statement, this statement is
translated into an SQL UPDATE statement and a FOR UPDATE OF clause is added to the SELECT
statement.

9

Using Natural Statements and System VariablesUPDATE

Example:

FIND EMPLOYEES WITH SALARY < 5000
 ASSIGN SALARY = 6000
 UPDATE

Natural would translate the above Natural statements into SQL and assign a cursor name (for example,
CURSOR1) as follows:

DECLARE CURSOR1 CURSOR FOR
SELECT SALARY FROM EMPLOYEES WHERE SALARY < 5000
 FOR UPDATE OF SALARY
UPDATE EMPLOYEES SET SALARY = 6000
 WHERE CURRENT OF CURSOR1

Both the SELECT and the UPDATE statement refer to the same cursor.

Due to DB2 logic, a column (field) can only be updated if it is contained in the FOR UPDATE OF clause;
otherwise updating this column (field) is rejected. Natural includes automatically all columns (fields) into
the FOR UPDATE OF clause which have been modified anywhere in the Natural program or which are
input fields as part of a Natural map.

However, an DB2 column is not updated if the column (field) is marked as "not updateable" in the Natural
DDM. Such columns (fields) are removed from the FOR UPDATE OF list without any warning or error
message. The columns (fields) contained in the FOR UPDATE OF list can be checked with the LISTSQL
command.

The Adabas short name in the Natural DDM determines whether a column (field) can be updated.

The following table shows the ranges that apply:

Short-Name RangeType of Field

AA - N9 non-key field that can be updated

Aa - Nz non-key field that can be updated

OA - O9 primary key field

PA - P9 ascending key field that can be updated

QA - Q9 descending key field that can be updated

RA - X9 non-key field that cannot be updated

Ra - Xz non-key field that cannot be updated

YA - Y9 ascending key field that cannot be updated

ZA - Z9 descending key field that cannot be updated

1A - 9Z non-key field that cannot be updated

1a - 9z non-key field that cannot be updated

Be aware that a primary key field is never part of a FOR UPDATE OF list. A primary key field can only
be updated by using a non-cursor UPDATE operation (see also Natural SQL UPDATE statement in the
section Using Natural SQL Statements).

10

UPDATEUsing Natural Statements and System Variables

A row read with a FIND statement that contains a SORTED BY clause cannot be updated (due to DB2
limitations as explained with the FIND statement). A row read with a READ LOGICAL statement cannot
be updated either (as explained with the READ statement).

If a column is to be updated which is redefined as an array, it is strongly recommended to update the
whole column and not individual occurrences; otherwise, results are not predictable. To do so, in reporting
mode you can use the OBTAIN statement, which must be applied to all field occurrences in the column to
be updated. In structured mode, however, all these occurrences must be defined in the corresponding
Natural view.

The data locked by an UPDATE statement are released when an END TRANSACTION (COMMIT WORK)
or BACKOUT TRANSACTION (ROLLBACK WORK) statement is executed by the program.

Note:
If a length indicator field or NULL indicator field is updated in a Natural program without updating the
field (column) it refers to, the update of the column is not generated for DB2 and thus no updating takes
place.

UPDATE with SELECT

In general, the Natural native DML statement UPDATE can be used in both structured and reporting mode.
However, after a SELECT statement, only the syntax defined for Natural structured mode is allowed:

UPDATE [RECORD] [IN] [STATEMENT] [(r)]

This is due to the fact that in combination with the SELECT statement, the Natural native DML UPDATE
statement is only allowed in the special case of:

...
SELECT ...
 INTO VIEW view-name
 ...

Thus, only a whole Natural view can be updated; individual columns (fields) cannot.

Example:

DEFINE DATA LOCAL
01 PERS VIEW OF SQL-PERSONNEL
 02 NAME
 02 AGE
END-DEFINE

SELECT *
 INTO VIEW PERS
 FROM SQL-PERSONNEL
 WHERE NAME LIKE ’S%’

 IF NAME = ’SMITH’
 ADD 1 TO AGE
 UPDATE
 END-IF

END-SELECT
 ...

11

Using Natural Statements and System VariablesUPDATE

In combination with the Natural native DML UPDATE statement, any other form of the SELECT
statement is rejected and an error message is returned.

In all other respects, the Natural native DML UPDATE statement can be used with the SELECT statement
in the same way as with the Natural FIND statement.

Using Natural SQL Statements
This section covers points you have to consider when using Natural SQL statements with DB2. These
DB2-specific points partly consist in syntax enhancements which belong to the Extended Set of Natural
SQL syntax. The Extended Set is provided in addition to the Common Set to support database-specific
features; see Common Set and Extended Set in the section SQL Statements in the Natural Statements
documentation.

For information on logging SQL statements contained in a Natural program, refer to DBLOG Trace
Screen for SQL Statements in the DBLOG Utility documentation.

Below is information on the following Natural SQL statements and on common syntactical items:

Syntactical Items Common to Natural SQL Statements

CALLDBPROC - SQL

COMMIT - SQL

DELETE - SQL

INSERT - SQL

MERGE - SQL

PROCESS SQL

READ RESULT SET - SQL

ROLLBACK - SQL

SELECT - SQL

UPDATE - SQL

Syntactical Items Common to Natural SQL Statements

The following common syntactical items are either DB2-specific and do not conform to the standard SQL
syntax definitions (that is, to the Common Set of Natural SQL syntax) or impose restrictions when used
with DB2 (see also SQL Statements in the Natural Statements documentation).

Below is information on the following common syntactical items:

atom
comparison
factor
scalar-function

12

Using Natural SQL StatementsUsing Natural Statements and System Variables

column-function
scalar-operator
special-register
units
case-expression

atom

An atom can be either a parameter (that is, a Natural program variable or host variable) or a constant.
When running dynamically, however, the use of host variables is restricted by DB2. For further details,
refer to the relevant DB2 literature by IBM.

comparison

The comparison operators specific to DB2 belong to the Natural Extended Set. For a description, refer to
Comparison Predicate in Search Condition, Natural SQL Statements in the Natural Statements
documentation.

factor

The following factors are specific to DB2 and belong to the Natural SQL Extended Set:

special-register
scalar-function (scalar-expression, ...)
scalar-expression unit
case-expression

scalar-function

A scalar function is a built-in function that can be used in the construction of scalar computational
expressions. Scalar functions are specific to DB2 and belong to the Natural SQL Extended Set.

The scalar functions Natural for DB2 supports are listed below in alphabetical order:

13

Using Natural Statements and System VariablesSyntactical Items Common to Natural SQL Statements

A - H I - R S - Z

ABS
ABSVAL
ACOS
ADD_MONTHS
ASIN
ASCII_CHR
ASCII_STR
ATAN
ATAN2
ATANH
BIGINT
BINARY
BLOB
CCSID_ENCODING
CEIL
CEILING
CHAR
CHARACTER_LENGTH
CLOB
COALESCE
COLLATION_KEY
COMPARE_DECFLOAT
CONCAT
CONTAINS
COS
COSH
DATE
DAY
DAYOFMONTH
DAYOFWEEK
DAYOFWEEK_ISO
DAYOFYEAR
DAYS
DBCLOB
DEC
DECFLOAT
DECFLOAT_SORTKEY
DECIMAL
DECRYPT_BIT
DECRYPT_CHAR
DECRYPT_DB
DEGREES
DIFFERENCE
DIGITS
DOUBLE
DOUBLE_PRECISION
DSN_XMLVALIDATE
EBCDIC_CHR
EBCDIC_STR
ENCRYPT_TDES
ENCRYPT
EXP
EXTRACT
FLOAT
FLOOR
GRAPHIC
GENERATE_UNIQUE
GETHINT
GETVARIABLE
HEX
HOUR

IDENTITY_VAL_LOCAL
IFNULL
INSERT
INTEGER
JULIAN_DAY
LAST_DAY
LCASE
LEFT
LENGTH
LN
LOCATE
LOCATE_IN_STRING
LOG
LOG10
LOWER
LPAD
LTRIM
MAX
MICROSECOND
MIDNIGHT_SECONDS
MIN
MINUTE
MOD
MONTH
MONTHS_BETWEEN
MQPUBLISH
MQPUBLISHXML
MQREAD
MQREADCLOB
MQREADXML
MQRECEIVE
MQRECEIVECLOB
MQRECEIVEXML
MQSEND
MQSENDXML
MQSENDXMLFILE
MQSENDXMLFILECLOB
MQSUBSCRIBE
MQUNSUBSCRIBE
MULTIPLY_ALT
NEXT_DAY
NORMALIZE_DECFLOAT
NORMALIZE_STRING
NULLIF
OVERLAY
POSSTR
POWER
QUANTIZE
QUARTER
RADIANS
RAISE_ERROR
RAND
REAL
REPEAT
REPLACE
RID
RIGHT
ROUND
ROUND_TIMESTAMP
ROWID
RPAD
RTRIM

SCORE
SECOND
SIGN
SIN
SINH
SMALLINT
SOAPHTTPC
SOAPHTTPV
SOAPHTTPNC
SOAPHTTPNV
SOUNDEX
SPACE
SQRT
STRIP
SUBSTR
SUBSTRING
TAN
TANH
TIME
TIMESTAMP
TIMESTAMPADD
TIMESTAMP_FORMAT
TIMESTAMP_ISO
TO_CHAR
TO_DATE
TOTALORDER
TRANSLATE
TRUNC
TRUNC_TIMESTAMP
TRUNCATE
UCASE
UNICODE
UNICODE_STR
UNISTR
UPPER
VALUE
VARBINARY
VARCHAR
VARCHAR_FORMAT
VARGRAPHIC
WEEK
WEEK_ISO
XMLATTRIBUTES
XMLCONCAT
XMLCOMMENT
XMLDOCUMENT
XMLELEMENT
XMLFOREST
XMLNAMESPACES
XMLPARSE
XMLPI
XMLQUERY
XMLSERIALIZE
XMLTEXT
YEAR

14

Syntactical Items Common to Natural SQL StatementsUsing Natural Statements and System Variables

Each scalar function is followed by one or more scalar expressions in parentheses. The number of scalar
expressions depends upon the scalar function. Multiple scalar expressions must be separated from one
another by commas.

Example:

SELECT NAME
 INTO NAME
 FROM SQL-PERSONNEL
 WHERE SUBSTR (NAME, 1, 3) = ’Fri’
 ...

column-function

A column function returns a single-value result for the argument it receives. The argument is a set of like
values, such as the values of a column. Column functions are also called aggregating functions.

The following column functions conform to standard SQL. They are not specific to DB2:

AVG
COUNT
MAX
MIN
SUM

The following column functions do not conform to standard SQL. They are specific to DB2 and belong to
the Natural SQL Extended Set.

COUNT_BIG
CORRELATION
COVARIANCE
COVARIANCE_SAMP
STDDEV
STDDEV_POP
STDDEV_SAMP
VAR
VAR_POP
VAR_SAMP
VARIANCE
VARIANCE_SAMP
XMLAGG

scalar-operator

The concatenation operator (CONCAT or ||) does not conform to standard SQL. It is specific to DB2 and
belongs to the Natural Extended Set.

special-register

The following special registers do not conform to standard SQL. They are specific to DB2 and belong to
the Natural SQL Extended Set:

15

Using Natural Statements and System VariablesSyntactical Items Common to Natural SQL Statements

CURRENT APPLICATION ENCODING SCHEME
CURRENT CLIENT_ACCNTG
CURRENT CLIENT_APPLNAME
CURRENT CLIENT_USERID
CURRENT CLIENT_WRKSTNNAME
CURRENT DATE
CURRENT_DATE
CURRENT DEBUG MODE
CURRENT DECFLOAT ROUNDING MODE
CURRENT DEGREE
CURRENT FUNCTION PATH
CURRENT_LC_CTYPE
CURRENT LC_CTYPE
CURRENT LOCALE LC_CTYPE
CURRENT OPTIMIZATION HINT
CURRENT PACKAGESET
CURRENT_PATH
CURRENT PRECISION
CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
CURRENT_MEMBER
CURRENT PACKAGE PATH
CURRENT REFRESH AGE
CURRENT ROUTINE VERSION
CURRENT SCHEMA
CURRENT RULES
CURRENT SQLID
CURRENT SERVER
CURRENT TIME
CURRENT_TIME
CURRENT TIMESTAMP
CURRENT TIMEZONE
CURRENT_TIMEZONE USER

A reference to a special register returns a scalar value.

Using the command SET CURRENT SQLID, the creator name of a table can be substituted by the
current SQLID. This enables you to access identical tables with the same table name but with different
creator names.

units

Units, also called "durations", are specific to DB2 and belong to the Natural SQL Extended Set.

The following units are supported:

DAY
DAYS
HOUR
HOURS
MICROSECOND
MICROSECONDS
MINUTE

16

Syntactical Items Common to Natural SQL StatementsUsing Natural Statements and System Variables

MINUTES
MONTH
MONTHS
SECOND
SECONDS
YEAR
YEARS

case-expression

CASE searched-when-clause ...
simple-when-clause

ELSE NULL
scalar expression

END

Case-expressions do not conform to standard SQL and are therefore supported by the Natural SQL
Extended Set only.

Example:

DEFINE DATA LOCAL
 01 #EMP
 02 #EMPNO (A10)
 02 #FIRSTNME (A15)
 02 #MIDINIT (A5)
 02 #LASTNAME (A15)
 02 #EDLEVEL (A13)
 02 #INCOME (P7)
 END-DEFINE
 SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME,
 (CASE WHEN EDLEVEL < 15 THEN ’SECONDARY’
 WHEN EDLEVEL < 19 THEN ’COLLEGE’
 ELSE ’POST GRADUATE’
 END) AS EDUCATION, SALARY + COMM AS INCOME
 INTO
 #EMPNO, #FIRSTNME, #MIDINIT, #LASTNAME,
 #EDLEVEL, #INCOME
 FROM DSN8510-EMP
 WHERE (CASE WHEN SALARY = 0 THEN NULL
 ELSE SALARY / COMM
 END) > 0.25
 DISPLAY #EMP
 END-SELECT
 END

CALLDBPROC - SQL

The Natural SQL statement CALLDBPROC is used to call DB2 stored procedures. It supports the result set
mechanism of DB2 and it enables you to call DB2 stored procedures. For further details and statement
syntax, see CALLDBPROC in the Natural Statements documentation.

The following topics are covered below:

Static and Dynamic Execution
Result Sets
List of Parameter Data Types
CALLMODE=NATURAL

17

Using Natural Statements and System VariablesCALLDBPROC - SQL

Example of CALLDBPROC/READ RESULT SET

Static and Dynamic Execution

If the CALLDBPROC statement is executed dynamically, all parameters and constants are mapped to the
variables of the following DB2 SQL statement:

CALL :hv USING DESCRIPTOR :sqlda statement

:hv denotes a host variable containing the name of the procedure to be called and :sqlda is a
dynamically generated sqlda describing the parameters to be passed to the stored procedure.

If the CALLDBPROC statement is executed statically, the constants of the CALLDBPROC statement are
also generated as constants in the generated assembler SQL source for the DB2 precompiler.

Result Sets

If the SQLCODE created by the CALL statement indicates that there are result sets (SQLCODE +466 and
+464), Natural for DB2 runtime executes a DESCRIBE PROCEDURE :hv INTO :sqlda statement
in order to retrieve the result set locator values of the result sets created by the invoked stored procedure.
These values are put into the RESULT SETS variables specified in the CALLDBPROC statement. Each
RESULT SETS variable specified in a CALLDBPROC for which no result set locator value is present is
reset to zero. The result set locator values can be used to read the result sets by means of the READ
RESULT SET statement as long as the database transaction which created the result set has not yet issued
a COMMIT or ROLLBACK.

If the result set was created by a cursor WITH HOLD, the result set locator value remains valid after a
COMMIT operation.

Unlike other Natural SQL statements, CALLDBPROC enables you (optionally!) to specify an SQLCODE
variable following the GIVING keyword which will contain the SQLCODE of the underlying CALL
statement. If GIVING is specified, it is up to the Natural program to react on the SQLCODE (error
message NAT3700 is not issued by the runtime).

List of Parameter Data Types

Below are the parameter data types supported by the CALLDBPROC statement:

18

CALLDBPROC - SQLUsing Natural Statements and System Variables

Natural
Format/Length

DB2 Data Type

An CHAR(n)

B2 SMALLINT

B4 INT

Bn
(n = not equal 2
or 4)

CHAR(n)

F4 REAL

F8 DOUBLE PRECISION

I2 SMALLINT

I4 INT

Nnn.m NUMERIC(nn+m,m)

Pnn.m NUMERIC(nn+m,n)

Gn GRAPHIC(n)

An/1:m VARCHAR(n*m)

D DATE

T TIME

Note:
The Natural format T has a wider data range than the equivalent DB2 TIME data type.
Compared with DB2 TIME, in addition, the Natural T variable has a date fraction
(year, month, day) and the tenths of a second. As a result, when converting a Natural
T variable into a DB2 TIME value, Natural for DB2 cuts off the date fraction and the
tenths of a second part. When converting DB2 TIME into Natural T format, the date
fraction is reset to 0000-01-02 and the tenths of a second part is reset to 0 in
Natural.

CALLMODE=NATURAL

This parameter is used to invoke Natural stored procedures defined with PARAMETER STYLE
GENERAL/WITH NULL.

If the CALLMODE=NATURAL parameter is specified, an additional parameter describing the parameters
passed to the Natural stored procedure is passed from the client, that is, caller, to the server, that is, the
Natural for DB2 server stub. The parameter is the Stored Procedure Control Block (STCB; see also STCB
Layout in PARAMETER STYLE in the section Processing Natural Stored Procedures and UDFs) and has
the format VARCHAR from the viewpoint of DB2. Therefore, every Natural stored procedure defined with
PARAMETER STYLE GENERAL/WITH NULL has to be defined with the CREATE PROCEDURE
statement by using this VARCHAR parameter as the first in its PARMLIST row.

From the viewpoint of the caller, that is, the Natural program, and from the viewpoint of the stored
procedure, that is, Natural subprogram, the STCB is invisible. It is passed as first parameter by the Natural
for DB2 runtime and it is used as on the server side to build the copy of the passed data in the Natural

19

Using Natural Statements and System VariablesCALLDBPROC - SQL

thread and the corresponding CALLNAT statement. Additionally, this parameter serves as a container for
error information created during execution of the Natural stored procedure by the Natural runtime. It also
contains information on the library where you are logged on and the Natural subprogram to be invoked.

Example of CALLDBPROC/READ RESULT SET

Below is a sample program for issuing CALLDBPROC and READ RESULT SET statements:

DEFINE DATA LOCAL
 1 ALPHA (A8)
 1 NUMERIC (N7.3)
 1 PACKED (P9.4)
 1 VCHAR (A20/1:5) INIT <’DB25SGCP’>
 1 INTEGER2 (I2)
 1 INTEGER4 (I4)
 1 BINARY2 (B2)
 1 BINARY4 (B4)
 1 BINARY12 (B12)
 1 FLOAT4 (F4)
 1 FLOAT8 (F8)
 1 INDEX-ARRAY (I2/1:11)
 1 INDEX-ARRAY1(I2)
 1 INDEX-ARRAY2(I2)
 1 INDEX-ARRAY3(I2)
 1 INDEX-ARRAY4(I2)
 1 INDEX-ARRAY5(I2)
 1 INDEX-ARRAY6(I2)
 1 INDEX-ARRAY7(I2)
 1 INDEX-ARRAY8(I2)
 1 INDEX-ARRAY9(I2)
 1 INDEX-ARRAY10(I2)
 1 INDEX-ARRAY11(I2)
 1 #RESP (I4)
 1 #RS1 (I4) INIT <99>
 1 #RS2 (I4) INIT <99>
 LOCAL
 1 V1 VIEW OF SYSIBM-SYSTABLES
 2 NAME
 1 V2 VIEW OF SYSIBM-SYSPROCEDURES
 2 PROCEDURE
 2 RESULT_SETS
 1 V (I2) INIT <99>
 END-DEFINE
 CALLDBPROC ’DAEFDB25.SYSPROC.SNGSTPC’ DSN8510-EMP
 ALPHA INDICATOR :INDEX-ARRAY1
 NUMERIC INDICATOR :INDEX-ARRAY2
 PACKED INDICATOR :INDEX-ARRAY3
 VCHAR(*) INDICATOR :INDEX-ARRAY4
 INTEGER2 INDICATOR :INDEX-ARRAY5
 INTEGER4 INDICATOR :INDEX-ARRAY6
 BINARY2 INDICATOR :INDEX-ARRAY7
 BINARY4 INDICATOR :INDEX-ARRAY8
 BINARY12 INDICATOR :INDEX-ARRAY9
 FLOAT4 INDICATOR :INDEX-ARRAY10
 FLOAT8 INDICATOR :INDEX-ARRAY11
 RESULT SETS #RS1 #RS2
 CALLMODE=NATURAL
 READ (10) RESULT SET #RS2 INTO VIEW V2 FROM SYSIBM-SYSTABLES
 WRITE ’PROC F RS :’ PROCEDURE 50T RESULT_SETS
 END-RESULT
 END

20

CALLDBPROC - SQLUsing Natural Statements and System Variables

COMMIT - SQL

The Natural SQL COMMIT statement indicates the end of a logical transaction and releases all DB2 data
locked during the transaction. All data modifications are made permanent.

COMMIT is a synonym for the Natural native DML statement END TRANSACTION as described in the
section Using Natural Native DML Statements.

No transaction data can be provided with the COMMIT statement.

If this command is executed from a Natural stored procedure or user-defined function (UDF), Natural for
DB2 does not execute the underlying commit operation. This allows the Natural stored procedure or UDF
to commit updates against non DB2 databases.

Under CICS, the COMMIT statement is translated into an EXEC CICS SYNCPOINT command. If the
file server is used, an implicit end-of-transaction is issued after each terminal I/O. This is due to
CICS-specific transaction processing in pseudo-conversational mode, see Natural for DB2 under CICS.

Under IMS TM, the COMMIT statement is not translated into an IMS CHECKPOINT command, but is
ignored. An implicit end-of-transaction is issued after each terminal I/O. This is due to IMS TM-specific
transaction processing, see Natural for DB2 under IMS TM.

Unless when used in combination with the WITH HOLD clause (see SELECT - Cursor-Oriented in the
Natural Statements documentation), a COMMIT statement must not be placed within a database loop, since
all cursors are closed when a logical unit of work ends. Instead, it has to be placed outside such a loop or
after the outermost loop of nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own COMMIT command if the Natural program issues
database calls, too. The calling Natural program must issue the COMMIT statement on behalf of the
external program.

For further details and statement syntax, see COMMIT - SQL in the Natural Statements documentation.

DELETE - SQL

Both the cursor-oriented or Positioned DELETE, and the non-cursor or Searched DELETE statements are
supported as part of Natural SQL; the functionality of the Positioned DELETE statement corresponds to
that of the Natural DML DELETE statement. For further details and statement syntax, see DELETE in the
Natural Statements documentation.

With DB2, a table name in the FROM clause of a Searched DELETE statement can be assigned a
correlation-name. This does not correspond to the standard SQL syntax definition and therefore
belongs to the Natural SQL Extended Set.

The Searched DELETE statement must be used, for example, to delete a row from a self-referencing table,
since with self-referencing tables a Positioned DELETE is not allowed by DB2.

For further details and statement syntax, see DELETE - SQL in the Natural Statements documentation.

21

Using Natural Statements and System VariablesCOMMIT - SQL

INSERT - SQL

The Natural SQL INSERT statement is used to add one or more new rows to a table.

Since the INSERT statement can contain a select expression, all the DB2-specific common syntactical
items described above apply.

For further details and statement syntax, see INSERT - SQL in the Natural Statements documentation.

MERGE - SQL

The MERGE statement is a hybrid SQL statement consisting of an UPDATE component and an INSERT
component. It allows you either to insert a row into a DB2 table or to update a row of a DB2 table if the
input data matches an already existing row of a table.

The MERGE statement belongs to the SQL Extended Set.

For further details and statement syntax, see MERGE - SQL in the Natural Statements documentation.

PROCESS SQL

The Natural PROCESS SQL statement is used to issue SQL statements to the underlying database. The
statements are specified in a statement-string, which can also include constants and parameters.
The set of statements which can be issued is also referred to as Flexible SQL and comprises those
statements which can be issued with the SQL statement EXECUTE.

In addition, Flexible SQL includes the following DB2-specific statements:

CALL
CONNECT
GET DIAGNOSTICS
SET APPLICATION ENCODING SCHEME
SET CONNECTION
SET CURRENT DEGREE
SET CURRENT LC_CTYPE
SET CURRENT OPTIMIZATION HINT
SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
SET CURRENT PACKAGE PATH
SET CURRENT PACKAGESET
SET CURRENT PATH
SET CURRENT PRECISION
SET CURRENT REFRESH AGE
SET CURRENT RULES
SET CURRENT SCHEMA
SET CURRENT SQLID
SET ENCRYPTION PASSWORD
SET host-variable=special-register
RELEASE

Notes:

22

INSERT - SQLUsing Natural Statements and System Variables

1. SQL statements issued by PROCESS SQL are skipped during static generation. Thus they are always
executed dynamically via NDBIOMO.

2. To avoid transaction synchronization problems between the Natural environment and DB2, the
COMMIT and ROLLBACK statements must not be used within PROCESS SQL.

For further details and statement syntax, see PROCESS SQL in the Natural Statements documentation.

READ RESULT SET - SQL

The Natural SQL READ RESULT SET statement reads a result set created by a Natural stored procedure
that was invoked by a CALLDBPROC statement. For details on how to specify the scroll direction by using
the variable scroll-hv, see the SELECT statement.

For further details and statement syntax, see READ RESULT SET in the Natural Statements
documentation.

ROLLBACK - SQL

The Natural SQL ROLLBACK statement undoes all database modifications made since the beginning of
the last logical transaction. Logical transactions can start either after the beginning of a session or after the
last COMMIT/END TRANSACTION or ROLLBACK/BACKOUT TRANSACTION statement. All records
held during the transaction are released.

For further details and statement syntax, see ROLLBACK -SQL in the Natural Statements documentation.

ROLLBACK is a synonym for the Natural statement BACKOUT TRANSACTION as described in the
section Using Natural Native DML Statements.

If this command is executed from a Natural stored procedure or user-defined function (UDF), Natural for
DB2 executes the underlying rollback operation. This sets the caller into a must-rollback state. If this
command is executed by Natural error processing (implicit ROLLBACK), Natural for DB2 does not
execute the underlying rollback operation, thus allowing the caller to receive the original Natural error.

Under CICS, the ROLLBACK statement is translated into an EXEC CICS ROLLBACK command.
However, if the file server is used, only changes made to the database since the last terminal I/O are
undone. This is due to CICS-specific transaction processing in pseudo-conversational mode, see Natural
for DB2 under CICS.

Under IMS TM, the ROLLBACK statement is translated into an IMS Rollback (ROLB) command.
However, only changes made to the database since the last terminal I/O are undone. This is due to IMS
TM-specific transaction processing, see Natural for DB2 under IMS TM.

As all cursors are closed when a logical unit of work ends, a ROLLBACK statement must not be placed
within a database loop; instead, it has to be placed outside such a loop or after the outermost loop of
nested loops.

If an external program written in another standard programming language is called from a Natural
program, this external program must not contain its own ROLLBACK command if the Natural program
issues database calls, too. The calling Natural program must issue the ROLLBACK statement on behalf of
the external program.

23

Using Natural Statements and System VariablesREAD RESULT SET - SQL

SELECT - SQL

The Natural SQL SELECT statement supports both the cursor-oriented selection, which is used to retrieve
an arbitrary number of rows and the non-cursor selection (Singleton SELECT), which retrieves at most
one single row.

For full details and statement syntax, see SELECT -SQL in the Natural Statements documentation.

SELECT - Cursor-Oriented

Like the Natural native DML FIND statement, the cursor-oriented SELECT statement is used to select a
set of rows (records) from one or more DB2 tables, based on a search criterion. Since a database loop is
initiated, the loop must be closed by a LOOP statement (in reporting mode) or by an END-SELECT
statement (in structured mode). With this construction, Natural uses the same loop processing as with the
FIND statement. In addition, no cursor management is required from the application program; it is
automatically handled by Natural.

For further details and syntax, see SELECT - SQL, Syntax 1 - Cursor-Oriented Selection in the Natural
Statements documentation.

SELECT SINGLE - Non-Cursor-Oriented

The Natural SQL statement SELECT SINGLE provides the functionality of a non-cursor selection
(Singleton SELECT); that is, a select expression that retrieves at most one row without using a cursor.

Since DB2 supports the Singleton SELECT command in static SQL only, in dynamic mode, the Natural
SELECT SINGLE statement is executed in the same way as a set-level SELECT statement, which results
in a cursor operation. However, Natural checks the number of rows returned by DB2. If more than one
row is selected, a corresponding error message is returned.

For further details and syntax, see SELECT - SQL, Syntax 2 - Non-Cursor Selection in the Natural
Statements documentation.

UPDATE - SQL

Both the cursor-oriented or Positioned UPDATE and the non-cursor or Searched UPDATE statements are
supported as part of Natural SQL. Both of them reference either a table or a Natural view.

With DB2, the name of a table or Natural view to be referenced by a Searched UPDATE can be assigned a
correlation-name. This does not correspond to the standard SQL syntax definition and therefore belongs
to the Natural Extended Set.

The Searched UPDATE statement must be used, for example, to update a primary key field, since DB2
does not allow updating of columns of a primary key by using a Positioned UPDATE statement.

Note:
If you use the SET * notation, all fields of the referenced Natural view are added to the FOR UPDATE
OF and SET lists. Therefore, ensure that your view contains only fields which can be updated; otherwise,
a negative SQLCODE is returned by DB2.

24

SELECT - SQLUsing Natural Statements and System Variables

For further details and syntax, see UPDATE - SQL in the Natural Statements documentation.

Using Natural System Variables
When used with DB2, there are restrictions and/or special considerations concerning the following Natural
system variables:

*ISN

*NUMBER

*ROWCOUNT

For information on restrictions and/or special considerations, refer to the section Database-Specific
Information in the corresponding system variable documentation.

Multiple Row Processing
This section describes the multiple row functionality for DB2 databases.

You have to operate against DB2 for z/OS Version 8 or higher to use these features.

Natural for DB2 provides two kinds of multiple row processing features:

Standard multiple row processing

This feature does not influence the program logic. Although the Natural native DML and Natural
SQL DML provide clauses for specification of the multi-fetch-factor, the Natural program operates
with one database row and from the program point of view only one row is received from or is send
to the database.

Advanced multiple row processing

This feature is only available with Natural SQL DML and has a lot of impact on the program logic,
as it allows the retrieval of multiple rows from the database into the program storage by a single
Natural SQL SELECT statement into a set of arrays. Additionally it is possible to insert multiple
rows into the database from a set of arrays by the Natural SQL INSERT statement.

Below is information on the following topics:

Purpose of Multi-Fetch Feature (Standard)

Considerations for Multi-Fetch Usage (Standard)

Size of the Multi-Fetch Buffer (Standard)

Support of TEST DBLOG Q (Standard)

Multiple Rows to Program (Advanced)

25

Using Natural Statements and System VariablesUsing Natural System Variables

Multiple Rows from Program (Advanced)

Purpose of Multi-Fetch Feature (Standard)

In standard mode, Natural does not read multiple records with a single database call; it always operates in
a one-record-per-fetch mode. This kind of operation is solid and stable, but can take some time if a large
number of database records are being processed.

To improve the performance of those programs, you can use the Multi-Fetch Clause in the Natural DML
FIND, READ or HISTOGRAM statements. This allows you to specify the number of records read per
database access.

FIND MULTI-FETCH ON

READ OFF

HISTOGRAM OF multi-fetch-factor

Where the multi-fetch-factor is either a constant or a variable with a format integer (I4).

To improve the performance of the Natural SQL SELECT statements, you can use the WITH ROWSET
POSITIONING FOR Clause to specify a multi-fetch-factor.

WITH ROWSET POSITIONING FOR [:] row_hv ROWS

integer

At statement execution time, the runtime checks if a multi-fetch-factor greater than 1 is supplied
for the database statement.

If the multi-fetch-factor is

less than or equal to 1the database call is continued in the usual one-record-per-access mode.

greater than 1 the database call is prepared dynamically to read multiple records (e.g. 10) with a
single database access into an auxiliary buffer (multi-fetch buffer). If successful,
the first record is transferred into the underlying data view. Upon the execution of
the next loop, the data view is filled directly from the multi-fetch buffer, without
database access. After all records are fetched from the multi-fetch buffer, the next
loop results in the next record set being read from the database. If the database
loop is terminated (either by end-of-records, ESCAPE, STOP, etc.), the content of
the multi-fetch buffer is released.

Considerations for Multi-Fetch Usage (Standard)

The program does not receive "fresh" records from the database for every loop, but operates with
images retrieved at the most recent multi-fetch access.

If a dynamic direction change (IN DYNAMIC...SEQUENCE) is coded for a Natural DML READ or
HISTOGRAM statement, the multi-fetch feature is not possible and leads to a corresponding syntax
error at compilation.

26

Purpose of Multi-Fetch Feature (Standard)Using Natural Statements and System Variables

The size occupied by a database loop in the multi-fetch buffer is determined according to the rule:

header + sqldaheader + columns*(sqlvar+lise) + mf*(udind + sum(collen) + sum(LF(columns) + sum(nullind))

=

32 + 16 + columns*(44+12) + mf*(1 + sum(collen) + sum(LF(column)) + sum(2))

where

header denotes the length of the header of a entry in the DB2 multifetch buffer, that is, 32

sqldaheader denotes the length of the header of a sqlda, that is, 16

columns denotes the number of receiving fields of a SQL request

sqlvar denotes the length of a sqlvar, that is, 44

lise denotes the length of a Natrual for DB2 specific sqlvar extension

mf denotes the multifetch factor, that is, the number of rows fetched by one database call

collen denotes the length of the receiving field

LF(column) denotes the size of the length field of the receiving field, that is, 0 for fixed length fields,
2 for variable length fields, and 4 for large object columns (LOBs)

nullind denotes the length of a null indicator, that is, 2

Size of the Multi-Fetch Buffer (Standard)

The multifetch buffer is released at terminal i/o in pseudo conversional mode. Therefore there is no size
limitation for the DB2 multifetch buffer (DB2SIZE6). The buffer will be automatical enlarged if
necessary.

Support of TEST DBLOG Q (Standard)

When multi-fetch is used, real database calls are only submitted to get a new set of records.

The TEST DBLOG Q facility is also called from the Natural for DB2 multi fetch handler for every rowset
fetch from DB2 and for every record moved from the multi fetch buffer to the program storage. The
events are distinguished by the literal MULTI FETCH ... and <BUFF FETCH ...

Example: TEST DBLOG List Break-Out

27

Using Natural Statements and System VariablesSize of the Multi-Fetch Buffer (Standard)

10:51:57 ***** NATURAL Test Utilities ***** 2006-01-27
User HGK - DBLOG Trace - Library NDB42
M No R SQL Statement (truncated) CU SN SREF M Typ SQLC/W Program Line LV
_ 1 SELECT EMPNO,FIRSTNME,LASTNAM 01 01 0260 D DB2 MF000001 0260 01
_ 2 MULTI FETCH NEX 01 01 0260 D DB2 MF000001 0260 01
_ 3 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 4 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 5 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 6 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 7 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 8 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 9 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 10 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 11 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 12 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 13 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 14 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 15 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 16 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
_ 17 <BUFF FETCH NEX 00 00 0260 D DB2 MF000001 0260 01
Command ===>

where column No represents the following:

1 is a open cursor DB2 call.

2 is a "real" database call that reads a set of records via multi-fetch (see MULTI FETCH NEX in
column SQL Statement).

3-17 are "no real" database calls, but only entries that document that the program has received these
records from the
multi-fetch buffer (see <BUFF FETCH NEX in column SQL Statement).

Multiple Rows to Program (Advanced)

The feature allows programs to retrieve multiple rows from DB2 into arrays.

This feature is only available with the SELECT statement.

Prerequisites
DB2ARRY=ON
INTO Clause
WITH ROWSET POSITIONING Clause
ROWS_RETURNED Clause
Restrictions and Constraints
File Server Usage and Positioned UPDATE and DELETE

Prerequisites

 To use this feature

1. Set the compiler option DB2ARRY=ON (by using an OPTIONS statement or the COMPOPT command
or the CMPO profile parameter).

28

Multiple Rows to Program (Advanced)Using Natural Statements and System Variables

2. Specify a list of receiving arrays in the INTO Clause of the SELECTstatement.

3. Specify the number of rows to be retrieved from the database by a single FETCH operation via the
WITH ROWSET POSITIONING Clause.

4. Specify a variable receiving the number of rows retrieved from the database via the
ROWS_RETURNED Clause.

DB2ARRY=ON

DB2ARRY=ON is necessary to allow the specification of arrays in the INTO Clause. DB2ARRY=ON also
prevents the usage of arrays as sending or receiving fields for DB2 CHAR/VARCHAR
/GRAPHIC/VARGRAPHIC columns. Instead Natural scalar fields with the appropriate length have to be
used.

INTO Clause

Each array specified in the INTO Clause has to be contiguous (one occurrence following immediately by
another, this is expected by DB2) and has to be one-dimensional. The arrays are filled from the first
occurrence (low) to last occurrence (high). The first array occurrences compose the first row of the
received rowset, the second array occurrences compose the second row of the received rowset. The array
occurrences of the nth index compose the nth row returned from DB2. If an LINDICATOR or
INDICATOR Clause is used in the INTO Clause for arrays, the specified length indicators or null
indicators have also to be arrays. The number of occurrences of LINDICATOR and INDICATOR arrays
have to equal or greater than the number of occurrences of the master array.

WITH ROWSET POSITIONING Clause

The WITH_ROWSET_POSITIONING Clause is used to specify the number of rows to be retrieved from
the database by one processing cycle. The specified number has to be equal or smaller than the minimum
of occurrences of all specified arrays. If a variable, not a constant, is specified the actual content of the
variable will be used during each processing cycle. The specified number has to be greater 0 and smaller
than 32768 .

ROWS_RETURNED Clause

The ROWS_RETURNED Clause is used to specify a variable, which will contain the number of rows read
from the database during the actual fetch operation. The format of the variable has to be I4.

Restrictions and Constraints

Natural Views: It is not possible to use Natural arrays of views in the INTO clause, that is, the use of
keyword VIEW is not possible.

File Server Usage and Positioned UPDATE and DELETE

The purpose of this feature is to reduce the number of database and database interface calls for bulk batch
processing. Therefore it is not recommended to use this kind of programming in online CICS or IMS
environments, when terminal I/Os occur within open cursor loops; that is, the file server is used. A fortiori
it is not possible to perform a Positioned UPDATE or Positioned DELETE statement after terminal I/O.

29

Using Natural Statements and System VariablesMultiple Rows to Program (Advanced)

Example:

DEFINE DATA LOCAL
01 NAME (A20/1:10)
01 ADDRESS (A100/1:10)
01 DATEOFBIRTH (A10/1:10)
01 SALARY (P4.2/1:10)
01 L$ADDRESS (I2/1:10)
01 ROWS (I4)
01 NUMBER (I4)
01 INDEX (I4)
END-DEFINE
OPTIONS DB2ARRY=ON
ASSIGN NUMBER := 10
SEL.
SELECT NAME, ADDRESS , DATEOFBIRTH, SALARY
 INTO :NAME(*), /* <-- ARRAY
 :ADDRESS(*) LINDICATOR :L$ADDRESS(*), /* <-- ARRAY
 :DATEOFBIRTH(1:10), /* <-- ARRAY
 :SALARY(01:10) /* <-- ARRAY
 FROM NAT-DEMO
 WHERE NAME > ’ ’
 WITH ROWSET POSITIONING FOR :NUMBER ROWS /* <-- ROWS REQ
 ROWS_RETURNED :ROWS /* <-- ROWS RET
 IF ROWS > 0
 FOR INDEX = 1 TO ROWS STEP 1
 DISPLAY
 INDEX (EM=99) *COUNTER (SEL.) (EM=99) ROWS (EM=99)
 NAME(INDEX)
 ADDRESS(INDEX) (AL=20)
 DATEOFBIRTH(INDEX)
 SALARY(INDEX)
 END-FOR
 END-IF
END-SELECT
END

Multiple Rows from Program (Advanced)

The feature allows programs to insert multiple rows into a DB2 table from arrays.

This feature is only available with the Natural SQL INSERT statement.

Prerequisites

 To use this feature

1. Set the compiler option DB2ARRY=ON (by using an OPTIONS statement or the COMPOPT command
or the CMPO profile parameter).

2. Specify a list of sending arrays in the VALUES Clause of the Natural SQL INSERT statement.

3. Specify the number of rows to be inserted into the database by a single Natural SQL INSERT
statement via the FOR n ROWS Clause.

30

Multiple Rows from Program (Advanced)Using Natural Statements and System Variables

DB2ARRY=ON

DB2ARRY=ON is necessary to allow the specification of arrays in the VALUES Clause. DB2ARRY=ON
also prevents the usage of arrays as sending or receiving fields for DB2 CHAR/VARCHAR
/GRAPHIC/VARGRAPHIC columns. Instead Natural scalar fields with the appropriate length have to be
used.

VALUES Clause

Each array specified in the VALUES Clause has to be contiguous (one occurrence following immediately
by another, this is expected by DB2) and has to be one-dimensional. The arrays are read from the first
occurrence (low) to last occurrence (high). The first array occurrences compose the first row inserted into
the database, the second array occurrences compose the second row inserted into the database. The array
occurrences of the nth index compose the nth row inserted into the database. If a LINDICATOR or
INDICATOR Clauses are used in the VALUES Clause for arrays, the specified length indicators or null
indicators have also to be arrays. The number of LINDICATOR and INDICATOR array occurrences has
to be equal or greater than the number of occurrences of the master array.

FOR n ROWS Clause

The FOR n ROWS Clause is used to specify how many rows are to be inserted into the database table by
one INSERT statement. The specified number has to be equal or smaller than the minimum of
occurrences of all specified arrays in the VALUES Clause. The specified number has to be greater than 0
and smaller than 32768.

Restrictions and Constraints

Natural Views

It is not possible to use Natural arrays of views in the VALUES clause, that is, the use of keyword
VIEW is not possible.

Static Execution

Due to DB2 restrictions it is not possible to execute multiple row inserts in static mode. Therefore
multiple row inserts are not generated static and are always dynamically prepared and executed by
Natural for DB2.

It is not possible to use Natural arrays of views in the INTO clause, that is, the use of keyword VIEW
is not possible.

Example:

DEFINE DATA LOCAL
01 NAME (A20/1:10) INIT <’ZILLER1’,’ZILLER2’,’ZILLER3’,’ZILLER4’
 ,’ZILLER5’,’ZILLER6’,’ZILLER7’,’ZILLER8’
 ,’ZILLER9’,’ZILLERA’>
01 ADDRESS (A100/1:10) INIT <’ANGEL STREET 1’,’ANGEL STREET 2’
 ,’ANGEL STREET 3’,’ANGEL STREET 4’
 ,’ANGEL STREET 5’,’ANGEL STREET 6’
 ,’ANGEL STREET 7’,’ANGEL STREET 8’
 ,’ANGEL STREET 9’,’ANGEL STREET 10’>
01 DATENATD (D/1:10) INIT <D’1954-03-27’,D’1954-03-27’,D’1954-03-27’
 ,D’1954-03-27’,D’1954-03-27’,D’1954-03-27’
 ,D’1954-03-27’,D’1954-03-27’,D’1954-03-27’

31

Using Natural Statements and System VariablesMultiple Rows from Program (Advanced)

 ,D’1954-03-27’>
01 SALARY (P4.2/1:10) INIT <1000,2000,3000,4000,5000
 ,6000,7000,8000,9000,9999>
01 SALARY_N (N4.2/1:10) INIT <1000,2000,3000,4000,5000
 ,6000,7000,8000,9000,9999>
01 L§ADDRESS (I2/1:10) INIT <14,14,14,14,14,14,14,14,14,15>
01 N§ADDRESS (I2/1:10) INIT <00,00,00,00,00,00,00,00,00,00>
01 ROWS (I4)
01 INDEX (I4)
01 V1 VIEW OF NAT-DEMO_ID
02 NAME
02 ADDRESS (EM=X(20))
02 DATEOFBIRTH
02 SALARY
01 ROWCOUNT (I4)
END-DEFINE
OPTIONS DB2ARRY=ON /* <-- ENABLE DB2 ARRAY
ROWCOUNT := 10
INSERT INTO NAT-DEMO_ID
 (NAME,ADDRESS,DATEOFBIRTH,SALARY)
 VALUES
 (:NAME(*), /* <-- ARRAY
 :ADDRESS(*) /* <-- ARRAY
 INDICATOR :N§ADDRESS(*) /* <-- ARRAY
 LINDICATOR :L§ADDRESS(*), /* <-- ARRAY DB2 VCHAR
 :DATENATD(1:10), /* <-- ARRAY NATURAL DATES
 :SALARY_N(01:10) /* <-- ARRAY NATURAL NUMERIC
)
 FOR :ROWCOUNT ROWS
SELECT * INTO VIEW V1 FROM NAT-DEMO_ID WHERE NAME > ’Z’
DISPLAY V1 /* <-- VERIFY INSERT
END-SELECT
BACKOUT
END

Error Handling
In contrast to the normal Natural error handling, where either an ON ERROR statement is used to intercept
execution time errors or standard error message processing is performed and program execution is
terminated, the enhanced error handling of Natural for DB2 provides an application controlled reaction to
the encountered SQL error.

Two Natural subprograms, NDBERR and NDBNOERR, are provided to disable the usual Natural error
handling and to check the encountered SQL error for the returned SQL code. This functionality replaces
the E function of the DB2SERV interface, which is still provided but no longer documented.

For further information on Natural subprograms provided for DB2, see the section Interface Subprograms.

Example:

DEFINE DATA LOCAL
 01 #SQLCODE (I4)
 01 #SQLSTATE (A5)
 01 #SQLCA (A136)
 01 #DBMS (B1)
 END-DEFINE
 *
 * Ignore error from next statement
 *

32

Error HandlingUsing Natural Statements and System Variables

 CALLNAT ’NDBNOERR’
 *
 * This SQL statement produces an SQL error
 *
 INSERT INTO SYSIBH-SYSTABLES (CREATOR, NAME, COLCOUNT)
 VALUES (’SAG’, ’MYTABLE’, ’3’)
 *
 * Investigate error
 *
 CALLNAT ’NDBERR’ #SQLCODE #SQLSTATE #SQLCA #DBMS
 *
 IF #DBMS NE 2 /* not DB2
 MOVE 3700 TO *ERROR-NR
 END-IF
 *
 DECIDE ON FIRST VALUE OF #SQLCODE
 VALUE 0, 100 /* successful execution
 IGNORE
 VALUE -803 /* duplicate row
 /* UPDATE existing record
 /*
 IGNORE
 NONE VALUE
 MOVE 3700 TO *ERROR-NR
 END-DECIDE
 *
 END

33

Using Natural Statements and System VariablesError Handling

	Using Natural Statements and System Variables
	DB2 Special Register Consideration
	Using Natural Native DML Statements
	BACKOUT TRANSACTION
	DELETE
	DELETE when Using the File Server

	END TRANSACTION
	FIND
	FIND when using the File Server

	HISTOGRAM
	READ
	Processing Limit
	Cursors for DB2 Clauses
	READ when Using the File Server

	STORE
	UPDATE
	UPDATE when Using the File Server
	UPDATE with FIND/READ
	UPDATE with SELECT

	Using Natural SQL Statements
	Syntactical Items Common to Natural SQL Statements
	atom
	comparison
	factor
	scalar-function
	column-function
	scalar-operator
	special-register
	units
	case-expression
	Example:

	CALLDBPROC - SQL
	Static and Dynamic Execution
	Result Sets
	List of Parameter Data Types
	CALLMODE=NATURAL
	Example of CALLDBPROC/READ RESULT SET

	COMMIT - SQL
	DELETE - SQL
	INSERT - SQL
	MERGE - SQL
	PROCESS SQL
	READ RESULT SET - SQL
	ROLLBACK - SQL
	SELECT - SQL
	SELECT - Cursor-Oriented
	SELECT SINGLE - Non-Cursor-Oriented

	UPDATE - SQL

	Using Natural System Variables
	Multiple Row Processing
	Purpose of Multi-Fetch Feature (Standard)
	Considerations for Multi-Fetch Usage (Standard)
	Size of the Multi-Fetch Buffer (Standard)
	Support of TEST DBLOG Q (Standard)
	Example: TEST DBLOG List Break-Out

	Multiple Rows to Program (Advanced)
	Prerequisites
	DB2ARRY=ON
	INTO Clause
	WITH ROWSET POSITIONING Clause
	ROWS_RETURNED Clause
	Restrictions and Constraints
	File Server Usage and Positioned UPDATE and DELETE

	Multiple Rows from Program (Advanced)
	Prerequisites
	DB2ARRY=ON
	VALUES Clause
	FOR n ROWS Clause
	Restrictions and Constraints

	Error Handling

