
Natural for Mainframes

Unicode and Code Page Support

Version 4.2.6 for Mainframes

October 2009

This document applies to Natural Version 4.2.6 for Mainframes and to all subsequent releases.

Specifications contained herein are subject to change and these changes will be reported in subsequent release notes or new editions.

Copyright © Software AG 1979-2009. All rights reserved.

The name SoftwareAG,webMethods and all SoftwareAGproduct names are either trademarks or registered trademarks of SoftwareAG
and/or Software AG USA, Inc. Other company and product names mentioned herein may be trademarks of their respective owners.

Table of Contents

1 Unicode and Code Page Support .. 1
2 Introduction ... 3

About Code Pages and Unicode .. 4
About Unicode and Code Page Support in Natural .. 5
ICU on Mainframe Platforms ... 6

3 Unicode and Code Page Support in the Natural Programming Language 7
Natural Data Format U for Unicode-Based Data ... 8
Statements .. 9
Logical Condition Criteria ... 13
System Variables .. 14
Large and Dynamic Variables .. 14
Session Parameters ... 15
Sample Programs ... 17

4 Configuration and Administration of the Unicode/Code Page Environment 19
ICU Library .. 20
Customizing the ICU Data Library for Mainframe Platforms 21
Profile Parameters .. 22
Encoding Information .. 24
Deploying Natural Objects with Encoding Information ... 25

5 Development Environment ... 27
Development Environment .. 28
Customizing Your Environment .. 29
Editors .. 30
Code Page Support for Editors, System Commands and Utilities on the
Mainframe .. 32

6 Unicode Input/Output Handling in Natural Applications ... 35
Displaying and Entering Unicode Data ... 36
Natural Web I/O Interface Client ... 37

7 Unicode Data Storage .. 41
Unicode Data/Parameter Access .. 42
Database Management System Interfaces .. 42
Work Files and Print Files on Windows, UNIX and OpenVMS Platforms 43
Work Files and Print Files on Mainframe Platforms .. 47

8 Platform Differences .. 49
Windows, UNIX and OpenVMS Platforms ... 50
Mainframe Platforms ... 51

9 Migrating Existing Applications ... 61
Impact of Unicode on Existing Applications ... 62
Migrating Existing Objects on Windows, UNIX and OpenVMS Platforms 62
Migrating Existing Objects on Mainframe Platforms .. 63
Adding Unicode Support to Existing Applications ... 65
Migrating Natural Remote Procedure Calls (RPC) .. 66

10 Special Considerations and Limitations .. 67

iii

Windows, UNIX and OpenVMS Platforms ... 68
Mainframe Platforms ... 68

11 Bidirectional Language Support .. 69
12 Double-Byte Character Support .. 75
13 Frequently Asked Questions ... 77

Why do I get the startup error "Invalid code page specified"? 78
What is the "default code page"? .. 78
What default code page is used? .. 78
Should I save all Natural sources in UTF-8 format? .. 78
How can I handle UTF-8 encoding with Natural code? .. 79
Why are some characters not displayed correctly? .. 79
Why do I get an error when I want to edit a Natural source? 79
Why do I get an error when I want to save a Natural source? 79
How can I find out the encoding of a Natural source? .. 80
How can I change the encoding of a Natural source? ... 80
How can I convert an existing Natural source into UTF-8 format (Windows,
UNIX and OpenVMS only)? .. 80
Which substitution character is used if a character cannot be converted? 81
Can I use Natural 4.2 sources with previous Natural versions? 81
Can I use UTF-8 sources with previous Natural versions? 81
Why do I get a conversion error when cataloging a source which has UTF-8
format? ... 81
Why do I get garbage On UNIX or OpenVMS when displaying U format via a
terminal emulation? ... 82
Can I work with a current SPoD client and an older SPoD server? 82
Can I work with a current SPoD server and an older SPoD client? 82

Index ... 83

Unicode and Code Page Supportiv

Unicode and Code Page Support

1 Unicode and Code Page Support

This documentation describes howNatural supports Unicode and code pages onWindows, UNIX,
OpenVMSandmainframeplatforms. It also describes howNatural supports bidirectional languages
and double-byte characters.

This documentation is organized under the following headings:

General information on code pages and the Unicode Standard,
and on how Unicode and code pages are supported in Natural.

Introduction

Information on theU format and on statements, logical condition
criteria, system variables, large and dynamic variables, and

Unicode and Code Page Support in
theNatural ProgrammingLanguage

session parameters which provide Unicode and code page
support.

Information on the ICU library, on profile parameters which
provide Unicode and code page support, and on the encoding
of code page data.

Configuration and Administration
of the Unicode/Code Page
Environment

How to customize your environment and how Unicode is
handled by theNatural editors. Information on codepage support

Development Environment

forNatural sources on themainframe (editors, system commands
and utilities).

How to display and enter Unicode data. Information on the
Natural Web I/O Interface client which is used in SPoD and
runtime environments.

Unicode Input/OutputHandling in
Natural Applications

Information on database access, and on the work file types and
print files which provide Unicode and code page support.

Unicode Data Storage

Handling differences on Windows, UNIX, OpenVMS and
mainframe platforms.

Platform Differences

About the impact of Unicode on existing applications. How to
migrate existing objects, add Unicode support to existing

Migrating Existing Applications

applications, and how tomigrateNatural remote procedure calls
(RPC).

1

Important information and restrictions on the different platforms.Special Considerations and
Limitations

How Natural supports bidirectional languages.Bidirectional Language Support

How Natural supports double-byte characters.Double-Byte Character Support

Answers to frequently asked questions.Frequently Asked Questions

Unicode and Code Page Support2

Unicode and Code Page Support

2 Introduction

■ About Code Pages and Unicode .. 4
■ About Unicode and Code Page Support in Natural ... 5
■ ICU on Mainframe Platforms ... 6

3

About Code Pages and Unicode

A traditional code page is a list of selected character codes, arranged in a certain order, that support
specific languages or groups of languages that share common scripts. A code page can contain a
maximum of 256 character codes. For character sets which contain more than 256 characters (for
example, Chinese or Japanese), double-byte code unit handling (DBCS) is used: DBCS code pages
are actually multi-byte encodings, a mix of 1-byte and 2-byte code points.

Code pages have the inherent disadvantage of not being able to be used to store different languages
in the same data stream. Unicodewas designed to remove this restriction by providing a standard
encoding for all character sets which is independent of the platform, program, or language used
to access the data. With Unicode, a unique number is provided for every character.

A single number is assigned to each code element defined by the Unicode Standard. Each of these
numbers is called a “code point” and, when referred to in text, is listed in hexadecimal form fol-
lowing the prefix "U". For example, the code point "U+0041" is the hexadecimal number "0041"
(equal to the decimal number "65"). It represents the character "A" in the Unicode Standard which
is named “LATIN CAPITAL LETTER A”.

The Unicode Standard defines three encoding forms that allow the same data to be transmitted
in a byte, word or double word oriented format. A “code unit” is the minimal bit combination
that can represent a character in a specific encoding. The Unicode Standard uses 8-bit code units
in the UTF-8 encoding form, 16-bit code units in the UTF-16 encoding form, and 32-bit code units
in theUTF-32 encoding form.All three encoding forms encode the same common character repertoire
and can be efficiently transformed into one another without loss of data.

In the context of Natural, we are concerned with two of these encoding forms: UTF-16 and UTF-
8. Natural uses UTF-16 for the coding of Unicode strings at runtime and UTF-8 for the coding of
Unicode data in files. UTF-16 is an endian-dependant 2-byte encoding; the endian format that will
be used depends on the platform. UTF-8 is a 1-byte encoding.

For a complete description of Unicode, see the Unicode consortium web site at http://www.uni-
code.org/.

Note: For obtaining information onUnicode code points, you can use the SYSCP utilitywhich
is available with Natural for Windows.

Unicode and Code Page Support4

Introduction

http://www.unicode.org/
http://www.unicode.org/

About Unicode and Code Page Support in Natural

In previous versions, Natural supported only code page characters. StartingwithNatural versions
4.2 (mainframe), 6.2 (Windows and UNIX) and 6.3 (OpenVMS) Unicode is supported.

For Unicode support, the Natural data format U has been introduced and there are specific state-
ments, parameters, system variables, etc. For details, see the remainder of this documentation.

Currently, most existing data is available in code page format. When converting this data to Uni-
code, it is required that the correct code page is used. Natural provides the possibility to define
the correct code page on several levels:

■ The system code page is used if a default code page is not defined in Natural.

If no code page is defined on a mainframe (CP=OFF), a default code page is not defined. CP=AUTO
is intended to adjust the Natural session to the code page of the current I/O device.

■ The default code page is used when the Natural parameter CP is defined; this overwrites the
operating system's code page.

■ The object code page which is defined, for example, for a source overwrites the default code
page for this object.

When using Unicode strings and code page strings in one application, Natural does implicit con-
versions where necessary (for example, when moving or comparing data). Explicit conversions
can be performed with the statement MOVE ENCODED.

In most cases, existing applications which do not require Unicode support, will run unchanged.
On Windows, UNIX and OpenVMS platforms, changes can be necessary if the existing sources
are encoded in different code pages. For more information, seeMigrating Existing Applications
later in this documentation.

It is not possible to run an existing application and also support Unicode datawithout any changes
to the application. The Natural data format U has to be introduced in the application and it will
most probably not suffice to simply replace the A format definitions with U format definitions.
All code which assumes a specific memory layout of strings (for example, REDEFINE from alpha-
numeric to numeric format) has to be adapted.

Unicode characters are not permitted within variable names, object names and library names.

Unicode-based data are supported for Adabas and DB2.

Natural uses the International Components for Unicode (ICU) library for Unicode collation and
conversion. For more information, see http://icu.sourceforge.net/userguide/. See also ICU Library
later in this documentation.

5Unicode and Code Page Support

Introduction

http://icu.sourceforge.net/userguide/

ICU on Mainframe Platforms

Information on the currently used ICU version and Unicode specification is provided in the main
menu of the SYSCP utility. See Invoking and Terminating SYSCP in the Utilities documentation of
the Natural for Mainframes documentation.

Unicode and Code Page Support6

Introduction

3 Unicode andCodePageSupport in theNatural Programming

Language
■ Natural Data Format U for Unicode-Based Data .. 8
■ Statements .. 9
■ Logical Condition Criteria .. 13
■ System Variables .. 14
■ Large and Dynamic Variables .. 14
■ Session Parameters ... 15
■ Sample Programs .. 17

7

Natural Data Format U for Unicode-Based Data

In Natural, you can specify Unicode strings with the format U and U constants.

■ Format U
With format U, you can define data which holds Unicode strings. The Natural data format U is
internally UTF-16.

See also Format and Length of User-Defined Variables in the Programming Guide.
■ U Constants
You can define Unicode constants with the prefix "U". For example:

U'Äpfel'

The prefix "UH" can be used for defining Unicode constants in hexadecimal format. Four hexa-
decimal digits represent one UTF-16 code unit as defined by the Unicode Standard. So the
overall length must be a multiple of four. For example, if you need the hexadecimal form of

U'Äpfel'

you need the UTF-16 code units for "Ä", "p", "f", "e" and "l" (which are "U+00C4", "U+0070",
"U+0066", "U+0065" and "U+006C") and you have to combine them to the following hexadecimal
string:

UH'00C4007000660065006C'

See also Unicode Constants in the Programming Guide.

The data format U is endian-dependant. This has to be considered when moving between the
formats B and U.

U versus A

The advantage of theU format (as comparedwith theA format) is, that it can hold any combinations
of characters from different languages and that it does not depend on the default code page (value
of the system variable *CODEPAGE). Moreover, the U format makes it easier to share data between
different platforms; no more conversions (for example, from EBCDIC to ASCII) are necessary.

On the other hand, U format data consumes more memory than A format data. For languages in
which most strings can be represented by single-byte encoding, U format will result in strings
occupying twice the space that was previously required. However, for East Asian languages, the
memory consumption will often not be higher.

Unicode and Code Page Support8

Unicode and Code Page Support in the Natural Programming Language

Statements

Basically, U format can be used in most statements which allow A format. However, if a Natural
object name is given as an operand of a statement (for example, in the CALLNAT statement), U
cannot be used becauseNatural object names haveA format. For information on a specific statement,
see the Statements documentation.

Basically, A and U format can be used together in one statement, for example:

EXAMINE S FOR P WITH DELIMITER D REPLACE R

where S is U format, and P, D and R are A format.

In the above example, the variables P, D and R are temporarily converted into the target format U
before the actual execution of the EXAMINE statement. The conversion from Unicode to code page
or vice versa requires calling an ICU function. The conversion requires additional computing time
and additional memory. This disadvantage is even greater with very large variables. To avoid
frequent conversions, it is recommended that you use only one formatwithin one statement.When
all operands in the above example are specified in either U format or A format, a conversion is
not necessary. However, if you choose to specify only U operands, this variant will be slower since
(due to its nature) this operand type consumes more resources; one character is then coded with
2 bytes (instead of 1 byte which is used with A format).

With a conversion (especially from U format to A format), there is always the risk that characters
cannot be represented in the target code page. For example, you want to convert the Unicode
character "U+05D0" (Hebrew letter Alef) into the code page IBM01140 (English). Since this character
is not contained in the code page IBM01140, either the substitution character for this code page is
used, or the place holderwhichwas specifiedwhen defining the code page in NATCONFG (mainframe
only). When the parameter CPCVERR is set to ON, an error message will be issued in this case, indic-
ating a conversion error. In any case, the original information will be lost.

The following statements are particularly affected when using Unicode:

■ MOVE NORMALIZED
■ MOVE ENCODED
■ EXAMINE
■ PARSE XML
■ REQUEST DOCUMENT
■ DEFINE PRINTER

9Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

■ CALLNAT (RPC)

MOVE NORMALIZED

Normalization inUnicode:Aprocess of removing alternate representations of equivalent sequences
from textual data in order to convert the data into a form that can be binary-compared for equival-
ence. The Unicode Standard defines different normalization forms. The normalization form that
results from the canonical decomposition of a Unicode string, followed by the replacement of all
decomposed sequences by primary composites where possible, is called “Normalization Form
Composed” (NFC).

Natural assumes that all Unicode data is in NFC format to assure that string operations can be
performedwithout partial truncation of aUnicode character. Natural conversion operations assure
that the resulting Unicode string is in NFC. If Unicode data is received from outside of Natural
and it is not guaranteed that the data has NFC format, the MOVE NORMALIZED statement can be ap-
plied.

Example:

NFCCharacter Sequence

ê (U+00EA)ê (U+00EA)

ê (U+00EA)e (U+0065) + ^ (U+0302)

Note: Concatenating two or more strings in NFC format can result in not-NFC format.

MOVE ENCODED

An implicit conversion between Unicode and the default code page (value of the system variable
*CODEPAGE) is performed when moving strings fromU to A or vice versa with the MOVE statement.

Furthermore, the MOVE ENCODED statement can be used for conversion between different code pages
or from any available code page to Unicode and vice versa. This can be helpful if data is coming
from outside of Natural and this data is coded in a code page which differs from the default code
page. But even for conversions between the default code page and Unicode, this statement can be
used if you want to obtain a potential conversion error with the GIVING clause; if CPCVERR is set to
ON, the MOVE statement will stop with a runtime error in this case.

If a character cannot be converted, it depends on the setting of the CPCVERR parameter whether a
substitution character is used for this character or whether the conversion fails. On Windows,
UNIX and OpenVMS platforms, the default substitution character (defined by ICU) for the con-
version from Unicode to the default code page (CP) can be changed with the profile parameter
SUBCHAR.

This statement can also be used for conversion from U data into UTF-8 format.

Unicode and Code Page Support10

Unicode and Code Page Support in the Natural Programming Language

Note: If you convert data to a code page which differs from the default code page, it is re-
commended not to use this data in I/O. I/O is only meaningful with the default code page.

EXAMINE

A “grapheme” is what a user normally thinks of as a character. In most cases, a Unicode code
point is a grapheme, however, a grapheme can also consist of several Unicode code points. For
example, a sequence of one base character and one or more combining characters is a grapheme.

Example: "a" (U+0061) + "." (U+0323) + "^" (U+0302) defines one grapheme which is displayed as
follows:

Note: If a base/combining character sequence is normalized, this does not mean that the
sequence is always replaced by a pre-composed character, because not all characters are
available in a pre-composed format.

A “supplementary code point” is a Unicode code point between "U+10000" and "U+10FFFF". A
supplementary code point is in UTF-16, represented by a surrogate pair which consists of two
code units where the first value of the pair is a “high-surrogate code unit”, and the second is a
“low-surrogate code unit”. Such characters are generally rare, but some are used, for example, as
part of Chinese and Japanese personal names, and therefore support for these characters is com-
monly required for government applications in East Asian countries.

The string handling statements such as EXAMINE and its SUBSTRING option work on UTF-16 code
units. It is the user's responsibility that the code does not separate graphemes or surrogate pairs.

However, the clauses CHARPOSITION and CHARLENGTH of the EXAMINE statement (see Syntax 3 - EX-
AMINE for Unicode Graphemes) can be used to ask for the start and length (in UTF-16 code units)
of graphemes. The result values can be used for SUBSTRING calls. With these clauses, it is possible
to scan a string grapheme by grapheme.

Example:

DEFINE DATA LOCAL
1 #UNICODE-STRING (U15)
1 #CODE-UNIT-INDEX (N4)
1 #CODE-UNIT-LEN (N4)
1 #GRAPHEME-NUMBER (N4)
END-DEFINE

MOVE U' ' TO #UNICODE-STRING

#GRAPHEME-NUMBER := 1

11Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

REPEAT
EXAMINE
 FULL VALUE OF #UNICODE-STRING
 FOR CHARPOSITION #GRAPHEME-NUMBER
 GIVING POSITION IN #CODE-UNIT-INDEX
 GIVING LENGTH IN #CODE-UNIT-LEN

 DISPLAY #UNICODE-STRING #GRAPHEME-NUMBER #CODE-UNIT-INDEX #CODE-UNIT-LEN

 #GRAPHEME-NUMBER := #GRAPHEME-NUMBER + 1
WHILE #CODE-UNIT-INDEX NE 0
END-REPEAT

END

The above example program provides the following output:

Page 1 05-12-15 09:33:49

#UNICODE-STRING #GRAPHEME-NUMBER #CODE-UNIT-INDEX #CODE-UNIT-LEN
--------------- ---------------- ---------------- --------------

 1 1 1
 2 2 2
 3 4 1
 4 5 3
 5 8 1
 6 9 3
 7 12 1
 8 13 3
 9 0 0

PARSE XML

XML documents can contain information within the XML document header about the encoding
of the document (for example, <?xml version="1.0" encoding="UTF-8" ?>). If an XMLdocument
contains this information, the parsing of the XML document on Windows, UNIX and OpenVMS
platforms always includes a conversion of the code page given within the XML document header
to the default code page of Natural (value of the system variable *CODEPAGE), if the receiving field
is not of format U.

On mainframe platforms, the document to be parsed is always internally converted to UTF-16 (if
the document is not already encoded in UTF-16).

See the description of the PARSE XML statement for further information.

See also Statements for Internet and XML Access in the Programming Guide.

Unicode and Code Page Support12

Unicode and Code Page Support in the Natural Programming Language

REQUEST DOCUMENT

Data transfer with the REQUEST DOCUMENT statement normally does not involve any code page
conversion. If you want to have the outgoing and/or incoming data encoded in a specific code
page, you can use the DATA ALL clause and/or the RETURN PAGE clause of the REQUEST DOCUMENT
statement to specify this.

See the description of the REQUEST DOCUMENT statement for further information.

See also Statements for Internet and XML Access in the Programming Guide.

DEFINE PRINTER

On mainframe platforms, the DEFINE PRINTER statement provides a CODEPAGE clause to provide
for conversion of print report data into a code page different from the default code page (value of
the systemvariable *CODEPAGE). OnWindows,UNIX andOpenVMSplatforms, the DEFINE PRINTER
statement does not provide such a clause; if the CODEPAGE clause is defined, it is ignored on Win-
dows, UNIX and OpenVMS platforms.

CALLNAT (RPC)

Data exchange in Unicode format via RPC is supported. See the description of the CALLNAT state-
ment.

If U data is sent from a platformwith big endian encoding to a platformwith little endian encoding
or vice versa, the encoding is adapted so that it conforms with the encoding on the receiving
platform. For example, when U data in little endian encoding arrives on a big endian platform,
this data is converted to big endian encoding before it is handed over to the program. When this
data is sent back, it is converted back to little endian encoding.

Logical Condition Criteria

In a logical condition criterion, Unicode operands can be used together with alphanumeric and
binary operands. If not all operands are Unicode operands (format U), the second and all following
operands are converted to the format of the first operand. If a binary operand (format B) is specified
as the second or a following operand, the length of the binary operand must be even; the binary
operand is assumed to contain Unicode code points.

If the first operand is a Unicode operand (format U) and the comparison is therefore performed
as aUnicode comparison, the ICU collation algorithm is used. The ICU algorithmdoes not perform
a plain binary comparison. For example,

■ some code points such as "U+0000" are ignored during the comparison process,

13Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

■ combined characters are considered as being equal to the equivalent single code point (for ex-
ample, the German character "ä" represented by "U+00E4" and the combination of the code
points "U+0061" and "U+0308" are considered as being equal by ICU).

Note: Comparing an alphanumeric and a Unicode operand can deliver different results,
depending on the sequence of the fields.

See also Logical Condition Criteria in the Programming Guide.

System Variables

This section covers the following topics:

■ *CODEPAGE
■ *LOCALE

*CODEPAGE

The system variable *CODEPAGE is used to return the IANA name of the default code page, that is,
the code page used for conversions between Unicode and code page format.

*LOCALE

The system variable *LOCALE contains the language and country of the current locale.

Large and Dynamic Variables

U format can be used for large and dynamic variables. For dynamic U variables, *LENGTH returns
the number of UTF-16 code units.

See also Introduction to Dynamic Variables and Fields in the Programming Guide.

Unicode and Code Page Support14

Unicode and Code Page Support in the Natural Programming Language

Session Parameters

The following session parameters are available:

DescriptionParameter

Specifies the display length for a field of format A or U. See also Display Length for Output - DL
Parameter in the Programming Guide.

DL

Edit mask in Unicode.EMU *

Insertion character in Unicode.ICU *

Leading characters in Unicode.LCU *

Trailing characters in Unicode.TCU *

Session parameters marked with an asterisk (*) in the above table are only available onWindows,
UNIX and OpenVMS platforms.

DL versus AL

As long as Natural was not Unicode-enabled, the length of an alphanumeric field was always
identical to the number of columns needed for displaying the field (called number of display
columns). This was even true for the East Asian languages which use DBCS code pages: an A
format field can hold only half the characters (for example, A10 results in A5).

Example:

DEFINE DATA LOCAL
1 #A8 (A8)
END-DEFINE
#A8 := 'computer'
WRITE #A8
#A8 := ' '
WRITE #A8
END

The above code results in the following output:

Page 1 ...

computer

With U format fields, the length of a field and the number of display columns is no longer
identical. U characters can have narrow width (for example, Latin characters), wide width (for
example, Chinese characters) or no width (for example, combining characters). Therefore, it is

15Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

totally unknown how many display columns a U field needs; this depends on the contents of the
field. Natural cannot automatically decide how many columns are to be reserved on the screen:
if the maximum size is assumed, Latin output will have large gaps, and if the minimum size is
assumed, Chinese output cannot be displayed totally. Therefore, the Natural programmer has to
define the display width of a field; this is done with the DL parameter. The AL parameter cannot
be used for this purpose, because it cuts away the part of the field which exceeds the defined
length. But we do not want to cut any characters from the U field; we only want to define the start
position of the following field.

Example:

DEFINE DATA LOCAL
1 #U8 (U8)
1 #U4 (U4)
END-DEFINE
#U8 := 'computer'
WRITE #U8
#U4 := U' '
WRITE #U4 (DL=8)
END

The above code results in the same output as above:

Page 1 ...

computer

OnWindows, either locally with the output window or in a remote development environment
with the Natural Web I/O Interface client, it is possible to scroll in a field where the defined value
for the DL parameter is smaller than the real display width of the field.

EMU, ICU, LCU, TCU versus EM, IC, LC, TC

The parameters EMU, ICU, LCU and TCU (which are only available onWindows, UNIX andOpenVMS
platforms) allowusing characterswhich are not included in the default code page. They are stored
in Unicode format in the generated program. These parameters can be used with all field formats.

The parameters EM, IC, LC and TC can also be used with U format fields. These parameters may
also be useful if characters which are contained in the default code page have different encodings
in other code pages. For example, the Euro sign (€) has the code point "0x80" in the "windows-
1252" (Latin 1) code page, but the code point "0x88" in the "windows-1251" (Cyrillic) code page.
Thus, using a Unicode parameter will assure that the Euro sign is always displayed correctly, no
matter what code page is installed on the PC.

Unicode and Code Page Support16

Unicode and Code Page Support in the Natural Programming Language

Example for EMU:

DEFINE DATA
LOCAL
 01 EMPLOYEES-VIEW VIEW OF EMPLOYEES
 02 FIRST-NAME
 02 NAME
 02 SALARY (1)
END-DEFINE
*
 READ (6) EMPLOYEES-VIEW
 DISPLAY NAME FIRST-NAME SALARY(1) (EMU=999,999)
 END-READ
*
END

The above code results in the following output:

Page 1 05-12-15 11:45:36

 NAME FIRST-NAME ANNUAL
 SALARY
-------------------- -------------------- --------

ADAM SIMONE 159,980
MORENO HUMBERTO 165,810
BLOND ALEXANDRE 172,000
MAIZIERE ELISABETH 166,900
CAOUDAL ALBERT 167,350
VERDIE BERNARD 170,100

Sample Programs

The library SYSEXPG contains sample programs for Unicode and code page support in Natural:

■ UNICOX01 lists all Unicode characters.
■ UNICOX02 converts Unicode characters to code points and vice versa.
■ CODEPX01 lists all code pages, whether the code page is supported inNatural andwhich encoding
it uses. For all supported code pages, it offers services to list the characters of the code page and
to convert a string from the code page into its hexadecimal representation and vice versa.

■ CODEPXL1 lists all characters of any 1-byte code page.
■ CODEPXL2 lists all characters of any 2-byte code page.
■ CODEPXC1 converts a string from any code page into its hexadecimal representation and vice
versa.

17Unicode and Code Page Support

Unicode and Code Page Support in the Natural Programming Language

18

4 Configuration andAdministration of the Unicode/CodePage

Environment
■ ICU Library .. 20
■ Customizing the ICU Data Library for Mainframe Platforms .. 21
■ Profile Parameters ... 22
■ Encoding Information ... 24
■ Deploying Natural Objects with Encoding Information ... 25

19

ICU Library

Windows, UNIX and OpenVMS Platforms

The ICU libraries are always installed with the full set of ICU conversion and collation data. The
settings in the configuration file NATCONV.INI apply to the A format. For the U format, the cor-
responding checks (for example, when a character is translated to upper case) are done via the
ICU library.

Note: For obtaining information on the ICU version and the supported code pages, you can
use the SYSCP utility which is available with Natural for Windows.

Mainframe Platforms

The relevant modules can be linked statically to the shared nucleus or loaded dynamically by
means of the RCA technique. See NATICU Modules for Different Purposes.

For running applicationswithout Unicode andwithout code page support, that is, with the profile
parameter settings CFICU=OFF and CP=OFF, none of the supplied ICU modules needs to be linked
to the Natural nucleus.

Note: Information on the currently used ICU version andUnicode specification is provided
in the main menu of the SYSCP utility. See Invoking and Terminating SYSCP in the Utilities
documentation of the Natural for Mainframes documentation.

Three different load modules are offered:

DescriptionLoad Module

Contains code page and Unicode conversion functionality as well as collation services. The
first is needed for conversion from one code page to another code page or to Unicode and vice

NATICU

versa. The latter is used for string comparison of Unicode strings with consideration of locale
ID.

NATICU contains themost popular code pages and locales. The code pages are already declared
in NATCONFG.

Same as NATICU, but without collation services. Therefore, it is smaller.NATICUCV

Same as NATICU, but it contains all possible converters and locales offered by the currently
supported ICU version. It supports about 230 different code pages (predominantly EBCDIC
code pages) and 238 locales. Therefore, the module size is huge.

If NATICUXL is linked to the Natural nucleus, the desired code pages have to be declared in
the configuration file NATCONFG.

NATICUXL

Unicode and Code Page Support20

Configuration and Administration of the Unicode/Code Page Environment

DescriptionLoad Module

NATICUXL supports all code pages and locale IDs which are supported by the currently
supported ICU version (see http://demo.icu-project.org/icu-bin/convexp).

Note: Due to technical restrictions, NATICUXL is not delivered for z/VSE.

See also NATICU Modules for Different Purposes.

Note for z/VSE:

If you receive an error during linkage editing when you try to link one of the ICU load modules
statically to the shared nucleus because the size of the resulting phase is too large for your z/VSE
partition, proceed as follows:

■ Check whether NATICUCV can be used instead of NATICU (if you tried to link NATICU).
■ Load the relevant module dynamically by means of the RCA technique. See NATICUModules
for Different Purposes. Modules NATICU and NATICUCV are also delivered as a phase to make
use of the RCA technique more convenient.

■ Ask your system administrator to configure your partition so that the storage available for the
linkage editor is sufficient to hold the resulting phase.

Additional tables:

DescriptionTable

Required scanner table for Unicode characters. It maps the properties of Unicode characters of
the currently supported Unicode version to be used by the Natural nucleus. This table must
never be changed.

NATSCTU

Optional single-byte code page conversion accelerator tables. If the table is present, conversion
from one code page to another code page will be faster since it is performed via this table rather

NATCPTAB

than by calling ICU functions. For more information, see Translation Tables in the Operations
documentation for Natural for Mainframes.

Customizing the ICU Data Library for Mainframe Platforms

ICU makes use of a wide variety of data tables to provide many of its services. Examples include
convertermapping tables, collation rules, transliteration rules, break iterator rules and dictionaries,
and other locale data. The ICU data library for Natural is provided as a package that contains the
desired data items. The usage of packages instead of single data itemfiles increases the performance
since there is only one file access during the initialization to load the package. However, it is not
so flexible since it requires a rebuild of a package if data items need to be added.

The ICUdata librarymay be customized in order to add existing or new convertermapping tables
or to add other data items such as collation rules, break iterator rules and other locale data.

21Unicode and Code Page Support

Configuration and Administration of the Unicode/Code Page Environment

http://demo.icu-project.org/icu-bin/convexp

The customization tool for the ICU data library is available from the Component Downloads area
in ServLine24 (http://servline24.softwareag.com/public/). Detailed information onhow to customize
the ICU data library is provided in the readme.txt file which is part of the downloaded zip file.

Profile Parameters

This section lists the profile parameters which are used in conjunction with Unicode and code
page support. Not all profile parameters are available on all platforms.

■ All Platforms
■ Windows, UNIX and OpenVMS Platforms
■ Mainframe Platforms
■ Natural Development Server for Mainframes

All Platforms

The following profile parameters are available on all platforms:

DescriptionParameter

Defines the default code page forNatural. This code page is used for the runtime anddevelopment
environment if not superposed with a code page defined for a single object (for example, for a
Natural source).

CP

Only platform-suitable code pages can be used. This means, for example, that no EBCDIC code
page can be defined for a Windows, UNIX or OpenVMS platform, or that no ASCII code page
can be defined for a mainframe platform. On mainframes, an initialization error message occurs
if a wrong code page is used.

Note: As of Natural Version 6.2 for Windows and UNIX, Natural Version 6.3 for OpenVMS and
Natural Version 4.2 forMainframes, the existing CP parameter (usedwithNatural RPC) has been
renamed to CPRPC.

Specifies whether a conversion error that occurs when converting from Unicode to code page or
from code page to Unicode or from one code page to another code page results in a Natural error
or not.

CPCVERR

This parameter is not regarded for the conversion of Natural sources when loading them into
the source area or when cataloging them.

On mainframe platforms, it is not regarded whether a Unicode field is converted into the code
page before an I/O on a terminal emulation. In this case, the substitution character defined by
ICU is replaced by the place holder character which is defined in NATCONFG.

Specifies the code page in which the batch input file for data is encoded. This file is defined with
the Natural profile parameter CMOBJIN (Windows, UNIX and OpenVMS) or in the dataset
CMOBJIN (mainframe).

CPOBJIN

Unicode and Code Page Support22

Configuration and Administration of the Unicode/Code Page Environment

http://servline24.softwareag.com/public/

DescriptionParameter

Specifies the code page in which the batch output file shall be encoded. This file is defined with
the Natural profile parameter CMPRINT (Windows, UNIX and OpenVMS) or in the dataset
CMPRINT (mainframe).

CPPRINT

Specifies the code page inwhich the batch input file for commands is encoded. This file is defined
with the Natural profile parameter CMSYNIN (Windows, UNIX and OpenVMS) or in the dataset
CMSYNIN (mainframe).

CPSYNIN

Specifies that all existing sources have to be saved in their original encoding format. See also
Customizing Your Environment.

SRETAIN

See also:

■ Code Pages for the Input and Output Files in the section Natural in Batch Mode of the Operations
documentation for Natural for Windows, Natural for UNIX and Natural for OpenVMS.

■ Natural in Batch Mode in the Operations documentation for Natural for Mainframes.
■ For valid code pages, see http://www.iana.org/assignments/character-sets.

Windows, UNIX and OpenVMS Platforms

The following profile parameters are only available onWindows, UNIX andOpenVMSplatforms:

DescriptionParameter

Specifies the default format to be used when Natural sources are saved.

Note: On UNIX and OpenVMS, this parameter can only be used in a SPoD environment.

SUTF8

Specifies the substitution character for the conversion from Unicode to the default code page. If
SUBCHAR is OFF, the default substitution character defined by ICU will be used.

Note: SUBCHAR does not influence conversions from code page to Unicode or from Unicode to
code pages which differ from the default code page.

SUBCHAR

Specifies whether the Natural Web I/O Interface client (which supports Unicode) or the terminal
emulation window (which is not Unicode-enabled) is used for input and output.

In a local Windows environment, the output window (which is Unicode-enabled) is used.

WEBIO

In a remoteWindows environment, theNaturalWeb I/O Interface client is always used, regardless
of the setting of this parameter.

Note: For mainframe platforms, the NDV configuration parameter TERMINAL_EMULATION is
used instead. See below.

23Unicode and Code Page Support

Configuration and Administration of the Unicode/Code Page Environment

http://www.iana.org/assignments/character-sets

Mainframe Platforms

The following profile parameters and/or macros are only available on mainframe platforms:

DescriptionMacroParameter

Enables Unicode support for various Unicode settings.NTCFICUCFICU

In the NATCONFGmodule, this macro defines a code page
and all related information, such as replacement characters,
locale ID and collation tables.

NTCPAGENot available.

Defines the code page for a report.CP keyword subparameter of
NTPRINTmacro

PRINT

Generates code page-sensitive Natural programs.CPAGE keyword subparameter
of NTCMPOmacro

CMPO

Set the ACODE and/or WCODE option to define the user
encoding if the used Adabas database is enabled for UES
(universal encoding support).

NTOPRBOPRB

Natural Development Server for Mainframes

The following NDV configuration parameter is only available with the Natural Development
Server for mainframe platforms:

DescriptionSettings

Specifies that the Natural Web I/O Interface client (which supports
Unicode) is used for input and output.

TERMINAL_EMULATION=WEBIO

Encoding Information

The encoding of code page data can be specified on different levels:

■ Level 1 - Default Code Page

Unicode and Code Page Support24

Configuration and Administration of the Unicode/Code Page Environment

■ Level 2 - Code Page for a Single Object

Level 1 - Default Code Page

The default code page can be defined with the CP parameter. On Windows, UNIX and OpenVMS
platforms, it overwrites the system code page and is valid for all code page data.

Level 2 - Code Page for a Single Object

A code page can be defined for Natural sources, batch input (CPOBJIN, CPSYNIN) and output files
(CPPRINT).

In addition, on Windows, UNIX and OpenVMS platforms, a code page can be defined for work
files of type ASCII, ASCII compressed, Unformatted and CSV; seeWork File Assignments in the
Configuration Utility documentation.

If a code page is defined at object level, this overwrites the default code page.

Note: OnWindows, UNIX and OpenVMS platforms, it is important that the correct code
page is defined for every object. Formore information, seeMigrating Existing Applications.

Deploying Natural Objects with Encoding Information

Windows, UNIX and OpenVMS Platforms

If you want to deploy Natural objects for which encoding information has already been defined,
you have to keep in mind that the encoding information is stored in the file FILEDIR.SAG and
that it is lost if you deploy only the object file from outside of Natural.

When deploying Natural objects, you have the following possibilities for keeping the encoding
information:

■ You can copy the entire library. The copy of the library can then be distributed to all Windows,
UNIX and OpenVMS platforms. In this case, the original code page is kept. If a library is copied
fromWindows to UNIX or OpenVMS, you have to keep in mind that it may be possible that
the objects cannot be opened with a native Natural for UNIX or Natural for OpenVMS editor
because these editors can only open objects with the default code page.

■ You can use the Object Handler which keeps the encoding information. In this case, the original
code page is kept. If a Windows library is unloaded on UNIX or OpenVMS, you have to keep
inmind that it may be possible that the objects cannot be openedwith a nativeNatural for UNIX
or Natural for OpenVMS editor because these editors can only open objects with the default
code page.

25Unicode and Code Page Support

Configuration and Administration of the Unicode/Code Page Environment

■ You can copy and paste objects with Natural Studio. In a SPoD environment, if the target envir-
onment is located on a platform different from the source environment, Natural tries to save
the object with the default code page of the target environment. If this is not possible, the object
is stored in UTF-8 format. For UNIX and OpenVMS targets, this assures that the object can be
opened with the native Natural for UNIX or Natural for OpenVMS editors, if all characters of
the source are available in the default code page of the UNIX or OpenVMS server.

Mainframe Platforms

For objects onmainframe platforms, there are no special considerations for keeping the code page
information of the object since it is part of the object directory.

Unicode and Code Page Support26

Configuration and Administration of the Unicode/Code Page Environment

5 Development Environment

■ Development Environment .. 28
■ Customizing Your Environment .. 29
■ Editors .. 30
■ Code Page Support for Editors, System Commands and Utilities on the Mainframe 32

27

Development Environment

The development environment for Unicode applications is Natural Single Point of Development
(SPoD).

In a SPoD environment, the Natural objects of a Unicode application which are located on a Nat-
ural Development Server (NDV) can bemodified usingNatural Studio. If supported by the server,
the sources are exchanged between client and server in UTF-8 format.

Unicode and Code Page Support28

Development Environment

On NDV servers for UNIX and OpenVMS, the setting of the profile parameter SUTF8 determines
the format that is used when storing the Natural object on the server. This is handled just like the
local Windows case.

OnNDV servers for mainframes, the objects are storedwith the default or their original encoding,
depending on the setting of the profile parameter SRETAIN.

Customizing Your Environment

OnWindows, UNIX and OpenVMS platforms, it is important that you define the correct default
code page for your environment before changing any Natural code. For more information, see
Migrating Existing Applications.

If you want to store characters from different languages in your sources, you have to save the
sources in UTF-8 format on Windows, UNIX or OpenVMS platforms, or you have to use hexa-
decimal UH constants in the sources. With the profile parameters SUTF8 and SRETAIN you can
control inwhich format sources are saved. The following table lists some situations and the recom-
mended settings.

Note: OnUNIXandOpenVMS, the parameter SUTF8 can only be used in a SPoDenvironment.

EffectSettingsSituation

All sources are saved in UTF-8 format when saving them
with Natural 6.2 or above. New sources are created in
UTF-8 format. All characters can be stored in a source.

Sources are located onWindows;
U constants are needed.

SUTF8=ON,
SRETAIN=OFF

All sources are saved in UTF-8 format when a conversion
to the original code page is no longer possible; if it is
possible, the code page of a source will not be changed.
New sources are created in UTF-8 format. All characters
can be stored in a source. A source with UTF-8 format can

Sources are located onWindows,
UNIX and/or OpenVMS; U
constants are needed and SPoD
is used for development.

only be changed with SPoD; it can no longer be handled
with the Natural for UNIX or Natural for OpenVMS
editors.

SUTF8=ON,
SRETAIN=ON

All sources are saved with the original code page. New
sources are saved with the default code page (of server).

Sources are located onWindows;
UNIX and/or OpenVMS; no U
constants are needed. Only characters from the source code page can be stored

in a source. The sources can further be handled with the
Natural for UNIX or Natural for OpenVMS editors.

SUTF8=OFF,
SRETAIN=ON

29Unicode and Code Page Support

Development Environment

EffectSettingsSituation

All sources are saved with the original code page. New
sources are saved with the default code page (of the

Sources are located onWindows,
UNIX, OpenVMS and/or
mainframe; U constants are
needed and SPoD is used for
development.

server). Only characters from the source code page can be
stored in a source. The sources can further be handledwith
the Natural for UNIX, Natural for OpenVMS andNatural
for Mainframes editors. All Unicode constants have to be
defined as hexadecimal constants (UH).

SUTF8=OFF,
SRETAIN=ON

If the parameter SUTF8 is set to OFF and you stow a sourcewhich contains characters fromdifferent
character sets, but which was not yet saved in UTF-8 format, it is possible that the generated pro-
gram is created, but that the source cannot be saved and thus remains unchanged. This happens
if characters fromdifferent character sets are used in a comment or in aU constant. For this reason,
it is recommended that you set the parameter SUTF8 to ON if you want to create sources with
characters from different character sets and if your sources do not need to be distributed to
mainframe platforms.

If the parameter SRETAIN is set to OFF, all sources are saved with the default code page. You have
to be careful with this setting because it may lead to improper code page information if you have
sources whichwere createdwith an earlier Natural version. In this case, the encoding information
of the source is unassigned and the source is always opened with the default code page (value of
the systemvariable *CODEPAGE). Thiswill oftenwork even if the default code page is not the correct
encoding of the source. Some language-specific characters will be displayed incorrectly in this
case. If such a source is opened with the wrong code page and is saved with SRETAIN being set to
ON, no encoding will be stored for the source; the source can later be opened correctly if Natural
is started with the correct default code page. However, once you have saved the source with
SRETAIN being set to OFF, the default code page will be saved as the encoding of the source; from
this time on, the source will only be opened with this code page. For this reason, you should use
this setting only if you are certain that all of your Natural sources are encoded in the default code
page.

See also: Regional Settings in the Configuration Utility documentation.

Editors

The Natural for Windows editors are fully Unicode-enabled. Via SPoD they can also be used for
mainframe, UNIX and OpenVMS sources. The editors provided with Natural for Mainframes,
Natural for UNIX and Natural for OpenVMS are not Unicode-enabled.

Note: The editors provided with Natural for Mainframes provide code page support. See
Code Page Support for Editors, System Commands and Utilities on the Mainframe.

When a source is opened with an editor in Natural Studio (Natural for Windows), the content of
the source will be converted from the corresponding code page to Unicode before it is loaded into

Unicode and Code Page Support30

Development Environment

the editor. This will guarantee that all characters can be displayed correctly even if the source
contains characters which are not included in the system code page. If the conversion from the
source's code page to Unicode fails, an error will be displayed and the editor is not opened. In this
case, the user has to define the correct encoding of the source. The source encoding can be changed
in the Properties dialog box (see Properties for the Nodes in theUsingNatural Studio documentation).

ForWindows,UNIX andOpenVMS sources, theNatural forWindows editors allow saving sources
which contain characters from different languages in UTF-8 format. Onmainframes, it will not be
possible to save UTF-8 sources.

Note: If you save a UNIX or OpenVMS source in UTF-8 format or with a code page which
differs from the default code page, the source can no longer be opened with the native
Natural for UNIX or Natural for OpenVMS editor. Mainframe sources can be saved with
a different code page and can be edited with the native Natural for Mainframes editors.

Even if you do notwant to useUnicode strings in your programs and sources, theUnicode-enabled
editors have the advantage that you can write sources in all code pages, no matter which system
code page is installed. For example, if you have installed the "windows-1252" (Latin 1) code page,
you canwrite a program containing Cyrillic characters and save this programwith the "windows-
1251" (Cyrillic) code page. You only have to select code page "windows-1251" in the SaveAs dialog
box (see Saving an Object with a New Name in the Using Natural Studio documentation).

Using the Natural for Windows program editor, you can convert text constants into their hexa-
decimal Unicode representations (seeConverting to Hexadecimal Format in the ProgramEditor section
of the Natural for Windows Editors documentation). If you are developing for a platform where
UTF-8 sources are not preferred, you can thus enter all characters for a Unicode constant, select
all the characters of the constant, convert them to their hexadecimal representation and then add
the "UH" prefix for Unicode hexadecimal constants. Furthermore, when you hover the mouse
pointer over a character or a selected character range of a text constant, a tool tip shows the corres-
ponding hexadecimal Unicode representation.

A byte ordermark (BOM) consists of the character code "U+FEFF" at the beginning of a data stream
where it can be used as a signature defining the byte order and encoding form, primarily of un-
marked plain-text files. On Windows, a byte order mark is used by some editors (for example,
Notepad) tomarkUTF-8 files. TheNatural forWindows editorswill recognize anUTF-8 byte order
markwhen reading an object. If the object has no other encoding defined so far, Natural will inter-
pret it as UTF-8 and when the object is saved, UTF-8 will be stored as the encoding for the object.
The byte order mark is removed in this case.

31Unicode and Code Page Support

Development Environment

Code Page Support for Editors, System Commands and Utilities on the
Mainframe

The following topics are covered below:

■ Editors
■ System Commands and Utilities

Editors

The program, map and data area editors provided with Natural for Mainframes are not Unicode-
enabled. Instead the sources are stored with code page information. According to the setting of
the profile parameter SRETAIN, Natural sources with code page information may be converted
automatically from the current code page of the source into the default code page of the current
Natural session (value of the system variable *CODEPAGE) if the source is loaded into the editor. If
there are any characters that cannot be converted, awindowdisplays a code point conversion error
and asks for substitute values for those code points that cannot be converted. The display of this
message is independent from the current setting of the parameter CPCVERR. In this case, the user
can decide to open the editor with or without converting the source into the default code page.
Saving or stowing a converted source will save the new code page information. Sources without
code page information (for example, sources that have been saved or stowed with previous Nat-
ural versions) are loaded into the editors without any conversion. According to the setting of the
profile parameter SRETAIN, the current code page information of the source will be retained.

Inserting sources with the .I command or the split screen function will also convert sources, if
necessary, according to the setting of the profile parameter SRETAIN. If characters cannot be con-
verted, the defined substitution character will be inserted instead.

The check and conversion of the source is performed when the editor is started, not when the
program is loaded into the source area. If a program is executed via RUN program-name, a conversion
is not performed. This causes different behavior, depending on whether RUN program-name is
entered on the NEXT screen or on an editor screen. If RUN program-name is entered on the NEXT
screen, no conversion follows; if it is entered on an editor screen, the editor is started right after
the execution of the program and a conversion is performed.

Unicode and Code Page Support32

Development Environment

See the table below for the code page that is assigned to an existing Natural source that is saved
or stowed, depending on the values of the profile parameters SRETAIN and CP.

Source Code Page

Information after SAVE or

STOW if CP is set to OFF

SourceCodePage Information

after SAVE or STOW if CP is

Set to a Value other than OFF

Setting of SRETAINOriginal Source Code Page
Information

No code page
information

No code page informationSource without code
page information

SRETAIN=ON
SRETAIN=(ON,EXCEPTNEW)

No code page
information

Code page resulting from
evaluation of CP

Source without code
page information

SRETAIN=OFF

Original code page
(code page 1)

Original code page (code
page 1)

Source is encoded in
code page 1

SRETAIN=ON
SRETAIN=(ON,EXCEPTNEW)

Original code page
(code page 1)

Code page resulting from
evaluation of CP

Source is encoded in
code page 1

SRETAIN=OFF

The table below shows the code page that is assigned to a new Natural source that is saved or
stowed, depending on the values of the profile parameters SRETAIN and CP.

Source Code Page Information after

SAVE or STOW if CP is set to OFF
Source Code Page Information after SAVE or

STOW if CP is Set to a Value other than OFF

Setting of SRETAIN

No code page informationCode page resulting from evaluation of
CP

SRETAIN=ON

No code page informationCode page resulting from evaluation of
CP

SRETAIN=OFF

No code page informationNo code page informationSRETAIN=(ON,EXCEPTNEW)

System Commands and Utilities

LIST

By default, the system command LIST displays sources as they are stored in the systemfilewithout
any conversions.

The CONVERTED option of the LIST command converts the source into the default code page (value
of the system variable *CODEPAGE) if the code page information of the source is provided. All non-
convertible characters are then replaced by the defined substitution character.

33Unicode and Code Page Support

Development Environment

LIST DIR

The system command LIST DIR shows the used code page information of a Natural source in the
directory window.

SCAN

Similar to the editors, the system command SCAN converts the sources before executing the actual
SCAN command.

Object Handler (SYSOBJH)

TheObject Handler unloads and loads sourceswith different code page information and preserves
the original code page information.

The transfer format option UTF-8 converts sources from any code page to UTF-8 format while
unloading, and stores information about the original code page in thework file. The corresponding
load function converts the source back to the original code page or to another code page, if specified.
This option can also be used to provide code page information for sources which have been saved
or stowed with previous Natural versions and which therefore do not contain any code page in-
formation.

Unload and load sources in internal format will keep the code page information, if available.

SYSCP Utility - Code Page Administration

The SYSCP utility can be used to obtain information on code pages and to check or change the code
page assignment of a source.

Unicode and Code Page Support34

Development Environment

6 Unicode Input/Output Handling in Natural Applications

■ Displaying and Entering Unicode Data ... 36
■ Natural Web I/O Interface Client ... 37

35

Displaying and Entering Unicode Data

If you want to display or enter Unicode data, the following possibilities exist:

■ When working in the local development environment with Natural for Windows, all Unicode
characters can be displayed and entered in the Natural output window.

■ When working in a remote development environment with Natural for Windows (SPoD), the
NaturalWeb I/O Interface client (see below) is necessary for displaying and entering all Unicode
characters.

■ When running applications with Natural for UNIX, Natural for OpenVMS, Natural for Main-
frames or Natural for Windows, see Natural Web I/O Interface Client below.

Notes:

1. Even if you are working with a Unicode-enabled output interface on Windows, you will see
only the Unicode characters which are supported by the currently selected font.

2. Unicode data cannot be displayed on 3270 terminals.

If you run Natural via a terminal emulation or a mainframe terminal like 3270/3279, the page will
be converted to the default code page (value of the system variable *CODEPAGE) before displaying
it, so that all characters which are not contained in the default code page are replaced with the
substitution character. Equally, input is only possible in code page format and will be converted
to Unicode format before assigning it to a U format field. You have to regard that the substitution
character is defined by the ICU conversion tables. Depending on this character, it is possible that
garbage is displayed with a terminal emulation. On UNIX and OpenVMS platforms, you can
change this substitution character by setting the profile parameter SUBCHAR. However, it is strongly
recommended that youuse theNaturalWeb I/O Interfacewhendisplaying characters not contained
in the default code page.When running a remoteWindows session, the NaturalWeb I/O Interface
will be used in any case.

On code page oriented mainframe terminals, it is important to select the suitable code page. The
default code page of Natural, the code page of the terminal and even the font used by the terminal
determine the capability of displaying certain characters correctly.

Unicode and Code Page Support36

Unicode Input/Output Handling in Natural Applications

Natural Web I/O Interface Client

The Natural Web I/O Interface client is used to display non-GUI information which contains
Unicode characters. It can be used in the following environments:

■ SPoD Environment
■ Runtime Environment

SPoD Environment

The Natural Web I/O Interface client can be invoked when you use Natural for Windows and you
are working with Natural Studio in a remote development environment (SPoD); see Natural Web
I/O Interface Client in Remote Development Using SPoDwhich is part of the Natural for Windows
documentation.

When the Natural Web I/O Interface client is used, the Web I/O windows appears instead of the
terminal emulationwindowwhich is notUnicode-enabled in remoteUNIX,OpenVMSormainframe
environments, or instead of the output window in remote Windows environments.

The following graphic shows the SPoD environment forUnicode applicationswithNatural Devel-
opment Servers (NDV) on UNIX, OpenVMS and mainframes:

37Unicode and Code Page Support

Unicode Input/Output Handling in Natural Applications

So that the Natural Web I/O Interface client can be invoked, the Natural Development Server has
to be configured as follows:

■ UNIX and OpenVMS
If you want to use the Natural Web I/O Interface client in a remote UNIX or OpenVMS environ-
ment, the profile parameter WEBIOmust be set to ON on the NDV server. See Configuration Utility
in the Natural for UNIX or Natural for OpenVMS documentation.

■ Mainframe
If you want to use the Natural Web I/O Interface client in a remote mainframe environment,
theNDVconfiguration parameter TERMINAL_EMULATIONmust be set to WEBIO on theNDV server.
SeeNDVConfiguration Parameters in theNatural Development Server documentation.Moreover,
the Web I/O terminal converter module NATWEBmust be linked to the Natural nucleus. The
Natural profile parameter TMODEL can be used to determine the user screen size.

Unicode and Code Page Support38

Unicode Input/Output Handling in Natural Applications

■ Windows
In a remoteWindows environment, theNaturalWeb I/O Interface client is always used, regardless
of the setting of the profile parameter WEBIO.

Runtime Environment

The Natural Web I/O Interface client appears when running applications with Natural for UNIX,
Natural for OpenVMS, Natural for Mainframes or Natural for Windows. It runs in a web/applic-
ation server.

The following graphic shows the runtime environment for Unicode applications:

39Unicode and Code Page Support

Unicode Input/Output Handling in Natural Applications

Natural recognizes automatically whether the session has been started from the Natural Web I/O
Interface client or from the terminal emulation.

Prerequisites for using the Natural Web I/O Interface client:

■ Natural for UNIX and Natural for OpenVMS
It is required that the Natural Web I/O Interface server (which is implemented as a daemon)
has been installed and activated. See Natural Web I/O Interface in the Natural for UNIX and in
the Natural for OpenVMS documentation.

■ Natural for Mainframes
It is required that the Natural Web I/O Interface server has been installed and configured. See
Natural Web I/O Interface in the Natural for Mainframes documentation. Moreover, the Web I/O
terminal converter module NATWEBmust be linked to the Natural nucleus. The Natural profile
parameter TMODEL can be used to determine the user screen size.

■ Natural for Windows
It is required that the Natural Web I/O Interface server (which is implemented as a service) has
been installed and activated. SeeNaturalWeb I/O Interface in theNatural forWindows document-
ation.

Unicode and Code Page Support40

Unicode Input/Output Handling in Natural Applications

7 Unicode Data Storage

■ Unicode Data/Parameter Access .. 42
■ Database Management System Interfaces ... 42
■ Work Files and Print Files on Windows, UNIX and OpenVMS Platforms ... 43
■ Work Files and Print Files on Mainframe Platforms ... 47

41

Unicode Data/Parameter Access

The following graphic shows how Unicode data and parameters are accessed.

Database Management System Interfaces

The following topics are covered below:

■ Accessing Unicode Data in an Adabas Database

Unicode and Code Page Support42

Unicode Data Storage

■ Accessing Unicode Data in a DB2 Database

Accessing Unicode Data in an Adabas Database

Natural enables users to access wide-character fields (format W) in an Adabas database.

Data Definition Module
Adabas wide-character fields (W) are mapped to the Natural data format U (Unicode).

Access Configuration
Natural receives data fromAdabas and sends data toAdabas usingUTF-16 as common encod-
ing.

This encoding is specifiedwith the OPRB parameter and is sent toAdabaswith the open request.
It is used for wide-character fields and applies to the entire Adabas user session.

For detailed information, see Unicode Data in the Accessing Data in an Adabas Database part of the
Programming Guide.

Accessing Unicode Data in a DB2 Database

Natural enables users to access CHAR and/or WCHAR fields in a DB2 database as Unicode data.

See also Natural for DB2 in the Database Management System Interfaces documentation.

Work Files and Print Files on Windows, UNIX and OpenVMS Platforms

The following topics are covered below:

■ WRITE WORK FILE
■ READ WORK FILE
■ Special Considerations for Work File Type Transfer
■ Print Files

WRITE WORK FILE

The information below applies for the statement WRITE WORK FILE. See the Statements document-
ation for detailed information on this statement.

Code Page Data

The following work file types write code page data:

■ ASCII and ASCII compressed
■ Unformatted

43Unicode and Code Page Support

Unicode Data Storage

■ CSV
■ Entire Connection

The work file type and the code page must be defined in the Configuration Utility. For further
information, seeWork Files in the Configuration Utility documentation.

All Natural data defined with the operands A (alphanumeric) and U (Unicode) are converted to
the specified code page. If a code page has not been specified, all data are converted to the default
code page which is defined with the CP parameter.

Note: In the work file, all written A and U operand data are in code page format.

If U operand data are to be written into these work files and afterwards read from these work files
without loss of data, you have to define UTF-8 as the code page (in the Configuration Utility). In
this case, all A and U operand data are written in UTF-8 format. A subsequent READ WORK FILE
statement where the work file is also configured using code page UTF-8 reads the operand U data
without loss of data.

Notes:

1. Work file data which have been written in UTF-8 format can be read by text editors which
support UTF-8 (for example, Notepad on the Windows platform).

2. Natural data definedwith the operand B (binary) are not converted to the code page which has
been specified in the Configuration Utility. These data are written as they are stored in Natural,
without any code page conversion.

If one of the above-mentioned work file types is specified and the code page UTF-8 is defined for
the work file, the work file attributes BOM (write byte order mark) and NOBOM (do not write byte
order mark) take effect. These attributes can be specified in theWork Files category of the Config-
uration Utility and with the DEFINE WORK FILE statement. If the code page UTF-8 is defined for
the work file and the work file attribute BOM is specified, the UTF-8 byte order mark (hexadecimal
representation: H'EFBBBF') is written at the beginning of the work file, in front of the work file
data.

If a work file type other than the above-mentioned work file types is used for writing the work
file, or if a code page other than UTF-8 is defined for the work file, the specification of the attribute
BOM is ignored during runtime. The following table shows the runtime behavior during the pro-
cessing of the statements WRITE WORK FILE and READ WORK FILE:

Unicode and Code Page Support44

Unicode Data Storage

READ WORK FILEWRITE WORK FILE
Code Page and Attribute Setting

No check for UTF-8 byte order mark.No UTF-8 byte order mark
is written.

The code page UTF-8 is not
specified for the work file
(default). No conversion from UTF-8.

No conversion to UTF-8.
The work file attributes BOM and
NOBOM have no effect.

Check for UTF-8 byte order mark.UTF-8 byte order mark is
written.

The code pageUTF-8 is specified
for the work file.

If an UTF-8 byte order mark is found, it is
removed from thework file data. A fields areA and U fields are

converted to UTF-8.
The work file attribute BOM is
specified. converted from UTF-8 to the default code

page. U fields are converted from UTF-8 to
the Natural internal runtime representation
UTF-16.

Check for UTF-8 byte order mark.No UTF-8 byte order mark
is written.

The code pageUTF-8 is specified
for the work file.

If an UTF-8 byte order mark is found, it is
removed from thework file data. A fields areA and U fields are

converted to UTF-8.
The work file attribute NOBOM
(default) is specified. converted from UTF-8 to the default code

page. U fields are converted from UTF-8 to
the Natural internal runtime representation
UTF-16.

Binary Data

The following work file types write binary data (for example, UTF-16 for operand format U):

■ SAG
■ Portable

Natural data defined with the operands A and U are not converted to code page. These data are
written to the work file in binary format. For U operand data, this is done in UTF-16.

READ WORK FILE

The information below applies for the statement READ WORK FILE. See the Statementsdocumentation
for detailed information on this statement. Take note of the restrictions that are listed for the RECORD
option (in theNatural forWindows,Natural for UNIX andNatural for OpenVMSdocumentation).

Code Page Data

When the following work file types are used, the work file data that are read into Natural U
(Unicode) operands are converted from the specified code page to UTF-16.

■ ASCII and ASCII compressed
■ Unformatted

45Unicode and Code Page Support

Unicode Data Storage

■ CSV
■ Entire Connection

Data that are read into A (alphanumeric) operands are converted, if required, from the specified
code page to the default code page which has been defined with the parameter CP.

If one of the above-mentioned work file types is specified and the code page UTF-8 is defined for
the work file, the READ WORK FILE statement automatically checks the work file for an UTF-8 byte
order mark. If an UTF-8 byte order mark is found at the beginning of the work file, it is removed.
The data that are read from the work file are converted from UTF-8 to the default code page.

If data are read from another work file type, the check for a byte order mark is not performed and
a byte order mark is therefore not removed.

For information on the runtime behavior during the processing of the statements WRITE WORK
FILE and READ WORK FILE, see the table in the previous section.

Binary Data

When the followingwork file types are used, thework file data are read into theNatural operands
A and U without conversion (that is: they are read in binary format):

■ SAG
■ Portable

The work file type Portable supports endian conversion for data of operand format U.

Special Considerations for Work File Type Transfer

Operand format U is generally supported for the work file type Transfer. If Entire Connection is
not able to read or write Unicode for the selected file type, a runtime error message is displayed.

Print Files

The handling for Unicode data in print files depends on the selected logical device’s (LPT1 to
LPT31) print method, currently either GUI (Windows only) or TTY.

Regardless of the print method, data are passed to the Natural printing services in UTF-16 format.
That is, any format A field data will already have been converted to Unicode.

GUI Print Method

With this Windows-only print method, the data are passed to the Windows printer driver in
Unicode (UTF-16) format. Because this is the standard method for printing data in Windows, the
driver invariably handles this data appropriately. This is therefore the recommended printmethod
under Windows if any characters that are not within the system code page are being used.

Unicode and Code Page Support46

Unicode Data Storage

TTY Print Method

With this print method, the data are, by default, converted from the internal (UTF-16) format into
the system code page. However, by using a printer profile, it is possible to specify that the data
should instead either be converted into UTF-8 format, or be subjected to an additional conversion
to an arbitrary external code page. For more information on these alternatives, see Printer Profiles
in the Configuration Utility documentation.

The rationale behind the default behavior of converting the data into the system code page is based
on the current lack of printers capable of directly accepting raw text files in UTF-8 format.

Work Files and Print Files on Mainframe Platforms

The following topics are covered below:

■ Work Files
■ Print Files

Work Files

No special consideration is given to Unicode data when writing or reading work files. Like all
other data types, Unicode data is written and read as is, without conversion.

Print Files

When sending Unicode data to print files, one or two conversion steps take place.

In a first step, Unicode data contained in a print line is converted to the default code page of the
session. As a consequence, all characters which are not contained in this default code page are
replaced with the substitution character.

Before passing this converted print line to the actual print accessmethod, it is additionally checked
whether a code page has been specified for the logical printer. This may have been accomplished
with the CODEPAGE operand of the DEFINE PRINTER statement or the CP subparameter of the PRINT
parameter. If such a code page has been given, the whole print line (not only the Unicode part of
it) is converted accordingly in a second step.

The converted print line is passed to the access method, which means that print access methods
do not receive Unicode data.

47Unicode and Code Page Support

Unicode Data Storage

Example:

DEFINE PRINTER (1) CODEPAGE 'IBM01140'
WRITE (1) 'HELLO' U'WORLD'
END

Unicode and Code Page Support48

Unicode Data Storage

8 Platform Differences

■ Windows, UNIX and OpenVMS Platforms .. 50
■ Mainframe Platforms .. 51

49

Windows, UNIX and OpenVMS Platforms

OnWindows, UNIX andOpenVMS platforms, Natural has internally beenUnicode-enabled. This
means that many structures containing strings have Unicode format now. For example, the Nat-
ural source area has nowUnicode format. For this reason, Unicode data can be handled at runtime
in theNatural I/O aswell as in theNatural development environmentwhenwriting and cataloging
Natural code.

For the first version, there are some exceptions: the Natural dialogs (editor and runtime) are not
Unicode-enabled. These modules will be Unicode-enabled in a later version.

Even if Natural is Unicode-enabled internally, all existing data currently has code page format.
As a consequence, all this data is converted from code page format to Unicode format when used
in Natural Version 6.2 or above. For example, if a source is opened with the program editor, a
conversion from the code page file format to the Unicode source area format is performed. Even
if you do not use theU format, this is of advantage: you can now see all language-specific characters,
no matter which system code page is installed. However, the user is responsible for defining the
correct code page information. SeeMigrating Existing Applications for more details.

When catalogingNatural objects, all constantswhich are not definedwith theUprefix are converted
to the code page of the corresponding source. If the source has UTF-8 format, these constants are
converted to the default code page.

Note: In most cases, Unicode data requires more memory space than code page data.
Therefore, the Natural parameter USIZEmay need to be increased with Natural Version 6.2
or above.

Windows

Unicode is fully supported in the local Natural for Windows environment.

The editors are Unicode-enabled and it is possible to enter all possible characters. When saving
the source, Natural first tries to convert the source to the original code page. If this fails because
the source contains characters which are not found in this code page, further processing depends
on the setting of the parameter SUTF8. If SUTF8 is ON, the source will be saved in UTF-8 format. If
SUTF8 is OFF, the user will be asked whether to save the source in the original code page or to
cancel the current save. If the user decides to save the source in the original code page, the characters
which are not foundwill be replacedwith substitution characters. In addition, it is possible to select
a code page explicitly in the Save As dialog box.

The program editor has been enhanced in order to support the Unicode bidirectional algorithm.

The output window is also Unicode-enabled. When characters are entered via the keyboard, A
format fields accept only the characters which are available in the default code page.

Unicode and Code Page Support50

Platform Differences

UNIX and OpenVMS

Full Unicode support is only available with SPoD and the Natural Web I/O Interface. SPoD is ne-
cessary for entering Unicode input in Natural sources; the same applies as described above for
the localNatural forWindows environment. TheNaturalWeb I/O Interface is necessary forUnicode
I/O from Natural applications.

If Natural is used via a terminal emulation, all outputwill be converted fromUnicode to the default
code page before displaying it. Characters which are not available in the default code page will
be replaced with the substitution character of the default code page. Similar input is only possible
on base of the default code page.

Note: Natural sources which have UTF-8 format can no longer be opened with the native
Natural for UNIX or Natural for OpenVMS editors.

Mainframe Platforms

TheNatural runtime environment is enabled forUnicode support. Unicode characters are converted
to the default code page (value of the system variable *CODEPAGE) before they are displayed on
the terminal. Unicode characters which have no equivalent in the default code page are replaced
by a substitution character.

With the Natural Web I/O Interface under SPoD, Unicode characters are fully supported by the
terminal emulation. In this case, U format fields are displayed and can be entered correctly as
Unicode. They are not converted to the equivalent in the default code page. The Natural Web I/O
Interface is activated by the NDV server configuration parameter TERMINAL_EMULATION=WEBIO.
The system variable *DEVICE contains BROWSER.

The Natural compiler, the editors and the Natural system file do not support object sources that
are encoded in Unicode. Unicode constants coded in an object source are saved in the default code
page, and the cataloged object contains the Unicode code points. The only way to define Unicode
constantswhich do not have an equivalent in the default code page is to use hexadecimal definitions
(UH).

Code page conversion andUnicode supportmake use of functionality provided by the ICU library.
The size of the ICU modules providing this functionality depends on the used ICU functionality.
If neither code page conversion nor Unicode support are required, these modules do not have to
be linked to the Natural nucleus. For improved flexibility, it is also possible to link these modules
dynamically to the Natural nucleus during initialization of the Natural session. The use of ICU
functionality increases the required Natural thread size.

The following topics are covered below:

■ NATICU Modules for Different Purposes
■ Session Modes

51Unicode and Code Page Support

Platform Differences

■ CFICU Parameter
■ Shared FUSER
■ CPAGE Compiler Option
■ Program Sources
■ NTCPAGE Macro
■ Unicode and Code Page Support for Databases
■ Translation Tables
■ Support of Multi-Byte Code Pages
■ ICU Buffer Pool

NATICU Modules for Different Purposes

To enable Natural for Unicode and code page support, an ICU library module has to be linked.

To execute only Natural applications that require neither Unicode nor code page support (profile
parameters CFICU=OFF and CP=OFF are set), none of the supplied ICUmodules needs to be linked.

Natural offers different implementations of the ICU library for different purposes:

■ NATICU
This implementation is intended to be used in most European countries as well as in north and
south American countries. It contains a reduced set of code pages and locale IDs for English,
German, French and Spanish language areas. Due to the reduced set of supported languages,
it is relatively small.

Another feature of this module is collation services. Collation services are used to compare
Unicode strings. They consider the fact that the alphabetical order varies from language to lan-
guage. It is a big challenge to accommodate the world’s languages and writing systems and the
different orders that are used. However, the ICU collation service provides excellent means for
comparing strings in a locale-sensitive fashion. For example, the character "Ä" is sorted inGerman
locale between "A" and "B"; in Swedish locale, it is sorted after "Z". In Lithuanian, the character
"y" is sorted between "i" and "k". The ICU implementation of collation services is compliant to
theUnicodeCollationAlgorithm and conforms to ISO 14651. The algorithms have been designed
and reviewed by experts inmultilingual collation, and are therefore robust and comprehensive.

NATICU provides the code pages and locales listed below.
■ NATICUCV
This implementation is the same as NATICU, but without collation services since this is a very
large package inside ICU. If NATICUCV is used, a binary comparison is performed for Unicode
strings instead of the locale-dependant comparison of collation services. If all of your Unicode
data result from the same code page and all Unicode data are normalized, then you can use this
module.

NATICUCV provides the code pages and locales listed below.

Unicode and Code Page Support52

Platform Differences

■ NATICUXL
This implementation is intended to be used in all areas of the world that are not covered by the
reduced amount of code pages and locale IDs of NATICU.

NATICUXL contains all code pages and locale IDs provided by the currently supported ICUversion.
For an overview of the supported code pages and local IDs, refer to the ICU homepage (see ht-
tp://demo.icu-project.org/icu-bin/convexp).

Youmay either statically link an ICU library module to your Natural nucleus or dynamically load
it during session initialization using the RCA technique via the session parameters RCA and RCALIAS.

To load NATICU:

RCA=NATICU

To load NATICUCV:

RCA=NATICU,RCALIAS=(NATICU,NATICUCV)

To load NATICUXL:

RCA=NATICU,RCALIAS=(NATICU,NATICUXL)

Note: You may dynamically load an ICU library module during session initialization even
though an ICU library module is already statically linked to your Natural nucleus. In this
case, the statically linked ICU library module is ignored and replaced by the use of the dy-
namically loaded ICU library module.

NATICU and NATICUCV provide the following code pages and locales:

LocalesCode Pages

de_DEIBM037
en_USIBM273
es_ESIBM1025
fr_FRIBM1026
sv_SEIBM1047

IBM1097
IBM01140
IBM01141
IBM01145
IBM01146
IBM01147
US (alias for IBM01140)
DE (alias for IBM01141)
ES (alias for IBM01145)

53Unicode and Code Page Support

Platform Differences

http://demo.icu-project.org/icu-bin/convexp
http://demo.icu-project.org/icu-bin/convexp

LocalesCode Pages

EN (alias for IBM01146)
FR (alias for IBM01147)
IBM-37_P100-1995,SWAPLFNL
IBM-1047_P100-1995,SWAPLFNL
IBM-1140_P100-1997,SWAPLFNL
EBCDIC-XML-US
EDF03DRV (Siemens code page)
EDF03IRV (Siemens code page)
EDF04DRV (Siemens code page)
EDF04IRV (Siemens code page)
IBM-290 (Japanese code page SBCS)
IBM-930 (Japanese code page SBCS/DBCS)
IBM-939 (Japanese code page SBCS/DBCS)
IBM-1390 (Japanese code page SBCS/DBCS)
IBM-1399 (Japanese code page SBCS/DBCS)
IBM-932 (Japanese code page ASCII MBCS)
IBM-942 (Japanese code page ASCII MBCS)
IBM-943 (Japanese code page ASCII MBCS)
EUC-JP (Japanese code page ASCII MBCS)
IBM-420 (RTL code page)
IBM-424 (RTL code page)
IBM-916 (RTL code page)

Session Modes

The parameters CFICU and CP can be used to adjust Natural to specific purposes:

DescriptionSettings

Compatibility mode. For running existing applications without Unicode and
without code page support. Legacy translation tables are used for I/O translation.

CFICU=OFF, CP=OFF

Compared with former versions, there is no significant increase in resource
consumption (CPU time and buffer usage). This mode does not need ICU to be
linked to the Natural nucleus.

For new applications that are using Unicode and code page conversion (MOVE
ENCODED) but not default code page support. Therefore, the system variable

CFICU=ON, CP=OFF

*CODEPAGE is empty. It is possible to useU format variables, but it is not possible
to use, for example, MOVE A TO U, since this requires the default code page
information. The error NAT3411 will be issued indicating that no default code
page is available.

For new applications that are using full Unicode as well as code page support.CFICU=ON, CP=value *

This combination is possible, but does notmake sense, because code page support
needs ICU services for conversion. Therefore, CFICU=ON is enforced in this case
and a session initialization message is issued.

CFICU=OFF, CP=value
*

*where value is any value other than OFF.

Unicode and Code Page Support54

Platform Differences

CFICU Parameter

The parameter CFICU and its subparameters are explained in detail in the Parameter Reference. Some
of the subparameters have an impact on the performance.

If collation services are used to compare Unicode strings, both strings are checked whether they
are normalized or not. The check itself consumes a lot of CPU time. If you are sure that the strings
are already normalized, you can switch off the check (COLNORM=OFF).

In Unicode, it is possible to represent the same character as one code point or as a combination of
two or more code points. For example, the German character "ä" can be represented by "U+00E4"
or by the combination of the code points "U+0061" and "U+0308". The conversion from Unicode
to, for example, IBM01140 treats combined characters as single code points and produces an "a"
followed by a substitution character since code point "U+0308" is not represented in the target
code page.With CNVNORM=ON, a normalization is performed right before the actual conversion. The
normalization consumes additional CPU time and temporary storage. If you are sure that no
combining characters are involved in MOVE statements (except MOVE NORMALIZED), you should set
CNVNORM to OFF to increase performance. Note that all possible combinations are represented by a
single coded Unicode code point.

Conversion fromUnicode to code page and vice versa is not high-performance. The reason is that
the ICU implementation is written in C++ and that it covers nearly all Unicode, code page and
language aspects in the world. However, some code pages can be mapped to Unicode (and vice
versa) via translation tables to accelerate conversion. Accelerator tables are activated with the
CPOPT subparameter. If it is set to ON, Natural automatically creates two accelerator tables during
session initialization by using ICU conversion functions. The first table (with a size of 512 bytes)
is used for conversion from code page to Unicode and the other table (with a size of 65535 bytes)
is used for conversion from Unicode to code page. During a Natural session, all conversions are
then executed via the accelerator tables instead of ICU calls. Accelerator tables are only provided
for the default code page (*CODEPAGE). Temporary code pages (for example, in MOVE ENCODED
statements) do not use accelerator tables if the module NATCPTAB is not linked. If it linked, up to
30 accelerator tables based on the ICU database are used to speed up performance.

Shared FUSER

Since Natural sources are not converted to Unicode or UTF-8 before saving, they can still be read
by previous Natural versions. The additional code page information of Natural Version 4.2 (or
above) sources is stored in the header of the source. The code page information in the header is
simply ignored if a source is accessed by a previous Natural version.

55Unicode and Code Page Support

Platform Differences

CPAGE Compiler Option

The compiler option CPAGE creates objects that can be executedwith a code pagewhich is different
from the code page used at creation time. This means that all alphanumeric constants of the object
which are coded with the code page at creation time, have to be converted to the code page which
is active at execution time. To make it possible for the Natural object loader to find and convert
alphanumeric constants, an additional table is created by the compiler. This increases the size of
the generated object, depending on the number of used alphanumeric constants. The conversion
at runtime consumes additional CPU time. If the default code page (value of the system variable
*CODEPAGE) is the same as the code page at creation time or if the session has no default code page
(CP=OFF), no conversion is done. Conversion errors are ignored, independent from the setting of
the parameter CPCVERR. If the compiler option CPAGE is set to OFF, no conversion is performed at
runtime and the alphanumeric constants are treated as they are.

The following sample program is cataloged with code page IBM01141 (German) and is executed
with default code page IBM01140 (us). The characters "Ä", "Ö" and "Ü" are defined in both code
pages, but at different code points.

Example 1 - CPAGE=OFF:

OPTIONS CPAGE=OFF
WRITE *CODEPAGE 'ÄÖÜ'
END

Output with code page IBM01140 (us):

Page 1

IBM01140 ¢\!

Example 2 - CPAGE=ON:

OPTIONS CPAGE=ON
WRITE *CODEPAGE 'ÄÖÜ'
END

Output with code page IBM01140 (us):

Page 1

IBM01140 ÄÖÜ

Unicode and Code Page Support56

Platform Differences

Program Sources

Natural sources on the mainframe are not stored in Unicode format but in the default code page
of the current Natural session. The name of the code page is stored in the directory of the source.
Therefore, as compared to previous Natural versions, the size of a source remains unchanged. But
there is a check by the editor whether the code page of the source is equal to the default code page
of the Natural session. If the code pages are different, the source is converted into the default code
page with the possibility of conversion errors. If a character of the source is not mapped in the
default code page, a window appears in the editor to allow manual conversion of the failed char-
acters. For example, a source which has been created with code IBM01140 contains the following
line:

WRITE '100 €'

If the source is edited againwithNatural runningwith code page IBM037, a conversion error occurs
since the character "€" is not mapped in code page IBM037.

Note that the conversion is done when the editor is started and not when the source is loaded.

NTCPAGE Macro

Themost common standard for code page names is the IANAname. Therefore, the systemvariable
*CODEPAGE contains the IANA name of the default code page. In the world of IBM, a code page is
qualified by its Coded Character Set ID (CCSID). For Siemens, the Coded Character Set Name
(CCSN) is most popular. Currently, Adabas uses the Entire Conversion Service definition
(ADAECS). The macro NTCPAGE can be used to assign these different names to the unambiguous
IANA name. NTCPAGE is part of the Natural configuration file (NATCONFG).

The CP parameter accepts only those values which are defined in the Natural configuration file.
It does not matter whether the IANA name, the CCSID/CCSN or the alias name is entered with
the CP parameter. The alias name can be a user-defined name which is used to assign a more sig-
nificant name to the code page. In any case, *CODEPAGE contains the IANA name of the selected
code page.

In addition, a place holder character can be defined for a code page. It overwrites the default
substitution character of that code page,which is normally a non-displayable character (for example,
H’3F’ in an EBCDIC code page). The place holder character can be used to avoid that non-display-
able characters are sent to terminals.

57Unicode and Code Page Support

Platform Differences

Example:

NTCPAGE IANA=IBM01140,CCSID=1140,ECS=1140,ALIAS=’US’,PHC=003F

The values IBM01140, 1140 or US can be entered with the CP parameter to activate the code page.
*CODEPAGE contains the name IBM01140. The substitution character of the code pagewill be replaced
by "U+003F", which is a quotation mark (?).

The number of available code pages depends on the used ICU implementation.

Starting with Natural Version 4.2.5 and ICU Version 3.8 respectively, the appropriate NTCPAGE
entry can be omitted. Instead, all code pages defined in the currently used data package can be
used by Natural. An NTCPAGE entry is only necessary if an alternative alias name or place holder
character is desired.

Unicode and Code Page Support for Databases

Adabas supports a wide range of code pages to handle the world's languages. Character encoding
and data conversion take place within Adabas using Unicode as the default encoding for both
storage (file encoding) and user representation (user encoding). If code page or Unicode support
(CFICU=ON) is enforced for a session, the Natural application must specify a user encoding and
communicate it to the Adabas nucleus when this session is opened (OP command). The ADALNK
module converts Adabas buffer data depending of the setting of the caller. On mainframes, the
Entire Conversion Services (ECS) are used for conversion, not ICU. On Open Systems, Adabas
uses ICU instead. Therefore, the ECSnamemust be defined in the related NTCPAGE entry in NATCONFG.
At open time for the database, the Natural nucleus sends an OP command with the ACODE setting
for all A fields and the WCODE setting (4095 which means UTF-16) for all W fields in the record
buffer for the mainframe version of Adabas, with the WCHARSET setting in the record buffer for the
Open Systems version of Adabas. The ACODE and/or WCODE option must be defined in the OPRB
parameter for this database.

For more information on Adabas conversion, see the description of the OP command and the in-
formation on suppliedUES (universal encoding support) encodings in theAdabas documentation
for mainframes.

Translation Tables

Natural uses various tables for character translation and character-type definition. The contents
of the tables can bemodified via session parameters (TAB, UTAB1, UTAB2 and SCTAB) during the start
of a Natural session.

If Natural is running with code page support (that is: the parameter CP has been set to ON, AUTO or
to the name of a code page, the tables cannot be modified by the user. In this case, the following
Natural startup message will be issued to notify the user that the above mentioned session para-
meters are not considered:

Unicode and Code Page Support58

Platform Differences

Character translation parameter table-name ignored due to CFICU=ON.

Natural adjusts the tables automatically to the requirements of the default code page (value of the
system variable *CODEPAGE). See also Translation Tables in the Operations documentation.

Support of Multi-Byte Code Pages

Natural supports multi-byte code pages (MBCS) such as IBM-939 which is a Japanese code page
based on EBCDIC and DBCS. Multi-byte code pages can be selected using the CP parameter (by
setting CP to AUTO (if supported) or to the name of a code page). If Natural is running with a multi-
byte code page, it uses internal I/O buffers which are based on Unicode. This means that all data
written into the internal I/O buffers by an I/O statement are converted to Unicode. Due to the re-
quirements of Unicode and multi-byte code pages, the size of the I/O buffers is increased as com-
pared to the traditional I/O since Unicode characters need twice as much space as EBCDIC char-
acters and enhanced attributes are needed to describe a field.

In the case of single-byte code pages (SBCS) such as IBM-1140, the traditional EBCDIC-based I/O
is still used to preserve resources.

ICU Buffer Pool

The ICU buffer pool is an optional local buffer pool which can be used to improve performance
in a multi-user environment (for example, CICS). ICU-related data consists of static as well as
dynamically generated ICUdata. The amount of static data is fixed and depends on the appropriate
ICU version. The amount of dynamically generated ICU data depends, for example, on the used
converters and collation objects.

The ICU buffer pool is available in the following environments:

■ CICS under z/OS and z/VSE
■ Com-plete under z/OS and z/VSE
■ openUTM
■ batch server environments under z/OS and z/VSE

If an ICU buffer pool is not used, all ICU-related data is stored in buffers that are allocated for
each individualNatural session. If an ICUbuffer pool is used, the data are shared betweenNatural
sessions. Because the ICU buffer pool is not affected by terminal I/O, processing of the ICU-related
data usually located in the session-specific buffers before and after a terminal I/O is avoided and
thus performance is significantly increased when an ICU buffer pool is used.

An ICU buffer pool can be defined using the profile parameter definition BPI=(TYPE=ICU, NAME='
', SIZE=value) or the equivalent definition in the Natural parameter module using the NTBPI
macro. The SIZE keyword subparameter should be set to SIZE=200 at least. If more complex con-
verters such as multi-byte converters or additional services such as collation service are used,
SIZE=600 is recommended.

59Unicode and Code Page Support

Platform Differences

It is not possible to use the ICU buffer pool with different NATICU versions. If two different NATICU
versions are used in the same environment, the ICU buffer pool is initialized by the first Natural
session with the NATICU version of that session. If another Natural session with a different NATICU
version is started afterwards, NATICU detects that the ICU buffer pool is already used by another
NATICU version, and will store all ICU-related data in session-specific buffers as with previous
Natural versions. It is recommended to terminate all sessions before refreshing NATICU or refreshing
Natural, if NATICU is linked to Natural, or switching to another NATICU version, to ensure that the
ICU buffer pool will be used again after a restart of NATICU. If NATICU is loaded dynamically via
RCA=NATICU, a refresh of the Natural nucleus has no impact on NATICU and the ICU buffer pool.

The ICU buffer pool is initialized by the first Natural session using it. The number of Natural
sessions currently using the ICU buffer pool is counted. When the last Natural session using the
ICU buffer pool terminates, it is cleaned up.

ICUprefers to use the local ICU buffer pool. If the local ICU buffer cannot be used, the initialization
message NAT3419 will be displayed. The following possible reasons are displayed in the message
text:

■ RC=1 Local ICU buffer pool is not available.
■ RC=2 Size of local ICU buffer pool is not sufficient.
■ RC=3 Local ICU buffer pool is already used by a different ICU nucleus.

If the keyword subparameter BPONLY of profile parameter CFICU or the corresponding macro
NTCFICU is set to ON, the ICU initialization will be terminated with the consequence that no ICU
handler is available for the current Natural session.

If the keyword subparameter BPONLY is set to OFF, the required buffers are allocated in the Natural
thread and the ICU initialization will be continued.

NAT3419 will be omitted if BPONLY is set to OFF and an ICU buffer pool is not available.

Unicode and Code Page Support60

Platform Differences

9 Migrating Existing Applications

■ Impact of Unicode on Existing Applications ... 62
■ Migrating Existing Objects on Windows, UNIX and OpenVMS Platforms ... 62
■ Migrating Existing Objects on Mainframe Platforms .. 63
■ Adding Unicode Support to Existing Applications ... 65
■ Migrating Natural Remote Procedure Calls (RPC) .. 66

61

Impact of Unicode on Existing Applications

Windows, UNIX and OpenVMS Platforms

OnWindows,UNIX andOpenVMSplatforms,Natural has internally beenUnicode-enabledwhich
means that many structures containing strings have Unicode format now. For example, the Nat-
ural source area has now Unicode format. For this reason, data which is only available in code
page format is internally converted to Unicode format. This applies, for example, to the Natural
sources and to the Natural library names and object names. However, a conversion from code
page to Unicode and vice versa can only be performed successfully if the correct code page is used
for conversion. Even if an application is not changed but only re-cataloged, the code page inform-
ation is important because for cataloging an object is loaded into the Natural source area. If all
objects are coded in the system code page, no changes are necessary. If the objects are not coded
in the system code page, seeMigrating Existing Objects on Windows, UNIX and OpenVMS
Platforms for further information.

The internal Unicode structure will most probably need more memory. If you have defined a low
value for the profile parameter USIZE, it may be necessary to increase this value.

Mainframe Platforms

There is no impact of Unicode on existing applications. The internal structures have not been
changed and no conversion of A format fields is enforced. Thismeans that existingNatural applic-
ations should execute without any effort. Make sure that the parameters CFICU and CP have to be
set to OFF. Even the need to link one of the ICU load modules (NATICU, NATICUCV or NATICUXL) be-
comes redundant in this case. Only the I/O buffers have been noticeably increased since the attrib-
utes have been enhanced to support potential Unicode fields. If CP is set to OFF, the system variable
*CODEPAGE is cleared and the well-known translation tables (such as standard table or alternative
table) are continued to be used for I/O translations.

Migrating Existing Objects on Windows, UNIX and OpenVMS Platforms

Natural has been extended so that the code page information can be defined on several levels:

■ The Natural profile parameter CP defines the default Natural code page.
■ For several objects (Natural sources, Natural batch input/output files, work files of type ASCII,
ASCII compressed, Unformatted and CSV) an object-specific code page can be defined.

If neither an object-specific code page nor a default code page is defined, Natural will use the op-
erating system's code page.

Unicode and Code Page Support62

Migrating Existing Applications

Since it is not possible to identify the correct code page automatically, it is important that you
define the required code page information yourself. The following scenarios are possible:

ActionEffortStatus

No action.No effortAll data is available in the operating
system's code page.

TheNatural profile parameter CP has to be set to the
correct code page.

EasyAll data is stored with one code
page, but this code page differs
from the operating system's code
page.

The correct code page has to be defined for every
Natural object:

Depends on the
number of
sources and code
pages

The data is available in different
code pages.

■ Sources
If only few objects are affected, change the code
page via the Properties dialog box. If several
objects (for example, an entire library) are affected,
use the FTOUCH utility for changing the code page.

■ Batch Files
Set the Natural profile parameters CPOBJIN,
CPSYNIN and CPPRINT to the correct code page.

■ Work Files
Set correct code page for the work files in the
Configuration Utility.

The object has to be rewritten in UTF-8 format.HighDifferent code pages are mixed in
one object (for example, in a source)

Migrating Existing Objects on Mainframe Platforms

Natural has been extended so that the code page information can be defined on several levels:

■ The Natural profile parameter CP defines the default Natural code page.
■ For several objects (Natural sources, Natural batch input/output files, print reports, Adabas
files) an object-specific code page can be defined.

If neither an object-specific code page nor a default code page is defined (that is, CP=OFF applies),
Natural does not convert any data.

63Unicode and Code Page Support

Migrating Existing Applications

Since it is not possible to identify the correct code page automatically, it is important that you
define the required code page information yourself. The following scenarios are possible:

ActionEffortStatus

No action.No effortAll data is available in the
operating system's code page.

The Natural profile parameter CP has to be set to the
correct code page. Make sure that the I/O device

EasyAll data is stored with one code
page, but this code page differs

supports this code page. CP=AUTO forces Natural to
run with the code page of the I/O device.

from the operating system's code
page.

The correct code page has to be defined for every
Natural object:

Depends on the
number of
sources and code
pages

The data is available in different
code pages.

■ Sources
Save each object in the session with the correct
code page.

■ Batch Files
Set the Natural profile parameters CPOBJIN,
CPSYNIN and CPPRINT to the correct code page.

■ Adabas Files (ECS enabled)
Set the Natural profile parameter OPRBwith the
ACODE option.

The object has to be rewritten in the appropriate code
page format.

HighDifferent code pages are mixed in
one object (for example, in a source)

Sources which have been saved or stowed with previous Natural versions do not have code page
information. The code page field of the directory is empty.

Since Natural sources are not saved in Unicode format, the source has to be converted into the
default code page (value of the system variable *CODEPAGE) that applies to the session. If code page
support is switched off (CP=OFF), the code page information of the source is ignored and no con-
version is performed. Alphanumeric constants have to be adjusted to the default code page when
they are loaded into the source area.

SinceNatural sources are not saved inUnicode format, alphanumeric constants have to be adjusted
to the default code page during start of the object. This can be achieved with the CPAGE compiler
option. If CPAGE is set to ON, an additional table is generated into the object. The Natural loader
uses this table to convert every alphanumeric constant to the default code page (value of the system
variable *CODEPAGE). Depending on the amount of alphanumeric constants, the additional table
increases the size of the resulting object and the conversion consumes additional CPU time.

It is important that dependent objects (for example, a program and a local data area used by the
program) use the same code page. If dependent objects use different code pages, it should be as-
certained that the used characters (for example, "#") are mapped to the same code points in the

Unicode and Code Page Support64

Migrating Existing Applications

used code pages. The following objects and data do not have an associated object-specific or data-
specific code page:

■ Data definition modules (DDMs),
■ Predict rules,
■ Predict XRef data.

Care should be taken if such data is used in or produced by objects for which an object-specific
code page has been defined. If the application itself does not necessarily have to be code page en-
abled and you want the application to be code page sensitive with respect to the data that is being
processed, you should consider to use the profile parameter SRETAINwith the value (ON,EXCEPTNEW).

Adding Unicode Support to Existing Applications

It is easy to extend existing applicationswith new source code based on theU format. The following
rules have to be regarded for the U format (as compared with the A format):

■ A REDEFINE of U to a format other than U should be avoided because this may result in split
characters.

■ U format is endian-dependant. This has to be considered when moving between the formats B
and U.

■ AlignU in DEFINE DATA for performance reasons (better performance onUNIX andOpenVMS).
■ Keep in mind that characters may be lost when moving U to A.

If you want to change existing fields from A format to U format, the following rules have to be
regarded:

■ Code which assumes a specific encoding of strings has to be changed (for example, comparison
with a B field).

■ All REDEFINE statements of the field have to be checked for their validity.
■ A REDEFINE to N is not possible (that is: you will not get the expected result).
■ The database field has to be migrated to Unicode (provided that this is supported by your
database).

■ You may have to change the length of the field: if the A field contains DBCS characters, half the
length is required for the U field.

65Unicode and Code Page Support

Migrating Existing Applications

Migrating Natural Remote Procedure Calls (RPC)

The profile parameter CP has been renamed to CPRPC. In earlier Natural versions, CPwas used to
specify the name of the code page used by the Entire Conversion Service (ECS) and applied only
to the Natural Remote Procedure Call when the transport protocol ACI (that is EntireX Broker)
was used.

As of version 6.2 (Windows and UNIX), version 6.3 (OpenVMS) and version 4.2 (mainframe), a
new CP parameter is available which defines the default code page for Natural data. When you
are working with Natural RPC and have previously used the CP parameter dynamically, you have
to change this parameter to CPRPC.

Windows, UNIX and OpenVMS Platforms

When you use parameter files from a previous version, you need not change anything; the Con-
figuration Utility automatically migrates CP to CPRPC.

Mainframe Platforms

The parameter CP is used in conjunction with the parameter macro NTCPAGE (in the source module
NATCONFG) to specify the name of the default code page for Natural data or to automatically take
the code page name from the user terminal.

The parameter CPRPC is used with the profile parameter RPC and the corresponding macro NTRPC.

Unicode and Code Page Support66

Migrating Existing Applications

10 Special Considerations and Limitations

■ Windows, UNIX and OpenVMS Platforms .. 68
■ Mainframe Platforms .. 68

67

Windows, UNIX and OpenVMS Platforms

■ The dialog editor, which is provided with Natural for Windows, and dialog-based runtime is
not Unicode-enabled.

■ The editors providedwithNatural forUNIX andNatural forOpenVMSare notUnicode-enabled.
■ If the DL parameter is specified for a field which is longer than 250 characters, a maximum of
250 characters will be displayed in the field.

■ A Natural source line may not be longer than 250 bytes. The program editor, which works on
Unicode format, checks only that the number of UTF-16 code units is not greater than 250.
However, depending on the encoding of the source, the line lengthmay increasewhen converting
the encoding from UTF-16 to the source encoding. For example, the UTF-8 encoding requires
up to 4 bytes for a Chinese character; an error will be displayed in this case and the changes will
not be saved.

■ For UNIX and OpenVMS, Unicode is only supported at runtime with the Natural Web I/O In-
terface. If an application is run in the terminal emulation or xterm and Unicode strings are dis-
played, strange effects may occur.

■ Comparedwith previousNatural versions, the performance is degraded since several conversions
between code page and Unicode have to be performed.

Mainframe Platforms

■ The editors provided with Natural for Mainframes are not Unicode-enabled.
■ The size of the I/O buffers has been increased to be prepared for Unicode fields.
■ Full Unicode I/O is only supported at runtime with the Natural Web I/O Interface. If an applic-
ation is run in the terminal emulation andUnicode strings are displayed, someUnicode characters
may not be displayed correctly.

Unicode and Code Page Support68

Special Considerations and Limitations

11 Bidirectional Language Support

Some languages, for example Arabic and Hebrew, are written from right-to-left (RTL), whereas
the majority of the languages, for example English and German, are written from left-to-right
(LTR). Text which contains both left-to-right and right-to-left characters is called bidirectional text.

Natural provides a basic support for bidirectional languages. OnWindows, this support is activated
when both the Natural default code page and the Windows system code page are defined as bid-
irectional code pages. If Natural does not define a specific code page, it is sufficient when a bid-
irectionalWindows system code page has been defined. On UNIX andOpenVMS, the support for
bidirectional languages is activated when the Natural default code page is a bidirectional code
page. On mainframes, support for bidirectional languages cannot be activated automatically; the
user always has to specify all required parameters (for example, PM=I) as described below .

The output of Natural programs can be controlled using the profile parameter PM, the terminal
command %V, and the session parameter PM.

On mainframes, UNIX and OpenVMS, the profile parameter DO (Display Order) is additionally
used to support applications that have been originallywritten for terminalswhich support inverse
(right-to-left) print mode, but no bidirectional data. These applications create the display order of
bidirectional data in the application code. With the parameter DO, these applications are enabled
to run compatibly also with I/O devices that support bidirectional data. This is for instance the
case if an application runs in a browser with the Natural Web I/O Interface.

The profile parameter PMdefines the default screen direction.When PM is set to R (reset), the default
screen direction is left-to-right. When PM is set to I (inverse), the default screen direction is right-
to-left. All non-alphanumeric fields, system variables and (only on mainframes) PF key lines are
automatically inverted by Natural so that they are displayed correctly from right-to-left if the
screen direction is right-to-left. On UNIX and OpenVMS, PF key lines are not inverted; they are
always shown from left-to-right.

The terminal command %V can be used to change the screen direction. If the screen direction is
right-to-left, the layout of the current window is mirrored, which means that the origin of all

69

window components or fields is the upper right corner. The screen direction is changed to right-
to-left using %VON and is reverted to left-to-right using %VOFF.

The session parameter PM reverses the direction of a field. The effect of “reversing the direction of
a field” depends on the statement in which the PM parameter is used and the platform. If the PM
parameter is used in a MOVE statement, the content of the field is simply reversed (that is, the first
character will become the last character, and so on); the result does not depend on the characters
of the field. Trailing blanks are removed before the field is reversed.

For example, the following program

DEFINE DATA LOCAL
1 TEST1 (A10)
1 TEST2 (A10)
END-DEFINE
TEST1 := 'program'

MOVE TEST1 (PM=I) TO TEST2
INPUT TEST1 (AD=O) TEST2 (AD=O)

END

produces the following output:

TEST1 program TEST2 margorp

where "margorp" is the reversed version of "program".

When the PM parameter is used for IO statements such as INPUT or DISPLAY, its effect is even more
complex. In this case, the field direction is based on the screen direction:

■ If the screen direction is left-to-right and PM=I is applied to a field, the field direction changes
to right-to-left.

■ If the screen direction is right-to-left and PM=I is applied to a field, the field direction changes
to left-to-right.

On Windows and browser terminals (Natural Web I/O Interface), “reversing the field direction”
does not mean that the characters of the field are simply reversed. Instead, the complex bidirec-
tional algorithm is applied (for more information, see the Microsoft Windows documentation).
On other terminals (character-oriented), however, the characters of a field are not resorted; they
are simply reversed.

Unicode and Code Page Support70

Bidirectional Language Support

In the following example, the characters assigned to the variable TEST have been entered in the
following sequence:

The following is an example program for Windows. The characters of the constant are already
resorted when entering them in the program editor.

DEFINE DATA LOCAL
1 TEST (A20)
END-DEFINE
TEST := 'abc 123 '

SET CONTROL 'voff'

INPUT TEST (AD=O) /
 TEST (AD=O PM=I)

SET CONTROL 'von'

INPUT TEST (AD=O) /
 TEST (AD=O PM=I)
END

This program produces the following two screens on Windows:

TEST abc 123
TEST 123 abc

and

 123 abc TEST
 abc 123 TEST

The following is an example program for UNIX, OpenVMS and mainframes. If the characters are
entered in the same sequence, the program is displayed in the followingway, because the characters
are simply displayed in the keying sequence.

DEFINE DATA LOCAL
1 TEST (A20)
END-DEFINE
TEST := 'abc 123'

SET CONTROL 'voff'

INPUT TEST (AD=O) /
 TEST (AD=O PM=I)

71Unicode and Code Page Support

Bidirectional Language Support

SET CONTROL 'von'

INPUT TEST (AD=O) /
 TEST (AD=O PM=I)
END

On UNIX and OpenVMS, this program produces the following two screens:

TEST abc 123
TEST 321 cba

and

 321 cba TSET
 abc 123 TSET

Onmainframes, this program produces two identical screens (on mainframes, the statements SET
CONTROL 'voff' and SET CONTROL 'von' do not apply to alphanumeric fields). Both screens look
as follows:

TEST abc 123
TEST 321 cba

OnWindows, UNIX and OpenVMS, the map editor simplifies the handling of maps with bidirec-
tional fields by offering theReverseMap command. This command changes the display direction
of the currentmap. The position of the fields is not changed; only the view is changed.OnWindows,
this command applies only to the current map. On UNIX and OpenVMS, a flag is set so that all
following maps are displayed reversed; a following Reverse Map command will restore the ori-
ginal situation.

On Windows, the output of dialogs can be controlled in a similar way: both the dialog itself and
most of the dialog controls offer an RTL attribute. If the RTL attribute of the dialog is checked, the
screen direction of the dialog is right-to-left. If the RTL attribute of other controls is checked, the
direction of these controls is right-to-left.

The profile parameter PM defines the default setting of the RTL attribute for new dialogs. When PM
is set to R (reset), the RTL attribute is unchecked by default. When PM is set to I (inverse), the RTL
attribute is checked by default. The default setting of the RTL attribute for newly created controls
of a dialog is derived from the RTL attribute setting of the dialog.

If the RTL attribute of a dialog is changedwhen the dialog already contains controls, a dialog appears
asking whether the RTL attributes of the controls should also be changed.

When working with bidirectional languages on Windows, "GUI" is the preferred print method.
With the printmethod "GUI", the printed pagewill show the same layout as thewindowdisplayed
on the screen. The sorting of the field characters is identical. If the print method "TTY" is used, the

Unicode and Code Page Support72

Bidirectional Language Support

printed layout will most probably differ from the layout of the screen window because the field
characters are printed in logical sequence. For fields with right-to-left direction, all characters are
simply reversed (that is, the first character will become the last character, and so on).

73Unicode and Code Page Support

Bidirectional Language Support

74

12 Double-Byte Character Support

In most East Asian languages, language-specific characters in code page strings (that is, Natural
format A) are represented by 2 bytes (the so-called double-byte characters) and ASCII characters
(EBCDIC onmainframes) are represented by 1 byte. Thus, a code pages string consists of characters
with different lengths: some have 1 byte and others have 2 bytes.

Natural provides a basic support for double-byte characters. OnWindows, this support is activated
when both the Natural default code page and the Windows system code page are defined as
double-byte code pages. If Natural does not define a specific code page, it is sufficient when a
double-byte Windows system code page has been defined. On UNIX and OpenVMS, the support
for double-byte characters is activated when the Natural default code page is a double-byte code
page. On mainframes, the profile parameter CPmust be set to an EBCDIC MBCS code page, for
example IBM-942.

When double-byte character support is enabled, Natural assures for all string manipulations that
a double-byte character is treated as a unit. This is essential for keeping the meaning of a string.

If a single leading or trailing byte of a double-byte character is left over after the manipulation of
a variable of format A (for example, after extracting a substring with the SUBSTRING option), this
byte is replaced with a blank character.

For the example below, the code page Shift_JIS is selected. Variable #A contains a string which
consists of four characters. The first and last character is the double-byte character "FULLWIDTH
LATIN SMALL LETTER B" which is represented in code page Shift_JIS by the byte sequence
H'8282'. The second and third character is the single byte character "LATIN SMALL LETTER A"
which is represented by one byte H'61'. Thus, the hexadecimal representation of the full string is
H'828261618282'.

75

DEFINE DATA LOCAL
 1 #A (A10)
END-DEFINE

#A := ' aa '

WRITE #A #A (EM=H(6))
EXAMINE #A FOR PATTERN ' ' REPLACE 'a'
WRITE #A #A (EM=H(6))

END

Without double-byte character support the output of the above program is as follows:

Page 1 07-02-07 17:22:09

aa 828261618282
a 826161828220

This is the result of not having treated the character " " (H'8282' in code page Shift_JIS) as one
unit. The trailing byte of this character and the following character "a" (H'61') are falsely interpreted
as the double-byte character " " (H'8261' in code page Shift_JIS).

With double-byte character support, the output of the program is as expected:

Page 1 07-02-07 17:22:09

aa 828261618282
aa 828261618282

Unicode and Code Page Support76

Double-Byte Character Support

13 Frequently Asked Questions

■ Why do I get the startup error "Invalid code page specified"? .. 78
■ What is the "default code page"? .. 78
■ What default code page is used? .. 78
■ Should I save all Natural sources in UTF-8 format? .. 78
■ How can I handle UTF-8 encoding with Natural code? .. 79
■ Why are some characters not displayed correctly? ... 79
■ Why do I get an error when I want to edit a Natural source? ... 79
■ Why do I get an error when I want to save a Natural source? ... 79
■ How can I find out the encoding of a Natural source? .. 80
■ How can I change the encoding of a Natural source? .. 80
■ How can I convert an existing Natural source into UTF-8 format (Windows, UNIX and OpenVMS only)? 80
■ Which substitution character is used if a character cannot be converted? ... 81
■ Can I use Natural 4.2 sources with previous Natural versions? ... 81
■ Can I use UTF-8 sources with previous Natural versions? ... 81
■ Why do I get a conversion error when cataloging a source which has UTF-8 format? 81
■ Why do I get garbage On UNIX or OpenVMS when displaying U format via a terminal emulation? 82
■ Can I work with a current SPoD client and an older SPoD server? ... 82
■ Can I work with a current SPoD server and an older SPoD client? ... 82

77

Why do I get the startup error "Invalid code page specified"?

The code page you have defined with the profile parameter CP does either not exist (see ht-
tp://demo.icu-project.org/icu-bin/convexp for valid ICU code pages and http://www.iana.org/as-
signments/character-sets for the appropriate IANA names) or is an invalid default code page for
the platform (for example, an EBCDIC code page cannot be used on aWindows,UNIXorOpenVMS
platform).

On mainframe platforms, the code page needs to be specified in the Natural configuration file via
NTCPAGE (see alsoNTCPAGEMacro). Code pages that are not entered here are rejected as invalid,
although they are available in the ICU implementation. Check whether the same IANA name,
CCSID/CCSN or alias name as specified in NATCONFG is used.

What is the "default code page"?

The default code page is the code pagewhich is the result of the evaluation of the profile parameter
CP. If CP is not filled (Windows, UNIX and OpenVMS), it is the current operating system code
page.

What default code page is used?

The default code page which is used by Natural for conversions between code page and Unicode
and vice versa can be detected by displaying the content of the system variable *CODEPAGE.

Should I save all Natural sources in UTF-8 format?

It depends on the characters you want to use and on the platforms on which your sources are
located. If youwant to useUnicode constants, UTF-8 is the only possibility to store all combinations
of characters. However, you can define hexadecimal UH constants which can also be stored in
code page sources. The disadvantage of hexadecimal constants is that you have to know the UTF-
16 encoding for every character of the constant. On mainframes, UTF-8 format for sources is not
possible at all. OnUNIX andOpenVMS, UTF-8 sources can only be handled via SPoD; they cannot
be handled locally on UNIX or OpenVMS.

Unicode and Code Page Support78

Frequently Asked Questions

http://demo.icu-project.org/icu-bin/convexp
http://demo.icu-project.org/icu-bin/convexp
http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

How can I handle UTF-8 encoding with Natural code?

Use the MOVE ENCODED statement for conversion fromUTF-8 to UTF-16: the code page "UTF-8" has
to be used for the A format variable.

Why are some characters not displayed correctly?

Check if you are using the correct code page. If the code page is correct, check if the selected font
supports the characters you want to display.

Why do I get an error when I want to edit a Natural source?

The code page which is defined for the source is not correct. When converting the contents of the
source to Unicode, a conversion error occurs. Change the encoding of the source so that the con-
version to Unicode is successful.

On mainframe platforms, the source is saved with the code page at creation time. You get a con-
version error when the source could not be converted from the code page of the saved source into
the code page of the current Natural session. You can start Natural with the code page of the
source to avoid conversion or you can adjust non-convertible characters in the window which
appears when the editor is started.

Why do I get an error when I want to save a Natural source?

You have entered characters in the source which cannot be converted to the code page which was
used to read the source. Check if you have entered these characters by mistake or if you really
want to save the characters in the source. In the first case, remove the faulty characters and save
the source. In the second case, save the source in UTF-8 format or, if the characters are contained
in U constants, use UH constants instead.

If you have not entered any characters which are not contained in the code page of the source,
check whether the profile parameter SRETAIN has been set to OFF. In this case, the source will be
saved with the default code page. If the concerned source was previously saved with a different
code page, a conversion error may occur.

If you are connected to a mainframe environment via SPoD, the source from the mainframe is
converted and edited in Unicode in the SPoD environment. If it is saved, it has to be converted

79Unicode and Code Page Support

Frequently Asked Questions

into the code page of the Natural server. A conversion error may occur if a Unicode character is
not mapped in the code page of the Natural server session.

If you are in a native Natural for Mainframes environment (without SPoD) you do not get errors
when saving a source since a conversion is not performed. The source is saved with the code page
information of the current Natural session.

How can I find out the encoding of a Natural source?

In Natural Studio, invoke the Properties dialog box for the source node. TheGeneral page shows
the encoding of the source. If the Encoding text box is empty, no specific encoding is stored for
the source. This means that the default encoding is used when reading the source.

The list view windows of Natural Studio also show the encodings of all listed objects.

On mainframe platforms, code page information is part of the Natural source directory. Use the
LIST DIR command on Natural for Mainframes to display the directory.

How can I change the encoding of a Natural source?

In Natural Studio, invoke the Properties dialog box for the source node. TheGeneral page shows
the encoding of the source. If this is not the correct encoding, you can change it by choosing the
Change button: a list of available code pages is shown and you can select the correct encoding for
the source.

Onmainframe platforms, you should start your Natural session with the desired code page using
the CP parameter. Set the parameter SRETAIN to OFF, edit the source and save it. Now the source
has the modified code page information. Or, you can use the SYSCP utility to check or change the
code page assignment of a source.

How can I convert an existing Natural source into UTF-8 format (Windows,
UNIX and OpenVMS only)?

Open the source in the Natural editor with the correct code page. Save the source with Save As
and in the Save As dialog box, select UTF-8 as the encoding.

Unicode and Code Page Support80

Frequently Asked Questions

Which substitution character is used if a character cannot be converted?

This depends on the direction of the conversion: if a code page character cannot be converted to
Unicode, the Unicode substitution character "U+FFFD" is used. If a Unicode character cannot be
converted to a code page, the substitution character which is defined by ICU for this code page is
used.

On Natural for Mainframes, the substitution character of the code page or, if specified in the con-
figuration file, the place holder character is used.

For the conversion fromUnicode to the default code page, the substitution character can be changed
on Windows, UNIX and OpenVMS platforms by setting the profile parameter SUBCHAR.

Can I use Natural 4.2 sources with previous Natural versions?

OnNatural for Mainframes, you can use Natural 4.2 sources with previous Natural versions. The
layout of the source has not been changed and the additional code page information of Natural
4.2 sources will simply be ignored if the source is accessed with a previous version.

Can I use UTF-8 sources with previous Natural versions?

No. Previous Natural versions do not know any code page information; a UTF-8 source will be
interpreted as the current system code page.

Why do I get a conversion error when cataloging a source which has UTF-8
format?

ANatural sourcewithUTF-8 format cannot be cataloged because a code point cannot be converted
(Windows, UNIX and OpenVMS only).

All A constants in a sourcewithUTF-8 format are converted to the default code pagewhen storing
them in the generated program. Either remove the characterswhich are not contained in the default
code page from the A constants or use U constants instead of A constants.

81Unicode and Code Page Support

Frequently Asked Questions

Why do I get garbage On UNIX or OpenVMS when displaying U format via a
terminal emulation?

All characterswhich are not contained in the default code pagewill be replacedwith the substitution
character of the code page before displaying the output on a terminal emulation. For an ASCII
code page, the substitution character defined by the ICU conversion table is often "0x1A", which
could be a control character on UNIX or OpenVMS terminals. It is strongly recommended to use
theNaturalWeb I/O Interfacewhen usingU format in I/O statements. If using a terminal emulation
is essential, the substitution character (SUBCHAR) can be changed to a printable character (for example,
"?").

On mainframe platforms, you can still use your terminal emulation since it is possible to replace
the substitution character by a displayable place holder character via the NTCPAGEmacro. The place
holder character avoids garbage in case of non-convertible characters.

Can I work with a current SPoD client and an older SPoD server?

Yes, but you should set the code page of the SPoD client to the code page of the server sources.

See also Prerequisites for Natural Single Point of Development at http://documentation.software-
ag.com/natural/spod_prereq/prereq.htm.

Can I work with a current SPoD server and an older SPoD client?

Yes, but this is not recommended if you have defined encodings for sources.

See also Prerequisites for Natural Single Point of Development at http://documentation.software-
ag.com/natural/spod_prereq/prereq.htm.

Unicode and Code Page Support82

Frequently Asked Questions

http://documentation.softwareag.com/natural/spod_prereq/prereq.htm
http://documentation.softwareag.com/natural/spod_prereq/prereq.htm
http://documentation.softwareag.com/natural/spod_prereq/prereq.htm
http://documentation.softwareag.com/natural/spod_prereq/prereq.htm

Index

C
code page support, 1

U
Unicode support, 1

83

84

	Unicode and Code Page Support
	Table of Contents
	1 Unicode and Code Page Support
	2 Introduction
	About Code Pages and Unicode
	About Unicode and Code Page Support in Natural
	ICU on Mainframe Platforms

	3 Unicode and Code Page Support in the Natural Programming Language
	Natural Data Format U for Unicode-Based Data
	Statements
	MOVE NORMALIZED
	MOVE ENCODED
	EXAMINE
	PARSE XML
	REQUEST DOCUMENT
	DEFINE PRINTER
	CALLNAT (RPC)

	Logical Condition Criteria
	System Variables
	*CODEPAGE
	*LOCALE

	Large and Dynamic Variables
	Session Parameters
	Sample Programs

	4 Configuration and Administration of the Unicode/Code Page Environment
	ICU Library
	Windows, UNIX and OpenVMS Platforms
	Mainframe Platforms

	Customizing the ICU Data Library for Mainframe Platforms
	Profile Parameters
	All Platforms
	Windows, UNIX and OpenVMS Platforms
	Mainframe Platforms
	Natural Development Server for Mainframes

	Encoding Information
	Level 1 - Default Code Page
	Level 2 - Code Page for a Single Object

	Deploying Natural Objects with Encoding Information
	Windows, UNIX and OpenVMS Platforms
	Mainframe Platforms

	5 Development Environment
	Development Environment
	Customizing Your Environment
	Editors
	Code Page Support for Editors, System Commands and Utilities on the Mainframe
	Editors
	System Commands and Utilities
	LIST
	LIST DIR
	SCAN
	Object Handler (SYSOBJH)
	SYSCP Utility - Code Page Administration

	6 Unicode Input/Output Handling in Natural Applications
	Displaying and Entering Unicode Data
	Natural Web I/O Interface Client
	SPoD Environment
	Runtime Environment

	7 Unicode Data Storage
	Unicode Data/Parameter Access
	Database Management System Interfaces
	Accessing Unicode Data in an Adabas Database
	Accessing Unicode Data in a DB2 Database

	Work Files and Print Files on Windows, UNIX and OpenVMS Platforms
	WRITE WORK FILE
	READ WORK FILE
	Special Considerations for Work File Type Transfer
	Print Files

	Work Files and Print Files on Mainframe Platforms
	Work Files
	Print Files

	8 Platform Differences
	Windows, UNIX and OpenVMS Platforms
	Windows
	UNIX and OpenVMS

	Mainframe Platforms
	NATICU Modules for Different Purposes
	Session Modes
	CFICU Parameter
	Shared FUSER
	CPAGE Compiler Option
	Program Sources
	NTCPAGE Macro
	Unicode and Code Page Support for Databases
	Translation Tables
	Support of Multi-Byte Code Pages
	ICU Buffer Pool

	9 Migrating Existing Applications
	Impact of Unicode on Existing Applications
	Windows, UNIX and OpenVMS Platforms
	Mainframe Platforms

	Migrating Existing Objects on Windows, UNIX and OpenVMS Platforms
	Migrating Existing Objects on Mainframe Platforms
	Adding Unicode Support to Existing Applications
	Migrating Natural Remote Procedure Calls (RPC)
	Windows, UNIX and OpenVMS Platforms
	Mainframe Platforms

	10 Special Considerations and Limitations
	Windows, UNIX and OpenVMS Platforms
	Mainframe Platforms

	11 Bidirectional Language Support
	12 Double-Byte Character Support
	13 Frequently Asked Questions
	Why do I get the startup error "Invalid code page specified"?
	What is the "default code page"?
	What default code page is used?
	Should I save all Natural sources in UTF-8 format?
	How can I handle UTF-8 encoding with Natural code?
	Why are some characters not displayed correctly?
	Why do I get an error when I want to edit a Natural source?
	Why do I get an error when I want to save a Natural source?
	How can I find out the encoding of a Natural source?
	How can I change the encoding of a Natural source?
	How can I convert an existing Natural source into UTF-8 format (Windows, UNIX and OpenVMS only)?
	Which substitution character is used if a character cannot be converted?
	Can I use Natural 4.2 sources with previous Natural versions?
	Can I use UTF-8 sources with previous Natural versions?
	Why do I get a conversion error when cataloging a source which has UTF-8 format?
	Why do I get garbage On UNIX or OpenVMS when displaying U format via a terminal emulation?
	Can I work with a current SPoD client and an older SPoD server?
	Can I work with a current SPoD server and an older SPoD client?

	Index

